JP2012069453A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012069453A
JP2012069453A JP2010214880A JP2010214880A JP2012069453A JP 2012069453 A JP2012069453 A JP 2012069453A JP 2010214880 A JP2010214880 A JP 2010214880A JP 2010214880 A JP2010214880 A JP 2010214880A JP 2012069453 A JP2012069453 A JP 2012069453A
Authority
JP
Japan
Prior art keywords
battery
aqueous solution
active material
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010214880A
Other languages
Japanese (ja)
Inventor
忠義 ▲高▼橋
Tadayoshi Takahashi
Toshie Wata
とし惠 綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010214880A priority Critical patent/JP2012069453A/en
Publication of JP2012069453A publication Critical patent/JP2012069453A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte battery which is excellent in charge-discharge cycle characteristics and high-temperature continuous charge characteristics.SOLUTION: The nonaqueous electrolyte secondary battery comprises a power-generation element having a separator and positive and negative electrodes including an active material and opposed to each other with the separator placed therebetween, and a nonaqueous electrolyte, which are sealed in an outer sheath. The active material which will be combined with lithium into an alloy, an electrically conducting agent including a carbon material at least partially having a specific surface area of from 50 to 1500 m/g inclusive, an aqueous binder solution including an aqueous solution-base binder dispersed in water so that pH falls between 0.05 and 4 inclusive are wet-mixed and dried into a powder mixture. The powder mixture is used for the negative electrode.

Description

本発明は、充放電サイクル特性および高温での連続充電特性に優れた、リチウムと合金化する活物質を負極に用いた非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery using, as a negative electrode, an active material that is alloyed with lithium, which is excellent in charge / discharge cycle characteristics and continuous charge characteristics at high temperatures.

高電圧、高エネルギー密度である非水電解液二次電池は携帯用電子機器の主電源として用いられている。その非水電解液二次電池の負極材料には主に黒鉛が採用されている。これはリチウム金属を負極に用いるとエネルギー密度が最も高くなるが、充電時にリチウム金属の表面に析出したデンドライトが充放電の繰り返しにより成長して、セパレータを貫通して内部短絡を引き起こすという安全面での課題があるためである。   Non-aqueous electrolyte secondary batteries with high voltage and high energy density are used as main power sources for portable electronic devices. Graphite is mainly used as a negative electrode material for the non-aqueous electrolyte secondary battery. This is because the energy density is the highest when lithium metal is used for the negative electrode, but in terms of safety, the dendrite deposited on the surface of the lithium metal during charging grows by repeated charge and discharge and penetrates the separator to cause an internal short circuit. This is because there are problems.

しかしながら、黒鉛を負極材料とする非水電解液二次電池では、黒鉛の理論容量(372mAh/g)がリチウム金属の理論容量(3,860mAh/g)よりもかなり小さく、高エネルギー密度化には限界がある。   However, in a non-aqueous electrolyte secondary battery using graphite as a negative electrode material, the theoretical capacity of graphite (372 mAh / g) is considerably smaller than the theoretical capacity of lithium metal (3,860 mAh / g). There is a limit.

黒鉛に代わる負極材料として、リチウムと合金化するAl、Sb、Pb、Snなどの金属材料やSi、Geなどが注目されている。特に多くのリチウムと合金化可能なSnやSiが最近広く検討されている。   As negative electrode materials replacing graphite, metal materials such as Al, Sb, Pb, and Sn that are alloyed with lithium, Si, Ge, and the like are attracting attention. In particular, Sn and Si that can be alloyed with a lot of lithium have been widely studied recently.

Siは理論上リチウムをSi原子5個あたり最大22個まで、すなわち、Li22Siの組成になるまで吸蔵することが可能である。また、Siの理論容量は4,199mAh/gであり、黒鉛の理論容量に比べて遥かに大きく、高エネルギー密度化が可能となる。 Theoretically, Si can occlude up to 22 lithium atoms per 5 Si atoms, that is, Li 22 Si 5 . Further, the theoretical capacity of Si is 4,199 mAh / g, which is much larger than the theoretical capacity of graphite, and a high energy density can be achieved.

SnもSiと同様に理論上リチウムをSn原子5個あたり最大22個まで、すなわち、Li22Snの組成になるまで吸蔵することが可能であり、Snの理論容量は994mAh/gと大きな値を示す。SnとSiでは放電維持電圧や容量の観点からはSiが最も有望な材料である。 Similarly to Si, Sn can occlude up to 22 lithium atoms up to 5 Sn atoms, that is, Li 22 Sn 5 , and the theoretical capacity of Sn is a large value of 994 mAh / g. Indicates. Of Sn and Si, Si is the most promising material from the viewpoint of discharge sustaining voltage and capacity.

リチウムと合金化する材料を用いることで、放電時のデンドライトによる内部短絡も起こらない。しかし、リチウムと合金化する材料を活物質に用いたときの課題として体積膨張があり、特に、Siを用いた場合は、体積が最大で約4倍に膨張する。そのため、充放電サイクルを繰り返すとSi粒子内に大きな内部歪みが生じてクラックが発生し、粒子が微粉化して充放電サイクル特性を著しく低下させてしまう。   By using a material that forms an alloy with lithium, an internal short circuit due to dendrite during discharge does not occur. However, there is a volume expansion as a problem when a material alloyed with lithium is used as an active material. In particular, when Si is used, the volume expands up to about 4 times. Therefore, when the charge / discharge cycle is repeated, a large internal strain is generated in the Si particles, cracks are generated, the particles are pulverized, and the charge / discharge cycle characteristics are remarkably deteriorated.

充放電サイクル特性低下を抑制する方法として、Siを初期の時点で微粉化する方法、Siを他元素と合金化させる方法、Si表面を炭素系の材料でコーテイング処理する方法、Siと黒鉛粒子などとの複合化などの方法が検討されている。   Methods for suppressing charge / discharge cycle characteristics deterioration include a method of pulverizing Si at an early stage, a method of alloying Si with other elements, a method of coating the Si surface with a carbon-based material, Si and graphite particles, etc. Methods such as compounding are being studied.

また、負極の水分散ペーストのpHを5以上10以下にしたものを用いることにより、導電剤である炭素化合物の分散性の向上と、負極活物質のリチウム含有遷移金属化合物あるいは無機酸化物溶出や表面状態の変化を抑制することにより、非水電解液二次電池の放電電位、放電容量及び充放電サイクル寿命等の充放電特性が改善されることが開示されている(特許文献1参照)。   Further, by using a negative electrode water dispersion paste having a pH of 5 or more and 10 or less, the dispersibility of the carbon compound as a conductive agent is improved, and the lithium-containing transition metal compound or inorganic oxide is eluted from the negative electrode active material. It is disclosed that charge / discharge characteristics such as discharge potential, discharge capacity, and charge / discharge cycle life of a non-aqueous electrolyte secondary battery are improved by suppressing changes in the surface state (see Patent Document 1).

特開2005−310800号公報JP-A-2005-310800

しかしながら、負極にリチウムと合金化する活物質を用いた非水電解液二次電池において、特許文献1と同様にpHを5以上10以下にした水分散ペーストを用いた場合には、負極の活物質と電解液との反応によるリチウム消費反応や有機被膜形成により充放電サイクル特性や連続充電特性が低下した。   However, in a non-aqueous electrolyte secondary battery using an active material that is alloyed with lithium for the negative electrode, when an aqueous dispersion paste having a pH of 5 or more and 10 or less is used as in Patent Document 1, the negative electrode active Charge / discharge cycle characteristics and continuous charge characteristics deteriorated due to lithium consumption reaction and organic film formation due to the reaction between the substance and the electrolyte.

本発明は上記課題を解決し、充放電サイクル特性と連続充電特性に優れた、リチウムと合金化する活物質を負極に用いた非水電解液二次電池を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a non-aqueous electrolyte secondary battery using, as a negative electrode, an active material that is alloyed with lithium and has excellent charge / discharge cycle characteristics and continuous charge characteristics.

上記目的を達成するために本発明は、活物質を含む正極と負極とをセパレータを介して対抗配置した発電要素を非水電解液とともに外装体内に封入してなる非水電解液二次電池において、リチウムと合金化する活物質と、少なくとも一部に比表面積が50m/g以上1500m/g以下の炭素材を含む導電剤と、水溶液系結着剤をpHが0.05以上4以下となるように水中に分散させた結着剤水溶液と、を湿式混合した後、乾燥して得られた合剤粉末を前記負極に用いたことを特徴とする非水電解液二次電池である。 In order to achieve the above object, the present invention provides a non-aqueous electrolyte secondary battery in which a power generation element in which a positive electrode and a negative electrode containing an active material are opposed to each other via a separator is enclosed in a package together with a non-aqueous electrolyte. An active material that forms an alloy with lithium, a conductive agent containing at least a carbon material having a specific surface area of 50 m 2 / g or more and 1500 m 2 / g or less, and an aqueous binder with a pH of 0.05 or more and 4 or less. A non-aqueous electrolyte secondary battery in which a mixture powder obtained by wet-mixing a binder aqueous solution dispersed in water so as to be dried and then drying is used for the negative electrode. .

