JP2002110157A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002110157A
JP2002110157A JP2000298233A JP2000298233A JP2002110157A JP 2002110157 A JP2002110157 A JP 2002110157A JP 2000298233 A JP2000298233 A JP 2000298233A JP 2000298233 A JP2000298233 A JP 2000298233A JP 2002110157 A JP2002110157 A JP 2002110157A
Authority
JP
Japan
Prior art keywords
graphite
peak intensity
negative electrode
crystallite
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000298233A
Other languages
Japanese (ja)
Other versions
JP2002110157A5 (en
JP4656710B2 (en
Inventor
Yasufumi Takahashi
康文 高橋
Yoshihiro Shoji
良浩 小路
Masatoshi Takahashi
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000298233A priority Critical patent/JP4656710B2/en
Publication of JP2002110157A publication Critical patent/JP2002110157A/en
Publication of JP2002110157A5 publication Critical patent/JP2002110157A5/ja
Application granted granted Critical
Publication of JP4656710B2 publication Critical patent/JP4656710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a good nonaqueous electrolyte secondary battery with high capacity and high efficient charge and discharge characteristic by providing a negative pole whose battery capacity is large and whose high efficient charge and discharge characteristic is not declined. SOLUTION: This nonaqueous electrolyte battery utilizes material which is enabled to insert and desorb lithium ion to a positive pole as well as utilizing graphite to a negative pole, and is provided with a nonaqueous electrolyte composed of solute and organic solvent. The graphite utilized in the negative pole contains at least crystallite of hexagonal crystal structure and crystallite of rhombohedron structure. Peak intensity ratio (P1/P2) of peak intensity (P1: diffraction angle 43.2 deg.±0.5 deg.) of (101) plane by an X ray diffractometry utilizing a Cu-Kα line source of the rhombohedron structure and the peak intensity (P2: diffraction angle 44.3 deg.±0.5 deg.) of the (101) plane by the X ray diffractometry utilizing the Cu-Kα line source of the hexagonal crystal structure is optimized to be >=0.20 and <=0.30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は負極に黒鉛(但し、
(002)面の面間隔(d002)が0.3380nm以
下であり、c軸方向の結晶子の大きさ(Lc)が15n
m以上)を用いるとともに正極にリチウムイオンの吸蔵
・放出が可能な材料を用い、かつ有機溶媒にリチウム塩
からなる溶質を溶解した非水電解液を備えた非水電解液
二次電池に係り、特に、負極の改良に関する。
BACKGROUND OF THE INVENTION The present invention relates to a negative electrode comprising graphite (however,
The (002) plane spacing (d 002 ) is 0.3380 nm or less, and the crystallite size (Lc) in the c-axis direction is 15 n.
m) or more, a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution in which a positive electrode is made of a material capable of inserting and extracting lithium ions, and a solute comprising a lithium salt is dissolved in an organic solvent. In particular, it relates to improvement of a negative electrode.

【0002】[0002]

【従来の技術】近年、小型軽量でかつ高容量で充放電可
能な電池としてリチウム二次電池が実用化されるように
なり、小型ビデオカメラ、携帯電話、ノートパソコン等
の携帯用電子・通信機器等に用いられるようになった。
この種のリチウム二次電池は、負極活物質としてリチウ
ムイオンを吸蔵・放出し得る炭素系材料を用い、正極活
物質として、LiCoO2,LiNiO2,LiMn
24,LiFeO2等のリチウム含有遷移金属酸化物を
用い、有機溶媒にリチウム塩からなる溶質を溶解した非
水電解液を用いて構成される二次電池である。
2. Description of the Related Art In recent years, lithium secondary batteries have come into practical use as small, lightweight, high-capacity, chargeable / dischargeable batteries, and portable electronic and communication equipment such as small video cameras, mobile phones, and notebook computers. And so on.
This type of lithium secondary battery uses a carbon-based material capable of inserting and extracting lithium ions as a negative electrode active material, and uses LiCoO 2 , LiNiO 2 , and LiMn as a positive electrode active material.
This is a secondary battery including a lithium-containing transition metal oxide such as 2 O 4 and LiFeO 2 and a non-aqueous electrolyte in which a solute composed of a lithium salt is dissolved in an organic solvent.

【0003】ところで、このようなリチウム二次電池の
負極に用いられる炭素系材料は、充放電サイクル中の容
量劣化が少なく、優れた耐久性を有することで注目され
ている。これは炭素系材料は卑な電位でリチウムの吸蔵
・放出を可逆的に行うことが可能であるためで、リチウ
ムと炭素系材料との層間化合物が可逆的に形成されるこ
とを利用したためである。例えば、十分な量のリチウム
を含有する正極と、負極としての炭素系材料とをセパレ
ータを介して対向させて電池缶内に挿入し、これに有機
溶媒にリチウム塩からなる溶質を溶解した非水電解液を
注入することで、この電池は放電状態で組立が完了する
ことになる。
[0003] Meanwhile, carbon-based materials used for the negative electrode of such a lithium secondary battery have attracted attention because they have little capacity deterioration during charge / discharge cycles and have excellent durability. This is because the carbon-based material is capable of reversibly inserting and extracting lithium at a low potential, and utilizes the reversible formation of an intercalation compound between lithium and the carbon-based material. . For example, a positive electrode containing a sufficient amount of lithium and a carbon-based material as a negative electrode are inserted into a battery can with a separator interposed therebetween, and a non-aqueous solution in which a solute composed of a lithium salt is dissolved in an organic solvent is added thereto. By injecting the electrolyte, the battery is completely assembled in a discharged state.

【0004】この電池に対して第1サイクル目の充電を
行うと、正極中のリチウムは電気化学的に負極炭素系材
料の層間にドープされ、放電を行うと、ドープされてい
たリチウムは負極炭素材料の層間から脱ドープされて、
再び正極中に戻る。この場合の炭素系材料の単位質量当
たりの放電容量(mAh/g)は、リチウムの吸蔵・放
出可能容量によって決まるため、このような負極ではリ
チウムの電気化学的な可逆的吸蔵量をできる限り大きく
することが望ましい。そして、電池内で電気化学的にリ
チウムと炭素の層間化合物を生成させる場合、理論的に
は炭素原子6個に対してリチウム原子1個の割合で吸蔵
された状態が上限で、リチウムと炭素系材料との層間化
合物の飽和状態となる。
[0004] When the battery is charged in the first cycle, lithium in the positive electrode is electrochemically doped between the layers of the negative electrode carbon-based material, and when the battery is discharged, the doped lithium becomes negative electrode carbon. Undoped from between layers of material,
It returns to the inside of the positive electrode again. In this case, the discharge capacity per unit mass (mAh / g) of the carbon-based material is determined by the capacity capable of occluding and releasing lithium. Therefore, in such a negative electrode, the electrochemically reversible storage amount of lithium is made as large as possible. It is desirable to do. When an intercalation compound of lithium and carbon is electrochemically generated in a battery, theoretically, the state of occlusion at a ratio of one lithium atom to six carbon atoms is an upper limit, and lithium and carbon-based compounds are theoretically formed. The interlayer compound becomes saturated with the material.

【0005】[0005]

【発明が解決しようとする課題】上述のような条件を満
たす炭素系材料としては、天然に存在する天然黒鉛、コ
ークスを黒鉛化した人造黒鉛、有機系高分子またはその
複合物を黒鉛化した人造黒鉛、ピッチ等を黒鉛化した人
造黒鉛などが検討されており、これらの黒鉛材料はリチ
ウムの吸蔵・放出量が大きく、作動電位が全領域にわた
って卑で平坦であるため特に注目されている。
The carbon-based materials satisfying the above conditions include naturally occurring natural graphite, artificial graphite obtained by graphitizing coke, and artificial graphite obtained by graphitizing an organic polymer or a composite thereof. Studies have been made on graphite, artificial graphite in which pitch is graphitized, and the like. These graphite materials have attracted particular attention because they have a large amount of occlusion / release of lithium and have a low and flat operating potential over the entire region.

【0006】ところで、電池容量は限られた電池缶内に
いかに多くの活物質を充填するかに係っているので、活
物質の単位体積当たりの容量、換言すると、炭素系材料
の充填密度をいかに多くするかが重要である。そこで、
黒鉛結晶が発達している天然黒鉛やコークスを黒鉛化し
た人造黒鉛を高密度に充填した炭素電極を得て、この炭
素電極を用いてリチウム二次電池を作製したところ、確
かに容量が大きな電池が得られるが、反面、高率充放電
特性が低下するという問題を生じた。
Since the battery capacity is related to how much active material is filled in a limited battery can, the capacity per unit volume of the active material, in other words, the packing density of the carbon-based material is reduced. It is important how much you do. Therefore,
Obtaining a carbon electrode densely filled with natural graphite with developed graphite crystals or artificial graphite obtained by graphitizing coke, and producing a lithium secondary battery using this carbon electrode, it is clear that a battery with a large capacity However, on the other hand, there was a problem that the high-rate charge / discharge characteristics deteriorated.

【0007】そこで、高率充放電特性が低下した原因を
追求したところ、以下のような知見を得た。即ち、黒鉛
結晶が発達している天然黒鉛やコークスを黒鉛化した人
造黒鉛は、菱面体構造の結晶子と六方晶構造の結晶子と
を有していることが明らかになった。そして、菱面体構
造の結晶子が多い黒鉛を用いると放電容量が増加する
が、高率放電特性が低下することが分かった。一方、菱
面体構造の結晶子が少ない黒鉛を用いると放電容量が低
下するが、高率放電特性が向上することが分かった。本
発明は上記知見に基づいてなされたものであって、特定
の黒鉛を高密度に充填して、電池容量が大きく、かつ高
率充放電特性が低下しない負極を得て、高容量で高率充
放電特性に優れた非水電解液二次電池を提供できるよう
にすることを目的とする。
[0007] Then, when the cause of the deterioration of the high-rate charge / discharge characteristics was pursued, the following knowledge was obtained. That is, it was revealed that natural graphite in which graphite crystals are developed or artificial graphite obtained by graphitizing coke has crystallites having a rhombohedral structure and crystallites having a hexagonal structure. Then, it was found that when graphite having many crystallites having a rhombohedral structure was used, the discharge capacity increased, but the high-rate discharge characteristics deteriorated. On the other hand, it has been found that the use of graphite having a small number of crystallites having a rhombohedral structure reduces the discharge capacity but improves the high-rate discharge characteristics. The present invention has been made on the basis of the above-described findings, and a specific graphite is filled at a high density to obtain a negative electrode having a large battery capacity and a high-rate charge / discharge characteristic which is not deteriorated. An object is to provide a non-aqueous electrolyte secondary battery having excellent charge / discharge characteristics.

【0008】[0008]

【課題を解決するための手段およびその作用・効果】上
記目的を達成するため、本発明の非水電解液二次電池
は、負極に黒鉛(但し、(002)面の面間隔
(d002)が0.3380nm以下であり、c軸方向の
結晶子の大きさ(Lc)が15nm以上)を用いるとと
もに正極にリチウムイオンの挿入・脱離が可能な材料を
用い、かつ有機溶媒にリチウム塩からなる溶質を溶解し
た非水電解液を備えている。そして、負極に用いられる
黒鉛は、少なくとも六方晶構造の結晶子と菱面体構造の
結晶子を有するとともに、菱面体構造の結晶子のCu−
Kα線源を用いたX線回折法による(101)面のピー
ク強度(P1:回折角43.2°±0.5°)と、六方
晶構造の結晶子のCu−Kα線源を用いたX線回折法に
よる(101)面のピーク強度(P2:回折角44.3
°±0.5°)とのピーク強度比(P1/P2)が0.
20以上で0.30以下となるように最適化している。
なお、本発明でいうピーク強度P1,P2とは、図1〜
図4および図9に示すX線回折図におけるバックグラン
ド線(各図の点線)から各回折角でのピークまでの高さ
を表している。
In order to achieve the above object, a non-aqueous electrolyte secondary battery according to the present invention comprises a negative electrode comprising graphite (provided that the (002) plane spacing (d 002 ) Is 0.3380 nm or less, and the crystallite size (Lc) in the c-axis direction is 15 nm or more), a material capable of inserting and removing lithium ions is used for the positive electrode, and a lithium salt is used as the organic solvent. A non-aqueous electrolyte in which a solute is dissolved. The graphite used for the negative electrode has at least a hexagonal crystallite and a rhombohedral crystallite, and has a rhombohedral crystallite Cu-
The peak intensity of the (101) plane by X-ray diffraction using a Kα source (P1: diffraction angle 43.2 ° ± 0.5 °) and a Cu—Kα source having hexagonal crystallites were used. Peak intensity of (101) plane by X-ray diffraction method (P2: diffraction angle 44.3)
° ± 0.5 °) and the peak intensity ratio (P1 / P2) is 0.
It is optimized so that it is not less than 20 and not more than 0.30.
It should be noted that the peak intensities P1 and P2 in the present invention refer to FIGS.
The height from the background line (dotted line in each figure) to the peak at each diffraction angle in the X-ray diffraction diagrams shown in FIGS. 4 and 9 is shown.

【0009】ここで、六方晶構造の結晶子と菱面体構造
の結晶子を有する黒鉛を負極に用いた場合、菱面体構造
の結晶子のピーク強度(P1:回折角43.2°±0.
5°)と、六方晶構造の結晶子のピーク強度(P2:回
折角44.3°±0.5°)とのピーク強度比(P1/
P2)が0.20未満であると低負荷であっても放電容
量が低下し、また、ピーク強度比(P1/P2)が0.
30より大きくなると、高負荷時に容量低下が著しく増
大するという結果が得られた。
When graphite having a hexagonal crystallite and a rhombohedral crystallite is used for the negative electrode, the peak intensity of the rhombohedral crystallite (P1: diffraction angle 43.2 ° ± 0.
5 °) and the peak intensity ratio of the peak intensity of the crystallite having a hexagonal structure (P2: diffraction angle 44.3 ° ± 0.5 °) (P1 / 1).
When P2) is less than 0.20, the discharge capacity is reduced even at a low load, and the peak intensity ratio (P1 / P2) is not greater than 0.20.
When it is larger than 30, the result that the capacity decrease significantly increases under a high load was obtained.

【0010】このような実験結果からすると、上記ピー
ク強度比が0.20以上である黒鉛を負極に用いれば高
容量が達成でき、逆に上記ピーク強度比が0.30以下
である黒鉛を負極に用いれば高密度充填下であってもリ
チウムイオンの挿入・脱離反応が円滑に行われて、高負
荷であっも容量が低下しないと考えられる。したがっ
て、高容量で高率放電特性に優れた負極とするために
は、菱面体構造の結晶子のピーク強度(P1:回折角4
3.2°±0.5°)と、六方晶構造の結晶子のピーク
強度(P2:回折角44.3°±0.5°)とのピーク
強度比(P1/P2)が0.20以上で0.30以下と
なるように最適化する必要がある。
From these experimental results, it is found that high capacity can be achieved by using graphite having the above peak intensity ratio of 0.20 or more for the negative electrode, and conversely, graphite having the above peak intensity ratio of 0.30 or less can be used as the negative electrode. It is thought that the lithium ion insertion / desorption reaction smoothly proceeds even under high-density packing, and the capacity does not decrease even under a high load. Therefore, in order to obtain a negative electrode having high capacity and excellent high-rate discharge characteristics, the peak intensity of crystallites having a rhombohedral structure (P1: diffraction angle 4
3.2 ° ± 0.5 °) and the peak intensity ratio (P1 / P2) between the peak intensity of the crystallite having a hexagonal structure (P2: diffraction angle 44.3 ° ± 0.5 °) is 0.20. It is necessary to optimize so as to be 0.30 or less.

【0011】また、ピーク強度比(P1/P2)がこの
範囲にない黒鉛でも、二種類以上の結晶性の異なる黒鉛
を混合した混合黒鉛とすることにより、ピーク強度比
(P1/P2)が0.20以上で0.30以下となるよ
うに混合調製することで、上述と同様な効果を奏するよ
うになる。そして、黒鉛の充填密度が1.60g/cm
3未満であると、結晶子のピーク強度比(P1/P2)
を0.20以上で0.30以下に最適化しても、高率放
電容量および放電容量比を向上させるという効果、即ち
高負荷であっても容量が低下しない効果を発揮されにく
いので、黒鉛負極に用いる結晶子のピーク強度比(P1
/P2)を0.20以上で0.30以下に最適化する場
合には、黒鉛の充填密度を1.60g/cm3以上に高
密度充填するのが望ましい。
Further, the peak intensity ratio (P1 / P2) is
Even if it is not in the range, two or more types of graphite with different crystallinity
The peak intensity ratio can be
(P1 / P2) is 0.20 or more and 0.30 or less
The same effect as above can be achieved by mixing and preparing
Swell. And the filling density of graphite is 1.60 g / cm.
ThreeIf less than, the peak intensity ratio of the crystallite (P1 / P2)
Is optimized to less than 0.20 and less than 0.30
The effect of improving the electric capacity and discharge capacity ratio, that is,
It is difficult to achieve the effect of capacity reduction even under high load
Therefore, the peak intensity ratio of the crystallite used for the graphite negative electrode (P1
/ P2) to optimize from 0.20 to 0.30
In this case, the packing density of graphite is 1.60 g / cm.ThreeHigher than
It is desirable to perform density filling.

【0012】なお、本発明は、正極活物質、非水電解
液、セパレータの種類などについては制限することなく
使用することができる。例えば、正極活物質としては、
マンガン、コバルト、ニッケル、バナジウム、ニオブを
少なくとも1種含む金属酸化物、具体的には、組成式が
LiaMOb(MはMn,Co,Ni,V,Nbなどから
選択される1種の金属元素で、0≦a≦2で1≦b≦
5)で表される金属MとLiとの複合酸化物を用いるこ
とができる。例えば、LiMn24,LiCoO2,L
iNiO2,LiMn1.5Ni0.54などが好ましい。
The present invention can be used without any limitation on the type of positive electrode active material, non-aqueous electrolyte, separator, and the like. For example, as a positive electrode active material,
A metal oxide containing at least one kind of manganese, cobalt, nickel, vanadium, and niobium, specifically, a composition formula of Li a MO b (M is one kind selected from Mn, Co, Ni, V, Nb, etc.) A metal element, 0 ≦ a ≦ 2 and 1 ≦ b ≦
The composite oxide of the metal M and Li represented by 5) can be used. For example, LiMn 2 O 4 , LiCoO 2 , L
iNiO 2 , LiMn 1.5 Ni 0.5 O 4 and the like are preferable.

【0013】非水電解液の溶媒としては、ジメチルカー
ボネート、エチルメチルカーボネート、エチレンカーボ
ネート、プロピレンカーボネート、ブチレンカーボネー
ト、ビニレンカーボネート、シクロペンタノン、スルホ
ラン、3−メチルスルホラン、2,4−ジメチルスルホ
ラン、3−メチル−1,3−オキサゾリジン−2−オ
ン、γ−ブチロラクトン、ジエチルカーボネート、ブチ
ルメチルカーボネート、エチルプロピルカーボネート、
ブチルエチルカーボネート、ジプロピルカーボネート、
1,2−ジメトキシエタン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,3−ジオキソラン、酢
酸メチル、酢酸エチルなどの単体、2成分混合物あるい
は3成分混合物等が使用される。また、これらの溶媒に
溶解される溶質としては、LiPF6、LiBF4、Li
CF3SO3、LiAsF6、LiN(CF3SO22、L
iC(CF3SO23、LiCF3(CF23SO3等が
使用される。
Examples of the solvent for the non-aqueous electrolyte include dimethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, -Methyl-1,3-oxazolidin-2-one, γ-butyrolactone, diethyl carbonate, butyl methyl carbonate, ethyl propyl carbonate,
Butyl ethyl carbonate, dipropyl carbonate,
1,2-dimethoxyethane, tetrahydrofuran, 2-
A simple substance such as methyltetrahydrofuran, 1,3-dioxolan, methyl acetate, and ethyl acetate, a two-component mixture, a three-component mixture, or the like is used. The solutes dissolved in these solvents include LiPF 6 , LiBF 4 , Li
CF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , L
iC (CF 3 SO 2 ) 3 , LiCF 3 (CF 2 ) 3 SO 3 and the like are used.

【0014】[0014]

【発明の実施の形態】以下に、本発明の非水電解液電池
の実施の形態を説明する。 1.原料黒鉛粉末 (002)面の面間隔(d002)が0.3363nm
で、c軸方向の結晶子の大きさ(Lc)が90nmで平
均粒径が20μmの塊状黒鉛(2950℃で焼成した人
造黒鉛)を用意し、これを黒鉛粉末αとした。また、
(002)面の面間隔(d002)が0.3370nm
で、c軸方向の結晶子の大きさ(Lc)が60nmで平
均粒径が20μmの塊状黒鉛(2800℃で焼成した人
造黒鉛)を用意し、これを黒鉛粉末βとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the nonaqueous electrolyte battery according to the present invention will be described below. 1. Raw material graphite powder The spacing (d 002 ) between (002) faces is 0.3363 nm
Then, massive graphite (artificial graphite fired at 2950 ° C.) having a crystallite size (Lc) of 90 nm in the c-axis direction and an average particle diameter of 20 μm was prepared, and this was designated as graphite powder α. Also,
(002) plane spacing (d 002 ) is 0.3370 nm
Then, massive graphite (artificial graphite fired at 2800 ° C.) having a crystallite size (Lc) of 60 nm in the c-axis direction and an average particle diameter of 20 μm was prepared, and this was designated as graphite powder β.

【0015】また、(002)面の面間隔(d002)が
0.3380nmで、c軸方向の結晶子の大きさ(L
c)が40nmで平均粒径が20μmの塊状黒鉛(26
50℃で焼成した人造黒鉛)を用意し、これを黒鉛粉末
γとした。さらに、(002)面の面間隔(d002)が
0.3357nmで、c軸方向の結晶子の大きさ(L
c)が200nmで平均粒径が20μmの塊状黒鉛(天
然黒鉛)を用意し、これを黒鉛粉末δとした。
The spacing (d 002 ) of the (002) plane is 0.3380 nm, and the crystallite size (L
c) a massive graphite (26) having a diameter of 40 nm and an average particle diameter of 20 μm;
An artificial graphite fired at 50 ° C.) was prepared and used as graphite powder γ. Further, the plane spacing (d 002 ) of the (002) plane is 0.3357 nm, and the crystallite size (L
c) Lumpy graphite (natural graphite) having a 200 nm average particle diameter of 20 μm was prepared and used as graphite powder δ.

【0016】2.単極セルの作製 (1)負極の作製 ついで、上述のように用意した各黒鉛粉末α,β,γ,
δをそれぞれ用い、これらの各黒鉛粉末α,β,γ,δ
とスチレン−ブタジエンゴム(SBR)とのディスパー
ジョン(固形分は48質量%)を水に分散させた後、増
粘剤となるカルボキシメチルセルロース(CMC)を添
加、混合してそれぞれスラリーを調製した。なお、塊状
黒鉛とSBRとCMCとの乾燥後の質量組成比が塊状黒
鉛:SBR:CMC=95:3:2となるように調製し
た。
2. Fabrication of Monopolar Cell (1) Fabrication of Negative Electrode Next, each of the graphite powders α, β, γ,
Each of these graphite powders α, β, γ, δ
A dispersion of styrene-butadiene rubber (SBR) (solid content: 48% by mass) was dispersed in water, and carboxymethylcellulose (CMC) as a thickener was added and mixed to prepare slurries. In addition, the mass composition ratio after drying of massive graphite, SBR, and CMC was adjusted so that massive graphite: SBR: CMC = 95: 3: 2.

【0017】ついで、銅箔からなる負極集電体を用意
し、上述のように調製したそれぞれのスラリーをこの負
極集電体の両面にドクターブレード法により塗布し、厚
みが80μmの黒鉛材料層(なお、表面の面積が8cm
2となるようにした)をそれぞれ形成した。この後、黒
鉛材料の充填密度が1.60g/cm3になるように圧
延し、100℃で2時間真空乾燥させて、黒鉛負極をそ
れぞれ作製した。なお、黒鉛粉末αを用いた黒鉛負極を
負極aとし、黒鉛粉末βを用いた黒鉛負極を負極bと
し、黒鉛粉末γを用いた黒鉛負極を負極cとし、黒鉛粉
末δを用いた黒鉛負極を負極dとした。
Next, a negative electrode current collector made of a copper foil was prepared, and the respective slurries prepared as described above were applied to both surfaces of the negative electrode current collector by a doctor blade method, and a graphite material layer (thickness: 80 μm) was formed. The surface area is 8cm
2 ). Thereafter, the graphite material was rolled so as to have a packing density of 1.60 g / cm 3, and vacuum-dried at 100 ° C. for 2 hours to produce graphite negative electrodes. A graphite negative electrode using graphite powder α was used as a negative electrode a, a graphite negative electrode using graphite powder β was used as a negative electrode b, a graphite negative electrode using graphite powder γ was used as a negative electrode c, and a graphite negative electrode using graphite powder δ was used. A negative electrode d was obtained.

【0018】(2)ピーク強度比の測定 上述のよう作製した各黒鉛負極a,b,c,dから黒鉛
層をそれぞれ剥離させた後、これらの剥離した各黒鉛層
をCu−Kα線源を用いたX線回折装置でそれぞれX線
回折した結果、図1(黒鉛負極a)、図2(黒鉛負極
b)、図3(黒鉛負極c)および図4(黒鉛負極d)に
示すようなX線回折図を得た。ついで、これらの回折図
に基づいて、菱面体構造の結晶子の(101)面のピー
ク強度(cps)P1(回折角43.2°±0.5°)
と、六方晶構造の結晶子の(101)面のピーク強度
(cps)P2(回折角44.3°±0.5°)とのピ
ーク強度比(P1/P2)を求めると、下記の表1に示
すような結果となった。なお、各ピーク強度P1,P2
は、図1〜図4のX線回折図におけるバックグランド線
(各図の点線)から各回折角でのピークまでの高さを表
している。
(2) Measurement of Peak Intensity Ratio After the graphite layers were separated from the graphite negative electrodes a, b, c, and d prepared as described above, the separated graphite layers were separated by a Cu-Kα radiation source. As a result of X-ray diffraction by the used X-ray diffractometer, X-ray diffraction as shown in FIG. 1 (graphite negative electrode a), FIG. 2 (graphite negative electrode b), FIG. 3 (graphite negative electrode c) and FIG. A line diffraction pattern was obtained. Next, based on these diffraction patterns, the peak intensity (cps) P1 of the (101) plane of the crystallite having a rhombohedral structure (diffraction angle 43.2 ° ± 0.5 °)
And the peak intensity ratio (P1 / P2) between the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having a hexagonal structure is calculated as follows. The result was as shown in FIG. In addition, each peak intensity P1, P2
Represents the height from the background line (dotted line in each figure) to the peak at each diffraction angle in the X-ray diffraction diagrams of FIGS.

【0019】(3)単極セルの作製 上述のよう作製した各黒鉛負極a,b,c,dを用い、
エチレンカーボネート(EC)とジエチルカーボネート
(DEC)を体積比が50対50となるように混合した
混合溶媒にLiPF6を1モル/リットル溶解した溶液
を有機電解液とし、ポリプロピレン製の微多孔膜をセパ
レータとし、各黒鉛負極a,b,c,dの対極および参
照極としてリチウム金属板を用いて三電極式単極セル
A,B,C,Dをそれぞれ作製した。なお、黒鉛負極a
を用いた三電極式単極セルを単極セルAとし、黒鉛負極
bを用いた三電極式単極セルを単極セルBとし、黒鉛負
極cを用いた三電極式単極セルを単極セルCとし、黒鉛
負極dを用いた三電極式単極セルを単極セルDとした。
(3) Manufacture of monopolar cell Using the graphite negative electrodes a, b, c and d manufactured as described above,
A solution prepared by dissolving 1 mol / l of LiPF 6 in a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 50 to 50 was used as an organic electrolyte, and a polypropylene microporous membrane was formed. Three-electrode single-electrode cells A, B, C, and D were produced using lithium metal plates as a separator, a counter electrode of each of the graphite negative electrodes a, b, c, and d and a reference electrode. The graphite negative electrode a
A three-electrode single-electrode cell using a graphite negative electrode b was used as a single-electrode cell A, a three-electrode single-electrode cell using a graphite negative electrode b was used as a single-electrode cell B, and a three-electrode single-electrode cell using a graphite negative electrode c was used as a single-electrode cell. The cell C was used, and a three-electrode single-electrode cell using the graphite negative electrode d was used as a single-electrode cell D.

【0020】(4)単極充放電試験 これらの各単極セルA,B,C,Dを用いて、室温(約
25℃)で、0.5mA/cm2の電流密度で、電池電
圧が2.0mVになるまで定電流充電し、2.0mVで
電流密度が0.10mA/cm2に達するまで定電圧充
電した後、0.5mA/cm2の電流密度で、電池電圧
1.0Vになるまで放電させるという充放電を1回だけ
行い、放電時間から負極の黒鉛材料1g当たりの放電容
量(単極放電容量)(mAh/g)を求めると下記の表
1に示すような結果となった。
(4) Unipolar charge / discharge test Using these unipolar cells A, B, C, and D, at room temperature (about 25 ° C.), at a current density of 0.5 mA / cm 2 , constant current charging until 2.0 mV, after the current density was constant voltage charging until the 0.10mA / cm 2 at 2.0 mV, at a current density of 0.5 mA / cm 2, the battery voltage 1.0V The discharge capacity (single electrode discharge capacity) (mAh / g) per gram of the graphite material of the negative electrode was calculated from the discharge time by discharging / charging only once to obtain a result as shown in Table 1 below. Was.

【0021】[0021]

【表1】 [Table 1]

【0022】上記表1の結果から、菱面体構造の結晶子
の(101)面のピーク強度P1(回折角43.2°±
0.5°)と、六方晶構造の結晶子の(101)面のピ
ーク強度P2(回折角44.3°±0.5°)とのピー
ク強度比(P1/P2)を横軸とし、単極放電容量(m
Ah/g)を縦軸としてグラフにすると、図5に示すよ
うな結果となった。図5の結果から明らかなように、ピ
ーク強度比(P1/P2)が大きくなるほど単極放電容
量(mAh/g)が大きくなることが分かる。そして、
単極容量が大きい電極を用いた方が容量が大きい電池が
得られるので、ピーク強度比(P1/P2)ができるだ
け大きな黒鉛を用いた方が良いということができるが、
実用的には単極容量が350mAh/g以上であれば、
かなり高容量の電池が得られる。したがって、ピーク強
度比(P1/P2)は0.20以上にするのが好ましい
ということができる。
From the results shown in Table 1, the peak intensity P1 of the (101) plane of the crystallite having a rhombohedral structure (diffraction angle 43.2 ° ±
0.5 °) and the peak intensity ratio (P1 / P2) between the peak intensity P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having the hexagonal structure, Single electrode discharge capacity (m
Ah / g) is plotted on the vertical axis, and the results are as shown in FIG. As is clear from the results of FIG. 5, it can be seen that as the peak intensity ratio (P1 / P2) increases, the unipolar discharge capacity (mAh / g) increases. And
Since a battery having a larger capacity can be obtained by using an electrode having a larger unipolar capacity, it can be said that it is better to use graphite having a peak intensity ratio (P1 / P2) as large as possible.
Practically, if the single electrode capacity is 350 mAh / g or more,
A fairly high capacity battery is obtained. Therefore, it can be said that the peak intensity ratio (P1 / P2) is preferably set to 0.20 or more.

【0023】3.非水電解液二次電池 (1)負極の作製 ついで、上述のように用意した各黒鉛粉末α,β,δを
それぞれ用い、これらの各黒鉛粉末α,β,δと、結着
剤としてのスチレン−ブタジエンゴム(SBR)とのデ
ィスパージョン(固形分は48質量%)を水に分散させ
た後、増粘剤となるカルボキシメチルセルロース(CM
C)を添加、混合してそれぞれスラリーを調製した。な
お、塊状黒鉛とSBRとCMCとの乾燥後の質量組成比
が塊状黒鉛:SBR:CMC=95:3:2となるよう
に調製した。
3. Non-Aqueous Electrolyte Secondary Battery (1) Preparation of Negative Electrode Then, each of the graphite powders α, β, δ prepared as described above was used, and these graphite powders α, β, δ were used as binders. A dispersion (solid content: 48% by mass) with styrene-butadiene rubber (SBR) is dispersed in water, and then carboxymethyl cellulose (CM) serving as a thickener is dispersed.
C) was added and mixed to prepare respective slurries. In addition, the mass composition ratio after drying of massive graphite, SBR, and CMC was adjusted so that massive graphite: SBR: CMC = 95: 3: 2.

【0024】なお、結着剤としては、スチレン−ブタジ
エンゴム(SBR)に代えて、メチル(メタ)アクリレ
ート、エチル(メタ)アクリレート、ブチル(メタ)ア
クリレート、(メタ)アクリロニトリル、ヒドロキシエ
チル(メタ)アクリレートなどのエチレン性不飽和カル
ボン酸エステル、あるいはアクリル酸、メタクリル酸、
イタコン酸、フマル酸、マレイン酸などのエチレン性不
飽和カルボン酸を用いてもよい。また、増粘剤として
は、カルボキシメチルセルロース(CMC)に代えて、
メチルセルロース、ヒドロキシメチルセルロース、エチ
ルセルロース、ポリビニルアルコール、ポリアクリル酸
(塩)、酸化スターチ、リン酸化スターチ、カゼインな
どを用いてもよい。
As the binder, instead of styrene-butadiene rubber (SBR), methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) Ethylenically unsaturated carboxylic acid esters such as acrylates, or acrylic acid, methacrylic acid,
Ethylenically unsaturated carboxylic acids such as itaconic acid, fumaric acid and maleic acid may be used. As a thickener, instead of carboxymethyl cellulose (CMC),
Methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein, and the like may be used.

【0025】ついで、銅箔からなる負極集電体を用意
し、上述のように作製したそれぞれのスラリーをこの負
極集電体の両面に、ドクターブレード法により、負極集
電体の単位面積当たり100g/m2をそれぞれ塗布し
て負極黒鉛材料層をそれぞれ形成した。この後、黒鉛材
料の充填密度が1.6g/cm3になるように圧延し、
100℃で2時間真空乾燥させて、黒鉛負極をそれぞれ
作製した。なお、黒鉛粉末αを用いた黒鉛負極を負極e
とし、黒鉛粉末βを用いた黒鉛負極を負極fとし、黒鉛
粉末δを用いた黒鉛負極を負極gとした。
Next, a negative electrode current collector made of a copper foil was prepared, and the slurry prepared as described above was applied to both surfaces of the negative electrode current collector at a rate of 100 g per unit area of the negative electrode current collector by a doctor blade method. / M 2 respectively to form negative electrode graphite material layers. Thereafter, the graphite material is rolled to a packing density of 1.6 g / cm 3 ,
Vacuum drying was performed at 100 ° C. for 2 hours to prepare graphite negative electrodes. The graphite negative electrode using the graphite powder α was replaced with a negative electrode e.
The graphite negative electrode using the graphite powder β was defined as a negative electrode f, and the graphite negative electrode using the graphite powder δ was defined as a negative electrode g.

【0026】(2)ピーク強度比の測定 上述のよう作製した各黒鉛負極e,f,gから黒鉛層を
それぞれ剥離させた後、これらの剥離した各黒鉛層をC
u−Kα線源を用いたX線回折装置でそれぞれX線回折
して上述と同様にX線回折図を得た。ついで、これらの
回折図に基づいて、菱面体構造の結晶子の(101)面
のピーク強度(cps)P1(回折角43.2°±0.
5°)と、六方晶構造の結晶子の(101)面のピーク
強度(cps)P2(回折角44.3°±0.5°)と
のピーク強度比(P1/P2)を求め、これらの各ピー
ク強度P1,P2に基づいてピーク強度比(P1/P
2)を求めると、下記の表2に示すような結果となっ
た。
(2) Measurement of peak intensity ratio After exfoliating the graphite layers from the graphite negative electrodes e, f, and g prepared as described above, these exfoliated graphite layers were separated by C.
Each was X-ray diffracted by an X-ray diffractometer using a u-Kα ray source to obtain an X-ray diffraction pattern in the same manner as described above. Next, based on these diffraction diagrams, the peak intensity (cps) P1 of the (101) plane of the crystallite having a rhombohedral structure (diffraction angle 43.2 ° ± 0.
5 °) and the peak intensity ratio (P1 / P2) between the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having a hexagonal crystal structure, and The peak intensity ratio (P1 / P
When 2) was obtained, the results were as shown in Table 2 below.

【0027】(3)正極の作製 平均粒径5μmのコバルト酸リチウム(LiCoO2
粉末と導電剤としての人造黒鉛粉末を質量比で9:1の
割合で混合して正極合剤を調製した。この正極合剤と、
N−メチル−2−ピロリドン(NMP)にポリフッ化ビ
ニリデン(PVdF)を5質量%溶解した結着剤溶液と
を固形分の質量比で95:5となるように混練して、正
極スラリーを調製した。ついで、アルミニウム箔からな
る正極集電体を用意し、上述のように作製した正極スラ
リーを正極集電体の両面に、ドクターブレード法によ
り、正極集電体の単位面積当たり240g/m2を塗布
して正極合剤層を形成した。この後、正極合剤の充填密
度が3.2g/cm3になるように圧延し、150℃で
2時間真空乾燥させて正極を作製した。なお、正極活物
質として、LiCoO2に代えて、LiMn24,Li
NiO2,LiMn1.5Ni0.54などの組成式がLia
MOb(MはMn,Co,Ni,V,Nbなどから選択
される1種の金属元素で、0≦a≦2で1≦b≦5)で
表される金属MとLiとの複合酸化物を用いてもよい。
(3) Preparation of positive electrode Lithium cobaltate (LiCoO 2 ) having an average particle size of 5 μm
The powder and artificial graphite powder as a conductive agent were mixed at a mass ratio of 9: 1 to prepare a positive electrode mixture. This positive electrode mixture,
A positive electrode slurry is prepared by kneading a binder solution in which 5% by mass of polyvinylidene fluoride (PVdF) is dissolved in N-methyl-2-pyrrolidone (NMP) so as to have a solid content mass ratio of 95: 5. did. Then, a positive electrode current collector made of aluminum foil was prepared, and the positive electrode slurry prepared as described above was applied to both surfaces of the positive electrode current collector at 240 g / m 2 per unit area of the positive electrode current collector by a doctor blade method. Thus, a positive electrode mixture layer was formed. Thereafter, rolling was performed so that the packing density of the positive electrode mixture became 3.2 g / cm 3 , followed by vacuum drying at 150 ° C. for 2 hours to prepare a positive electrode. In addition, LiMn 2 O 4 , Li was used instead of LiCoO 2 as the positive electrode active material.
A composition formula such as NiO 2 , LiMn 1.5 Ni 0.5 O 4 is Li a
Composite oxide of MO b (M is Mn, Co, Ni, V, in one metal element selected from such Nb, 0 ≦ a ≦ 2 1 ≦ b ≦ 5) metal M and Li represented by An object may be used.

【0028】(4)リチウム二次電池の作製 ついで、リチウム二次電池の作製例を図6に基づいて説
明する。ここで、図6において、上述のようにして作製
した各黒鉛負極e,f,gを負極板10とし、上述のよ
うにして作製した正極を正極板20として示している。
そして、図6に示すように、負極板10と正極板20と
をこれらの間にポリエチレン製微多孔膜からなるセパレ
ータ30を介在させて重ね合わせた後、渦巻状に巻回し
て渦巻状電極体を作製した。この電極体の上下にそれぞ
れ絶縁板41を配置した後、1枚板からプレス加工によ
り円筒状に成形した負極端子を兼ねるスチール製の外装
缶40の開口部より、この電極体を挿入した。
(4) Production of Lithium Secondary Battery Next, an example of producing a lithium secondary battery will be described with reference to FIG. Here, in FIG. 6, the graphite negative electrodes e, f, and g manufactured as described above are referred to as a negative electrode plate 10, and the positive electrode manufactured as described above is illustrated as a positive electrode plate 20.
Then, as shown in FIG. 6, the negative electrode plate 10 and the positive electrode plate 20 are overlapped with a separator 30 made of a microporous polyethylene film interposed therebetween, and then spirally wound to form a spiral electrode body. Was prepared. After the insulating plates 41 were arranged above and below the electrode body, the electrode body was inserted through an opening of a steel outer can 40 also serving as a negative electrode terminal formed by pressing a single plate into a cylindrical shape.

【0029】ついで、電極体の負極板10より延出する
負極集電タブ10aを外装缶40の内底部に溶接すると
ともに、電極体の正極板20より延出する正極集電タブ
20aを電流遮断封口体50の底板54とを溶接した。
そして、エチレンカーボネート(EC)とジエチルカー
ボネート(DEC)からなる混合溶媒(EC:DEC=
50:50:体積比)にLiPF6を1モル/リットル
溶解した有機電解液を外装缶40内に注入した後、外装
缶40の開口部にポリプロピレン(PP)製の外装缶用
絶縁ガスケット42を介して電流遮断封口体50を載置
し、外装缶40の開口部の上端部を電流遮断封口体50
側にかしめて液密に封口して、公称容量が1450mA
hのリチウム二次電池E,F,Gをそれぞれ作製した。
なお、黒鉛負極板eを用いたリチウム二次電池を電池E
とし、黒鉛負極板fを用いたリチウム二次電池を電池F
とし、黒鉛負極板gを用いたリチウム二次電池を電池G
とした。
Next, the negative electrode current collecting tab 10a extending from the negative electrode plate 10 of the electrode body is welded to the inner bottom of the outer can 40, and the positive electrode current collecting tab 20a extending from the positive electrode plate 20 of the electrode body is interrupted. The bottom plate 54 of the sealing body 50 was welded.
Then, a mixed solvent (EC: DEC =) composed of ethylene carbonate (EC) and diethyl carbonate (DEC)
After injecting an organic electrolytic solution in which LiPF 6 is dissolved at 1 mol / l in a ratio of 50: 50: volume (50: 50: volume ratio) into the outer can 40, an insulating can insulating gasket 42 made of polypropylene (PP) is inserted into the opening of the outer can 40. The current-blocking sealing body 50 is placed via the current-blocking sealing body 50,
Sealed liquid tightly to a nominal capacity of 1450 mA
h of lithium secondary batteries E, F, and G, respectively.
The lithium secondary battery using the graphite negative electrode plate e was
And a lithium secondary battery using the graphite negative electrode plate f
And a lithium secondary battery using the graphite negative electrode plate
And

【0030】なお、電流遮断封口体50は、逆皿状(キ
ャップ状)に形成されたステンレス製の正極キャップ5
1と、皿状に形成されたステンレス製の底板54とから
構成されている。これらの正極キャップ51と底板54
との内部には、電池内部のガス圧が上昇して所定の圧力
以上になると変形する図示しないアルミニウム箔からな
る電力導出板が収容されているとともに、PTC(Posi
tive Temperature Coefficient)サーミスタ素子が配設
されている。そして、電池内に過電流が流れて異常な発
熱現象を生じると、このPTCサーミスタ素子の抵抗値
が増大して過電流を減少させる。また、電池内部のガス
圧が上昇して所定の圧力以上になると電力導出板が変形
するため、電力導出板と正極キャップ51との接触が遮
断されて過電流あるいは短絡電流が遮断されるようにな
されている。
The current blocking sealing body 50 is a stainless steel positive electrode cap 5 formed in an inverted dish shape (cap shape).
1 and a stainless steel bottom plate 54 formed in a dish shape. These positive electrode cap 51 and bottom plate 54
And a power lead-out plate made of aluminum foil (not shown) that is deformed when the gas pressure inside the battery rises to a predetermined pressure or more, and a PTC (Posi
tive Temperature Coefficient) is provided. Then, when an overcurrent flows in the battery and an abnormal heat generation phenomenon occurs, the resistance value of the PTC thermistor element increases to reduce the overcurrent. Further, when the gas pressure inside the battery rises and becomes equal to or higher than a predetermined pressure, the power lead-out plate is deformed, so that the contact between the power lead-out plate and the positive electrode cap 51 is cut off, so that overcurrent or short-circuit current is cut off. It has been done.

【0031】なお、有機電解液の溶媒としては、エチレ
ンカーボネート(EC)とジエチルカーボネート(DE
C)からなる混合溶媒に代えて、エチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ビニレンカーボネート、シクロペンタノン、スルホラ
ン、3−メチルスルホラン、2,4−ジメチルスルホラ
ン、3−メチル−1,3−オキサゾリジン−2−オン、
γ−ブチロラクトン、ジメチルカーボネート、エチルメ
チルカーボネート、ブチルメチルカーボネート、エチル
プロピルカーボネート、ブチルエチルカーボネート、ジ
プロピルカーボネート、1,2−ジメトキシエタン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、
1,3−ジオキソラン、酢酸メチル、酢酸エチルなどの
単体、2成分混合物あるいは3成分混合物を用いてもよ
い。また、有機電解液の溶質としては、LiPF6に代
えて、LiBF4、LiCF 3SO3、LiAsF6、Li
N(CF3SO22、LiC(CF3SO23、LiCF
3(CF23SO3などを用いてもよい。
The solvent for the organic electrolyte is ethyl
Carbonate (EC) and diethyl carbonate (DE
Ethylene carbonate instead of the mixed solvent consisting of C)
G, propylene carbonate, butylene carbonate,
Vinylene carbonate, cyclopentanone, sulfora
, 3-methylsulfolane, 2,4-dimethylsulfora
3-methyl-1,3-oxazolidin-2-one;
γ-butyrolactone, dimethyl carbonate, ethyl methyl
Chill carbonate, butyl methyl carbonate, ethyl
Propyl carbonate, butyl ethyl carbonate, di
Propyl carbonate, 1,2-dimethoxyethane,
Trahydrofuran, 2-methyltetrahydrofuran,
1,3-dioxolan, methyl acetate, ethyl acetate, etc.
A simple substance, a two-component mixture or a three-component mixture may be used.
No. The solute of the organic electrolyte is LiPF6Niyo
Oh, LiBFFour, LiCF ThreeSOThree, LiAsF6, Li
N (CFThreeSOTwo)Two, LiC (CFThreeSOTwo)Three, LiCF
Three(CFTwo)ThreeSOThreeOr the like may be used.

【0032】(5)リチウム二次電池の充放電試験 これらの各電池E,F,Gを用いて、室温(約25℃)
で、1450mA(1C:Cは電極容量を表し、Itと
もいう)の充電電流で、電池電圧が4.2Vになるまで
定電流充電し、4.2Vの定電圧で電流値が20mAに
達するまで定電圧充電した後、1450mA(1C)の
放電電流で、電池電圧が2.75Vになるまで放電させ
るという充放電を1回だけ行って、放電時間から1Cで
の放電容量(mAh)を求めた。
(5) Charge / discharge test of lithium secondary battery Using these batteries E, F, G, at room temperature (about 25 ° C.)
With a charging current of 1450 mA (1 C: C represents an electrode capacity and also referred to as It), a constant current charging is performed until the battery voltage reaches 4.2 V, and a current reaches 20 mA at a constant voltage of 4.2 V. After charging at a constant voltage, the battery was discharged and charged only once at a discharge current of 1450 mA (1 C) until the battery voltage reached 2.75 V, and the discharge capacity (mAh) at 1 C was determined from the discharge time. .

【0033】また、これらの各電池E,F,Gを用い
て、室温(約25℃)で、1450mA(1C)の充電
電流で、電池電圧が4.2Vになるまで定電流充電し、
4.2Vの定電圧で電流値が20mAに達するまで定電
圧充電した後、3625mA(2.5C)の放電電流
で、電池電圧が2.75Vになるまで放電させるという
充放電を1回だけ行って、放電時間から2.5Cでの放
電容量(高率放電容量)(mAh)を求めた。ついで、
2.5Cでの放電容量に対する1Cでの放電容量の比率
を算出して、放電容量比(放電容量比=(1Cでの放電
容量/2.5Cでの放電容量)×100%)を求めると
下記の表2に示すような結果となった。
Using these batteries E, F, and G, a constant current charge was performed at room temperature (about 25 ° C.) at a charge current of 1450 mA (1 C) until the battery voltage reached 4.2 V.
Charge / discharge is performed only once with a constant voltage of 4.2 V and a constant voltage charge until the current value reaches 20 mA, and then with a discharge current of 3625 mA (2.5 C) until the battery voltage reaches 2.75 V. The discharge capacity at 2.5 C (high-rate discharge capacity) (mAh) was determined from the discharge time. Then
The ratio of the discharge capacity at 1C to the discharge capacity at 2.5C is calculated, and the discharge capacity ratio (discharge capacity ratio = (discharge capacity at 1C / discharge capacity at 2.5C) × 100%) is obtained. The results are as shown in Table 2 below.

【0034】[0034]

【表2】 [Table 2]

【0035】上記表2の結果から、菱面体構造の結晶子
の(101)面のピーク強度P1(回折角43.2°±
0.5°)と、六方晶構造の結晶子の(101)面のピ
ーク強度P2(回折角44.3°±0.5°)とのピー
ク強度比(P1/P2)を横軸とし、放電容量、高率放
電容量および放電容量比を縦軸としてグラフにすると、
図7に示すような結果となった。図7の結果から明らか
なように、1Cでの放電容量(図7の黒丸印)はピーク
強度比(P1/P2)に関わらずほぼ一定であるが、
2.5Cでの放電容量(図7の白丸印)および放電容量
比(図7の×印)はピーク強度比(P1/P2)が大き
くなるに伴って低下することが分かる。
From the results shown in Table 2, the peak intensity P1 of the (101) plane of the crystallite having a rhombohedral structure (diffraction angle 43.2 ° ±
0.5 °) and the peak intensity ratio (P1 / P2) between the peak intensity P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having the hexagonal structure, When the discharge capacity, high rate discharge capacity and discharge capacity ratio are plotted on the vertical axis,
The result was as shown in FIG. As is clear from the results in FIG. 7, the discharge capacity at 1C (black circles in FIG. 7) is almost constant regardless of the peak intensity ratio (P1 / P2).
It can be seen that the discharge capacity at 2.5 C (open circles in FIG. 7) and the discharge capacity ratio (x marks in FIG. 7) decrease as the peak intensity ratio (P1 / P2) increases.

【0036】図7の結果から高率放電容量および放電容
量比はピーク強度比(P1/P2)が0.30まではほ
ぼ一定であるが、特にピーク強度比(P1/P2)が
0.30を越えると低下率が増大することから、ピーク
強度比(P1/P2)は0.30以下に規制すれば、高
率放電容量および放電容量比の優れたリチウム二次電池
が得られることが分かる。そして、図5の結果から単極
放電容量はピーク強度比(P1/P2)が大きくなるに
伴って増加し、ピーク強度比(P1/P2)を0.20
以上にすれば容量が大きい電池が得られることを考慮す
ると、ピーク強度比(P1/P2)は0.20以上で
0.30以下に最適化するのが好ましいということがで
きる。
From the results shown in FIG. 7, the high rate discharge capacity and the discharge capacity ratio are almost constant until the peak intensity ratio (P1 / P2) is 0.30, and particularly, the peak intensity ratio (P1 / P2) is 0.30. If the peak intensity ratio (P1 / P2) is regulated to 0.30 or less, it is understood that a lithium secondary battery having a high rate discharge capacity and an excellent discharge capacity ratio can be obtained. . From the results of FIG. 5, the unipolar discharge capacity increases as the peak intensity ratio (P1 / P2) increases, and the peak intensity ratio (P1 / P2) increases to 0.20.
Considering that a battery having a large capacity can be obtained by the above, it can be said that it is preferable to optimize the peak intensity ratio (P1 / P2) to be 0.20 or more and 0.30 or less.

【0037】4.黒鉛負極の充填密度の検討 (1)充填密度が1.55g/cm3の黒鉛負極を用い
たリチウム二次電池 上述のように用意した各黒鉛粉末α,β,δをそれぞれ
用いて、これらの各黒鉛粉末α,β,δとスチレン−ブ
タジエンゴム(SBR)とのディスパージョン(固形分
は48質量%)を水に分散させた後、増粘剤となるカル
ボキシメチルセルロース(CMC)を添加、混合してそ
れぞれスラリーを調製した。なお、塊状黒鉛とSBRと
CMCとの乾燥後の質量組成比が塊状黒鉛:SBR:C
MC=95:3:2となるように調製した。
4. Examination of packing density of graphite negative electrode (1) Lithium secondary battery using graphite negative electrode whose packing density is 1.55 g / cm 3 Using each of the graphite powders α, β, δ prepared as described above, A dispersion (solid content: 48% by mass) of each graphite powder α, β, δ and styrene-butadiene rubber (SBR) is dispersed in water, and carboxymethyl cellulose (CMC) as a thickener is added and mixed. Thus, slurries were prepared. In addition, the mass composition ratio of lump graphite, SBR, and CMC after drying is lump graphite: SBR: C
It was prepared so that MC = 95: 3: 2.

【0038】ついで、銅箔からなる負極集電体を用意
し、上述のように作製したそれぞれのスラリーをこの負
極集電体の両面に、ドクターブレード法により、負極集
電体の単位面積当たり100g/m2をそれぞれ塗布し
て負極黒鉛材料層をそれぞれ形成した。この後、黒鉛材
料の充填密度が1.55g/cm3になるように圧延
し、100℃で2時間真空乾燥させて、黒鉛負極板をそ
れぞれ作製した。なお、黒鉛粉末αを用いた黒鉛負極板
を負極板hとし、黒鉛粉末βを用いた黒鉛負極板を負極
板iとし、黒鉛粉末δを用いた黒鉛負極板を負極板jと
した。
Next, a negative electrode current collector made of a copper foil was prepared, and each slurry prepared as described above was applied to both surfaces of the negative electrode current collector by a doctor blade method at a rate of 100 g per unit area of the negative electrode current collector. / M 2 respectively to form negative electrode graphite material layers. Thereafter, it was rolled so that the filling density of the graphite material became 1.55 g / cm 3, and vacuum-dried at 100 ° C. for 2 hours, thereby producing graphite negative electrode plates. The graphite negative electrode plate using graphite powder α was referred to as negative electrode plate h, the graphite negative electrode plate using graphite powder β was referred to as negative electrode plate i, and the graphite negative electrode plate using graphite powder δ was referred to as negative electrode plate j.

【0039】ついで、上述のよう作製した各黒鉛負極
h,i,jから黒鉛層をそれぞれ剥離させた後、これら
の剥離した各黒鉛層をCu−Kα線源を用いたX線回折
装置でそれぞれX線回折して上述と同様にX線回折図を
得た。ついで、これらの回折図に基づいて、菱面体構造
の結晶子の(101)面のピーク強度(cps)P1
(回折角43.2°±0.5°)と、六方晶構造の結晶
子の(101)面のピーク強度(cps)P2(回折角
44.3°±0.5°)を求め、これらの各ピーク強度
P1,P2に基づいてピーク強度比(P1/P2)を求
めると、下記の表3に示すような結果となった。
Next, the graphite layers were separated from the graphite negative electrodes h, i, j prepared as described above, and the separated graphite layers were respectively subjected to X-ray diffraction using a Cu-Kα ray source. X-ray diffraction was performed to obtain an X-ray diffraction pattern in the same manner as described above. Next, based on these diffraction diagrams, the peak intensity (cps) P1 of the (101) plane of the crystallite having a rhombohedral structure is obtained.
(Diffraction angle 43.2 ° ± 0.5 °) and the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having a hexagonal structure were obtained. When the peak intensity ratio (P1 / P2) was determined based on the respective peak intensities P1 and P2, the results shown in Table 3 below were obtained.

【0040】ついで、上述のよう作製した各黒鉛負極板
h,i,jを用いて、上述と同様に公称容量1450m
Ahのリチウム二次電池をそれぞれ作製した。なお、黒
鉛負極板hを用いたリチウム二次電池を電池Hとし、黒
鉛負極板iを用いたリチウム二次電池を電池Iとし、黒
鉛負極板jを用いたリチウム二次電池を電池Jとした。
ついで、上述と同様に、これらの各電池H,I,Jを用
いて、上述と同様に充放電を行って、1Cでの放電容量
(mAh)および2.5Cでの放電容量(高率放電容
量)(mAh)を求めて、放電容量比(放電容量比=
(1Cでの放電容量/2.5Cでの放電容量)×100
%)を求めると下記の表3に示すような結果となった。
Next, using each of the graphite negative electrode plates h, i, and j produced as described above, a nominal capacity of 1450 m was used in the same manner as described above.
Ah lithium secondary batteries were produced. The lithium secondary battery using the graphite negative electrode plate h was referred to as a battery H, the lithium secondary battery using the graphite negative electrode plate i was referred to as a battery I, and the lithium secondary battery using the graphite negative electrode plate j was referred to as a battery J. .
Next, in the same manner as described above, the batteries H, I, and J were charged and discharged in the same manner as described above, and the discharge capacity at 1 C (mAh) and the discharge capacity at 2.5 C (high-rate discharge) were obtained. Capacity) (mAh), and a discharge capacity ratio (discharge capacity ratio =
(Discharge capacity at 1 C / discharge capacity at 2.5 C) × 100
%) Yielded the results shown in Table 3 below.

【0041】[0041]

【表3】 [Table 3]

【0042】上記表3の結果から、菱面体構造の結晶子
の(101)面のピーク強度P1(回折角43.2°±
0.5°)と、六方晶構造の結晶子の(101)面のピ
ーク強度P2(回折角44.3°±0.5°)とのピー
ク強度比(P1/P2)を横軸とし、1Cでの放電容
量、2.5Cでの放電容量および放電容量比を縦軸とし
てグラフにすると、図8に示すような結果となった。図
8の結果から明らかなように、1Cでの放電容量(図8
の黒丸印)はピーク強度比(P1/P2)が大きくなる
に伴って若干増大するが、高率放電容量および放電容量
比はピーク強度比(P1/P2)が大きくなってもほぼ
一定であることが分かる。このことから、黒鉛の充填密
度が1.55g/cm3で低充填密度の黒鉛負極を用い
たリチウム二次電池にあっては、黒鉛負極に用いる結晶
子のピーク強度比(P1/P2)を0.20以上で0.
30以下に最適化しても、高率放電容量および放電容量
比が向上させるという効果を発揮しにくいということが
できる。
From the results shown in Table 3, the peak intensity P1 of the (101) plane of the crystallite having a rhombohedral structure (diffraction angle 43.2 ° ±
0.5 °) and the peak intensity ratio (P1 / P2) between the peak intensity P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having the hexagonal structure, When the discharge capacity at 1 C, the discharge capacity at 2.5 C, and the discharge capacity ratio are plotted on the vertical axis, the results shown in FIG. 8 are obtained. As is clear from the results of FIG. 8, the discharge capacity at 1 C (FIG.
Black circles) slightly increase as the peak intensity ratio (P1 / P2) increases, but the high-rate discharge capacity and the discharge capacity ratio are almost constant even when the peak intensity ratio (P1 / P2) increases. You can see that. From this, in a lithium secondary battery using a graphite negative electrode having a graphite filling density of 1.55 g / cm 3 and a low filling density, the peak intensity ratio (P1 / P2) of crystallites used for the graphite negative electrode was determined. 0.20 or more.
Even if it is optimized to 30 or less, it can be said that the effect of improving the high rate discharge capacity and the discharge capacity ratio is hardly exhibited.

【0043】(2)充填密度が1.70g/cm3の黒
鉛負極を用いたリチウム二次電池 上述のように用意した各黒鉛粉末α,β,δおよびγと
δを混合した混合黒鉛粉末をそれぞれ用いて、これらの
各黒鉛粉末α,β,δおよびγとδの混合黒鉛粉末と、
スチレン−ブタジエンゴム(SBR)とのディスパージ
ョン(固形分は48質量%)を水に分散させた後、増粘
剤となるカルボキシメチルセルロース(CMC)を添
加、混合してそれぞれスラリーを調製した。なお、塊状
黒鉛とSBRとCMCとの乾燥後の質量組成比が塊状黒
鉛:SBR:CMC=95:3:2となるように調製し
た。
(2) Lithium secondary battery using a graphite negative electrode having a packing density of 1.70 g / cm 3 Each of the graphite powders α, β, δ prepared as described above, and a mixed graphite powder obtained by mixing γ and δ were used. Each of these graphite powders α, β, δ and a mixed graphite powder of γ and δ,
After dispersion of styrene-butadiene rubber (SBR) (solid content: 48% by mass) was dispersed in water, carboxymethylcellulose (CMC) as a thickener was added and mixed to prepare slurries. In addition, the mass composition ratio after drying of massive graphite, SBR, and CMC was adjusted so that massive graphite: SBR: CMC = 95: 3: 2.

【0044】ついで、銅箔からなる負極集電体を用意
し、上述のように作製したそれぞれのスラリーをこの負
極集電体の両面に、ドクターブレード法により、負極集
電体の単位面積当たり110g/m2をそれぞれ塗布し
て負極黒鉛材料層をそれぞれ形成した。この後、黒鉛材
料の充填密度が1.70g/cm3になるように圧延
し、100℃で2時間真空乾燥させて、黒鉛負極板をそ
れぞれ作製した。なお、黒鉛粉末αを用いた黒鉛負極板
を負極板kとし、黒鉛粉末βを用いた黒鉛負極板を負極
板lとし、黒鉛粉末δを用いた黒鉛負極板を負極板mと
し、黒鉛粉末γとδを混合した混合黒鉛粉末を用いた黒
鉛負極板を負極板nとした。
Next, a negative electrode current collector made of copper foil was prepared, and the slurry prepared as described above was applied to both sides of the negative electrode current collector by a doctor blade method at 110 g per unit area of the negative electrode current collector. / M 2 respectively to form negative electrode graphite material layers. Thereafter, the graphite material was rolled so as to have a packing density of 1.70 g / cm 3, and vacuum-dried at 100 ° C. for 2 hours to produce graphite negative electrode plates. The graphite negative electrode plate using graphite powder α was used as negative electrode plate k, the graphite negative electrode plate using graphite powder β was used as negative electrode plate 1, the graphite negative electrode plate using graphite powder δ was used as negative electrode plate m, and graphite powder γ was used. A negative electrode plate made of a graphite negative electrode plate using a mixed graphite powder obtained by mixing δ and δ was used as a negative electrode plate n.

【0045】ついで、上述のよう作製した各黒鉛負極
k,l,m,nから黒鉛層をそれぞれ剥離させた後、こ
れらの剥離した各黒鉛層をCu−Kα線源を用いたX線
回折装置でそれぞれX線回折して上述と同様にX線回折
図を得た。ついで、これらの回折図に基づいて、菱面体
構造の結晶子の(101)面のピーク強度(cps)P
1(回折角43.2°±0.5°)と、六方晶構造の結
晶子の(101)面のピーク強度(cps)P2(回折
角44.3°±0.5°)を求め、これらの各ピーク強
度P1,P2に基づいてピーク強度比(P1/P2)を
求めると、下記の表4に示すような結果となった。な
お、図9は黒鉛負極nのX線回折図を示している。
Then, after separating the graphite layers from the graphite negative electrodes k, l, m, and n prepared as described above, the separated graphite layers were separated by an X-ray diffractometer using a Cu-Kα ray source. Were subjected to X-ray diffraction to obtain X-ray diffraction patterns in the same manner as described above. Next, based on these diffraction diagrams, the peak intensity (cps) P of the (101) plane of the crystallite having a rhombohedral structure is obtained.
1 (diffraction angle 43.2 ° ± 0.5 °) and the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having a hexagonal structure, When the peak intensity ratio (P1 / P2) was determined based on these peak intensities P1 and P2, the results shown in Table 4 below were obtained. FIG. 9 shows an X-ray diffraction diagram of the graphite negative electrode n.

【0046】ついで、上述のよう作製した各黒鉛負極板
k,l,m,nを用いて、上述と同様に公称容量160
0mAhのリチウム二次電池をそれぞれ作製した。な
お、この場合は、各黒鉛負極板k,l,m,nの容量が
大きいため、正極スラリーを正極集電体の単位面積当た
り250g/m2になるように塗布して正極合剤層を形
成し、正極合剤の充填密度が3.2g/cm3になるよ
うに圧延した正極板を用いている。そして、黒鉛負極板
kを用いたリチウム二次電池を電池Kとし、黒鉛負極板
lを用いたリチウム二次電池を電池Lとし、黒鉛負極板
mを用いたリチウム二次電池を電池Mとし、黒鉛負極板
nを用いたリチウム二次電池を電池Nとした。ついで、
これらの各電池K,L,M,Nを用いて、上述と同様に
充放電を行って、1Cでの放電容量(mAh)および
2.5Cでの放電容量(高率放電容量)(mAh)を求
めて、放電容量比(放電容量比=(1Cでの放電容量/
2.5Cでの放電容量)×100%)を求めると下記の
表4に示すような結果となった。
Next, using each of the graphite negative electrode plates k, l, m, and n produced as described above, the nominal capacity 160
Lithium secondary batteries of 0 mAh were produced. In this case, since the capacity of each graphite negative electrode plate k, l, m, n is large, the positive electrode slurry is applied so as to be 250 g / m 2 per unit area of the positive electrode current collector to form the positive electrode mixture layer. A positive electrode plate formed and rolled so that the filling density of the positive electrode mixture becomes 3.2 g / cm 3 is used. A lithium secondary battery using the graphite negative electrode plate k is referred to as a battery K, a lithium secondary battery using the graphite negative electrode plate 1 is referred to as a battery L, and a lithium secondary battery using the graphite negative electrode plate m is referred to as a battery M. A lithium secondary battery using the graphite negative electrode plate n was referred to as a battery N. Then
Using these batteries K, L, M, and N, charging and discharging are performed in the same manner as described above, and the discharge capacity at 1 C (mAh) and the discharge capacity at 2.5 C (high-rate discharge capacity) (mAh) And discharge capacity ratio (discharge capacity ratio = (discharge capacity at 1 C) /
When the discharge capacity at 2.5 C) × 100%) was obtained, the results shown in Table 4 below were obtained.

【0047】[0047]

【表4】 [Table 4]

【0048】上記表4の結果から、菱面体構造の結晶子
の(101)面のピーク強度P1(回折角43.2°±
0.5°)と、六方晶構造の結晶子の(101)面のピ
ーク強度P2(回折角44.3°±0.5°)とのピー
ク強度比(P1/P2)を横軸とし、1Cでの放電容
量、2.5Cでの放電容量および放電容量比を縦軸とし
てグラフにすると、図10に示すような結果となった。
図10の結果から明らかなように、1Cでの放電容量
(図10の黒丸印)はピーク強度比(P1/P2)が大
きくなるに伴って容量が多少増大するが、2.5Cでの
放電容量(図10の白丸印)および放電容量比(図10
の×印)はピーク強度比(P1/P2)が大きくなるに
伴って低下し、特にピーク強度比(P1/P2)が0.
3を越えると低下率が大きいことが分かる。また、ピー
ク強度比(P1/P2)が0.2より小さい黒鉛粉末
(γ)と、ピーク強度比(P1/P2)が0.3より大
きい黒鉛粉末(δ)を混合して、ピーク強度比(P1/
P2)が0.2以上0.3以下になるように調製した混
合黒鉛粉末を用いて作製した負極板nを用いた電池N
は、黒鉛粉末を混合していない黒鉛粉末(α,β,δ)
を用いて作製した正極板(k,l,m)を用いた電池
K,L,Mと遜色がない性能を有していることが分か
る。
From the results shown in Table 4, the peak intensity P1 of the (101) plane of the crystallite having a rhombohedral structure (diffraction angle 43.2 ° ±.
0.5 °) and the peak intensity ratio (P1 / P2) between the peak intensity P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having the hexagonal structure, When the discharge capacity at 1 C, the discharge capacity at 2.5 C, and the discharge capacity ratio are plotted on the vertical axis, the results shown in FIG. 10 are obtained.
As is apparent from the results in FIG. 10, the discharge capacity at 1C (black circles in FIG. 10) slightly increases as the peak intensity ratio (P1 / P2) increases, but the discharge capacity at 2.5C increases. The capacity (open circles in FIG. 10) and the discharge capacity ratio (FIG.
(X mark) decreases as the peak intensity ratio (P1 / P2) increases. In particular, when the peak intensity ratio (P1 / P2) is 0.
When it exceeds 3, it can be seen that the rate of decrease is large. Further, a graphite powder (γ) having a peak intensity ratio (P1 / P2) smaller than 0.2 and a graphite powder (δ) having a peak intensity ratio (P1 / P2) larger than 0.3 are mixed to obtain a peak intensity ratio. (P1 /
Battery N using negative electrode plate n produced using mixed graphite powder prepared so that P2) becomes 0.2 or more and 0.3 or less.
Is a graphite powder not mixed with graphite powder (α, β, δ)
It can be seen that the battery has performance comparable to that of the batteries K, L, and M using the positive electrode plate (k, l, m) manufactured using.

【0049】(3)充填密度が1.80g/cm3の黒
鉛負極を用いたリチウム二次電池 上述のように用意した各黒鉛粉末α,β,δをそれぞれ
用いて、これらの各黒鉛粉末α,β,δとスチレン−ブ
タジエンゴム(SBR)とのディスパージョン(固形分
は48質量%)を水に分散させた後、増粘剤となるカル
ボキシメチルセルロース(CMC)を添加、混合してそ
れぞれスラリーを調製した。なお、塊状黒鉛とSBRと
CMCとの乾燥後の質量組成比が塊状黒鉛:SBR:C
MC=95:3:2となるように調製した。
(3) Lithium secondary battery using a graphite negative electrode having a packing density of 1.80 g / cm 3 Using each of the graphite powders α, β, and δ prepared as described above, each of these graphite powders α , Β, δ and a dispersion of styrene-butadiene rubber (SBR) (solid content: 48% by mass) are dispersed in water, and carboxymethylcellulose (CMC) as a thickener is added and mixed, and each slurry is mixed. Was prepared. In addition, the mass composition ratio of lump graphite, SBR, and CMC after drying is lump graphite: SBR: C
It was prepared so that MC = 95: 3: 2.

【0050】ついで、銅箔からなる負極集電体を用意
し、上述のように作製したそれぞれのスラリーをこの負
極集電体の両面に、ドクターブレード法により、負極集
電体の単位面積当たり115g/m2をそれぞれ塗布し
て負極黒鉛材料層をそれぞれ形成した。この後、黒鉛材
料の充填密度が1.80g/cm3になるように圧延
し、100℃で2時間真空乾燥させて、黒鉛負極板をそ
れぞれ作製した。なお、黒鉛粉末αを用いた黒鉛負極板
を負極板oとし、黒鉛粉末βを用いた黒鉛負極板を負極
板pとし、黒鉛粉末δを用いた黒鉛負極板を負極板qと
した。
Next, a negative electrode current collector made of a copper foil was prepared, and each slurry prepared as described above was applied to both surfaces of the negative electrode current collector by a doctor blade method at 115 g per unit area of the negative electrode current collector. / M 2 respectively to form negative electrode graphite material layers. Thereafter, it was rolled so that the packing density of the graphite material became 1.80 g / cm 3, and vacuum-dried at 100 ° C. for 2 hours, thereby producing graphite negative electrode plates. The graphite negative electrode plate using graphite powder α was used as negative electrode plate o, the graphite negative electrode plate using graphite powder β was used as negative electrode plate p, and the graphite negative electrode plate using graphite powder δ was used as negative electrode plate q.

【0051】ついで、上述のよう作製した各黒鉛負極
o,p,qから黒鉛層をそれぞれ剥離させた後、これら
の剥離した各黒鉛層をCu−Kα線源を用いたX線回折
装置でそれぞれX線回折して上述と同様にX線回折図を
得た。ついで、これらの回折図に基づいて、菱面体構造
の結晶子の(101)面のピーク強度(cps)P1
(回折角43.2°±0.5°)と、六方晶構造の結晶
子の(101)面のピーク強度(cps)P2(回折角
44.3°±0.5°)を求め、これらの各ピーク強度
P1,P2に基づいてピーク強度比(P1/P2)を求
めると、下記の表5に示すような結果となった。
Next, the graphite layers were peeled off from the graphite anodes o, p, q prepared as described above, and the peeled graphite layers were respectively separated by an X-ray diffractometer using a Cu-Kα ray source. X-ray diffraction was performed to obtain an X-ray diffraction pattern in the same manner as described above. Next, based on these diffraction diagrams, the peak intensity (cps) P1 of the (101) plane of the crystallite having a rhombohedral structure is obtained.
(Diffraction angle 43.2 ° ± 0.5 °) and the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having a hexagonal structure were obtained. When the peak intensity ratio (P1 / P2) was determined based on the respective peak intensities P1 and P2, the results shown in Table 5 below were obtained.

【0052】ついで、上述のよう作製した各黒鉛負極板
o,p,qを用いて、上述と同様に公称容量1700m
Ahのリチウム二次電池をそれぞれ作製した。なお、こ
の場合は、各黒鉛負極板o,p,qの容量が大きいた
め、正極スラリーを正極集電体の単位面積当たり260
g/m2になるように塗布して正極合剤層を形成し、正
極合剤の充填密度が3.3g/cm3になるように圧延
した正極板を用いている。なお、黒鉛負極板oを用いた
リチウム二次電池を電池Oとし、黒鉛負極板pを用いた
リチウム二次電池を電池Pとし、黒鉛負極板qを用いた
リチウム二次電池を電池Qとした。ついで、これらの各
電池O,P,Qを用いて、上述と同様に充放電を行っ
て、1Cでの放電容量(mAh)および2.5Cでの放
電容量(高率放電容量)(mAh)を求めて、放電容量
比(放電容量比=(1Cでの放電容量/2.5Cでの放
電容量)×100%)を求めると下記の表5に示すよう
な結果となった。
Next, using the graphite negative plates o, p, and q produced as described above, a nominal capacity of 1700 m
Ah lithium secondary batteries were produced. In this case, since the capacity of each graphite negative electrode plate o, p, q is large, the positive electrode slurry is added to the positive electrode current collector in an area of 260,000 per unit area.
g / m 2 to form a positive electrode mixture layer, and a positive electrode plate rolled so that the filling density of the positive electrode mixture becomes 3.3 g / cm 3 . A lithium secondary battery using the graphite negative electrode plate o was referred to as a battery O, a lithium secondary battery using the graphite negative electrode plate p was referred to as a battery P, and a lithium secondary battery using the graphite negative electrode plate q was referred to as a battery Q. . Next, using these batteries O, P, and Q, charging and discharging are performed in the same manner as described above, and the discharge capacity at 1 C (mAh) and the discharge capacity at 2.5 C (high-rate discharge capacity) (mAh) , And a discharge capacity ratio (discharge capacity ratio = (discharge capacity at 1 C / discharge capacity at 2.5 C) × 100%) was obtained. The results shown in Table 5 below were obtained.

【0053】[0053]

【表5】 [Table 5]

【0054】上記表5の結果から、菱面体構造の結晶子
の(101)面のピーク強度P1(回折角43.2°±
0.5°)と、六方晶構造の結晶子の(101)面のピ
ーク強度P2(回折角44.3°±0.5°)とのピー
ク強度比(P1/P2)を横軸とし、1Cでの放電容
量、2.5Cでの放電容量および放電容量比を縦軸とし
てグラフにすると、図11に示すような結果となった。
図11の結果から明らかなように、1Cでの放電容量は
ピーク強度比(P1/P2)が大きくなるに伴って若干
大きくなるが、2.5Cでの放電容量および放電容量比
はピーク強度比(P1/P2)が0.30を越えると急
激に低下することが分かる。
From the results shown in Table 5, the peak intensity P1 of the (101) plane of the crystallite having the rhombohedral structure (diffraction angle 43.2 ° ±
0.5 °) and the peak intensity ratio (P1 / P2) between the peak intensity P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane of the crystallite having the hexagonal structure, When the discharge capacity at 1 C, the discharge capacity at 2.5 C, and the discharge capacity ratio are plotted on the vertical axis, the results shown in FIG. 11 are obtained.
As is clear from the results of FIG. 11, the discharge capacity at 1 C slightly increases as the peak intensity ratio (P1 / P 2) increases, but the discharge capacity at 2.5 C and the discharge capacity ratio show the peak intensity ratio. It can be seen that when (P1 / P2) exceeds 0.30, it sharply decreases.

【0055】そして、以上の図7,図8,図10,図1
1の各結果から次のことが明らかとなった。即ち、黒鉛
の充填密度が1.55g/cm3で低充填密度の黒鉛負
極を用いたリチウム二次電池にあっては、黒鉛負極に用
いる結晶子のピーク強度比(P1/P2)を0.20以
上で0.30以下に最適化しても、高率放電容量および
放電容量比を向上させるという効果を発揮しにくいの
で、黒鉛負極に用いる結晶子のピーク強度比(P1/P
2)を0.20以上で0.30以下に最適化する場合に
は、黒鉛の充填密度を1.60g/cm3以上に高密度
充填するのが好ましい。
Then, FIG. 7, FIG. 8, FIG.
From each result of No. 1, the following became clear. That is, in a lithium secondary battery using a graphite negative electrode having a graphite filling density of 1.55 g / cm 3 and a low filling density, the peak intensity ratio (P1 / P2) of crystallites used for the graphite negative electrode is set to 0.1. Even if it is optimized to 20 or more and 0.30 or less, it is difficult to exhibit the effect of improving the high rate discharge capacity and the discharge capacity ratio. Therefore, the peak intensity ratio (P1 / P
In the case of optimizing 2) to 0.20 or more and 0.30 or less, it is preferable to fill graphite at a high density of 1.60 g / cm 3 or more.

【0056】また、黒鉛の充填密度を1.60g/cm
3以上に高密度充填する場合は、図5の結果から、ピー
ク強度比(P1/P2)を0.20以上にすれば容量が
大きい電池が得られ、図8、図10および図11の結果
から、ピーク強度比(P1/P2)が0.30を越える
と高率放電容量および放電容量比が低下することを考慮
すると、ピーク強度比(P1/P2)は0.20以上で
0.30以下に最適化するのが好ましいということがで
きる。また、結晶性の異なる二種類以上の黒鉛を混合す
ることにより、ピーク強度比(P1/P2)を0.2以
上で0.3以下となるように調製しても同等の効果を奏
する。
The filling density of graphite is 1.60 g / cm.
In the case of high-density filling of 3 or more, a battery having a large capacity can be obtained by setting the peak intensity ratio (P1 / P2) to 0.20 or more from the results of FIG. 5, and the results of FIGS. Considering that when the peak intensity ratio (P1 / P2) exceeds 0.30, the high-rate discharge capacity and the discharge capacity ratio decrease, the peak intensity ratio (P1 / P2) is 0.30 to 0.30 or more. It can be said that the following optimization is preferable. Also, by mixing two or more types of graphite having different crystallinities, the same effect can be obtained even if the peak intensity ratio (P1 / P2) is adjusted to be 0.2 or more and 0.3 or less.

【0057】上述したように、本発明においては、菱面
体構造の結晶子のCu−Kα線源を用いたX線回折法に
よる(101)面のピーク強度(P1:回折角43.2
°±0.5°)と、六方晶構造の結晶子のCu−Kα線
源を用いたX線回折法による(101)面のピーク強度
(P2:回折角44.3°±0.5°)とのピーク強度
比(P1/P2)が0.20以上で0.30以下となる
ように最適化している。このため、高容量で、かつ高密
度充填下であってもリチウムイオンの挿入・脱離反応が
円滑に行われて、高負荷であっても容量が低下しないリ
チウム二次電池が得られるようになる。
As described above, in the present invention, the peak intensity of the (101) plane of the crystallite having a rhombohedral structure by the X-ray diffraction method using a Cu-Kα ray source (P1: diffraction angle 43.2).
° ± 0.5 °) and the peak intensity of the (101) plane of a crystallite having a hexagonal structure by an X-ray diffraction method using a Cu-Kα ray source (P2: diffraction angle 44.3 ° ± 0.5 °). ) Is optimized so that the peak intensity ratio (P1 / P2) with respect to (P1 / P2) is not less than 0.20 and not more than 0.30. For this reason, the lithium ion insertion / desorption reaction is smoothly performed even under high-capacity and high-density packing, so that a lithium secondary battery whose capacity does not decrease even under high load can be obtained. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 黒鉛負極aのX線回折角(2θ)に対する強
度の関係を示すX線回折図である。
FIG. 1 is an X-ray diffraction diagram showing the relationship between the X-ray diffraction angle (2θ) and the intensity of a graphite negative electrode a.

【図2】 黒鉛負極bのX線回折角(2θ)に対する強
度の関係を示すX線回折図である。
FIG. 2 is an X-ray diffraction diagram showing the relationship between the X-ray diffraction angle (2θ) and the intensity of a graphite negative electrode b.

【図3】 黒鉛負極cのX線回折角(2θ)に対する強
度の関係を示すX線回折図である。
FIG. 3 is an X-ray diffraction diagram showing the relationship between the X-ray diffraction angle (2θ) and the intensity of the graphite negative electrode c.

【図4】 黒鉛負極dのX線回折角(2θ)に対する強
度の関係を示すX線回折図である。
FIG. 4 is an X-ray diffraction diagram showing the relationship between the X-ray diffraction angle (2θ) and the intensity of the graphite negative electrode d.

【図5】 ピーク強度比(P1/P2)と単極放電容量
(mAh/g)との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a peak intensity ratio (P1 / P2) and a unipolar discharge capacity (mAh / g).

【図6】 本発明の一実施形態のリチウム二次電池の断
面を示す図である。
FIG. 6 is a diagram showing a cross section of a lithium secondary battery according to one embodiment of the present invention.

【図7】 黒鉛の充填密度が1.60g/cm3の場合
のピーク強度比(P1/P2)と、1Cでの放電容量お
よび2.5Cでの放電容量ならびに放電容量比との関係
を示す図である。
FIG. 7 shows the relationship between the peak intensity ratio (P1 / P2) when the packing density of graphite is 1.60 g / cm 3 , the discharge capacity at 1C, the discharge capacity at 2.5C, and the discharge capacity ratio. FIG.

【図8】 黒鉛の充填密度が1.55g/cm3の場合
のピーク強度比(P1/P2)と、1Cでの放電容量お
よび2.5Cでの放電容量ならびに放電容量比との関係
を示す図である。
FIG. 8 shows the relationship between the peak intensity ratio (P1 / P2) when the filling density of graphite is 1.55 g / cm 3 , the discharge capacity at 1C, the discharge capacity at 2.5C, and the discharge capacity ratio. FIG.

【図9】 黒鉛負極nのX線回折角(2θ)に対する強
度の関係を示すX線回折図である。
FIG. 9 is an X-ray diffraction diagram showing the relationship between the X-ray diffraction angle (2θ) and the intensity of the graphite negative electrode n.

【図10】 黒鉛の充填密度が1.70g/cm3の場
合のピーク強度比(P1/P2)と、1Cでの放電容量
および2.5Cでの放電容量ならびに放電容量比との関
係を示す図である。
FIG. 10 shows the relationship between the peak intensity ratio (P1 / P2) when the packing density of graphite is 1.70 g / cm 3 , the discharge capacity at 1C, the discharge capacity at 2.5C, and the discharge capacity ratio. FIG.

【図11】 黒鉛の充填密度が1.80g/cm3の場
合のピーク強度比(P1/P2)と、1Cでの放電容量
および2.5Cでの放電容量ならびに放電容量比との関
係を示す図である。
FIG. 11 shows the relationship between the peak intensity ratio (P1 / P2) when the packing density of graphite is 1.80 g / cm 3 , the discharge capacity at 1C, the discharge capacity at 2.5C, and the discharge capacity ratio. FIG.

【符号の説明】[Explanation of symbols]

10…黒鉛負極板、10a…負極集電タブ、20…正極
板、20a…正極集電タブ、30…セパレータ、40…
外装缶、41…スペーサ、42…外装缶用絶縁ガスケッ
ト、50…電流遮断封口体
DESCRIPTION OF SYMBOLS 10 ... Graphite negative electrode plate, 10a ... Negative electrode current collecting tab, 20 ... Positive electrode plate, 20a ... Positive electrode current collecting tab, 30 ... Separator, 40 ...
Outer can, 41: Spacer, 42: Insulating gasket for outer can, 50: Current blocking sealing body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 昌利 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ02 AJ03 AJ05 AL07 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ17 HJ04 HJ08 HJ13 5H050 AA02 AA07 AA08 BA17 CA07 CA08 CA09 CB08 FA05 FA19 GA28 HA04 HA08 HA13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masatoshi Takahashi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H029 AJ02 AJ03 AJ05 AL07 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ17 HJ04 HJ08 HJ13 5H050 AA02 AA07 AA08 BA17 CA07 CA08 CA09 CB08 FA05 FA19 GA28 HA04 HA08 HA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極に黒鉛(但し、(002)面の面間
隔(d002)が0.3380nm以下であり、c軸方向
の結晶子の大きさ(Lc)が15nm以上)を用いると
ともに正極にリチウムイオンの吸蔵・放出が可能な材料
を用い、かつ有機溶媒にリチウム塩からなる溶質を溶解
した非水電解液を備えた非水電解液二次電池であって、 前記黒鉛は少なくとも菱面体構造の結晶子と六方晶構造
の結晶子とを有するとともに、 前記菱面体構造の結晶子のX線回折法による(101)
面のピーク強度(P1)と、前記六方晶構造の結晶子の
X線回折法による(101)面のピーク強度(P2)と
のピーク強度比(P1/P2)が0.20以上で0.3
0以下であることを特徴とする非水電解液二次電池。
A negative electrode is made of graphite (provided that the (002) plane spacing (d 002 ) is 0.3380 nm or less, and the crystallite size (Lc) in the c-axis direction is 15 nm or more). A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte in which a material capable of occluding and releasing lithium ions is used and a solute comprising a lithium salt is dissolved in an organic solvent, wherein the graphite is at least rhombohedral. A crystallite having a crystal structure and a crystallite having a hexagonal structure, and the crystallite having a rhombohedral structure is determined by an X-ray diffraction method (101).
When the peak intensity ratio (P1 / P2) between the peak intensity (P1) of the plane and the peak intensity (P2) of the (101) plane of the crystallite having the hexagonal structure determined by the X-ray diffraction method is 0.20 or more, the peak intensity ratio is 0.20. 3
Non-aqueous electrolyte secondary battery characterized by being 0 or less.
【請求項2】 負極に黒鉛(但し、(002)面の面間
隔(d002)が0.3380nm以下であり、c軸方向
の結晶子の大きさ(Lc)が15nm以上)を用いると
ともに正極にリチウムイオンの吸蔵・放出が可能な材料
を用い、かつ有機溶媒にリチウム塩からなる溶質を溶解
した非水電解液を備えた非水電解液二次電池であって、 前記黒鉛は少なくとも菱面体構造の結晶子と六方晶構造
の結晶子とを有する2種類以上の結晶構造の異なる黒鉛
が混合された混合黒鉛を備えるとともに、 前記菱面体構造の結晶子のX線回折法による(101)
面のピーク強度(P1)と、前記六方晶構造の結晶子の
X線回折法による(101)面のピーク強度(P2)と
のピーク強度比(P1/P2)が0.20以上で0.3
0以下になるように調製されていることを特徴とする非
水電解液二次電池。
2. The negative electrode is made of graphite (provided that the (002) plane spacing (d 002 ) is 0.3380 nm or less, and the crystallite size (Lc) in the c-axis direction is 15 nm or more). A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte in which a material capable of occluding and releasing lithium ions is used and a solute comprising a lithium salt is dissolved in an organic solvent, wherein the graphite is at least rhombohedral. A mixed graphite in which two or more kinds of graphites having different crystal structures each having a crystallite having a crystal structure and a crystallite having a hexagonal crystal structure are mixed, and the rhombohedral crystallite is obtained by an X-ray diffraction method (101).
When the peak intensity ratio (P1 / P2) between the peak intensity (P1) of the plane and the peak intensity (P2) of the (101) plane of the crystallite having the hexagonal structure determined by the X-ray diffraction method is 0.20 or more, the peak intensity ratio is 0.20. 3
A non-aqueous electrolyte secondary battery, which is prepared to be 0 or less.
【請求項3】 前記黒鉛の充填密度は1.60g/cm
3以上であることを特徴とする請求項1または請求項2
に記載の非水電解液二次電池。
3. The packing density of the graphite is 1.60 g / cm.
3. The method according to claim 1, wherein the number is 3 or more.
3. The non-aqueous electrolyte secondary battery according to 1.
JP2000298233A 2000-09-29 2000-09-29 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4656710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000298233A JP4656710B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000298233A JP4656710B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2002110157A true JP2002110157A (en) 2002-04-12
JP2002110157A5 JP2002110157A5 (en) 2007-10-04
JP4656710B2 JP4656710B2 (en) 2011-03-23

Family

ID=18780220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000298233A Expired - Fee Related JP4656710B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4656710B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074939A1 (en) * 2005-12-27 2007-07-05 Nippon Oil Corporation Raw coal for making carbonaceous material for electricity storage or needle coke
JP2008156376A (en) * 2005-12-27 2008-07-10 Nippon Petroleum Refining Co Ltd Petroleum coke and method for producing the same
JP2009200043A (en) * 2008-01-22 2009-09-03 Sony Corp Battery
JP2010219036A (en) * 2009-02-20 2010-09-30 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
US8137530B2 (en) 2007-06-22 2012-03-20 Nippon Petroleum Refining Co., Ltd. Process for producing petroleum coke
JP2015060824A (en) * 2013-09-20 2015-03-30 株式会社東芝 Nonaqueous electrolyte battery and battery pack
ES2601130R1 (en) * 2014-09-09 2017-03-06 Graphene Platform Corporation CARBON BASED MATERIAL IN THE FORM OF GRAPHITE THAT IS USEFUL AS A GRAPHENE PRECURSOR AND METHOD TO PRODUCE IT
KR20170025136A (en) * 2015-08-27 2017-03-08 삼성에스디아이 주식회사 Negative electrode active material for rechargeable lithium battery, method for preparing the same, and negative electrode and rechargeable lithium battery including same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318459A (en) * 1993-03-10 1994-11-15 Toshiba Corp Lithium secondary battery
JPH07282812A (en) * 1994-04-08 1995-10-27 Nippon Steel Corp Carbon negative electrode material for lithium secondary battery
JPH08507408A (en) * 1993-12-22 1996-08-06 サフト Carbon negative electrode for rechargeable lithium electrochemical cell and method of manufacturing the same
JPH08287910A (en) * 1995-04-10 1996-11-01 Hitachi Ltd Nonaqueous secondary battery and manufacture of graphite powder
JPH1097870A (en) * 1996-09-20 1998-04-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH11214042A (en) * 1998-01-29 1999-08-06 Sony Corp Nonaqueous electrolyte secondary battery
JPH11217266A (en) * 1998-01-29 1999-08-10 Hitachi Chem Co Ltd Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JPH11283622A (en) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2001351627A (en) * 2000-06-06 2001-12-21 Fdk Corp Lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318459A (en) * 1993-03-10 1994-11-15 Toshiba Corp Lithium secondary battery
JPH08507408A (en) * 1993-12-22 1996-08-06 サフト Carbon negative electrode for rechargeable lithium electrochemical cell and method of manufacturing the same
JPH07282812A (en) * 1994-04-08 1995-10-27 Nippon Steel Corp Carbon negative electrode material for lithium secondary battery
JPH08287910A (en) * 1995-04-10 1996-11-01 Hitachi Ltd Nonaqueous secondary battery and manufacture of graphite powder
JPH1097870A (en) * 1996-09-20 1998-04-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH11214042A (en) * 1998-01-29 1999-08-06 Sony Corp Nonaqueous electrolyte secondary battery
JPH11217266A (en) * 1998-01-29 1999-08-10 Hitachi Chem Co Ltd Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JPH11283622A (en) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2001351627A (en) * 2000-06-06 2001-12-21 Fdk Corp Lithium ion secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8226921B2 (en) 2005-12-27 2012-07-24 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
JP2008156376A (en) * 2005-12-27 2008-07-10 Nippon Petroleum Refining Co Ltd Petroleum coke and method for producing the same
WO2007074939A1 (en) * 2005-12-27 2007-07-05 Nippon Oil Corporation Raw coal for making carbonaceous material for electricity storage or needle coke
US7959888B2 (en) 2005-12-27 2011-06-14 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
US8197788B2 (en) 2005-12-27 2012-06-12 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
US8137530B2 (en) 2007-06-22 2012-03-20 Nippon Petroleum Refining Co., Ltd. Process for producing petroleum coke
JP2009200043A (en) * 2008-01-22 2009-09-03 Sony Corp Battery
JP2010219036A (en) * 2009-02-20 2010-09-30 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
JP2015060824A (en) * 2013-09-20 2015-03-30 株式会社東芝 Nonaqueous electrolyte battery and battery pack
US9711790B2 (en) 2013-09-20 2017-07-18 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
US9806340B2 (en) 2013-09-20 2017-10-31 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
ES2601130R1 (en) * 2014-09-09 2017-03-06 Graphene Platform Corporation CARBON BASED MATERIAL IN THE FORM OF GRAPHITE THAT IS USEFUL AS A GRAPHENE PRECURSOR AND METHOD TO PRODUCE IT
KR20170025136A (en) * 2015-08-27 2017-03-08 삼성에스디아이 주식회사 Negative electrode active material for rechargeable lithium battery, method for preparing the same, and negative electrode and rechargeable lithium battery including same
KR102439850B1 (en) * 2015-08-27 2022-09-01 삼성에스디아이 주식회사 Negative electrode active material for rechargeable lithium battery, method for preparing the same, and negative electrode and rechargeable lithium battery including same
US11581540B2 (en) 2015-08-27 2023-02-14 Samsung Sdi Co., Ltd. Negative electrode active material for rechargeable lithium battery, method for preparing the same, and negative electrode and rechargeable lithium battery including same

Also Published As

Publication number Publication date
JP4656710B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4878687B2 (en) Lithium secondary battery
JP5315591B2 (en) Positive electrode active material and battery
JP4626568B2 (en) Lithium ion secondary battery
JP6177345B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP2007194202A (en) Lithium ion secondary battery
JP2003173776A (en) Positive electrode active material and secondary battery using it
JP2001126733A (en) Nonaqueous electrolytic material
JP2005011650A (en) Negative electrode material and battery using the same
JP2001345101A (en) Secondary battery
JP2024516811A (en) Positive electrode active material, its manufacturing method, and lithium secondary battery including positive electrode containing the same
JP2005281128A (en) Method for producing lithium-containing iron oxyhydroxide and nonaqueous electrolyte electrochemical cell using electrode containing lithium-containing iron oxyhydroxide obtained by the same
JP4984402B2 (en) Nonaqueous electrolyte secondary battery
JP2007103246A (en) Non-aqueous electrolyte secondary battery
JP2002117836A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using it
JP4656710B2 (en) Non-aqueous electrolyte secondary battery
JP2004335439A (en) Nonaqueous electrolyte secondary battery
US8227100B2 (en) Negative active material for lithium ion battery and lithium ion battery including the same
JP4442146B2 (en) Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
US20010026892A1 (en) Positive active material for rechargeable lithium battery and method of preparing same
KR20110011497A (en) Cathode active material, cathode comprising the same and lithium battery using the cathode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4656710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees