JP4788075B2 - Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same - Google Patents

Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP4788075B2
JP4788075B2 JP2001201289A JP2001201289A JP4788075B2 JP 4788075 B2 JP4788075 B2 JP 4788075B2 JP 2001201289 A JP2001201289 A JP 2001201289A JP 2001201289 A JP2001201289 A JP 2001201289A JP 4788075 B2 JP4788075 B2 JP 4788075B2
Authority
JP
Japan
Prior art keywords
transition metal
metal composite
composite oxide
lithium transition
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001201289A
Other languages
Japanese (ja)
Other versions
JP2003017056A (en
Inventor
要二 竹内
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001201289A priority Critical patent/JP4788075B2/en
Publication of JP2003017056A publication Critical patent/JP2003017056A/en
Application granted granted Critical
Publication of JP4788075B2 publication Critical patent/JP4788075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムの吸蔵・脱離現象を利用したリチウム二次電池を構成することのできる正極活物質用リチウム遷移金属複合酸化物、およびそれを用いたリチウム二次電池に関する。
【0002】
【従来の技術】
パソコン、ビデオカメラ、携帯電話等の小型化に伴い、情報関連機器、通信機器の分野では、これらの機器に用いる電源として、高エネルギー密度であるという理由から、リチウム二次電池が実用化され広く普及するに至っている。また一方で、自動車の分野においても、環境問題、資源問題から電気自動車の開発が急がれており、この電気自動車用の電源としても、リチウム二次電池が検討されている。
【0003】
このように広い分野での要望があるリチウム二次電池であるが、その価格が高いことから、他の二次電池にも増して長寿命であることが要求される。長寿命であるための要件の一つとして、充電率を高く保持した状態でリチウム二次電池を保存した場合にも、例えば電池の内部抵抗が上昇しないといった、いわゆる保存特性が良好であることが要求される。電池の内部抵抗が増加すると、電池のパワー特性(短時間で大きな出力を取り出すことができ、かつ、短時間で大きな電力を充電することができる特性)が低下してしまう。特に、高温下では電池反応が活性化し内部抵抗の増加も大きいことから、例えば屋外放置される可能性のある電気自動車用電源等の用途にリチウム二次電池を使用することを想定した場合には、高温下での保存特性が良好であることが重要な特性の一つとなる。
【0004】
現在では、Co、Niを主構成元素とするリチウム遷移金属複合酸化物を正極活物質に用いて構成するリチウム二次電池の開発が進められているが、このようなリチウム二次電池は、充電率を高く保持した状態で保存した場合に電池の内部抵抗の上昇が大きく、保存特性、特に高温下での保存特性に問題があった。
【0005】
【発明が解決しようとする課題】
本発明者は、二次電池における上記保存特性の問題について検討を重ねた結果、高い充電状態で保存した後の二次電池では、電池ケース内の炭酸ガス濃度が上昇しており、電解液中には有機溶媒の分解生成物が生成していることがわかった。これらの結果から、上記リチウム二次電池の保存による内部抵抗の上昇は、電解液である有機溶媒が正極活物質であるリチウム遷移金属複合酸化物と反応し、酸化分解されることが原因の一つであるとの知見を得た。
【0006】
本発明は、上記知見に基づいてなされたものであり、正極活物質と電解液との反応を抑制し、充電状態で長期間保存しても内部抵抗の上昇が少ないリチウム二次電池を構成することのできる正極活物質用リチウム遷移金属複合酸化物を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物は、1次粒子が凝集して2次粒子を形成し、組成式LiNiCoAl(x+y+z=1、x>0、0.1≦z≦0.2)で表されるリチウム二次電池正極活物質用リチウム遷移金属複合酸化物であって、前記1次粒子の平均粒子径は1μm以上3μm以下であり、主たる結晶構造は六方晶系の層状岩塩構造であり、その一部に空間群P4に属するLiAlO構造の副相を有することを特徴とする。
【0008】
一般に、リチウム遷移金属複合酸化物を正極活物質として用いる場合には、粉末状にして用いる。本発明のリチウム遷移金属複合酸化物は、単結晶に近い1次粒子が凝集して2次粒子を形成するという構造をなしており、充放電に伴うリチウム遷移金属複合酸化物中へのリチウムの吸蔵・脱離により、このリチウム遷移金属複合酸化物の1次粒子はそれ自体が膨張・収縮をする。充放電を行った場合、その1次粒子の体積変化から2次粒子内には大きなストレスが生じ、2次粒子は1次粒子の凝集が解かれ崩壊すると考えられる。
【0009】
一方、電解液は、リチウム遷移金属複合酸化物の粉末を構成する粒子の表面と接触するため、電解液と正極活物質との反応はこの粒子表面部分において最も進行すると考えられる。したがって、2次粒子が崩壊した状態では、今まで電解液と接触していなかった1次粒子の多くの表面が電解液と接触し、上記電解液の分解反応が進行することとなる。本発明のリチウム遷移金属複合酸化物は、1次粒子の平均粒子径が1μm以上3μm以下と大きく、比表面積が小さいため、電解液と接触する面積は小さくなり、上記電解液の分解反応が抑制される。
【0010】
また、本発明のリチウム遷移金属複合酸化物の主たる結晶構造は、六方晶系の層状岩塩構造であり、その一部に空間群P422に属するLiAlO2構造の副相を有するものである。Co、Niの一部をAlで置換することは、リチウム遷移金属複合酸化物の熱安定性を向上させるためには有効である。そして、Alを含むことによりLiAlO2相が生成し、このLiAlO2相はリチウム遷移金属複合酸化物の1次粒子の表面近傍に析出すると考えられる。LiAlO2相は電気化学的に安定であると考えられ、LiAlO2相が1次粒子の表面に存在することで、リチウム遷移金属複合酸化物と電解液との反応は抑制されることになる。
【0011】
したがって、本発明のリチウム遷移金属複合酸化物は、1次粒子の粒子径が大きいことに加え、その表面にLiAlO2相が生成しているため、電解液の分解反応が充分に抑制され、充電状態で長期間保存した場合であっても、電池の内部抵抗の上昇が抑制される。
【0012】
また、本発明のリチウム二次電池は、上記本発明のリチウム遷移金属複合酸化物を正極活物質として用いたリチウム二次電池である。したがって、充電率を高く保持した状態で保存した場合であっても、電池の内部抵抗の上昇が小さく、保存特性、特に高温下での保存特性に優れた二次電池となる。
【0013】
【発明の実施の形態】
以下に、本発明のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびそれを用いたリチウム二次電池について、それぞれ詳細に説明する。
【0014】
〈リチウム遷移金属複合酸化物〉
本発明のリチウム遷移金属複合酸化物は、1次粒子が凝集して2次粒子を形成し、組成式LiNiCoAl(x+y+z=1、x>0、0.1≦z≦0.2)で表されるリチウム二次電池正極活物質用リチウム遷移金属複合酸化物であって、前記1次粒子の平均粒子径は1μm以上3μm以下であり、主たる結晶構造は六方晶系の層状岩塩構造であり、その一部に空間群P4に属するLiAlO構造の副相を有するものである。
【0015】
本発明のリチウム遷移金属複合酸化物は、4V級のリチウム二次電池を構成し得るLiNiO2を基本組成とし、そのNiサイトの一部がCoおよびAlで置換されたものである。なお、本発明のリチウム遷移金属複合酸化物は、その組成式で表される化学量論組成のものだけでなく、一部の元素が欠損または過剰となる非化学量論組成のものをも含むものである。
【0016】
ここで、Coは、主にリチウム遷移金属複合酸化物の結晶構造を安定化する役割を果たす。また、元素置換による容量低下を抑えるとともに、Li(Co,Ni)O2は全固溶型であり、結晶性の低下を最小限にとどめるという利点がある。Coによる結晶構造安定化により、充電時の結晶構造の相転移は抑制され、電池のサイクル特性の向上につながる。結晶構造の安定化効果を充分に発揮させるためには、Coの置換割合、つまり組成式におけるyの値は0<y≦0.3とすることが望ましい。y>0.3の場合は、この好適範囲のものに比べ、容量が低下し好ましくないからである。
【0017】
また、Alの置換割合、つまり組成式におけるzの値は、0.1≦z≦0.2とする。z<0.1の場合は、Alの置換割合が小さすぎるため、副相として充分なLiAlO2相が生成されないからである。また、z>0.2の場合は、急激に容量が低下するからである。
【0018】
本発明のリチウム遷移金属複合酸化物は、1次粒子が凝集して2次粒子を形成し、その1次粒子の平均粒子径は1μm以上3μm以下である。平均粒子径が1μm未満であると、比表面積が大きいため、電解液との接触面積が大きくなり電解液の分解反応が進行し易くなるからである。また、3μmを超えると、2次粒子の粒子径が大きくなり、電池反応が均一に進行しないおそれがあるからである。
【0019】
なお、上記1次粒子が無数凝集して2次粒子が形成される。2次粒子の粒子径は特に制限されるものではないが、2次粒子の平均粒子径は、5μm以上30μm以下とすることが望ましい。平均粒子径が5μm未満であると、電極を作製する際にペースト状の正極合材がゲル化し易くなるからであり、30μmを超えると、電池反応が均一に進行しにくくなるからである。
【0020】
平均粒子径の簡単な測定法として、例えば、リチウム遷移金属複合酸化物の走査型電子顕微鏡(SEM)写真を利用する方法がある。すなわち、リチウム遷移金属複合酸化物のSEM写真を撮影し、その写真におけるリチウム遷移金属複合酸化物粒子の最長径とみなされる径と最短径とみなされる径を測定する。そして、それら2つの値の平均値をその粒子の粒子径とみなして、それらの平均を平均粒子径として採用することができる。
【0021】
本発明のリチウム遷移金属複合酸化物は、主たる結晶構造が六方晶系の層状岩塩構造であり、その一部に空間群P422に属するLiAlO2構造の副相を有するものである。後に、X線回折パターンを示すが、副相であるLiAlO2相がリチウム遷移金属複合酸化物の1次粒子の表面近傍に存在することで、リチウム遷移金属複合酸化物と電解液との反応は抑制されることになる。
【0022】
本発明のリチウム遷移金属複合酸化物は、その製造方法が特に限定されるものではないが、その一例として、以下の製造方法によれば簡便に製造することができる。その製造方法は、原料の一つとなる複合水酸化物を合成するNi−Co複合水酸化物合成工程およびNi−Co−Al複合水酸化物合成工程、合成した複合水酸化物ともう一つの原料となる化合物とを混合する原料混合工程、さらに焼成工程という4工程を含んで構成することができる。以下、各工程を順に説明する。
【0023】
(1)Ni−Co複合水酸化物合成工程
本工程は、ニッケルを陽イオンとして含む塩およびコバルトを陽イオンとして含む塩の水溶液を強アルカリ水溶液と反応させて、Ni−Co複合水酸化物を得る工程である。
【0024】