本発明によれば、非水電解液二次電池の連続充電時および充放電サイクル時の特性劣化を抑制することができ、長期保存性能が著しく向上する。   ADVANTAGE OF THE INVENTION According to this invention, the characteristic deterioration at the time of the continuous charge of a nonaqueous electrolyte secondary battery and a charging / discharging cycle can be suppressed, and long-term storage performance improves remarkably.

本発明によれば、リチウムと合金化する活物質を負極に用いた非水電解液二次電池において、優れた充放電サイクル性能と連続充電特性を向上させることができ、長期間の様々な用途に対応することができる。   According to the present invention, in a non-aqueous electrolyte secondary battery using an active material that is alloyed with lithium as a negative electrode, it is possible to improve excellent charge / discharge cycle performance and continuous charge characteristics, and for various uses over a long period of time. It can correspond to.

本発明の一実施の形態における非水電解液二次電池の断面図Sectional drawing of the nonaqueous electrolyte secondary battery in one embodiment of this invention

本発明における第1の発明は、活物質を含む正極と負極とをセパレータを介して対抗配置した発電要素を非水電解液とともに外装体内に封入してなる非水電解液二次電池において、リチウムと合金化する活物質と、少なくとも一部に比表面積が50m/g以上1500m/g以下の炭素材を含む導電剤と、水溶液系結着剤をpHが0.05以上4以下となるように水中に分散させた結着剤水溶液と、を湿式混合した後、乾燥して得られた合剤粉末を前記負極に用いたことを特徴とする非水電解液二次電池である。この構成とすることで、リチウムと合金化する活物質の課題である充放電サイクル性能や連続充電特性の劣化が抑制された非水電解液二次電池が得られる。 According to a first aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery in which a power generation element in which a positive electrode and a negative electrode containing an active material are opposed to each other via a separator is enclosed in a package together with a non-aqueous electrolyte. The pH of the active material to be alloyed with, a conductive agent containing a carbon material having a specific surface area of 50 m 2 / g or more and 1500 m 2 / g or less at least in part, and an aqueous binder is 0.05 or more and 4 or less. Thus, a non-aqueous electrolyte secondary battery in which a mixture powder obtained by wet-mixing a binder aqueous solution dispersed in water and then drying is used for the negative electrode. By setting it as this structure, the non-aqueous-electrolyte secondary battery by which deterioration of the charging / discharging cycling performance and continuous charge characteristic which are the subjects of the active material alloyed with lithium was suppressed is obtained.

リチウムと合金化する活物質と、少なくとも一部に比表面積が50m/g以上1500m/g以下の炭素材を含む導電剤と、水溶液系結着剤をpHが0.05以上4以下となるように水中に分散させた結着剤水溶液とを湿式混合することで、活物質と導電剤の炭素材料が局部電池を構成して短絡電流が流れて、活物質表面に緻密な活物質の酸化物を形成することができる。同時に、導電剤である炭素材の導電性はそのままで、その表面の活性層の反応性を小さくすることができる。この湿式混合したものを乾燥して得られた合剤粉末を負極として用いることで、高温での連続充電時の負極での電解液との反応を抑制することができる。これは、活物質の表面に緻密な酸化物が形成されていることと導電剤の反応性を低下させたことによるものである。加えて、リチウムと合金化する活物質の課題
である充放電サイクル時の劣化についても、表面の緻密な酸化物層により電極の構造劣化が抑制されることで、劣化率が小さくなり、サイクル性能が著しく向上した。
An active material that is alloyed with lithium, a conductive agent containing a carbon material having a specific surface area of 50 m 2 / g or more and 1500 m 2 / g or less at least in part, and an aqueous binder having a pH of 0.05 or more and 4 or less By wet-mixing the binder aqueous solution dispersed in water so that the active material and the conductive material carbon material constitute a local battery, a short-circuit current flows, and the active material surface has a dense active material. An oxide can be formed. At the same time, the reactivity of the active layer on the surface can be reduced while maintaining the conductivity of the carbon material as the conductive agent. By using the mixture powder obtained by drying this wet mixture as the negative electrode, the reaction with the electrolytic solution at the negative electrode during continuous charging at high temperature can be suppressed. This is due to the fact that a dense oxide is formed on the surface of the active material and the reactivity of the conductive agent is lowered. In addition, with regard to deterioration during charge / discharge cycles, which is an issue with active materials that are alloyed with lithium, the deterioration of the electrode structure is suppressed by the dense oxide layer on the surface, resulting in a lower deterioration rate and cycle performance. Improved significantly.

局部電池構成時において、水溶液系結着剤を水で希釈した際のpHが0.05以上4以下の状態にすることが重要である。アルカリ性か中性領域のpHの水溶性結着剤を用いた場合には同様な効果は得られない。詳細なメカニズムについては不明であるが、活物質表面に形成される層と炭素材の活性度の違いが要因であると考えられる。アルカリ性領域では、活部質表面は多孔性の水酸化物かオキシ水酸化物に覆われ、また、炭素材の表面の活性は高い状態のままである。充放電を行うことで、活物質表面の水酸化物やオキシ水酸化物がリチウムと反応して、リチウムの消費による電池容量の低下を引き起こす。更に、高温での連続充電時には活物質と活性な導電剤の炭素材との反応により電解液の分解が起こり、特性低下を引き起こした。pHが5〜7の場合には、活物質表面には酸化物が形成されるが、厚みが薄く、完全に緻密ではなくピンホールが存在する。そのため、効果が不十分となり充放電サイクルや高温での連続充電特性が低下した。活物質表面への酸化物の形成と炭素材表面の反応性低下は、pHの値が小さいほどトリガーとなり反応が速く進行して効果に差が生じると思われる。pHの値が0.05より小さくなると、活物質表面の酸化物の厚みが厚くなることで、充放電サイクル特性で若干性能低下が起こる。   When the local battery is constructed, it is important that the pH when the aqueous binder is diluted with water is in the range of 0.05 to 4. The same effect cannot be obtained when a water-soluble binder having an alkaline or neutral pH is used. Although the detailed mechanism is unknown, it is considered that the difference in activity between the layer formed on the active material surface and the carbon material is a factor. In the alkaline region, the active material surface is covered with porous hydroxide or oxyhydroxide, and the activity of the surface of the carbon material remains high. By performing charging and discharging, the hydroxide or oxyhydroxide on the surface of the active material reacts with lithium, causing a decrease in battery capacity due to consumption of lithium. Further, during continuous charging at a high temperature, the electrolytic solution was decomposed due to the reaction between the active material and the carbon material of the active conductive agent, causing deterioration in characteristics. When the pH is 5 to 7, an oxide is formed on the surface of the active material, but the thickness is thin and not completely dense but pinholes are present. Therefore, the effect was insufficient, and the charge / discharge cycle and continuous charge characteristics at high temperature were deteriorated. It seems that the formation of oxide on the active material surface and the decrease in reactivity on the surface of the carbon material are triggered by the smaller the pH value, and the reaction proceeds faster, resulting in a difference in effect. When the pH value is smaller than 0.05, the thickness of the oxide on the active material surface becomes thick, so that the performance is slightly deteriorated in charge / discharge cycle characteristics.

水溶液系結着剤を水で希釈した際のpHが0.05以上4以下の状態であっても、導電剤に比表面積が50m/g以上1500m/g以下の炭素材が含まれていない場合には、同様の効果が得られない。活物質に対して添加される導電剤の量は、容量の観点からは負極合剤に対して最大で40%程度で、負極の電気抵抗の観点からは最小でも5%以上は必要となる。5〜40%の添加量で、湿式混合時に活物質と効率よく反応するためには、比表面積が上記範囲内のものを用いて活物質との反応面積を増やすことが必要である。比表面積が50m/gより小さい場合には、反応効率が低下して活物質表面への酸化物形成が不十分となり、狙いの効果が得られない。また、比表面積が1500m/gより大きくなっても、効果に差は無く、また、炭素材のかさが高くなり、充放電サイクルを繰り返すと、電極形状の維持ができなくなり、サイクル性能が低下した。 Even when the pH when the aqueous binder is diluted with water is 0.05 or more and 4 or less, the conductive agent contains a carbon material having a specific surface area of 50 m 2 / g or more and 1500 m 2 / g or less. If not, the same effect cannot be obtained. The amount of the conductive agent added to the active material is about 40% at maximum with respect to the negative electrode mixture from the viewpoint of capacity, and at least 5% is required from the viewpoint of electric resistance of the negative electrode. In order to efficiently react with the active material during wet mixing with an addition amount of 5 to 40%, it is necessary to increase the reaction area with the active material using a material having a specific surface area within the above range. When the specific surface area is smaller than 50 m 2 / g, the reaction efficiency is lowered and oxide formation on the surface of the active material becomes insufficient, and the aimed effect cannot be obtained. In addition, even if the specific surface area is larger than 1500 m 2 / g, there is no difference in effect, and the carbon material becomes bulky. If the charge / discharge cycle is repeated, the electrode shape cannot be maintained and the cycle performance is lowered. did.

本発明における第2の発明は第1の発明において、リチウムと合金化する活物質として、金属系活物質またはシリコンを用いた非水電解液二次電池である。金属系活物質としてはアルミニウム、アルミニウム合金、スズなどが好ましい。金属酸化物を用いた場合にも、リチウムと合金化するところまで至るが、酸化リチウムの形成や活物質層の構造変化などにより電池容量が小さくなるため、好ましくない。   According to a second aspect of the present invention, in the first aspect of the invention, there is provided a non-aqueous electrolyte secondary battery using a metal-based active material or silicon as an active material alloyed with lithium. As the metal-based active material, aluminum, an aluminum alloy, tin or the like is preferable. Even when a metal oxide is used, it reaches the point where it is alloyed with lithium, but it is not preferable because the battery capacity becomes small due to the formation of lithium oxide or the structural change of the active material layer.

Siについては、P型またはN型半導体、もしくはP型とN型の両方を混合したものが好ましい。P型はSiにBをドープしたものが好ましく、N型はPまたはSbの少なくとも一種をドープしたものが好ましい。   As for Si, a P-type or N-type semiconductor, or a mixture of both P-type and N-type is preferable. The P type is preferably Si doped with B, and the N type is preferably doped with at least one of P or Sb.

また、半導体のSiに、Siと合金可能な金属を混合して、メカニカルアロイング法を行って得られたSiの非晶質相とSiの結晶質合金相とを活物質として用いると、充放電サイクル性能が格段に向上する。メカニカルアロイング法は、ボールミルを用いて原料混合物を、機械的に撹拌、混合し、原料混合物にエネルギーを与えて固相反応により合金粉末を作製する方法である。メカニカルアロイング法で用いるボールミルとしては、転動ボールミル、振動ボールミル、遊星ボールミルがあげられる。   In addition, when an amorphous material of Si and a crystalline alloy phase of Si obtained by mixing a metal that can be alloyed with Si into a semiconductor Si and performing mechanical alloying are used as an active material, Discharge cycle performance is greatly improved. The mechanical alloying method is a method in which a raw material mixture is mechanically stirred and mixed using a ball mill, and energy is given to the raw material mixture to produce an alloy powder by a solid phase reaction. Examples of the ball mill used in the mechanical alloying method include a rolling ball mill, a vibration ball mill, and a planetary ball mill.

メカニカルアロイング法により得られるSi非晶質相は、広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなっており、最大結晶子サイズが200nm以下になったものを用いることで優れた充放電サイクル性能が得られる。   The Si amorphous phase obtained by the mechanical alloying method has no diffraction peak on the Si (111) plane in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method, and the maximum crystallite size is 200 nm. An excellent charge / discharge cycle performance can be obtained by using the following.

Siと合金化可能な金属としては、Ti、Co、Ni、Cu、Mg、Zr、V、Mo、W、MnおよびFeを用いることができる。負極の電気伝導性の観点からは電子伝導性の高いSiとTiとの結晶質合金相が好ましく、組成式TiSiで表される金属間化合物相が特に好ましい。 Ti, Co, Ni, Cu, Mg, Zr, V, Mo, W, Mn, and Fe can be used as a metal that can be alloyed with Si. From the viewpoint of electrical conductivity of the negative electrode, a crystalline alloy phase of Si and Ti having high electron conductivity is preferable, and an intermetallic compound phase represented by the composition formula TiSi 2 is particularly preferable.

合金化させる金属元素MとSiとの質量比(M/Si)が10:90〜40:60であることが好ましい。また、三元合金については、Siと、合金化元素M1と合金化元素M2との質量比が10:90(M1とM2の質量比は任意)〜40:60(M1とM2の質量比は任意)であることが好ましい。   The mass ratio (M / Si) between the metal element M and Si to be alloyed is preferably 10:90 to 40:60. For the ternary alloy, the mass ratio of Si, the alloying element M1 and the alloying element M2 is 10:90 (the mass ratio of M1 and M2 is arbitrary) to 40:60 (the mass ratio of M1 and M2 is (Optional).

導電剤として、比表面積が50m/g以上1500m/g以下の炭素材と、黒鉛またはリチウムと合金化しない金属のNiで構成した非水電解液二次電池用負極を用いることができる。比表面積が50m/g以上1500m/g以下の炭素材だけでは、実際の充放電サイクル時の膨張収縮による電極内部での構造変化が起こり、電極内部の導電経路が遮断されたり、抵抗値が高くなり、高負荷での充放電性能が低下してしまう。導電剤として、黒鉛やリチウムと合金化しない金属のNiを加えることで、電極内部の導電経路の遮断や抵抗値の上昇を抑制することができ、高負荷での充放電性能を維持することができる。 As the conductive agent, a negative electrode for a non-aqueous electrolyte secondary battery composed of a carbon material having a specific surface area of 50 m 2 / g or more and 1500 m 2 / g and metal Ni that does not alloy with graphite or lithium can be used. If only a carbon material having a specific surface area of 50 m 2 / g or more and 1500 m 2 / g or less, structural change occurs inside the electrode due to expansion and contraction during the actual charge / discharge cycle, the conductive path inside the electrode is blocked, and the resistance value As a result, the charge / discharge performance at a high load is reduced. By adding Ni, which is a metal that does not alloy with graphite or lithium, as a conductive agent, it is possible to suppress blocking of the conductive path inside the electrode and an increase in resistance value, and to maintain charge / discharge performance under high load. it can.

前記活物質、導電剤および水溶性結着剤からなる材料を負極として用いる場合は、ペレット状に成型しても、集電体上に形成しても同様の効果が得られる。集電体の基材としては銅が最適である。   When a material comprising the active material, the conductive agent and the water-soluble binder is used as the negative electrode, the same effect can be obtained regardless of whether it is formed into a pellet or formed on a current collector. Copper is the most suitable base material for the current collector.

以下、本発明の好ましい実施の形態について説明する。なお、以下に示す実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, preferred embodiments of the present invention will be described. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1は本発明の一実施の形態による非水電解液二次電池の一例であるコイン型リチウム二次電池の断面構造図である。   FIG. 1 is a cross-sectional structure diagram of a coin-type lithium secondary battery which is an example of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

発電要素を収容するコイン型の電池外装体の容器は、耐食性に優れたステンレス鋼からなる正極缶1と、同様にステンレス鋼の負極缶2、及び正極缶1と負極缶2とを絶縁する機能に加え、物理的に発電要素を液蜜的に電池容器内に密閉するためのガスケット3を有している。   The coin-type battery case container that houses the power generation element has a function of insulating the positive electrode can 1 made of stainless steel with excellent corrosion resistance, the stainless steel negative electrode can 2, and the positive electrode can 1 and the negative electrode can 2. In addition, it has a gasket 3 for physically sealing the power generation element in the battery container.

正極缶1と負極缶2との間に介在されるガスケット3には、材料としてポリプロピレン樹脂やポリフェニレンスルフイド、ポリエーテルエーテルケトンなどのエンジニアリングプラスチックやフッ素樹脂からなるものを使用することができる。このガスケット3と正極缶1及び負極缶2とガスケット3との間にはシーラント(図示せず)が形成されている。シーラントとしては、例えばブチルゴムをトルエンで希釈した溶液を塗布し、トルエンを蒸発させることによりブチルゴム膜からなるシーラントを形成することができる。   For the gasket 3 interposed between the positive electrode can 1 and the negative electrode can 2, a material made of engineering plastics such as polypropylene resin, polyphenylene sulfide, polyether ether ketone, or fluororesin can be used. A sealant (not shown) is formed between the gasket 3 and the positive electrode can 1 and between the negative electrode can 2 and the gasket 3. As the sealant, for example, a sealant made of a butyl rubber film can be formed by applying a solution obtained by diluting butyl rubber with toluene and evaporating the toluene.

正極4は、遷移金属酸化物を活物質に含む。負極5は本発明の負極材料である。正極4と負極5との間に配置されるセパレータ6には、図示していない非水電解液が充填されている。正極集電体7は正極缶1の内面にカーボン塗料を塗布することで形成されている。   The positive electrode 4 contains a transition metal oxide as an active material. The negative electrode 5 is a negative electrode material of the present invention. A separator 6 disposed between the positive electrode 4 and the negative electrode 5 is filled with a non-aqueous electrolyte (not shown). The positive electrode current collector 7 is formed by applying a carbon paint on the inner surface of the positive electrode can 1.

本発明の負極5の材料は、リチウムと合金化する活物質と、少なくとも一部に比表面積が50m/g以上1500m/g以下の炭素材を含む導電剤と、水溶液系結着剤をpHが0.05以上4以下となるように水中に分散させた結着剤水溶液と、を湿式混合した後、乾燥により水分除去を行って合剤粉末を得た。その合剤粉末を、ペレット状に成型し
て負極5を作製した。
The material of the negative electrode 5 of the present invention includes an active material that is alloyed with lithium, a conductive agent containing at least a carbon material having a specific surface area of 50 m 2 / g or more and 1500 m 2 / g or less, and an aqueous binder. Wet mixing was performed with a binder aqueous solution dispersed in water so that the pH was 0.05 or more and 4 or less, and then water was removed by drying to obtain a mixture powder. The mixture powder was molded into a pellet shape to produce a negative electrode 5.

負極5の導電剤の黒鉛としては、天然黒鉛、人造黒鉛、難黒鉛性炭素のうち少なくとも一種を用いることが好ましい。   As the graphite of the conductive agent of the negative electrode 5, it is preferable to use at least one of natural graphite, artificial graphite, and non-graphitizable carbon.

負極5の水溶液系結着剤としては、ポリアクリル酸、エチレン・メタクリル酸共重合体、フッ素樹脂などを用い、水溶液系結着剤をpHが0.05以上4以下となるようにイオン交換水で希釈して水中に分散させた結着剤水溶液を湿式混合した。   As the aqueous solution binder for the negative electrode 5, polyacrylic acid, ethylene / methacrylic acid copolymer, fluororesin, or the like is used, and ion exchange water is used so that the aqueous solution binder has a pH of 0.05 or more and 4 or less. The binder aqueous solution diluted with water and dispersed in water was wet mixed.

多孔質絶縁体としてのセパレータ6の材料としては、ポロプロピレン、ポリエチレンなどのオレフィン系ポリマー、ポリブチレンテレフタレート、ポリフェニレンスルフイド、ポリエーテルエーテルケトンなどのエンジニアリングプラスチック、無機のガラス繊維からなるガラスセパレータなどが使用できる。不織布、フイルムなどのセパレータを使用することも可能である。   Examples of the material for the separator 6 as the porous insulator include olefin polymers such as polypropylene and polyethylene, engineering plastics such as polybutylene terephthalate, polyphenylene sulfide, and polyether ether ketone, and glass separators made of inorganic glass fibers. Can be used. It is also possible to use a separator such as a nonwoven fabric or a film.

非水電解液を構成する溶質としては、LiPF、LiBF、LiClO、LiCFSO、LiAsF、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)などの単体あるいは複数成分を混合して使用することができる。 Solutes constituting the non-aqueous electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( A single component such as CF 3 SO 2 ) (C 4 F 9 SO 2 ) or a mixture of a plurality of components can be used.

また、非水電解液を構成する溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、スルホラン、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、γ−ブチロラクトンなどの単体または複数成分を使用することができるが、これに限定されるものではない。   Further, as a solvent constituting the non-aqueous electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, sulfolane, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, γ-butyrolactone However, the present invention is not limited to this.

エチレンサルフィド、1,3プロパンサルトン、1,4ブタンスルトン、スルホレン、ビニレンカーボネート、ビニルエチレンカボネートを有機電解液に対して1〜10質量%添加して用いることができる。   1 to 10% by mass of ethylene sulfide, 1,3 propane sultone, 1,4 butane sultone, sulfolene, vinylene carbonate and vinyl ethylene carbonate can be added to the organic electrolyte.

正極4の材料には、電池反応に使用されるリチウムを含有する遷移金属酸化物、電池反応に使用されないリチウムを含有する遷移金属酸化物、リチウムを含有しない遷移金属酸化物を用いることができる。   As the material of the positive electrode 4, a transition metal oxide containing lithium used for battery reaction, a transition metal oxide containing lithium not used for battery reaction, or a transition metal oxide not containing lithium can be used.

電池反応に使用されるリチウムを含有する遷移金属酸化物としては、LiCoO、LiNiO、LiNiCo1−X(0<X<1)、LiCo1/3Ni1/3Mn1/3、スピネル型のLi1+X Mn2−X(0≦X≦0.33)またはスピネル型のマンガンの一部を異種元素で置換したLi1+X Mn2−X−yAO(AはCr、Ni、Co、Fe、Al、B、0≦X≦0.33、0<y≦0.25)やLiFePOなどがあげられる。 Examples of the transition metal oxide containing lithium used in the battery reaction include LiCoO 2 , LiNiO 2 , LiNi x Co 1-X O 2 (0 <X <1), LiCo 1/3 Ni 1/3 Mn 1 / 3 O 2 , spinel-type Li 1 + X Mn 2−X O 4 (0 ≦ X ≦ 0.33) or spinel-type manganese partially substituted with a different element Li 1 + X Mn 2−X−y AO 4 (A Cr, Ni, Co, Fe, Al, B, 0 ≦ X ≦ 0.33, 0 <y ≦ 0.25) and LiFePO 4 .

電池反応に使用されないリチウムを含有する遷移金属酸化物としては、Li0.33MnO、LiMnO、Li1.33Ti1.67、LiFeOなどがあげられる。リチウムを含有しない遷移金属酸化物としては、V、Nb、TiO、Mなどである。 The transition metal oxide containing lithium is not used in the cell reaction, Li 0.33 MnO 2, LiMnO 2 , Li 1.33 Ti 1.67 O 4, etc. LiFeO 2 and the like. The transition metal oxide containing no lithium, and the like V 2 O 5, Nb 2 O 5, TiO 2, M O O 3.

正極4の導電剤としては、カーボンブラック、アセチレンブラック、デンカブラックからなる群より選択される少なくとも一種が好ましい。加えて、天然黒鉛、人造黒鉛などを混合して用いることができる。導電材の配合量としては、3〜10質量%の範囲である。正極4の結着剤としては、ポリテトラフルオロエチレンが好ましく、その配合量は5〜1
0質量%の範囲である。
The conductive agent for the positive electrode 4 is preferably at least one selected from the group consisting of carbon black, acetylene black, and denka black. In addition, natural graphite, artificial graphite and the like can be mixed and used. As a compounding quantity of a electrically conductive material, it is the range of 3-10 mass%. As the binder for the positive electrode 4, polytetrafluoroethylene is preferable, and the blending amount thereof is 5 to 1.
It is in the range of 0% by mass.

上記構成の電池とすることで、優れた充放電サイクル性能と高率放電特性を有し、高温での連続充電時にも安定な非水電解液二次電池を提供することができる。   By setting it as the battery of the said structure, it can provide the non-aqueous-electrolyte secondary battery which has the outstanding charging / discharging cycling performance and high rate discharge characteristic, and is stable also at the time of continuous charge at high temperature.

以下、本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(実施例1)
図1は、本発明の実施例で用いた厚さ1.4mm、直径6.8mmの二次電池の断面図である。
Example 1
FIG. 1 is a cross-sectional view of a secondary battery having a thickness of 1.4 mm and a diameter of 6.8 mm used in an example of the present invention.

正極4は、水酸化リチウムと二酸化マンガンを400℃で10時間焼成して得られたリチウム含有マンガン酸化物を活物質に、導電剤として比表面積が800m/gのカーボブラックと結着剤としてpH値が8のフッ素樹脂粉末を分散させた水溶液系結着剤を混合したのち、水分を乾燥させて正極合剤を得た。合剤は、活物質、導電剤、フッ素樹脂を85:7:8の質量比の合剤とした。この合剤20mgを、直径4mm、厚さ0.7mmのペレット状に成型した後、250°C中で12時間乾燥したものである。得られたペレット状の正極材料は、正極缶1の内面にカーボン塗料を塗布することで形成された正極集電体7に接触するようにしてある。 The positive electrode 4 has a lithium-containing manganese oxide obtained by firing lithium hydroxide and manganese dioxide at 400 ° C. for 10 hours as an active material, a carbo black having a specific surface area of 800 m 2 / g as a conductive agent, and a binder. After mixing an aqueous binder in which a fluororesin powder having a pH value of 8 was dispersed, the moisture was dried to obtain a positive electrode mixture. As a mixture, an active material, a conductive agent, and a fluororesin were mixed at a mass ratio of 85: 7: 8. 20 mg of this mixture was molded into a pellet having a diameter of 4 mm and a thickness of 0.7 mm, and then dried at 250 ° C. for 12 hours. The obtained pellet-like positive electrode material is in contact with the positive electrode current collector 7 formed by applying a carbon paint on the inner surface of the positive electrode can 1.

負極5は、活物質としてTi−Si合金を、導電材として比表面積が800m/gのカーボブラックと比表面積が10m/gの天然黒鉛を、結着剤としてポリアクリル酸からなる水溶液系結着剤を、純水を加えて、水溶液のpHが1で湿式混合したのち、水分を乾燥させて負極合剤を得た。合剤は活物質、導電剤のカーボンブラック、天然黒鉛、ポリアクリル酸の質量比の80:4:8:8の合剤とした。負極合剤8mgを、直径4mm、厚さ0.3mmのペレット状に成型した後、150°C中で12時間乾燥して負極5を得た。 The negative electrode 5 is an aqueous solution system comprising a Ti—Si alloy as an active material, carbo black having a specific surface area of 800 m 2 / g as a conductive material and natural graphite having a specific surface area of 10 m 2 / g, and polyacrylic acid as a binder. Pure water was added to the binder, and the aqueous solution was wet-mixed at a pH of 1. Then, the water was dried to obtain a negative electrode mixture. The mixture was a mixture of 80: 4: 8: 8 in mass ratio of the active material, the conductive agent carbon black, natural graphite, and polyacrylic acid. 8 mg of the negative electrode mixture was formed into a pellet having a diameter of 4 mm and a thickness of 0.3 mm, and then dried at 150 ° C. for 12 hours to obtain the negative electrode 5.

活物質のTi−Si合金は、母合金ドープ法によりSiの1cmあたりP原子を1×1018個ドープしたSiウェハを、乳鉢で砕いて平均粒径1mmの粉末とした。また、母合金ドープ法によりSiの1cmあたりB原子を1×1018個ドープしたSiウェハを、乳鉢で砕いて平均粒径1mmの粉末とした。 The Ti-Si alloy as an active material was obtained by pulverizing a Si wafer doped with 1 × 10 18 P atoms per 1 cm 3 of Si by a mother alloy doping method in a mortar to obtain a powder having an average particle diameter of 1 mm. Further, a Si wafer doped with 1 × 10 18 B atoms per 1 cm 3 of Si by a mother alloy doping method was crushed in a mortar to obtain a powder having an average particle diameter of 1 mm.

このN型半導体とP型半導体のSi粉末を質量比で10:90で混合した1.5Kgと、平均粒径0.5mmのTi粉末1kgと、1インチ径のステンレス鋼製ボール300kgとを、内容積95リットルのステンレス鋼製の振動ボールミル(商品コード:FV−30、中央加工機社製)の容器内に入れて蓋をした。   1.5 kg of this N-type semiconductor and P-type semiconductor Si powder mixed at a mass ratio of 10:90, 1 kg of Ti powder with an average particle size of 0.5 mm, and 300 kg of 1-inch diameter stainless steel balls, The container was put in a container of a stainless steel vibrating ball mill (product code: FV-30, manufactured by Chuo Kaoki Co., Ltd.) having an internal volume of 95 liters and covered.

容器内を減圧し、Arガスを容器内が1気圧になるまで導入した。次いで、振動ボールミルの振幅を8mm、駆動モータの回転数を1200rpmにそれぞれ設定して、20時間メカニカルアロイングを行い、負極活物質として用いるTi37wt%−Si63wt%合金粉末を作製した。   The inside of the container was depressurized, and Ar gas was introduced until the inside of the container reached 1 atm. Next, the amplitude of the vibration ball mill was set to 8 mm and the rotational speed of the drive motor was set to 1200 rpm, respectively, and mechanical alloying was performed for 20 hours to produce a Ti 37 wt% -Si 63 wt% alloy powder used as a negative electrode active material.

波長1.5405ÅのCuKα線を線源として、広角X線回折装置(商品コード:RINT−2500、理学電機社製)を用いて、回折角2θ=10°〜80°の範囲における回折強度を測定した。Siの(111)面に帰属する回折角付近におけるピークの有無を調べたところ、ピークは存在しなかった。   Using a wide angle X-ray diffractometer (product code: RINT-2500, manufactured by Rigaku Corporation) using a CuKα ray having a wavelength of 1.5405 mm as a radiation source, the diffraction intensity in a range of diffraction angle 2θ = 10 ° -80 ° is measured did. When the presence or absence of a peak near the diffraction angle attributed to the (111) plane of Si was examined, no peak was present.

また、得られた合金粉末をTEM(透過型電子顕微鏡)を用いて観察したところ、その
最大結晶子サイズは40nmであり、平均結晶子サイズは10nmであった。Siの非晶質相とTiとSiの合金相からなる活物質が得られた。
Moreover, when the obtained alloy powder was observed using TEM (transmission electron microscope), the maximum crystallite size was 40 nm and the average crystallite size was 10 nm. An active material comprising an amorphous phase of Si and an alloy phase of Ti and Si was obtained.

厚さ0.20mmのリチウム金属のシートをφ3.7mmに打ち抜き、この負極5のペレットの表面に圧着した。負極5のペレットのリチウム金属が圧着されている面は、セパレータ6側になるように配置している。   A sheet of lithium metal having a thickness of 0.20 mm was punched out to 3.7 mm and pressed onto the surface of the negative electrode 5 pellet. The surface of the pellet of the negative electrode 5 to which the lithium metal is pressure-bonded is disposed on the separator 6 side.

電池組み立て時に、非水電解液を注入することによりリチウムと負極5が短絡した状態になり、電気化学的にリチウムが負極5の非晶質相のSi中に吸蔵される。この反応によりLi―Si合金を得た。また、正極4と負極5との間に配置されるセパレータ6には、ポリプロピレン製の不織布とポリプロピレン製のフイルムとポリプロピレン製の不織布の3枚からなるものを使用した。   When the battery is assembled, by injecting a non-aqueous electrolyte, lithium and the negative electrode 5 are short-circuited, and lithium is occluded electrochemically in the amorphous phase Si of the negative electrode 5. A Li—Si alloy was obtained by this reaction. The separator 6 disposed between the positive electrode 4 and the negative electrode 5 was made of a polypropylene nonwoven fabric, a polypropylene film, and a polypropylene nonwoven fabric.

プロピレンカーボネート(PC)とエチレンカーボネート(EC)と1,2・ジメトキシエタン(DME)の体積比が3:2:5の混合溶媒に溶質として1molのLiN(CFSOを溶解させた非水電解液を用いた。この非水電解液を正極缶1、負極缶2とガスケット3からなる電池容器内のセパレータ6に体積で8μ1が充填されている。 1 mol of LiN (CF 3 SO 2 ) 2 was dissolved as a solute in a mixed solvent having a volume ratio of propylene carbonate (PC), ethylene carbonate (EC) and 1,2 · dimethoxyethane (DME) of 3: 2: 5. A non-aqueous electrolyte was used. A volume of 8 μ1 is filled in the separator 6 in the battery container composed of the positive electrode can 1, the negative electrode can 2, and the gasket 3.

このようにして得られた非水電解液二次電池を、本実施例1に係る発明電池1とした。   The nonaqueous electrolyte secondary battery thus obtained was designated as an inventive battery 1 according to Example 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが2のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である発明電池2を作製した。   Inventive battery 2 having the same configuration was prepared except that an aqueous solution-based binder composed of polyacrylic acid having a diluted aqueous solution pH of 2 was used instead of the aqueous solution-based binder of inventive battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが3のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である発明電池3を作製した。   Inventive battery 3 having the same configuration was prepared except that an aqueous solution-based binder composed of polyacrylic acid having a diluted aqueous solution pH of 3 was used instead of the aqueous solution-based binder of inventive battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが4のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である発明電池4を作製した。   Inventive battery 4 having the same configuration was prepared except that an aqueous solution-based binder composed of polyacrylic acid having a pH of 4 after dilution was used instead of the aqueous solution-based binder of inventive battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが0.5のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である発明電池5を作製した。   Inventive battery 5 having the same configuration was prepared except that an aqueous solution-based binder composed of polyacrylic acid having a pH of 0.5 after dilution was used instead of the aqueous solution-based binder of inventive battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが0.1のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である発明電池6を作製した。   Inventive battery 6 having the same configuration was prepared, except that an aqueous solution-based binder composed of polyacrylic acid having a pH of 0.1 after dilution was used instead of the aqueous solution-based binder of inventive battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが0.05のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である発明電池7を作製した。   Inventive battery 7 having the same configuration was prepared except that an aqueous solution-based binder composed of polyacrylic acid having a pH of 0.05 after dilution was used instead of the aqueous solution-based binder of inventive battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが0.01のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である比較電池Aを作製した。   A comparative battery A having the same configuration was prepared except that an aqueous solution binder composed of polyacrylic acid having a pH of 0.01 after dilution was used instead of the aqueous solution binder of Invention Battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが5のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である比較電池Bを作製した。   A comparative battery B having the same configuration was prepared except that an aqueous solution binder made of polyacrylic acid having a pH of 5 after dilution was used instead of the aqueous solution binder of Invention Battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが7のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である比較電池Cを作製した。   A comparative battery C having the same configuration was prepared except that an aqueous solution binder composed of polyacrylic acid whose pH of the diluted aqueous solution was 7 was used instead of the aqueous solution binder of Invention Battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが9のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である比較電池Dを作製した。   A comparative battery D having the same configuration was prepared except that an aqueous solution binder made of polyacrylic acid having a pH of 9 after dilution was used instead of the aqueous solution binder of Invention Battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが11のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である比較電池Eを作製した。   A comparative battery E having the same configuration was prepared except that an aqueous solution binder made of polyacrylic acid having a pH of 11 after dilution was used instead of the aqueous solution binder of Invention Battery 1.

発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが13のポリアクリル酸からなる水溶液系結着剤を用いた以外は同構成である比較電池Fを作製した。   A comparative battery F having the same configuration was prepared except that an aqueous solution binder made of polyacrylic acid having a pH of 13 after dilution was used instead of the aqueous solution binder of Invention Battery 1.

ポリアクリル酸のpHの違いはアクリル酸の水素をNaに置換することで用意した。   The difference in pH of polyacrylic acid was prepared by replacing hydrogen of acrylic acid with Na.

発明電池1から7と比較電池AからFについて、充放電サイクル特性、高温での連続充電特性を評価した。   Inventive batteries 1 to 7 and comparative batteries A to F were evaluated for charge / discharge cycle characteristics and continuous charge characteristics at high temperatures.

充放電サイクル特性は、充放電電圧範囲3.3V〜2.0V、0.1mAの定電流で充放電を行い、100サイクル目の放電容量の維持率を充放電サイクル特性とした。   The charge / discharge cycle characteristics were charged / discharged at a charge / discharge voltage range of 3.3 V to 2.0 V and a constant current of 0.1 mA, and the discharge capacity maintenance rate at the 100th cycle was defined as the charge / discharge cycle characteristics.

高温での連続充電特性は、60℃の乾燥雰囲気で3.3Vの電圧を100日間連続印加した後、20℃で、0.1mAで2Vまで放電して得られた容量を放電維持率とした。放電維持率は、評価前の電池を20℃で、0.1mAの定電流で2Vまで放電して得られた値を100として算出した。その結果を(表1)に示す。   The continuous charge characteristic at high temperature was determined by taking the capacity obtained by continuously applying a voltage of 3.3 V in a dry atmosphere at 60 ° C. for 100 days and then discharging to 20 V at 0.1 mA to 2 V as the discharge maintenance ratio. . The discharge maintenance rate was calculated with the value obtained by discharging the battery before evaluation at 20 ° C. to 2 V with a constant current of 0.1 mA. The results are shown in (Table 1).

(表1)に示すように発明電池1から7について、充放電サイクル特性、連続充電特性において優れた性能が得られた。比較電池AからFについては劣化率が大きくなった。
発明電池1から7では、活物質であるSi表面を均一にSiOが覆っており、充放電時と連続充電時に活物質のSiと電解液との反応が抑制できた事とサイクル時の電極の構造劣化が抑制できたことで性能が向上した。比較電池Aでは、pHの酸性が非常に高いため、SiOの厚みが非常に厚くなったこと、導電剤のカーボンブラックや天然黒鉛になんらかの影響を及ぼして、サイクル特性が低下したと思われる。
As shown in (Table 1), the inventive batteries 1 to 7 were excellent in charge / discharge cycle characteristics and continuous charge characteristics. For the comparative batteries A to F, the deterioration rate increased.
In invention batteries 1 to 7, the surface of Si, which is an active material, is uniformly covered with SiO 2, and the reaction between Si of the active material and the electrolyte during charging / discharging and continuous charging can be suppressed, and the electrode during cycling The performance was improved because the deterioration of the structure was suppressed. In the comparative battery A, the acidity of the pH is very high. Therefore, it is considered that the thickness of the SiO 2 is very thick, and the cycle characteristics are deteriorated due to some influence on the conductive agent carbon black and natural graphite.

一方、比較電池BとCでは、SiOが完全に被覆されていなかった為に、活物質のSiと電解液との反応が進行して性能低下が起こった。また、比較電池DからFでは、活物
質であるSi表面を多孔性のSiOH、SiOOH等が覆っており、充放電時と連続充電時に電池反応に使われるリチウムを消費することで容量低下が起こった。加えて、SiOH、SiOOHと電解液とも反応することで電解液が分解されることによる劣化も起こった。
On the other hand, in Comparative batteries B and C, since SiO 2 was not completely covered, the reaction between the active material Si and the electrolytic solution progressed, resulting in performance degradation. In comparison batteries D to F, the surface of Si, which is an active material, is covered with porous SiOH, SiOOH, etc., and the capacity is reduced by consuming lithium used for battery reaction during charge / discharge and continuous charge. It was. In addition, degradation caused by decomposition of the electrolytic solution by reacting with SiOH, SiOOH and the electrolytic solution also occurred.

(実施例2)
発明電池1の水溶液系結着剤に代えて希釈後の水溶液のpHが1のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である発明電池8を作製した。
発明電池8の水溶液系結着剤に代えて希釈後の水溶液のpHが2.5のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である発明電池9を作製した。
(Example 2)
Inventive battery 8 having the same configuration was prepared except that an aqueous solution-based binder composed of an ethylene / methacrylic acid copolymer having a pH of 1 after dilution was used instead of the aqueous solution-based binder of inventive battery 1. .
Inventive battery 9 having the same configuration except that an aqueous solution-based binder composed of an ethylene / methacrylic acid copolymer having a pH of 2.5 after dilution was used instead of the aqueous solution-based binder of inventive battery 8. Produced.

発明電池8の水溶液系結着剤に代えて希釈後の水溶液のpHが4のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である発明電池10を作製した。   Inventive battery 10 having the same structure was prepared except that an aqueous solution-based binder composed of an ethylene / methacrylic acid copolymer having a pH of 4 after dilution was used instead of the aqueous solution-based binder of inventive battery 8. .

発明電池8の水溶液系結着剤に代えて希釈後の水溶液のpHが0.5のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である発明電池11を作製した。   Inventive battery 11 having the same configuration except that an aqueous solution-based binder composed of an ethylene / methacrylic acid copolymer whose pH of the diluted aqueous solution is 0.5 is used instead of the aqueous solution-based binder of inventive battery 8. Produced.

発明電池8の水溶液系結着剤に代えて希釈後の水溶液のpHが0.1のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である発明電池12を作製した。   Inventive battery 12 having the same configuration except that an aqueous solution-based binder composed of an ethylene / methacrylic acid copolymer having a pH of 0.1 after dilution was used instead of the aqueous solution-based binder of inventive battery 8. Produced.

発明電池8の水溶液系結着剤に代えて希釈後の水溶液のpHが0.05のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である発明電池13を作製した。   Inventive battery 13 having the same configuration except that an aqueous solution-based binder composed of an ethylene / methacrylic acid copolymer having a pH of 0.05 after dilution was used instead of the aqueous solution-based binder of inventive battery 8. Produced.

発明電池8の水溶液系結着剤に代えて希釈後の水溶液のpHが0.01のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である比較電池Gを作製した。   A comparative battery G having the same structure except that an aqueous solution binder composed of an ethylene / methacrylic acid copolymer having a pH of 0.01 after dilution was used instead of the aqueous solution binder of Invention Battery 8 Produced.

発明電池8の水溶液系結着剤に代えて希釈後の水溶液のpHが5のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である比較電池Hを作製した。   A comparative battery H having the same configuration was prepared except that an aqueous solution binder composed of an ethylene / methacrylic acid copolymer having a pH of 5 after dilution was used instead of the aqueous solution binder of Invention Battery 8. .

発明電池8の水溶液系結着剤に代えて希釈後の水溶液のpHが7のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である比較電池Iを作製した。   A comparative battery I having the same configuration was prepared except that an aqueous solution binder composed of an ethylene / methacrylic acid copolymer having a pH of 7 after dilution was used instead of the aqueous solution binder of Invention Battery 8. .

発明電池8の水溶液系結着剤に代えて希釈後の水溶液のpHが9のエチレン・メタクリル酸共重合体からなる水溶液系結着剤を用いた以外は同構成である比較電池Jを作製した。   A comparative battery J having the same configuration was prepared except that an aqueous solution binder composed of an ethylene / methacrylic acid copolymer having a pH of 9 after dilution was used instead of the aqueous solution binder of Invention Battery 8. .

エチレン・メタクリル酸共重合体のpHの違いはメタクリル酸の水素をNaに置換することで用意した。   The difference in pH of the ethylene / methacrylic acid copolymer was prepared by replacing hydrogen of methacrylic acid with Na.

実施例1と同様に発明電池8から13と比較電池GからJについて、充放電サイクル特性、高温での連続充電特性を評価した。   In the same manner as in Example 1, the inventive batteries 8 to 13 and the comparative batteries G to J were evaluated for charge / discharge cycle characteristics and continuous charge characteristics at high temperatures.

(表2)に示すように実施例1の結果と同じように発明電池8から13について、充放電サイクル特性、連続充電特性において優れた性能が得られた。比較電池GからJについては劣化率が大きくなった。実施例1と同様に活物質のSi表面に形成される層の差により性能差が見られた。   As shown in (Table 2), as in the results of Example 1, the inventive batteries 8 to 13 were excellent in charge / discharge cycle characteristics and continuous charge characteristics. For the comparative batteries G to J, the deterioration rate increased. Similar to Example 1, a difference in performance was observed due to the difference in the layers formed on the Si surface of the active material.

(実施例3)
発明電池1の活物質のTi−Si合金に代えて粒径が10μmのSn粉末を用いた以外は同構成である発明電池14を作製した。
(Example 3)
Inventive battery 14 having the same configuration was produced except that Sn powder having a particle size of 10 μm was used instead of the Ti—Si alloy as the active material of inventive battery 1.

発明電池14の水溶液系結着剤に代えて希釈後の水溶液のpHが2.5のポリアクリル酸からなる水溶液系結着剤末を用いた以外は同構成である発明電池15を作製した。   Inventive battery 15 having the same configuration was prepared except that the aqueous solution-based binder powder made of polyacrylic acid having a pH of 2.5 after dilution was used instead of the aqueous solution-based binder of inventive battery 14.

発明電池14の水溶液系結着剤に代えて希釈後の水溶液のpHが4のポリアクリル酸からなる水溶液系結着剤末を用いた以外は同構成である発明電池16を作製した。   Inventive battery 16 having the same structure was prepared except that the aqueous solution binder powder made of polyacrylic acid having a pH of 4 after dilution was used instead of the aqueous solution binder of inventive battery 14.

発明電池14の水溶液系結着剤に代えて希釈後の水溶液のpHが0.5のポリアクリル酸からなる水溶液系結着剤末を用いた以外は同構成である発明電池17を作製した。   Inventive battery 17 having the same configuration was prepared except that an aqueous aqueous binder powder made of polyacrylic acid having a pH of 0.5 after dilution was used instead of the aqueous aqueous binder of inventive battery 14.

発明電池14の水溶液系結着剤に代えて希釈後の水溶液のpHが0.1のポリアクリル酸からなる水溶液系結着剤末を用いた以外は同構成である発明電池18を作製した。   Inventive battery 18 having the same structure was prepared except that an aqueous solution-based binder powder made of polyacrylic acid having a pH of 0.1 after dilution was used instead of the aqueous solution-based binder of inventive battery 14.

発明電池14の水溶液系結着剤に代えて希釈後の水溶液のpHが0.05のポリアクリル酸からなる水溶液系結着剤末を用いた以外は同構成である発明電池19を作製した。   Inventive battery 19 having the same structure was prepared except that an aqueous solution-based binder powder made of polyacrylic acid having a pH of 0.05 after dilution was used instead of the aqueous solution-based binder of inventive battery 14.

発明電池14の水溶液系結着剤に代えて希釈後の水溶液のpHが0.01のポリアクリル酸からなる水溶液系結着剤末を用いた以外は同構成である比較電池Kを作製した。   A comparative battery K having the same structure was prepared except that the aqueous solution binder powder made of polyacrylic acid having a pH of 0.01 after dilution was used instead of the aqueous solution binder of Invention Battery 14.

発明電池14の水溶液系結着剤に代えて希釈後の水溶液のpHが5のポリアクリル酸からなる水溶液系結着剤末を用いた以外は同構成である比較電池Lを作製した。   A comparative battery L having the same configuration was prepared except that the aqueous solution binder powder made of polyacrylic acid having a pH of 5 after dilution was used instead of the aqueous solution binder of Invention Battery 14.

発明電池14の水溶液系結着剤に代えて希釈後の水溶液のpHが7のポリアクリル酸からなる水溶液系結着剤末を用いた以外は同構成である比較電池Mを作製した。   A comparative battery M having the same configuration was prepared except that an aqueous solution-based binder powder made of polyacrylic acid having a pH of 7 after dilution was used instead of the aqueous solution-based binder of Invention Battery 14.

発明電池14の水溶液系結着剤に代えて希釈後の水溶液のpHが9のポリアクリル酸からなる水溶液系結着剤末を用いた以外は同構成である比較電池Nを作製した。   A comparative battery N having the same configuration was prepared except that an aqueous solution-type binder powder made of polyacrylic acid having a pH of 9 after dilution was used instead of the aqueous solution-type binder of Invention Battery 14.

実施例1と同様に発明電池14から19と比較電池KからNについて、充放電サイクル特性、高温での連続充電特性を評価した。   In the same manner as in Example 1, the inventive batteries 14 to 19 and the comparative batteries K to N were evaluated for charge / discharge cycle characteristics and continuous charge characteristics at high temperatures.

活物質をTi−Si合金に代えて粒径が10μmのSn粉末を用いた場合でも、実施例1と同様に使用する水溶液系結着剤のpHにより形成される層の差により大きく性能差に差が見られた。酸性領域では活物質のSn表面にSnO層が中性、アルカリ領域ではSnOH、SnOOH層が形成されていると思われる。 Even when Sn powder having a particle size of 10 μm is used instead of the Ti—Si alloy as the active material, the performance difference is greatly caused by the difference in the layer formed by the pH of the aqueous binder used in the same manner as in Example 1. There was a difference. It is considered that the SnO 2 layer is neutral on the Sn surface of the active material in the acidic region, and the SnOH and SnOOH layers are formed in the alkaline region.

(実施例4)
発明電池1の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が50m/gのカーボブラックを用いた以外は同構成である発明電池20を作製した。
Example 4
Inventive battery 20 having the same configuration was prepared except that carbo black having a specific surface area of 50 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 1.

発明電池1の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が100m/gのカーボブラックを用いた以外は同構成である発明電池21を作製した。 Inventive battery 21 having the same configuration was produced except that carbo black having a specific surface area of 100 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 1.

発明電池1の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が400m/gのカーボブラックを用いた以外は同構成である発明電池22を作製した。 Inventive battery 22 having the same configuration was prepared except that carbo black having a specific surface area of 400 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 1.

発明電池1の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が1,200m/gのカーボブラックを用いた以外は同構成である発明電池23を作製した。 Inventive battery 23 having the same configuration was prepared except that carbo black having a specific surface area of 1,200 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 1.

発明電池1の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が1,500m/gのカーボブラックを用いた以外は同構成である発明電池24を作製した。 Inventive battery 24 having the same configuration was prepared except that carbo black having a specific surface area of 1,500 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 1.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が50m/gのカーボブラックを用いた以外は同構成である発明電池25を作製した。 Inventive battery 25 having the same configuration was prepared except that carbo black having a specific surface area of 50 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 4.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が100m/gのカーボブラックを用いた以外は同構成である発明電池26を作製した。 Inventive battery 26 having the same configuration was prepared except that carbo black having a specific surface area of 100 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 4.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が400m/gのカーボブラックを用いた以外は同構成である発明電池27を作製した。 Inventive battery 27 having the same configuration was produced except that carbo black having a specific surface area of 400 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 4.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が1,200m/gのカーボブラックを用いた以外は同構成である発明電池28を作製した。 Inventive battery 28 having the same configuration was prepared except that carbo black having a specific surface area of 1,200 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 4.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が1,500m/gのカーボブラックを用いた以外は同構成である発明電池29を作製した。 Inventive battery 29 having the same configuration was produced except that carbo black having a specific surface area of 1,500 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 4.

発明電池7の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が50m/gのカーボブラックを用いた以外は同構成である発明電池30を作製した。 Inventive battery 30 having the same configuration was prepared except that carbo black having a specific surface area of 50 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 7.

発明電池7の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が100m/gのカーボブラックを用いた以外は同構成である発明電池31を作製した。 Inventive battery 31 having the same configuration was prepared except that carbo black having a specific surface area of 100 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 7.

発明電池7の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が400m/gのカーボブラックを用いた以外は同構成である発明電池32を作製した。 Inventive battery 32 having the same configuration was prepared except that carbo black having a specific surface area of 400 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 7.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が1,200m/gのカーボブラックを用いた以外は同構成である発明電池33を作製した。 Inventive battery 33 having the same configuration was produced except that carbo black having a specific surface area of 1,200 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 4.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が1,500m/gのカーボブラックを用いた以外は同構成である発明電池34を作製した。 Inventive battery 34 having the same configuration was prepared except that carbo black having a specific surface area of 1,500 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of inventive battery 4.

発明電池1の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が40m/gのカーボブラックを用いた以外は同構成である比較電池Oを作製した。 A comparative battery O having the same configuration was prepared except that carbo black having a specific surface area of 40 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of Invention Battery 1.

発明電池1の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が1,600m/gのカーボブラックを用いた以外は同構成である比較電池Pを作製した。 A comparative battery P having the same configuration was prepared except that carbo black having a specific surface area of 1,600 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of Invention Battery 1.

発明電池1の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が10m/gの天然黒鉛を用いた以外は同構成である比較電池Qを作製した。 A comparative battery Q having the same configuration was prepared except that natural graphite having a specific surface area of 10 m 2 / g was used instead of the carbon black having a specific surface area of 800 m 2 / g of the conductive agent of the inventive battery 1.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が40m/gのカーボブラックを用いた以外は同構成である比較電池Rを作製した。 A comparative battery R having the same configuration was prepared except that carbo black having a specific surface area of 40 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of Invention Battery 4.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が1,600m/gのカーボブラックを用いた以外は同構成である比較電池Sを作製した。 A comparative battery S having the same configuration was prepared except that carbo black having a specific surface area of 1,600 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of Invention Battery 4.

発明電池4の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が10m/gの天然黒鉛を用いた以外は同構成である比較電池Tを作製した。 A comparative battery T having the same configuration was produced except that natural graphite having a specific surface area of 10 m 2 / g was used instead of the carbon black having a specific surface area of 800 m 2 / g of the conductive agent of the inventive battery 4.

発明電池7の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が40m/gのカーボブラックを用いた以外は同構成である比較電池Uを作製した。 A comparative battery U having the same configuration was prepared except that carbo black having a specific surface area of 40 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of Invention Battery 7.

発明電池7の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が1,600m/gのカーボブラックを用いた以外は同構成である比較電池Vを作製した。 A comparative battery V having the same configuration was prepared except that carbo black having a specific surface area of 1,600 m 2 / g was used instead of carbo black having a specific surface area of 800 m 2 / g of the conductive agent of Invention Battery 7.

発明電池7の導電剤の比表面積が800m/gのカーボブラックに代えて、比表面積が10m/gの天然黒鉛を用いた以外は同構成である比較電池Wを作製した。 A comparative battery W having the same configuration was prepared except that natural graphite having a specific surface area of 10 m 2 / g was used instead of the carbon black having a specific surface area of 800 m 2 / g of the conductive agent of the inventive battery 7.

実施例1と同様に発明電池1、4、7、20〜34及び比較電池O〜Wについて、充放電サイクル特性、高温での連続充電特性を評価した。   In the same manner as in Example 1, the inventive batteries 1, 4, 7, 20 to 34 and the comparative batteries O to W were evaluated for charge / discharge cycle characteristics and continuous charge characteristics at high temperatures.

発明電池1、4、7、20から34については、充放電サイクル特性、連続充電特性において優れた性能が得られた。比較電池OからWについては劣化した。特に、比表面積が小さい天然黒鉛を用いた場合には特性劣化が極端に大きくなった。導電剤に用いる炭素材の比表面積が小さくなることで、活物質との接触面積が減少することで反応性が落ちるため、形成される酸化物層の厚みが不十分となり、特性劣化したと考えられる。   Inventive batteries 1, 4, 7, and 20 to 34 were excellent in charge / discharge cycle characteristics and continuous charge characteristics. Comparative batteries O to W deteriorated. In particular, when natural graphite having a small specific surface area is used, the characteristic deterioration becomes extremely large. Since the specific surface area of the carbon material used for the conductive agent is reduced, the contact area with the active material is reduced and the reactivity is lowered, so that the thickness of the formed oxide layer becomes insufficient and the characteristics are considered deteriorated. It is done.

優れた充放電サイクル性能を有し、高温での連続充電時にも安定な非水電解液二次電池を提供することで長期間の様々な用途に対応することができ、産業上の利用価値は非常に高い。   By providing a non-aqueous electrolyte secondary battery that has excellent charge / discharge cycle performance and is stable even during continuous charging at high temperatures, it can be used for various applications over a long period of time. Very expensive.

1 正極缶
2 負極缶
3 ガスケット
4 正極
5 負極
6 セパレータ
7 正極集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode can 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator 7 Positive electrode collector

Claims (2)

活物質を含む正極と負極とをセパレータを介して対抗配置した発電要素を非水電解液とともに外装体内に封入してなる非水電解液二次電池において、
リチウムと合金化する活物質と、少なくとも一部に比表面積が50m/g以上1500m/g以下の炭素材を含む導電剤と、水溶液系結着剤をpHが0.05以上4以下となるように水中に分散させた結着剤水溶液と、を湿式混合した後、乾燥して得られた合剤粉末を前記負極に用いたことを特徴とする非水電解液二次電池。
In a non-aqueous electrolyte secondary battery in which a power generation element in which a positive electrode and a negative electrode containing an active material are arranged to face each other through a separator is enclosed in a package together with a non-aqueous electrolyte,
An active material that is alloyed with lithium, a conductive agent containing a carbon material having a specific surface area of 50 m 2 / g or more and 1500 m 2 / g or less at least in part, and an aqueous binder having a pH of 0.05 or more and 4 or less A non-aqueous electrolyte secondary battery comprising, as a negative electrode, a mixture powder obtained by wet-mixing a binder aqueous solution dispersed in water so as to be dried.
前記リチウムと合金化する活物質として、金属系活物質またはSiを用いた請求項1記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein a metal-based active material or Si is used as the active material to be alloyed with lithium.
JP2010214880A 2010-09-27 2010-09-27 Nonaqueous electrolyte secondary battery Pending JP2012069453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214880A JP2012069453A (en) 2010-09-27 2010-09-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214880A JP2012069453A (en) 2010-09-27 2010-09-27 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2012069453A true JP2012069453A (en) 2012-04-05

Family

ID=46166454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214880A Pending JP2012069453A (en) 2010-09-27 2010-09-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2012069453A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058185A (en) * 2014-09-08 2016-04-21 Jsr株式会社 Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
US9437872B2 (en) 2012-12-04 2016-09-06 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP2017073224A (en) * 2015-10-05 2017-04-13 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2023520194A (en) * 2020-06-11 2023-05-16 エルジー エナジー ソリューション リミテッド Negative electrode and secondary battery containing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437872B2 (en) 2012-12-04 2016-09-06 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP2016058185A (en) * 2014-09-08 2016-04-21 Jsr株式会社 Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
JP2017073224A (en) * 2015-10-05 2017-04-13 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2023520194A (en) * 2020-06-11 2023-05-16 エルジー エナジー ソリューション リミテッド Negative electrode and secondary battery containing the same
JP7466981B2 (en) 2020-06-11 2024-04-15 エルジー エナジー ソリューション リミテッド Negative electrode and secondary battery including the same

Similar Documents

Publication Publication Date Title
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
JP5259078B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
US8586246B2 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP5177361B2 (en) Negative electrode for secondary battery and secondary battery
JP5510084B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle and power storage system
US20120328943A1 (en) Si/c composite, anode active materials, and lithium battery including the same
JP4853608B2 (en) Lithium secondary battery
JP5511128B2 (en) Anode material for non-aqueous secondary battery and non-aqueous secondary battery
US20130130122A1 (en) Anode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the anode active material
JP5278994B2 (en) Lithium secondary battery
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
JPH08124559A (en) Manufacture of lithium secondary battery and of negative electrode active material
CN102473920A (en) Positive electrode for secondary battery and secondary battery
KR20140053451A (en) Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material
US20140065477A1 (en) Positive active material composition for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including same
US20210296646A1 (en) Positive electrode active material and secondary battery
JP2014078535A (en) Negative electrode and battery
JP4482953B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4984402B2 (en) Nonaqueous electrolyte secondary battery
US20120082896A1 (en) Nonaqueous electrolyte secondary battery
KR20090027901A (en) Method of manufacturing a lithium secondary battery
JP2012069453A (en) Nonaqueous electrolyte secondary battery
JP5017010B2 (en) Lithium secondary battery
CN113764656A (en) Positive electrode active material for lithium secondary battery
JP5903556B2 (en) Non-aqueous electrolyte secondary battery