ニッケルを陽イオンとして含む塩としては、例えば、硝酸ニッケル、炭酸ニッケル、水酸化ニッケル等を用いることができる。また、コバルトを陽イオンとして含む塩としては、例えば、硝酸コバルト、炭酸コバルト、水酸化コバルト等を用いることができる。特に、反応性が高いという理由から、上記各塩は硝酸塩を用いることが望ましい。
【0025】
なお、ニッケルを陽イオンとして含む塩およびコバルトを陽イオンとして含む塩の水溶液には、例えば、各塩の水溶液をそれぞれ調製し、それらを混合した水溶液を用いることができる。なお、上記塩の水溶液は、反応性および収率を共に満足させるという観点から、その塩の濃度が0.5〜2Mとなるように調製することが望ましい。そして、得られるNi−Co複合水酸化物含まれるNiおよびCoの割合が、目的とするリチウム遷移金属複合酸化物の組成に応じたものとなるように調製すればよい。
【0026】
強アルカリ水溶液としては、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等を用いることができる。中でも、製造コストを考慮すれば、水酸化ナトリウム水溶液を用いることが望ましい。水酸化ナトリウム水溶液を用いる場合には、3〜8M程度の濃度のものを使用することが望ましい。
【0027】
なお、粒子径の比較的大きなNi−Co複合水酸化物を得るという観点からは、上記強アルカリ水溶液の他にアンモニア水等の弱アルカリ水溶液を併用することが望ましい。上記各塩の水溶液をアンモニア水等と反応させることにより、NiおよびCoはアンモニアと錯体を生成するため、強アルカリ水溶液との反応速度が小さくなり、得られるNi−Co複合水酸化物の粒子径は大きくなる。
【0028】
また、上記反応を均一に行うために、例えば、上記各塩を含む水溶液を強アルカリ水溶液に滴下して反応を行えばよい。また、反応は攪拌して行うことが望ましい。各塩を含む水溶液の滴下速度、攪拌速度、反応水溶液のpH値、反応温度等の条件は、得られるNi−Mn複合水酸化物の粒子径等に影響することから、所望の粒子径のものを得るために適宜設定すればよい。反応水溶液のpH値は、反応中略一定となるように調整することが望ましく、例えば、粒子径が大きいNi−Co複合水酸化物を得るためには、pH値は10.5±0.2程度とすることが望ましい。また、反応温度は、適度な反応速度を得るため、20〜40℃とすることが望ましい。
【0029】
(2)Ni−Co−Al複合水酸化物合成工程
本工程は、前記Ni−Co複合水酸化物合成工程で得られたNi−Co複合水酸化物をアルミニウムを陽イオンとして含む塩の水溶液に分散させ、強アルカリ水溶液と反応させてNi−Co−Al複合水酸化物を得る工程である。
【0030】
アルミニウムを陽イオンとして含む塩としては、硝酸アルミニウム、硫酸アルミニウム等を用いることができる。特に、水への溶解性が良好であるという理由から、硝酸アルミニウムを用いることが望ましい。
【0031】
なお、アルミニウムを陽イオンとして含む塩の水溶液は、反応性および収率を共に満足させるという観点から、その塩の濃度が0.5〜2Mとなるように調製することが望ましい。そして、得られるNi−Co−Al複合水酸化物含まれる(Ni+Co)、Alの割合が、目的とするリチウム遷移金属複合酸化物の組成に応じたものとなるように調製すればよい。
【0032】
また、強アルカリ水溶液は、前記Ni−Co複合水酸化物合成工程で用いたものと同様のものを使用すればよい。反応条件等も同様である。
なお、本工程で得られたNi−Co−Al複合水酸化物が原料の一つとなる。
【0033】
(3)原料混合工程
本工程は、前記Ni−Co−Al複合水酸化物合成工程で得られたNi−Co−Al複合水酸化物と、もう一つの原料となるリチウム化合物とを混合し、原料混合物を得る工程である。リチウム化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム等を用いることができる。特に、反応性が高いという理由から水酸化リチウムを用いることが望ましい。
【0034】
Ni−Co−Al複合水酸化物とリチウム化合物との混合は、通常の粉体の混合に用いられている方法で行えばよい。具体的には、例えば、ボールミル、ミキサー、乳鉢等を用いて混合すればよい。また、Ni−Co−Al複合水酸化物とリチウム化合物との混合割合は、目的とするリチウム遷移金属複合酸化物の組成、すなわち、Li:(Ni+Co+Al)がモル比で略1:1となるような割合とすればよい。
【0035】
(4)焼成工程
本工程は、前記原料混合工程で得られた原料混合物を酸素雰囲気下で焼成してリチウム遷移金属複合酸化物を得る工程である。酸素雰囲気とは、酸素を含んだ気体中であればよく、例えば、酸素気流中、大気中で焼成を行えばよい。
【0036】
焼成温度は、700℃以上950℃以下とすることが望ましい。焼成温度が750℃未満であると、反応が充分に進行せず、結晶性が低くなるからである。反対に、950℃を超えると、層状構造が乱れ易くなり放電容量が低下するからである。なお、焼成時間は焼成が完了するのに充分な時間であればよく、通常、12時間程度行えばよい。
【0037】
〈リチウム二次電池〉
本発明のリチウム遷移金属複合酸化物の利用形態である本発明のリチウム二次電池の実施形態について説明する。一般にリチウム二次電池は、リチウムイオンを吸蔵・放出する正極および負極と、この正極と負極との間に挟装されるセパレータと、正極と負極の間をリチウムイオンを移動させる非水電解液とから構成される。本実施形態の二次電池もこの構成に従えばよい。以下の説明は、これらの構成要素のそれぞれについて行うこととする。
【0038】
正極は、上述したように、リチウムイオンを吸蔵・脱離できる正極活物質に導電材および結着剤を混合し、必要に応じ適当な溶媒を加えて、ペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布、乾燥し、その後プレスによって活物質密度を高めることによって形成する。
【0039】
本実施形態では、正極活物質として上記リチウム遷移金属複合酸化物を用いる。なお、本発明のリチウム遷移金属複合酸化物は、その組成、粒子径等により種々のリチウム遷移金属複合酸化物が存在する。したがって、それらの1種を正極活物質として用いるものであってもよく、また、2種以上を混合して用いるものであってもよい。さらに、本発明のリチウム遷移金属複合酸化物と既に公知の正極活物質材料とを混合して正極活物質とする構成を採用することもできる。
【0040】
正極に用いる導電材は、正極活物質層の電気伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種又は2種以上を混合したものを用いることができる。結着剤は、活物質粒子を繋ぎ止める役割を果たすもので、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。これら活物質、導電材、結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0041】
正極に対向させる負極は、金属リチウム、リチウム合金等を、シート状にして、あるいはシート状にしたものをニッケル、ステンレス等の集電体網に圧着して形成することができる。しかし、デンドライトの析出等を考慮し、安全性に優れたリチウム二次電池とするために、リチウムを吸蔵・脱離できる炭素物質を活物質とする負極を用いることができる。使用できる炭素物質としては、天然あるいは人造の黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の粉状体が挙げられる。この場合は、負極活物質に結着剤を混合し、適当な溶媒を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布乾燥して形成する。なお、炭素物質を負極活物質とした場合、正極同様、負極結着剤としてはポリフッ化ビニリデン等の含フッ素樹脂等を、溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0042】
正極と負極の間に挟装されるセパレータは、正極と負極とを隔離しつつ電解液を保持してイオンを通過させるものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
【0043】
非水電解液は、有機溶媒に電解質を溶解させたもので、有機溶媒としては、非プロトン性有機溶媒、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン等の1種またはこれらの2種以上の混合液を用いることができる。また、溶解させる電解質としては、溶解させることによりリチウムイオンを生じるLiI、LiClO4、LiAsF6、LiBF4、LiPF6等を用いることができる。
【0044】
なお、上記セパレータおよび非水電解液という構成に代えて、ポリエチレンオキシド等の高分子量ポリマーとLiClO4やLiN(CF3SO22等のリチウム塩を使用した高分子固体電解質を用いることもでき、また、上記非水電解液をポリアクリロニトリル等の固体高分子マトリクスにトラップさせたゲル電解質を用いることもできる。
【0045】
以上のものから構成されるリチウム二次電池であるが、その形状はコイン型、積層型、円筒型等の種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極および負極から外部に通ずる正極端子および負極端子までの間をそれぞれ導通させるようにして、この電極体を非水電解液とともに電池ケースに密閉して電池を完成させることができる。
【0046】
〈他の実施形態の許容〉
以上、本発明のリチウム遷移金属複合酸化物およびそれを用いたリチウム二次電池の実施形態について説明したが、上述した実施形態は一実施形態にすぎず、本発明のリチウム遷移金属複合酸化物およびそれを用いたリチウム二次電池は、上記実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の形態で実施することができる。
【0047】
【実施例】
上記実施形態に基づいて、組成、粒子径等の異なるリチウム遷移金属複合酸化物を種々製造した。そして各リチウム遷移金属複合酸化物を正極活物質として用いたリチウム二次電池を作製し、電池の保存特性を評価した。以下、製造したリチウム遷移金属複合酸化物、リチウム二次電池の保存特性の評価等について説明する。
【0048】
〈リチウム遷移金属複合酸化物〉
(1)実施例1のリチウム遷移金属複合酸化物
組成式LiNi0.65Co0.2Al0.152で表されるリチウム遷移金属複合酸化物を製造した。硝酸ニッケルおよび硝酸コバルトの1Mの混合水溶液を、Ni:Coがモル比で0.65:0.2となるように調製した。そして、2Lの反応槽に、調製した混合水溶液と5Mのアンモニア水とをそれぞれ400mL/h、70mL/hで連続的に送液するとともに、pHを10.5±0.2に保ちながら5Mの水酸化ナトリウム水溶液を連続的に添加して、Ni−Co複合水酸化物を析出させた。反応温度は60℃であった。
【0049】
次に、1Mの硝酸アルミニウム水溶液を、(Ni+Co):Alがモル比で0.85:0.15となるように調製し、その硝酸アルミニウム水溶液に、得られたNi−Co複合水酸化物を分散させた。そして、Ni−Co複合水酸化物を分散させた硝酸アルミニウム水溶液を攪拌しながら、5Mの水酸化ナトリウム水溶液を滴下してNi−Co−Al複合水酸化物を得た。得られたNi−Co−Al複合水酸化物を乾燥して粉末状にした。
【0050】
粉末状のNi−Co−Al複合水酸化物と、水酸化リチウムとをLi:(Ni+Co+Al)がモル比で1.02:1となるように混合して原料混合物とし、その原料混合物を酸素雰囲気下、850℃で12時間焼成を行い、リチウム遷移金属複合酸化物を得た。
【0051】
得られたリチウム遷移金属複合酸化物の1次粒子の平均粒子径は約1μmであり、2次粒子の平均粒子径は約13μmであった。また、ICP発光分析法により本リチウム遷移金属複合酸化物は、組成式LiNi0.65Co0.2Al0.152で表されるものであることを確認した。なお、以下の各実施例および比較例についても同様に確認している。本リチウム遷移金属複合酸化物を、実施例1のリチウム遷移金属複合酸化物とした。
【0052】
(2)実施例2のリチウム遷移金属複合酸化物
組成式LiNi0.6Co0.2Al0.22で表されるリチウム遷移金属複合酸化物を製造した。実施例1のリチウム遷移金属複合酸化物の製造方法において、硝酸ニッケルおよび硝酸コバルトの混合水溶液を、Ni:Coがモル比で0.6:0.2と、また、硝酸アルミニウム水溶液を、(Ni+Co):Alがモル比で0.8:0.2となるように調製した以外は、実施例1の製造方法と同様に製造した。得られたリチウム遷移金属複合酸化物の1次粒子の平均粒子径は約1μmであり、2次粒子の平均粒子径は約13μmであった。本リチウム遷移金属複合酸化物を、実施例2のリチウム遷移金属複合酸化物とした。
【0053】
(3)実施例3のリチウム遷移金属複合酸化物
組成式LiNi0.75Co0.1Al0.152で表されるリチウム遷移金属複合酸化物を製造した。実施例1のリチウム遷移金属複合酸化物の製造方法において、硝酸ニッケルおよび硝酸コバルトの混合水溶液を、Ni:Coがモル比で0.75:0.1と、また、硝酸アルミニウム水溶液を、(Ni+Co):Alがモル比で0.85:0.15となるように調製した以外は、実施例1の製造方法と同様に製造した。得られたリチウム遷移金属複合酸化物の1次粒子の平均粒子径は約1μmであり、2次粒子の平均粒子径は約13μmであった。本リチウム遷移金属複合酸化物を、実施例3のリチウム遷移金属複合酸化物とした。
【0054】
(4)実施例4のリチウム遷移金属複合酸化物
組成式LiNi0.65Co0.1Al0.252で表されるリチウム遷移金属複合酸化物を製造した。実施例1のリチウム遷移金属複合酸化物の製造方法において、硝酸ニッケルおよび硝酸コバルトの混合水溶液を、Ni:Coがモル比で0.65:0.1と、また、硝酸アルミニウム水溶液を、(Ni+Co):Alがモル比で0.75:0.25となるように調製した以外は、実施例1の製造方法と同様に製造した。得られたリチウム遷移金属複合酸化物の1次粒子の平均粒子径は約1μmであり、2次粒子の平均粒子径は約13μmであった。本リチウム遷移金属複合酸化物を、実施例4のリチウム遷移金属複合酸化物とした。
【0055】
(5)実施例5のリチウム遷移金属複合酸化物
組成式LiNi0.65Co0.2Al0.152で表されるリチウム遷移金属複合酸化物を製造した。実施例1のリチウム遷移金属複合酸化物の製造方法において、Ni−Co複合水酸化物を析出させる反応におけるpH値を9.5±0.2とし、混合水溶液およびアンモニア水の送液速度をそれぞれ200mL/h、35mL/hとした以外は、実施例1の製造方法と同様に製造した。得られたリチウム遷移金属複合酸化物の1次粒子の平均粒子径は約3μmであり、2次粒子の平均粒子径は約25μmであった。本リチウム遷移金属複合酸化物を、実施例5のリチウム遷移金属複合酸化物とした。
【0056】
(6)比較例1のリチウム遷移金属複合酸化物
組成式LiNi0.8Co0.15Al0.052で表されるリチウム遷移金属複合酸化物を製造した。実施例1のリチウム遷移金属複合酸化物の製造方法において、硝酸ニッケルおよび硝酸コバルトの混合水溶液を、Ni:Coがモル比で0.8:0.15と、また、硝酸アルミニウム水溶液を、(Ni+Co):Alがモル比で0.95:0.05となるように調製し、Ni−Co複合水酸化物を析出させる反応におけるpH値を12.5±0.2とした以外は、実施例1の製造方法と同様に製造した。得られたリチウム遷移金属複合酸化物の1次粒子の平均粒子径は約0.2μmであり、2次粒子の平均粒子径は約13μmであった。本リチウム遷移金属複合酸化物を、比較例1のリチウム遷移金属複合酸化物とした。
【0057】
(7)比較例2のリチウム遷移金属複合酸化物
組成式LiNi0.8Co0.15Al0.052で表されるリチウム遷移金属複合酸化物を製造した。比較例1のリチウム遷移金属複合酸化物の製造方法において、焼成温度を750℃とした以外は、比較例1の製造方法と同様に製造した。得られたリチウム遷移金属複合酸化物の1次粒子の平均粒子径は約0.2μmであり、2次粒子の平均粒子径は約13μmであった。本リチウム遷移金属複合酸化物を、比較例2のリチウム遷移金属複合酸化物とした。
【0058】
(8)比較例3のリチウム遷移金属複合酸化物
組成式LiNi0.8Co0.15Al0.052で表されるリチウム遷移金属複合酸化物を製造した。比較例1のリチウム遷移金属複合酸化物の製造方法において、Ni−Co複合水酸化物を析出させる反応におけるpH値を10.5±0.2とした以外は、比較例1の製造方法と同様に製造した。得られたリチウム遷移金属複合酸化物の1次粒子の平均粒子径は約1μmであり、2次粒子の平均粒子径は約13μmであった。本リチウム遷移金属複合酸化物を、比較例3のリチウム遷移金属複合酸化物とした。
【0059】
〈CuΚα線を用いた粉末X線回折法による解析〉
上記実施例および比較例の各リチウム遷移金属複合酸化物について、CuΚα線を用いた粉末X線回折法による解析を行った。そのX線折パターンの一例として、図1(a)、(b)に、実施例1および比較例1のリチウム遷移金属複合酸化物のX線回折パターンを示す。なお、図1(b)は(a)に示すX線回折パターンの一部分を拡大したものである。
【0060】
図1から、実施例1および比較例1のリチウム遷移金属複合酸化物の結晶構造は、ともに六方晶系の層状岩塩構造であることがわかる。そして、実施例1のリチウム遷移金属複合酸化物のX線回折パターンでは、2θ=22°、33〜35°近傍(θは回折角)にLiAlO2相のピークが確認され、LiAlO2構造の副相が生成していることがわかる。一方、Alの含有割合が0.1未満である比較例1のリチウム遷移金属複合酸化物では、LiAlO2相は生成していない。したがって、Alの含有割合が0.1以上である本発明のリチウム遷移金属複合酸化物は、主たる結晶構造は六方晶系の層状岩塩構造であり、その一部に空間群P422に属するLiAlO2構造の副相を有することが確認できた。
【0061】
〈リチウム二次電池の作製〉
上記実施例および比較例の各リチウム遷移金属複合酸化物を正極活物質に用いてリチウム二次電池を作製した。正極は、まず、正極活物質となるそれぞれのリチウム遷移金属複合酸化物85重量部に、導電材としてのカーボンブラックを10重量部、結着剤としてのポリフッ化ビニリデンを5重量部混合し、溶剤として適量のN−メチル−2−ピロリドンを添加して、ペースト状の正極合材を調製した。次いで、このペースト状の正極合材を厚さ20μmのアルミニウム箔集電体の両面に塗布し、乾燥させ、その後ロールプレスにて圧縮し、シート状の正極を作製した。このシート状の正極は54mm×450mmの大きさに裁断して用いた。
【0062】
対向させる負極は、黒鉛化メソカーボンマイクロビーズ(黒鉛化MCMB)を活物質として用いた。まず、負極活物質となる黒鉛化MCMBの95重量部に、結着剤としてのポリフッ化ビニリデンを5重量部混合し、溶剤として適量のN−メチル−2−ピロリドンを添加し、ペースト状の負極合材を調製した。次いで、このペースト状の負極合材を厚さ10μmの銅箔集電体の両面に塗布し、乾燥させ、その後ロールプレスにて圧縮し、シート状の負極を作製した。このシート状の負極は56mm×500mmの大きさに裁断して用いた。
【0063】
上記それぞれ正極および負極を、それらの間に厚さ20μm、幅60mmのポリプロピレン製セパレータを挟んで捲回し、ロール状の電極体を形成した。そして、その電極体を18650型円筒形電池ケース(外径18mmφ、長さ65mm)に挿設し、非水電解液を注入し、その電池ケースを密閉して円筒型リチウム二次電池を作製した。なお、非水電解液は、エチレンカーボネートとジエチルカーボネートとを体積比で3:7に混合した混合溶媒に、LiPF6を1Mの濃度で溶解したものを用いた。
【0064】
なお、実施例1のリチウム遷移金属複合酸化物を正極活物質に用いたリチウム二次電池を実施例1のリチウム二次電池とし、以下同様に、正極活物質として用いたリチウム遷移金属複合酸化物の番号を、作製したリチウム二次電池の番号とした。
【0065】
〈リチウム二次電池の保存特性の評価〉
作製した各リチウム二次電池について、保存特性を評価した。まず、コンディショニングとして、温度20℃下にて、電流密度0.2mA/cm2の定電流で4.1Vまで充電した後、電流密度0.2mA/cm2の定電流で3.0Vまで放電を行った。コンディショニングの後、初期容量を測定するために、温度20℃下にて、電流密度0.2mA/cm2の定電流で電圧が4.1Vに到達するまで充電を行い、さらに4.1Vの定電圧で充電を続け、合計7時間充電した。この時の充電容量を、20℃における正極活物質の単位重量あたりの初期充電容量とした。
【0066】
次いで、初期の内部抵抗を算出するために、入出力パワー測定を行い、入出力時の内部抵抗を算出した。入出力パワー測定は以下の条件で行った。まず、各リチウム二次電池の初期容量の50%まで充電した状態(SOC50%)で、1Aの電流で10秒間放電させ、10秒目の電圧を測定した。再びSOC50%の状態に充電した後、3Aの電流で10秒間放電させ、10秒目の電圧を測定した。さらに、SOC50%の状態に充電した後、5Aの電流で10秒間放電させ、10秒目の電圧を測定した。そして、電圧の電流依存性を求め、電流−電圧直線の勾配を出力時の内部抵抗とした。また、同様の手順で充電を行い、各10秒目の電圧を測定して、電流−電圧直線の勾配から入力時の内部抵抗を求めた。求めた入出力時の内部抵抗の平均値を初期内部抵抗とした。
【0067】
次に、保存試験を行った。保存試験は、電流密度0.2mA/cm2の定電流で電圧が4.1Vに到達するまで充電を行い、さらに4.1Vの定電圧で充電を続け、合計7時間充電することにより各二次電池をSOC100%の状態とした後、60℃の恒温槽に1ヶ月間保存することとした。そして、保存後に上記と同様にして入出力時の内部抵抗を求め、その平均値を保存後内部抵抗とした。そして、保存試験の前後における内部抵抗の値から、式[{(保存後内部抵抗/初期内部抵抗)−1}×100(%)]を用いて内部抵抗増加率(%)を計算した。表1に、各リチウム二次電池の初期充電容量(mAh/g)、内部抵抗増加率(%)の値を示し、併せて、各二次電池の正極活物質に用いたリチウム遷移金属複合酸化物の1次粒子の粒子径およびLiAlO2相の有無を示す。
【0068】
【表1】

Figure 0004788075
【0069】
表1より、実施例1〜5の二次電池は、保存後の内部抵抗増加率が19〜26%と小さいことがわかる。特に、1次粒子の平均粒子径が3μmと大きい実施例5の二次電池では内部抵抗増加率が19%と極めて小さくなった。これに対して、比較例1〜3の二次電池における内部抵抗増加率は60〜120%と大きいものであった。これは、正極活物質として用いたリチウム遷移金属複合酸化物の1次粒子の平均粒子径が1μmと大きく、結晶構造に副相としてLiAlO2相を有しているため、電解液の分解反応が抑制されたためであると考えられる。
【0070】
なお、比較例2のリチウム遷移金属複合酸化物では、Alの含有割合が0.1未満であるがLiAlO2相が生成している。これは、焼成温度が750℃と低温であったためAlの拡散が充分ではなかったためであると考えられる。したがって、初期充電容量が他の二次電池と比較してかなり小さいものとなっている。
【0071】
また、上記リチウム遷移金属複合酸化物の製造方法において、Ni−Co複合水酸化物を析出させる反応のpH値が低かった実施例5のリチウム遷移金属複合酸化物は、1次粒子の平均粒子径が3μmと大きい。一方、pH値が高かった比較例1および比較例2のリチウム遷移金属複合酸化物は、1次粒子の平均粒子径が0.2μmと小さい。これより、上記製造方法では、リチウム遷移金属複合酸化物の1次粒子の粒子径は、主に原料を合成する際のpH値で変化することがわかる。
【0072】
以上より、平均粒子径が1μm以上3μm以下である1次粒子が凝集して2次粒子を形成し、組成式LiNixCoyAlz2(x+y+z=1、0.1≦z≦0.2)で表され、主たる結晶構造は六方晶系の層状岩塩構造であり、その一部に空間群P422に属するLiAlO2構造の副相を有するリチウム遷移金属複合酸化物を正極活物質として用いた二次電池は、高温下で長期間保存しても内部抵抗の上昇が少なく、保存特性の良好な二次電池であることが確認できた。
【0073】
【発明の効果】
本発明のリチウム遷移金属複合酸化物は、1次粒子の平均粒子径が大きく、副相としてLiAlO2相を有しているため、正極活物質として用いた場合には、電解液の分解反応を抑制することができる。そして、本発明のリチウム遷移金属複合酸化物を正極活物質として用いることにより、充電率を高く保持した状態で保存した場合にも、電池の内部抵抗の上昇が小さく、保存特性、特に高温下での保存特性に優れた二次電池を構成することができる。
【図面の簡単な説明】
【図1】 実施例1および比較例1のリチウム遷移金属複合酸化物のX線回折パターンを示し、(b)は(a)に示すX線回折パターンの一部分を拡大したものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium transition metal composite oxide for a positive electrode active material capable of constituting a lithium secondary battery utilizing the lithium occlusion / desorption phenomenon, and a lithium secondary battery using the same.
[0002]
[Prior art]
With the miniaturization of personal computers, video cameras, mobile phones, etc., in the fields of information-related equipment and communication equipment, lithium secondary batteries have been put into practical use because of their high energy density as the power source used for these equipment. It has become widespread. On the other hand, in the field of automobiles, the development of electric vehicles has been urgently caused by environmental problems and resource problems, and lithium secondary batteries have been studied as power sources for the electric vehicles.
[0003]
Although the lithium secondary battery is demanded in such a wide field, its price is high, so that it is required to have a longer life than other secondary batteries. As one of the requirements for a long life, when a lithium secondary battery is stored in a state where the charging rate is kept high, the so-called storage characteristics such that the internal resistance of the battery does not increase are good. Required. If the internal resistance of the battery increases, the power characteristics of the battery (characteristics that allow a large output to be taken out in a short time and charge a large amount of power in a short time) will deteriorate. In particular, when the use of lithium secondary batteries is assumed for applications such as power sources for electric vehicles that may be left outdoors because the battery reaction is activated and the internal resistance increases greatly at high temperatures. One of the important characteristics is that the storage characteristics at high temperatures are good.
[0004]
At present, the development of lithium secondary batteries that use lithium transition metal composite oxides containing Co and Ni as main constituent elements as the positive electrode active material is underway. When the battery was stored in a state where the rate was kept high, the internal resistance of the battery increased greatly, and there was a problem in storage characteristics, particularly storage characteristics at high temperatures.
[0005]
[Problems to be solved by the invention]
As a result of repeatedly examining the problem of the storage characteristics in the secondary battery, the inventor has increased the carbon dioxide gas concentration in the battery case in the secondary battery after being stored in a high charge state. It was found that a decomposition product of an organic solvent was formed in. From these results, the increase in internal resistance due to the storage of the lithium secondary battery is one of the causes that the organic solvent as the electrolytic solution reacts with the lithium transition metal composite oxide as the positive electrode active material and is oxidatively decomposed. The knowledge that it is one was acquired.
[0006]
The present invention has been made on the basis of the above findings, and constitutes a lithium secondary battery that suppresses the reaction between the positive electrode active material and the electrolytic solution and has a small increase in internal resistance even when stored for a long time in a charged state. It is an object of the present invention to provide a lithium transition metal composite oxide for a positive electrode active material.
[0007]
[Means for Solving the Problems]
In the lithium transition metal composite oxide for a positive electrode active material of a lithium secondary battery of the present invention, primary particles aggregate to form secondary particles, and the composition formula LiNi x Co y Al z O 2 (X + y + z = 1, x> 0, 0.1 ≦ z ≦ 0.2) a lithium transition metal composite oxide for a positive electrode active material for a lithium secondary battery, wherein the primary particles have an average particle diameter of 1 μm or more and 3 μm or less. The structure is a hexagonal layered rock salt structure, part of which is the space group P4 2 1 2 LiAlO belonging to 2 It has the subphase of a structure.
[0008]
Generally, when a lithium transition metal composite oxide is used as a positive electrode active material, it is used in a powder form. The lithium transition metal composite oxide of the present invention has a structure in which primary particles close to a single crystal aggregate to form secondary particles. By the occlusion / desorption, the primary particles of the lithium transition metal composite oxide itself expand and contract. When charging / discharging is performed, it is considered that a large stress is generated in the secondary particles due to the volume change of the primary particles, and the secondary particles are disaggregated by the aggregation of the primary particles.
[0009]
On the other hand, since the electrolytic solution is in contact with the surface of the particles constituting the lithium transition metal composite oxide powder, the reaction between the electrolytic solution and the positive electrode active material is considered to proceed most at the particle surface portion. Therefore, in a state where the secondary particles have collapsed, many surfaces of the primary particles that have not been in contact with the electrolyte until now come into contact with the electrolyte and the decomposition reaction of the electrolyte proceeds. In the lithium transition metal composite oxide of the present invention, the average particle diameter of primary particles is as large as 1 μm or more and 3 μm or less, and the specific surface area is small. Therefore, the area in contact with the electrolyte is reduced, and the decomposition reaction of the electrolyte is suppressed. Is done.
[0010]
The main crystal structure of the lithium transition metal composite oxide of the present invention is a hexagonal layered rock salt structure, and a part of the space group P4 2 1 2 LiAlO belonging to 2 It has a subphase of structure. Substitution of a part of Co and Ni with Al is effective for improving the thermal stability of the lithium transition metal composite oxide. And by including Al, LiAlO 2 A phase is formed and this LiAlO 2 It is considered that the phase precipitates near the surface of the primary particles of the lithium transition metal composite oxide. LiAlO 2 The phase is considered to be electrochemically stable and LiAlO 2 The presence of the phase on the surface of the primary particles suppresses the reaction between the lithium transition metal composite oxide and the electrolytic solution.
[0011]
Therefore, the lithium transition metal composite oxide of the present invention has a primary particle having a large particle diameter and, on the surface thereof, LiAlO. 2 Since the phase is generated, the decomposition reaction of the electrolytic solution is sufficiently suppressed, and the increase in the internal resistance of the battery is suppressed even when stored for a long time in a charged state.
[0012]
The lithium secondary battery of the present invention is a lithium secondary battery using the lithium transition metal composite oxide of the present invention as a positive electrode active material. Therefore, even when stored in a state where the charging rate is kept high, the increase in the internal resistance of the battery is small, and the secondary battery is excellent in storage characteristics, particularly storage characteristics at high temperatures.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the lithium transition metal composite oxide for a lithium secondary battery positive electrode active material of the present invention and a lithium secondary battery using the same will be described in detail.
[0014]
<Lithium transition metal composite oxide>
In the lithium transition metal composite oxide of the present invention, primary particles aggregate to form secondary particles, and the composition formula LiNi x Co y Al z O 2 (X + y + z = 1, x> 0, 0.1 ≦ z ≦ 0.2) a lithium transition metal composite oxide for a positive electrode active material for a lithium secondary battery, wherein the primary particles have an average particle diameter of 1 μm or more and 3 μm or less. The structure is a hexagonal layered rock salt structure, part of which is the space group P4 2 1 2 LiAlO belonging to 2 It has a subphase of structure.
[0015]
The lithium transition metal composite oxide of the present invention is LiNiO capable of constituting a 4V class lithium secondary battery. 2 Is a basic composition, and a part of the Ni site is substituted with Co and Al. The lithium transition metal composite oxide of the present invention includes not only the stoichiometric composition represented by the composition formula but also the non-stoichiometric composition in which some elements are deficient or excessive. It is a waste.
[0016]
Here, Co mainly plays a role of stabilizing the crystal structure of the lithium transition metal composite oxide. Moreover, while suppressing the capacity | capacitance fall by element substitution, Li (Co, Ni) O 2 Is a completely solid solution type and has the advantage of minimizing the decrease in crystallinity. Stabilization of the crystal structure by Co suppresses the phase transition of the crystal structure during charging, leading to an improvement in the cycle characteristics of the battery. In order to sufficiently exhibit the effect of stabilizing the crystal structure, the substitution ratio of Co, that is, the value of y in the composition formula is preferably 0 <y ≦ 0.3. This is because when y> 0.3, the capacity is lower than that in this preferred range, which is not preferable.
[0017]
The Al substitution ratio, that is, the value of z in the composition formula is 0.1 ≦ z ≦ 0.2. When z <0.1, the substitution ratio of Al is too small, so that LiAlO sufficient as a subphase is sufficient. 2 This is because no phase is produced. In addition, when z> 0.2, the capacity rapidly decreases.
[0018]
In the lithium transition metal composite oxide of the present invention, primary particles aggregate to form secondary particles, and the average particle diameter of the primary particles is 1 μm or more and 3 μm or less. This is because if the average particle size is less than 1 μm, the specific surface area is large, the contact area with the electrolytic solution is increased, and the decomposition reaction of the electrolytic solution is likely to proceed. On the other hand, if it exceeds 3 μm, the particle size of the secondary particles increases, and the battery reaction may not proceed uniformly.
[0019]
The primary particles are infinitely aggregated to form secondary particles. The particle diameter of the secondary particles is not particularly limited, but the average particle diameter of the secondary particles is preferably 5 μm or more and 30 μm or less. This is because when the average particle size is less than 5 μm, the paste-like positive electrode mixture is easily gelled when the electrode is produced, and when it exceeds 30 μm, the battery reaction is difficult to proceed uniformly.
[0020]
As a simple method for measuring the average particle size, for example, there is a method using a scanning electron microscope (SEM) photograph of a lithium transition metal composite oxide. That is, an SEM photograph of the lithium transition metal composite oxide is taken, and the diameter regarded as the longest diameter and the diameter regarded as the shortest diameter of the lithium transition metal composite oxide particles in the photograph are measured. And the average value of these two values can be regarded as the particle diameter of the particle, and the average of them can be adopted as the average particle diameter.
[0021]
The lithium transition metal composite oxide of the present invention is a layered rock salt structure whose main crystal structure is a hexagonal system, and a part of the space group P4 2 1 2 LiAlO belonging to 2 It has a subphase of structure. Later, an X-ray diffraction pattern is shown, but the secondary phase is LiAlO 2 When the phase is present near the surface of the primary particles of the lithium transition metal composite oxide, the reaction between the lithium transition metal composite oxide and the electrolytic solution is suppressed.
[0022]
Although the manufacturing method of the lithium transition metal composite oxide of the present invention is not particularly limited, as an example, it can be easily manufactured according to the following manufacturing method. The production method includes a Ni-Co composite hydroxide synthesis step and a Ni-Co-Al composite hydroxide synthesis step for synthesizing a composite hydroxide as one of the raw materials, the synthesized composite hydroxide and another raw material. The raw material mixing step of mixing with the compound to be, and further the four steps of firing step. Hereinafter, each process is demonstrated in order.
[0023]
(1) Ni-Co composite hydroxide synthesis process
This step is a step of obtaining a Ni—Co composite hydroxide by reacting an aqueous solution of a salt containing nickel as a cation and a salt containing cobalt as a cation with a strong alkaline aqueous solution.
[0024]
As the salt containing nickel as a cation, for example, nickel nitrate, nickel carbonate, nickel hydroxide and the like can be used. Examples of the salt containing cobalt as a cation include cobalt nitrate, cobalt carbonate, and cobalt hydroxide. In particular, it is desirable to use nitrate as each salt because of its high reactivity.
[0025]
In addition, as the aqueous solution of the salt containing nickel as a cation and the salt containing cobalt as a cation, for example, an aqueous solution prepared by mixing each salt and mixing them can be used. In addition, it is desirable to prepare the aqueous solution of the salt so that the concentration of the salt is 0.5 to 2M from the viewpoint of satisfying both the reactivity and the yield. And what is necessary is just to prepare so that the ratio of Ni and Co contained in the obtained Ni-Co composite hydroxide may become a thing according to the composition of the target lithium transition metal composite oxide.
[0026]
As the strong alkaline aqueous solution, a lithium hydroxide aqueous solution, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or the like can be used. Among these, it is desirable to use an aqueous sodium hydroxide solution in view of manufacturing costs. When using an aqueous sodium hydroxide solution, it is desirable to use one having a concentration of about 3 to 8M.
[0027]
From the viewpoint of obtaining a Ni—Co composite hydroxide having a relatively large particle size, it is desirable to use a weak alkaline aqueous solution such as ammonia water in addition to the above strong alkaline aqueous solution. By reacting an aqueous solution of each of the above salts with aqueous ammonia or the like, Ni and Co generate a complex with ammonia, so the reaction rate with a strong alkaline aqueous solution is reduced, and the particle diameter of the resulting Ni—Co composite hydroxide is reduced. Becomes bigger.
[0028]
Moreover, in order to perform the said reaction uniformly, what is necessary is just to perform reaction by dripping the aqueous solution containing each said salt to strong alkaline aqueous solution, for example. The reaction is preferably carried out with stirring. Conditions such as the dropping rate of the aqueous solution containing each salt, the stirring rate, the pH value of the reaction aqueous solution, the reaction temperature affect the particle size of the resulting Ni-Mn composite hydroxide. In order to obtain The pH value of the reaction aqueous solution is desirably adjusted so as to be substantially constant during the reaction. For example, in order to obtain a Ni—Co composite hydroxide having a large particle size, the pH value is about 10.5 ± 0.2. Is desirable. The reaction temperature is preferably 20 to 40 ° C. in order to obtain an appropriate reaction rate.
[0029]
(2) Ni-Co-Al composite hydroxide synthesis process
In this step, the Ni—Co composite hydroxide obtained in the Ni—Co composite hydroxide synthesis step is dispersed in an aqueous salt solution containing aluminum as a cation, and reacted with a strong alkaline aqueous solution to form Ni—Co—. This is a step of obtaining an Al composite hydroxide.
[0030]
As the salt containing aluminum as a cation, aluminum nitrate, aluminum sulfate, or the like can be used. In particular, it is desirable to use aluminum nitrate because of its good solubility in water.
[0031]
In addition, it is desirable to prepare the aqueous solution of the salt containing aluminum as a cation so that the concentration of the salt is 0.5 to 2M from the viewpoint of satisfying both the reactivity and the yield. And what is necessary is just to prepare so that the ratio of (Ni + Co) and Al contained in the obtained Ni-Co-Al complex hydroxide may become a thing according to the composition of the target lithium transition metal complex oxide.
[0032]
Moreover, what is necessary is just to use the thing similar to what was used at the said Ni-Co composite hydroxide synthesis | combination process as strong alkali aqueous solution. The reaction conditions are the same.
Note that the Ni—Co—Al composite hydroxide obtained in this step is one of the raw materials.
[0033]
(3) Raw material mixing process
This step is a step of mixing the Ni-Co-Al composite hydroxide obtained in the Ni-Co-Al composite hydroxide synthesis step and a lithium compound as another raw material to obtain a raw material mixture. is there. As the lithium compound, lithium hydroxide, lithium carbonate, lithium nitrate, or the like can be used. In particular, it is desirable to use lithium hydroxide because of its high reactivity.
[0034]
The mixing of the Ni—Co—Al composite hydroxide and the lithium compound may be performed by a method used for mixing ordinary powders. Specifically, it may be mixed using, for example, a ball mill, a mixer, a mortar or the like. The mixing ratio of the Ni—Co—Al composite hydroxide and the lithium compound is such that the composition of the target lithium transition metal composite oxide, that is, Li: (Ni + Co + Al) is approximately 1: 1 in molar ratio. What is necessary is just to make it a ratio.
[0035]
(4) Firing process
This step is a step of obtaining the lithium transition metal composite oxide by firing the raw material mixture obtained in the raw material mixing step in an oxygen atmosphere. The oxygen atmosphere may be in a gas containing oxygen. For example, firing may be performed in the air in an oxygen stream.
[0036]
The firing temperature is desirably 700 ° C. or higher and 950 ° C. or lower. This is because if the firing temperature is lower than 750 ° C., the reaction does not proceed sufficiently and the crystallinity is lowered. On the other hand, if the temperature exceeds 950 ° C., the layered structure tends to be disturbed and the discharge capacity is reduced. Note that the firing time may be a time sufficient to complete the firing, and is usually performed for about 12 hours.
[0037]
<Lithium secondary battery>
An embodiment of the lithium secondary battery of the present invention, which is a utilization form of the lithium transition metal composite oxide of the present invention, will be described. Generally, a lithium secondary battery includes a positive electrode and a negative electrode that occlude and release lithium ions, a separator that is sandwiched between the positive electrode and the negative electrode, a non-aqueous electrolyte that moves lithium ions between the positive electrode and the negative electrode, Consists of The secondary battery of this embodiment may follow this configuration. The following description will be given for each of these components.
[0038]
As described above, the positive electrode is obtained by mixing a conductive material and a binder with a positive electrode active material capable of inserting and extracting lithium ions, and adding a suitable solvent as necessary to obtain a paste-like positive electrode mixture. It is formed by applying and drying on the surface of a current collector made of a metal foil such as aluminum and then increasing the active material density by pressing.
[0039]
In this embodiment, the lithium transition metal composite oxide is used as the positive electrode active material. In addition, the lithium transition metal composite oxide of the present invention includes various lithium transition metal composite oxides depending on the composition, particle diameter, and the like. Therefore, one of them may be used as the positive electrode active material, or a mixture of two or more may be used. Furthermore, the lithium transition metal composite oxide of the present invention and an already known positive electrode active material can be mixed to form a positive electrode active material.
[0040]
The conductive material used for the positive electrode is for ensuring the electrical conductivity of the positive electrode active material layer, and is a mixture of one or more carbon material powders such as carbon black, acetylene black, and graphite. Can be used. The binder plays a role of anchoring the active material particles, and a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and a thermoplastic resin such as polypropylene and polyethylene can be used. An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active material, conductive material, and binder.
[0041]
The negative electrode opposed to the positive electrode can be formed by pressing metal lithium, a lithium alloy, or the like into a sheet shape or a sheet-like shape to a current collector network such as nickel or stainless steel. However, in order to obtain a lithium secondary battery excellent in safety in consideration of precipitation of dendrites, a negative electrode using a carbon material capable of inserting and extracting lithium as an active material can be used. Examples of the carbon material that can be used include natural or artificial graphite, a fired organic compound such as a phenol resin, and a powdery material such as coke. In this case, a binder is mixed with the negative electrode active material, and a negative electrode mixture made into a paste by adding an appropriate solvent is applied to the surface of a metal foil current collector such as copper and dried. When the carbon material is a negative electrode active material, as with the positive electrode, a fluorine-containing resin such as polyvinylidene fluoride is used as the negative electrode binder, and an organic solvent such as N-methyl-2-pyrrolidone is used as the solvent. it can.
[0042]
The separator sandwiched between the positive electrode and the negative electrode retains the electrolytic solution while isolating the positive electrode and the negative electrode and allows ions to pass through. A thin microporous film such as polyethylene or polypropylene can be used.
[0043]
The non-aqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent, and examples of the organic solvent include aprotic organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, One kind of tetrahydrofuran, dioxolane, methylene chloride, or a mixture of two or more kinds thereof can be used. Further, as the electrolyte to be dissolved, LiI and LiClO that generate lithium ions when dissolved are used. Four , LiAsF 6 , LiBF Four , LiPF 6 Etc. can be used.
[0044]
Instead of the separator and the non-aqueous electrolyte, a high molecular weight polymer such as polyethylene oxide and LiClO are used. Four And LiN (CF Three SO 2 ) 2 It is also possible to use a solid polymer electrolyte using a lithium salt such as a gel electrolyte, or a gel electrolyte obtained by trapping the non-aqueous electrolyte in a solid polymer matrix such as polyacrylonitrile.
[0045]
Although it is a lithium secondary battery comprised from the above, the shape can be made into various things, such as a coin type, a laminated type, and a cylindrical type. Regardless of which shape is adopted, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the electrode body is electrically connected between the positive electrode and the negative electrode to the positive electrode terminal and the negative electrode terminal. Can be sealed in a battery case together with a non-aqueous electrolyte to complete the battery.
[0046]
<Acceptance of other embodiments>
As described above, the embodiment of the lithium transition metal composite oxide of the present invention and the lithium secondary battery using the same has been described. However, the embodiment described above is only one embodiment, and the lithium transition metal composite oxide of the present invention and The lithium secondary battery using the same can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art including the above-described embodiments.
[0047]
【Example】
Based on the above embodiment, various lithium transition metal composite oxides having different compositions, particle sizes, and the like were produced. And the lithium secondary battery which used each lithium transition metal complex oxide as a positive electrode active material was produced, and the storage characteristic of the battery was evaluated. Hereinafter, evaluation of storage characteristics of the manufactured lithium transition metal composite oxide and lithium secondary battery will be described.
[0048]
<Lithium transition metal composite oxide>
(1) Lithium transition metal composite oxide of Example 1
Composition formula LiNi 0.65 Co 0.2 Al 0.15 O 2 The lithium transition metal complex oxide represented by this was manufactured. A 1M mixed aqueous solution of nickel nitrate and cobalt nitrate was prepared so that the molar ratio of Ni: Co was 0.65: 0.2. Then, the prepared mixed aqueous solution and 5M ammonia water were continuously fed to the 2 L reaction tank at 400 mL / h and 70 mL / h, respectively, while maintaining the pH at 10.5 ± 0.2. A sodium hydroxide aqueous solution was continuously added to precipitate a Ni—Co composite hydroxide. The reaction temperature was 60 ° C.
[0049]
Next, a 1M aluminum nitrate aqueous solution was prepared so that the molar ratio of (Ni + Co): Al was 0.85: 0.15, and the obtained Ni—Co composite hydroxide was added to the aluminum nitrate aqueous solution. Dispersed. Then, while stirring the aluminum nitrate aqueous solution in which the Ni—Co composite hydroxide was dispersed, a 5M sodium hydroxide aqueous solution was dropped to obtain a Ni—Co—Al composite hydroxide. The obtained Ni—Co—Al composite hydroxide was dried to form a powder.
[0050]
Powdered Ni—Co—Al composite hydroxide and lithium hydroxide are mixed so that the molar ratio of Li: (Ni + Co + Al) is 1.02: 1 to obtain a raw material mixture, and the raw material mixture is mixed with an oxygen atmosphere. Then, baking was performed at 850 ° C. for 12 hours to obtain a lithium transition metal composite oxide.
[0051]
The average particle diameter of the primary particles of the obtained lithium transition metal composite oxide was about 1 μm, and the average particle diameter of the secondary particles was about 13 μm. Further, according to ICP emission analysis, the present lithium transition metal composite oxide has the composition formula LiNi 0.65 Co 0.2 Al 0.15 O 2 It was confirmed that The following examples and comparative examples have been confirmed in the same manner. This lithium transition metal composite oxide was used as the lithium transition metal composite oxide of Example 1.
[0052]
(2) Lithium transition metal composite oxide of Example 2
Composition formula LiNi 0.6 Co 0.2 Al 0.2 O 2 The lithium transition metal complex oxide represented by this was manufactured. In the method for producing a lithium transition metal composite oxide of Example 1, a mixed aqueous solution of nickel nitrate and cobalt nitrate was mixed with a Ni: Co molar ratio of 0.6: 0.2, and an aqueous aluminum nitrate solution (Ni + Co). ): Produced in the same manner as the production method of Example 1 except that Al was prepared so that the molar ratio was 0.8: 0.2. The average particle diameter of the primary particles of the obtained lithium transition metal composite oxide was about 1 μm, and the average particle diameter of the secondary particles was about 13 μm. This lithium transition metal composite oxide was used as the lithium transition metal composite oxide of Example 2.
[0053]
(3) Lithium transition metal composite oxide of Example 3
Composition formula LiNi 0.75 Co 0.1 Al 0.15 O 2 The lithium transition metal complex oxide represented by this was manufactured. In the method for producing a lithium transition metal composite oxide of Example 1, a mixed aqueous solution of nickel nitrate and cobalt nitrate was mixed with a Ni: Co molar ratio of 0.75: 0.1, and an aqueous aluminum nitrate solution (Ni + Co). ): Produced in the same manner as the production method of Example 1 except that Al was prepared so that the molar ratio was 0.85: 0.15. The average particle diameter of the primary particles of the obtained lithium transition metal composite oxide was about 1 μm, and the average particle diameter of the secondary particles was about 13 μm. This lithium transition metal composite oxide was used as the lithium transition metal composite oxide of Example 3.
[0054]
(4) Lithium transition metal composite oxide of Example 4
Composition formula LiNi 0.65 Co 0.1 Al 0.25 O 2 The lithium transition metal complex oxide represented by this was manufactured. In the method for producing a lithium transition metal composite oxide of Example 1, a mixed aqueous solution of nickel nitrate and cobalt nitrate was mixed with a Ni: Co molar ratio of 0.65: 0.1, and an aqueous aluminum nitrate solution (Ni + Co). ): Produced in the same manner as the production method of Example 1 except that Al was prepared so as to have a molar ratio of 0.75: 0.25. The average particle diameter of the primary particles of the obtained lithium transition metal composite oxide was about 1 μm, and the average particle diameter of the secondary particles was about 13 μm. This lithium transition metal composite oxide was used as the lithium transition metal composite oxide of Example 4.
[0055]
(5) Lithium transition metal composite oxide of Example 5
Composition formula LiNi 0.65 Co 0.2 Al 0.15 O 2 The lithium transition metal complex oxide represented by this was manufactured. In the method for producing a lithium transition metal composite oxide of Example 1, the pH value in the reaction of precipitating the Ni—Co composite hydroxide was set to 9.5 ± 0.2, and the feeding speeds of the mixed aqueous solution and ammonia water were respectively set. It manufactured similarly to the manufacturing method of Example 1 except having set it as 200 mL / h and 35 mL / h. The average particle diameter of the primary particles of the obtained lithium transition metal composite oxide was about 3 μm, and the average particle diameter of the secondary particles was about 25 μm. This lithium transition metal composite oxide was used as the lithium transition metal composite oxide of Example 5.
[0056]
(6) Lithium transition metal composite oxide of Comparative Example 1
Composition formula LiNi 0.8 Co 0.15 Al 0.05 O 2 The lithium transition metal complex oxide represented by this was manufactured. In the method for producing a lithium transition metal composite oxide of Example 1, a mixed aqueous solution of nickel nitrate and cobalt nitrate was mixed with a Ni: Co molar ratio of 0.8: 0.15, and an aqueous aluminum nitrate solution (Ni + Co). ): Examples were prepared except that Al was prepared at a molar ratio of 0.95: 0.05, and the pH value in the reaction for precipitating the Ni—Co composite hydroxide was 12.5 ± 0.2. 1 was produced in the same manner as in Production Method 1. The average particle diameter of the primary particles of the obtained lithium transition metal composite oxide was about 0.2 μm, and the average particle diameter of the secondary particles was about 13 μm. This lithium transition metal composite oxide was used as the lithium transition metal composite oxide of Comparative Example 1.
[0057]
(7) Lithium transition metal composite oxide of Comparative Example 2
Composition formula LiNi 0.8 Co 0.15 Al 0.05 O 2 The lithium transition metal complex oxide represented by this was manufactured. In the method for producing the lithium transition metal composite oxide of Comparative Example 1, it was produced in the same manner as in the method of Comparative Example 1, except that the firing temperature was 750 ° C. The average particle diameter of the primary particles of the obtained lithium transition metal composite oxide was about 0.2 μm, and the average particle diameter of the secondary particles was about 13 μm. This lithium transition metal composite oxide was used as the lithium transition metal composite oxide of Comparative Example 2.
[0058]
(8) Lithium transition metal composite oxide of Comparative Example 3
Composition formula LiNi 0.8 Co 0.15 Al 0.05 O 2 The lithium transition metal complex oxide represented by this was manufactured. In the method for producing a lithium transition metal composite oxide of Comparative Example 1, the same as the production method of Comparative Example 1 except that the pH value in the reaction for precipitating the Ni—Co composite hydroxide was set to 10.5 ± 0.2. Manufactured. The average particle diameter of the primary particles of the obtained lithium transition metal composite oxide was about 1 μm, and the average particle diameter of the secondary particles was about 13 μm. This lithium transition metal composite oxide was used as the lithium transition metal composite oxide of Comparative Example 3.
[0059]
<Analysis by powder X-ray diffraction method using Cu-α-ray>
About each lithium transition metal complex oxide of the said Example and comparative example, the analysis by the powder X ray diffraction method using Cu (alpha) ray was performed. As an example of the X-ray folding pattern, FIGS. 1A and 1B show X-ray diffraction patterns of the lithium transition metal composite oxides of Example 1 and Comparative Example 1. FIG. FIG. 1B is an enlarged view of a part of the X-ray diffraction pattern shown in FIG.
[0060]
From FIG. 1, it can be seen that the crystal structures of the lithium transition metal composite oxides of Example 1 and Comparative Example 1 are both hexagonal layered rock salt structures. And in the X-ray diffraction pattern of the lithium transition metal composite oxide of Example 1, 2Al = 22 °, near 33-35 ° (θ is the diffraction angle), LiAlO 2 The phase peak is confirmed and LiAlO 2 It can be seen that a subphase of the structure is formed. On the other hand, in the lithium transition metal composite oxide of Comparative Example 1 in which the Al content is less than 0.1, LiAlO 2 No phase is generated. Therefore, the lithium transition metal composite oxide of the present invention having an Al content ratio of 0.1 or more has a main crystal structure of a hexagonal layered rock salt structure, and a part thereof is a space group P4. 2 1 2 LiAlO belonging to 2 It was confirmed that it had a sub-phase of structure.
[0061]
<Production of lithium secondary battery>
A lithium secondary battery was fabricated using each of the lithium transition metal composite oxides of the above Examples and Comparative Examples as a positive electrode active material. First of all, 85 parts by weight of each lithium transition metal composite oxide serving as a positive electrode active material is mixed with 10 parts by weight of carbon black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder. A suitable amount of N-methyl-2-pyrrolidone was added to prepare a paste-like positive electrode mixture. Subsequently, this paste-like positive electrode mixture was applied to both surfaces of an aluminum foil current collector having a thickness of 20 μm, dried, and then compressed by a roll press to produce a sheet-like positive electrode. This sheet-like positive electrode was cut into a size of 54 mm × 450 mm and used.
[0062]
As the negative electrode to be opposed, graphitized mesocarbon microbeads (graphitized MCMB) were used as an active material. First, 95 parts by weight of graphitized MCMB serving as a negative electrode active material was mixed with 5 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone was added as a solvent to prepare a paste-like negative electrode A composite was prepared. Next, this paste-like negative electrode mixture was applied to both surfaces of a 10 μm thick copper foil current collector, dried, and then compressed by a roll press to produce a sheet-like negative electrode. This sheet-like negative electrode was cut into a size of 56 mm × 500 mm and used.
[0063]
Each of the positive electrode and the negative electrode was wound with a polypropylene separator having a thickness of 20 μm and a width of 60 mm interposed therebetween to form a roll-shaped electrode body. Then, the electrode body was inserted into a 18650 type cylindrical battery case (outer diameter 18 mmφ, length 65 mm), a non-aqueous electrolyte was injected, and the battery case was sealed to produce a cylindrical lithium secondary battery. . The non-aqueous electrolyte is LiPF in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 3: 7. 6 Was dissolved at a concentration of 1M.
[0064]
The lithium secondary battery using the lithium transition metal composite oxide of Example 1 as the positive electrode active material is referred to as the lithium secondary battery of Example 1, and the lithium transition metal composite oxide used as the positive electrode active material in the same manner hereinafter. Was the number of the produced lithium secondary battery.
[0065]
<Evaluation of storage characteristics of lithium secondary battery>
The storage characteristics of each manufactured lithium secondary battery were evaluated. First, as a conditioning, a current density of 0.2 mA / cm at a temperature of 20 ° C. 2 After charging to 4.1 V with a constant current of 0.2 mA / cm, the current density is 0.2 mA / cm. 2 The battery was discharged to 3.0 V at a constant current of. After conditioning, to measure the initial capacity, the current density was 0.2 mA / cm at a temperature of 20 ° C. 2 The battery was charged until the voltage reached 4.1 V at a constant current of, and further charged at a constant voltage of 4.1 V for a total of 7 hours. The charge capacity at this time was defined as the initial charge capacity per unit weight of the positive electrode active material at 20 ° C.
[0066]
Next, in order to calculate the initial internal resistance, input / output power measurement was performed, and the internal resistance at the time of input / output was calculated. The input / output power measurement was performed under the following conditions. First, in the state charged to 50% of the initial capacity of each lithium secondary battery (SOC 50%), the battery was discharged at a current of 1 A for 10 seconds, and the voltage at 10 seconds was measured. The battery was charged again at a SOC of 50% and then discharged at a current of 3 A for 10 seconds, and the voltage at 10 seconds was measured. Furthermore, after charging to a state of SOC 50%, the battery was discharged at a current of 5 A for 10 seconds, and the voltage at 10 seconds was measured. Then, the current dependency of the voltage was obtained, and the slope of the current-voltage straight line was defined as the internal resistance at the time of output. In addition, charging was carried out in the same procedure, the voltage at each 10 seconds was measured, and the internal resistance at the time of input was determined from the slope of the current-voltage straight line. The average value of the internal resistance obtained at the time of input / output was defined as the initial internal resistance.
[0067]
Next, a storage test was conducted. The storage test was conducted at a current density of 0.2 mA / cm. 2 The battery is charged until the voltage reaches 4.1 V at a constant current of 4.1 V, and further charged at a constant voltage of 4.1 V, and after charging each secondary battery to a state of SOC 100% by charging for a total of 7 hours, It was decided to store for 1 month in a constant temperature bath at ℃. Then, after storage, the internal resistance at the time of input / output was determined in the same manner as described above, and the average value was taken as the internal resistance after storage. Then, from the value of the internal resistance before and after the storage test, the internal resistance increase rate (%) was calculated using the formula [{(internal resistance after storage / initial internal resistance) -1} × 100 (%)]. Table 1 shows the values of initial charge capacity (mAh / g) and internal resistance increase rate (%) of each lithium secondary battery, together with lithium transition metal composite oxidation used for the positive electrode active material of each secondary battery. Of primary particles and LiAlO 2 Indicates the presence or absence of a phase.
[0068]
[Table 1]
Figure 0004788075
[0069]
From Table 1, it can be seen that the secondary batteries of Examples 1 to 5 have a small internal resistance increase rate after storage of 19 to 26%. In particular, in the secondary battery of Example 5 in which the average particle diameter of the primary particles was as large as 3 μm, the rate of increase in internal resistance was as small as 19%. On the other hand, the internal resistance increase rate in the secondary batteries of Comparative Examples 1 to 3 was as large as 60 to 120%. This is because the average particle diameter of the primary particles of the lithium transition metal composite oxide used as the positive electrode active material is as large as 1 μm, and LiAlO as a subphase in the crystal structure. 2 This is considered to be because the decomposition reaction of the electrolytic solution was suppressed because of having a phase.
[0070]
In the lithium transition metal composite oxide of Comparative Example 2, the Al content is less than 0.1, but LiAlO 2 A phase is generated. This is presumably because Al was not sufficiently diffused because the firing temperature was as low as 750 ° C. Therefore, the initial charge capacity is considerably smaller than that of other secondary batteries.
[0071]
In the method for producing a lithium transition metal composite oxide, the lithium transition metal composite oxide of Example 5 in which the pH value of the reaction for precipitating the Ni—Co composite hydroxide was low is the average particle diameter of the primary particles. Is as large as 3 μm. On the other hand, the lithium transition metal composite oxides of Comparative Examples 1 and 2 having a high pH value have an average primary particle size as small as 0.2 μm. From this, it can be seen that, in the above production method, the particle diameter of the primary particles of the lithium transition metal composite oxide mainly changes depending on the pH value when the raw materials are synthesized.
[0072]
From the above, primary particles having an average particle diameter of 1 μm or more and 3 μm or less aggregate to form secondary particles, and the composition formula LiNi x Co y Al z O 2 (X + y + z = 1, 0.1 ≦ z ≦ 0.2), the main crystal structure is a hexagonal layered rock salt structure, part of which is a space group P4 2 1 2 LiAlO belonging to 2 A secondary battery using a lithium transition metal composite oxide having a sub-phase of the structure as a positive electrode active material is a secondary battery with good storage characteristics with little increase in internal resistance even when stored for a long time at high temperatures. I was able to confirm.
[0073]
【The invention's effect】
The lithium transition metal composite oxide of the present invention has a large average particle diameter of primary particles and LiAlO as a subphase. 2 Since it has a phase, when used as a positive electrode active material, the decomposition reaction of the electrolytic solution can be suppressed. Further, by using the lithium transition metal composite oxide of the present invention as the positive electrode active material, even when stored in a state where the charging rate is kept high, the increase in the internal resistance of the battery is small, and the storage characteristics, particularly at high temperatures, are maintained. A secondary battery having excellent storage characteristics can be configured.
[Brief description of the drawings]
FIG. 1 shows X-ray diffraction patterns of lithium transition metal composite oxides of Example 1 and Comparative Example 1, and (b) is an enlarged view of a part of the X-ray diffraction pattern shown in (a).

Claims (3)

1次粒子が凝集して2次粒子を形成し、組成式LiNiCoAl(x+y+z=1、x>0、0.1≦z≦0.2)で表されるリチウム二次電池正極活物質用リチウム遷移金属複合酸化物であって、
前記1次粒子の平均粒子径は1μm以上3μm以下であり、
主たる結晶構造は六方晶系の層状岩塩構造であり、その一部に空間群P4に属するLiAlO構造の副相を有することを特徴とするリチウム遷移金属複合酸化物。
Primary particles aggregate to form secondary particles, and the lithium secondary represented by the composition formula LiNi x Co y Al z O 2 (x + y + z = 1, x> 0, 0.1 ≦ z ≦ 0.2) A lithium transition metal composite oxide for a battery positive electrode active material,
The average particle diameter of the primary particles is 1 μm or more and 3 μm or less,
A lithium transition metal composite oxide characterized in that a main crystal structure is a hexagonal layered rock salt structure and a part thereof has a sub-phase of a LiAlO 2 structure belonging to the space group P4 2 1 2 .
前記組成式におけるyは0<y≦0.3である請求項1に記載のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物。  The lithium transition metal composite oxide for a lithium secondary battery positive electrode active material according to claim 1, wherein y in the composition formula is 0 <y ≦ 0.3. リチウム遷移金属複合酸化物を正極活物質とする正極と、負極と、リチウム塩を有機溶媒に溶解した非水電解液とを備えてなるリチウム二次電池であって、
前記リチウム遷移金属複合酸化物は、平均粒子径が1μm以上3μm以下である1次粒子が凝集して2次粒子を形成し、組成式LiNiCoAl(x+y+z=1、x>0、0.1≦z≦0.2)で表され、主たる結晶構造は六方晶系の層状岩塩構造であり、その一部に空間群P4に属するLiAlO構造の副相を有するものであるリチウム二次電池。
A lithium secondary battery comprising a positive electrode using a lithium transition metal composite oxide as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent,
In the lithium transition metal composite oxide, primary particles having an average particle diameter of 1 μm or more and 3 μm or less aggregate to form secondary particles, and the composition formula LiNi x Co y Al z O 2 (x + y + z = 1, x> 0, 0.1 ≦ z ≦ 0.2), the main crystal structure is a hexagonal layered rock salt structure, and a part thereof has a sub-phase of LiAlO 2 structure belonging to the space group P4 2 1 2 Lithium secondary battery.
JP2001201289A 2001-07-02 2001-07-02 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP4788075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201289A JP4788075B2 (en) 2001-07-02 2001-07-02 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201289A JP4788075B2 (en) 2001-07-02 2001-07-02 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2003017056A JP2003017056A (en) 2003-01-17
JP4788075B2 true JP4788075B2 (en) 2011-10-05

Family

ID=19038283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201289A Expired - Fee Related JP4788075B2 (en) 2001-07-02 2001-07-02 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4788075B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190647B2 (en) 2005-03-17 2015-11-17 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery with high temperature and storage characteristics
KR100975193B1 (en) * 2005-03-17 2010-08-10 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
JP5072242B2 (en) * 2005-03-17 2012-11-14 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
JP2007059409A (en) * 2006-10-11 2007-03-08 Central Res Inst Of Electric Power Ind All-solid battery
CN110739451B (en) * 2014-01-27 2021-05-25 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2016105366A (en) * 2014-12-01 2016-06-09 ソニー株式会社 Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device
JP6655943B2 (en) * 2015-02-27 2020-03-04 パナソニック株式会社 Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2018155121A1 (en) * 2017-02-21 2018-08-30 パナソニック株式会社 Positive electrode active substance for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
WO2019044338A1 (en) * 2017-08-29 2019-03-07 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries, production method therefor, and non-aqueous electrolyte secondary battery using said positive electrode active material
US11637283B2 (en) 2017-08-29 2023-04-25 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary batteries, production method therefor, and non-aqueous electrolyte secondary batteries using said positive electrode active material
US20220166007A1 (en) * 2019-03-29 2022-05-26 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
JP7403289B2 (en) 2019-11-27 2023-12-22 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022937B2 (en) * 1997-04-24 2007-12-19 宇部興産株式会社 Lithium ion non-aqueous electrolyte secondary battery
JP4051771B2 (en) * 1997-06-10 2008-02-27 堺化学工業株式会社 Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof
DE19819752A1 (en) * 1998-05-04 1999-11-11 Basf Ag Compositions suitable for electrochemical cells
JP2000243393A (en) * 1999-02-16 2000-09-08 Mitsubishi Electric Corp Positive electrode active material, its manufacture and lithium ion secondary battery using positive electrode active material
JP2001052754A (en) * 1999-08-05 2001-02-23 Toyota Central Res & Dev Lab Inc Aging treatment method of lithium secondary battery
JP2001085006A (en) * 1999-09-14 2001-03-30 Toyota Central Res & Dev Lab Inc Lithium-nickel composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using the composite oxide
JP2002222648A (en) * 2001-01-24 2002-08-09 Toshiba Corp Positive electrode active material, its manufacturing method, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2003017056A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP4070585B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP3918311B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP4075451B2 (en) Lithium secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4111806B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2000195517A (en) Lithium secondary battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
CN112313817A (en) Positive electrode material and secondary battery
JP4788075B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2002008658A (en) Lithium titanium compound oxide for lithium secondary battery electrode active material, and its manufacturing method
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
WO2020026487A1 (en) Positive electrode active material and secondary battery
JP5026629B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP3719312B2 (en) Positive electrode sheet and non-aqueous electrolyte secondary battery using the same
WO2009116841A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery having the same
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2001256975A (en) Lithium nickel compound oxide for lithium secondary battery positive electrode active material, manufacturing method thereof, and lithium secondary battery using the same
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JP2003068300A (en) Positive electrode active material for use in lithium secondary battery and lithium secondary battery using the same
JP4810729B2 (en) Lithium transition metal composite oxide and method for producing the same
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees