JP7403289B2 - Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same - Google Patents

Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP7403289B2
JP7403289B2 JP2019214534A JP2019214534A JP7403289B2 JP 7403289 B2 JP7403289 B2 JP 7403289B2 JP 2019214534 A JP2019214534 A JP 2019214534A JP 2019214534 A JP2019214534 A JP 2019214534A JP 7403289 B2 JP7403289 B2 JP 7403289B2
Authority
JP
Japan
Prior art keywords
lithium
particles
positive electrode
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019214534A
Other languages
Japanese (ja)
Other versions
JP2021086723A (en
Inventor
麻由 塩崎
弘樹 山下
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2019214534A priority Critical patent/JP7403289B2/en
Publication of JP2021086723A publication Critical patent/JP2021086723A/en
Application granted granted Critical
Publication of JP7403289B2 publication Critical patent/JP7403289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、放電容量及びレート特性に優れるリチウムイオン二次電池を得るための、リチウムイオン二次電池用正極活物質複合体及びその製造方法に関するに関する。 The present invention relates to a positive electrode active material composite for a lithium ion secondary battery and a method for manufacturing the same, for obtaining a lithium ion secondary battery with excellent discharge capacity and rate characteristics.

リチウム複合酸化物は、高出力及び高容量のリチウムイオン二次電池を構成できる正極活物質として使用されているが、かかるリチウム複合酸化物を正極活物質として用いたリチウムイオン二次電池では、通常、充放電サイクルを重ねるにつれて容量低下が生じ、特に長期間使用すると、電池の容量低下が著しくなるおそれがある。この原因は、充電時に遷移金属成分が電解液へ溶出することにより、リチウム複合酸化物の結晶構造の破壊が生じやすくなることにあると考えられている。また、リチウム複合酸化物の結晶構造の破壊が生じると、リチウム複合酸化物の遷移金属成分が周囲の電解液へ溶出し、熱的安定性が低下して安全性が損なわれるおそれもある。 Lithium composite oxides are used as positive electrode active materials that can construct high-power and high-capacity lithium ion secondary batteries, but lithium ion secondary batteries that use such lithium composite oxides as positive electrode active materials usually As charge and discharge cycles are repeated, the capacity decreases, and especially when used for a long period of time, there is a possibility that the capacity decrease of the battery becomes significant. The reason for this is thought to be that the crystal structure of the lithium composite oxide is more likely to be destroyed due to elution of transition metal components into the electrolyte during charging. Further, if the crystal structure of the lithium composite oxide is destroyed, the transition metal component of the lithium composite oxide will be eluted into the surrounding electrolyte, which may reduce thermal stability and impair safety.

こうしたなか、より優れた電池特性を有するリチウムイオン二次電池を実現すべく、種々の正極活物質が開発されている。例えば、特許文献1には、Li(1+a)(Ni1-b-cbCoc)O2(Mは所定の金属)で表されるリチウム遷移金属酸化物粒子の表面に、Li1+xM’xM’’2-x(PO43(M’及びM’’は所定の金属)で表されるリチウム金属フォスフェートナノ粒子が配置されてなる二次電池用正極活物質が開示されており、二次電池における高容量、熱安全性及び高温寿命特性の向上を図っている。また、特許文献2には、ニッケルを主成分とするリチウム複合酸化物を含有する活物質粒子の表面に、Li、La、Al及びZr等を含む固体電解質を含有する被覆層を備えた正極活物質が開示されており、非水二次電池の放電容量を維持しつつ、サイクル特性の向上を試みている。
このように、いずれの文献においても、いわゆるリチウム複合酸化物粒子の表面をリチウムイオン固体電解質粒子で被覆した正極活物質により、種々の電池特性の向上を図っている。
Under these circumstances, various positive electrode active materials have been developed in order to realize lithium ion secondary batteries with better battery characteristics. For example , in Patent Document 1 , Li 1+ A positive electrode active material for a secondary battery in which lithium metal phosphate nanoparticles represented by x M' x M'' 2-x (PO 4 ) 3 (M' and M'' are predetermined metals) are arranged is The invention is intended to improve high capacity, thermal safety, and high-temperature life characteristics in secondary batteries. Further, Patent Document 2 discloses a positive electrode active material comprising a coating layer containing a solid electrolyte containing Li, La, Al, Zr, etc. on the surface of active material particles containing a lithium composite oxide mainly composed of nickel. Materials have been disclosed that attempt to improve the cycle characteristics of non-aqueous secondary batteries while maintaining their discharge capacity.
In this manner, in both documents, various battery characteristics are improved by using a positive electrode active material in which the surface of so-called lithium composite oxide particles is coated with lithium ion solid electrolyte particles.

特表2018-517243号公報Special Publication No. 2018-517243 特開2019-3786号公報JP 2019-3786 Publication

しかしながら、本発明者らの検討により、上記特許文献に記載の正極活物質であっても、リチウムイオン二次電池を形成した際における放電容量やレート特性を充分に高めるには、さらなる改善の余地のあることが判明した。 However, the inventors' studies have revealed that even with the positive electrode active material described in the above patent document, there is still room for further improvement in order to sufficiently increase the discharge capacity and rate characteristics when forming a lithium ion secondary battery. It turns out that there is.

したがって、本発明の課題は、リチウム複合酸化物粒子を用いつつ、良好な放電容量及びレート特性を有するリチウムイオン二次電池を実現することのできるリチウムイオン二次電池用正極活物質複合体を提供することにある。 Therefore, an object of the present invention is to provide a positive electrode active material composite for a lithium ion secondary battery that can realize a lithium ion secondary battery having good discharge capacity and rate characteristics while using lithium composite oxide particles. It's about doing.

そこで本発明者らは、上記課題を解決すべく鋭意検討を行った結果、特定のリチウム複合酸化物二次粒子(A)の表面に特定のリチウム正極活物質粒子(B)が担持してなるとともに、かかるリチウム正極活物質粒子(B)の表面にはリチウム系固体電解質(C)が担持してなるリチウムイオン二次電池用正極活物質複合体であれば、得られるリチウムイオン二次電池の放電容量及びレート特性の向上を有効に図ることが可能になることを見出した。 Therefore, as a result of intensive studies to solve the above problems, the present inventors found that specific lithium positive electrode active material particles (B) are supported on the surface of specific lithium composite oxide secondary particles (A). In addition, in the case of a positive electrode active material composite for a lithium ion secondary battery in which a lithium-based solid electrolyte (C) is supported on the surface of the lithium positive electrode active material particles (B), the resulting lithium ion secondary battery It has been found that it is possible to effectively improve discharge capacity and rate characteristics.

したがって、本発明は、下記式(1)、又は式(2):
LiNiaCobMnc1 w2・・・(1)
(式(1)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
LiNidCoeAlf2 x2 ・・・(2)
(式(2)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなるリチウム複合酸化物二次粒子(A)の表面において、下記式(3)、式(4)、式(5)、又は式(6):
LiM3 gCoh2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
LiM4 iMnj4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
LiNikMn1-k4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
Li2MnO3-LiM62 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表されるリチウム正極活物質粒子(B)が担持してなるとともに、リチウム正極活物質粒子(B)の表面にリチウム系固体電解質(C)が担持してなるリチウムイオン二次電池用正極活物質複合体(D)を提供するものである。
Therefore, the present invention provides the following formula (1) or formula (2):
LiNia Co b Mn c M 1 w O 2 ...(1)
(In formula (1), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Represents one or more elements selected from Bi and Ge. a, b, c, and w are 0.3≦a<1, 0<b≦0.7, 0<c≦0.7, Indicates a number that satisfies 0≦w≦0.3 and 3a+3b+3c+(valence of M1 )×w=3.)
LiNi d Co e Al f M 2 x O 2 ...(2)
(In formula (2), M2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and Represents one or more elements selected from Ge. d, e, f, x are 0.4≦d<1, 0<e≦0.6, 0<f≦0.3, 0≦ Indicates a number that satisfies x≦0.3 and 3d+3e+3f+(valence of M2 )×x=3.)
On the surface of lithium composite oxide secondary particles (A) consisting of lithium composite oxide particles represented by the following formula (3), formula (4), formula (5), or formula (6):
LiM3gCohO2 ... ( 3 )
(In formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) In, g and h indicate numbers that satisfy 0≦g≦0.1, 0<h≦1, and (valence of M 3 )×g+3h=3.)
LiM 4 i Mn j O 4 ...(4)
(In formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In formula (4), i and j represent numbers satisfying 0≦i≦0.1, 0<j≦2, and (valence of M4 )×i+(valence of Mn)×j=7 .)
LiNik Mn 1-k O 4 ...(5)
(In formula (5), k represents a number satisfying 0.3≦k≦0.7.)
Li2MnO3 -LiM6O2 ... ( 6 )
(In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. (Indicates one or more elements selected from.)
A positive electrode active for a lithium ion secondary battery, in which lithium positive electrode active material particles (B) represented by: A substance complex (D) is provided.

また、本発明は、次の工程(I)~工程(III):
(I)リチウム正極活物質粒子(B)、及びリチウム系固体電解質(C)の原料化合物を含む、固形分濃度が20質量%~65質量%のスラリー(a-1)を調製した後、熱風の供給量G(L/分)とスラリー(a-1)の供給量S(L/分)との比(G/S)が500~10000の条件で噴霧乾燥して造粒物(a)を得る工程、
(II)得られた造粒物(a)を、500℃~800℃で10分間~3時間焼成して、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)からなる、空隙率が45体積%~80体積%の予備造粒物(b)を得る工程、並びに
(III)得られた予備造粒物(b)とリチウム複合酸化物二次粒子(A)とを圧縮力及びせん断力を付加しながら混合して、予備造粒物(b)を解砕させながら、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)とリチウム複合酸化物二次粒子(A)とを複合化する工程
を備える上記リチウムイオン二次電池用正極活物質複合体(D)の製造方法を提供するものである。
Further, the present invention provides the following steps (I) to (III):
(I) After preparing a slurry (a-1) containing the lithium positive electrode active material particles (B) and the raw material compound of the lithium-based solid electrolyte (C) and having a solid content concentration of 20% to 65% by mass, hot air The ratio (G/S) of supply amount G (L/min) of slurry (a-1) to supply amount S (L/min) of slurry (a-1) is 500 to 10,000 to obtain granules (a). The process of obtaining
(II) The obtained granules (a) are fired at 500°C to 800°C for 10 minutes to 3 hours, and the lithium positive electrode active material particles (B ), and (III) obtaining a pre-granulated product (b) with a porosity of 45% to 80% by volume, and (III) obtaining a pre-granulated product (b) and lithium composite oxide secondary particles (A ) while applying compressive force and shearing force to crush the pre-granulated material (b), and produce lithium positive electrode active material particles (B) having a lithium-based solid electrolyte (C) supported on the surface. ) and lithium composite oxide secondary particles (A) are provided.

本発明のリチウムイオン二次電池用正極活物質複合体によれば、リチウム複合酸化物二次粒子表面に、リチウム系固体電解質を担持したリチウム正極活物質粒子が有効に担持されてなることにより、良好な放電容量及びレート特性をも有するリチウムイオン二次電池を実現することができる。 According to the positive electrode active material composite for a lithium ion secondary battery of the present invention, the lithium positive electrode active material particles carrying a lithium-based solid electrolyte are effectively supported on the surface of the lithium composite oxide secondary particles. A lithium ion secondary battery having good discharge capacity and rate characteristics can be realized.

以下、本発明について詳細に説明する。
本発明のリチウムイオン二次電池用正極活物質複合体(D)は、下記式(1)、又は式(2):
LiNiaCobMnc1 w2・・・(1)
(式(1)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
LiNidCoeAlf2 x2 ・・・(2)
(式(2)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなるリチウム複合酸化物二次粒子(A)の表面において、下記式(3)、式(4)、式(5)、又は式(6):
LiM3 gCoh2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
LiM4 iMnj4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
LiNikMn1-k4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
Li2MnO3-LiM62 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表されるリチウム正極活物質粒子(B)が担持してなるとともに、リチウム正極活物質粒子(B)の表面にリチウム系固体電解質(C)が担持してなる。
The present invention will be explained in detail below.
The positive electrode active material composite (D) for lithium ion secondary batteries of the present invention has the following formula (1) or formula (2):
LiNia Co b Mn c M 1 w O 2 ...(1)
(In formula (1), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Represents one or more elements selected from Bi and Ge. a, b, c, and w are 0.3≦a<1, 0<b≦0.7, 0<c≦0.7, Indicates a number that satisfies 0≦w≦0.3 and 3a+3b+3c+(valence of M1 )×w=3.)
LiNi d Co e Al f M 2 x O 2 ...(2)
(In formula (2), M2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and Represents one or more elements selected from Ge. d, e, f, x are 0.4≦d<1, 0<e≦0.6, 0<f≦0.3, 0≦ Indicates a number that satisfies x≦0.3 and 3d+3e+3f+(valence of M2 )×x=3.)
On the surface of lithium composite oxide secondary particles (A) consisting of lithium composite oxide particles represented by the following formula (3), formula (4), formula (5), or formula (6):
LiM3gCohO2 ... ( 3 )
(In formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) In, g and h indicate numbers that satisfy 0≦g≦0.1, 0<h≦1, and (valence of M 3 )×g+3h=3.)
LiM 4 i Mn j O 4 ...(4)
(In formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In formula (4), i and j represent numbers satisfying 0≦i≦0.1, 0<j≦2, and (valence of M4 )×i+(valence of Mn)×j=7 .)
LiNik Mn 1-k O 4 ...(5)
(In formula (5), k represents a number satisfying 0.3≦k≦0.7.)
Li2MnO3 -LiM6O2 ... ( 6 )
(In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. (Indicates one or more elements selected from.)
The lithium positive electrode active material particles (B) represented by the following formula are supported, and a lithium-based solid electrolyte (C) is supported on the surface of the lithium positive electrode active material particles (B).

本発明のリチウムイオン二次電池用正極活物質複合体(D)を構成するリチウム複合酸化物二次粒子(A)は、下記式(1)、又は式(2):
LiNiaCobMnc1 w2・・・(1)
(式(1)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
LiNidCoeAlf2 x2 ・・・(2)
(式(2)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなる二次粒子であり、層状型岩塩構造を有する粒子である。
The lithium composite oxide secondary particles (A) constituting the positive electrode active material composite (D) for lithium ion secondary batteries of the present invention are expressed by the following formula (1) or formula (2):
LiNia Co b Mn c M 1 w O 2 ...(1)
(In formula (1), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Represents one or more elements selected from Bi and Ge. a, b, c, and w are 0.3≦a<1, 0<b≦0.7, 0<c≦0.7, Indicates a number that satisfies 0≦w≦0.3 and 3a+3b+3c+(valence of M1 )×w=3.)
LiNi d Co e Al f M 2 x O 2 ...(2)
(In formula (2), M2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and Represents one or more elements selected from Ge. d, e, f, x are 0.4≦d<1, 0<e≦0.6, 0<f≦0.3, 0≦ Indicates a number that satisfies x≦0.3 and 3d+3e+3f+(valence of M2 )×x=3.)
These are secondary particles made of lithium composite oxide particles represented by , and are particles having a layered rock salt structure.

上記式(1)で表されるリチウム複合酸化物粒子(いわゆるLi-Ni-Co-Mn酸化物であり、以後「NCM系複合酸化物」と称する。)及び上記式(2)で表されるリチウム複合酸化物粒子(いわゆるLi-Ni-Co-Al酸化物であり、以後「NCA系複合酸化物」と称する。)も層状型岩塩構造を有する粒子であり、凝集することによって、リチウム複合酸化物二次粒子(A)を形成する。したがって、二次粒子についても、同様に「NCM系複合酸化物二次粒子(A)」、「NCA系複合酸化物二次粒子(A)」等と称する。 Lithium composite oxide particles represented by the above formula (1) (so-called Li-Ni-Co-Mn oxide, hereinafter referred to as "NCM-based composite oxide") and the lithium composite oxide particles represented by the above formula (2) Lithium composite oxide particles (so-called Li-Ni-Co-Al oxides, hereinafter referred to as "NCA-based composite oxides") are also particles with a layered rock salt structure, and by agglomeration, lithium composite oxide form secondary particles (A). Therefore, the secondary particles are also referred to as "NCM-based composite oxide secondary particles (A)", "NCA-based composite oxide secondary particles (A)", etc.

上記式(1)で表されるNCM系複合酸化物粒子は、リチウム複合酸化物二次粒子(A)を形成する。式(1)中のM1は、Mg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。
また、上記式(1)中のa、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数である。
The NCM-based composite oxide particles represented by the above formula (1) form lithium composite oxide secondary particles (A). M 1 in formula (1) is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Indicates one or more elements selected from Bi and Ge.
In addition, a, b, c, and w in the above formula (1) are 0.3≦a<1, 0<b≦0.7, 0<c≦0.7, 0≦w≦0.3, And it is a number that satisfies 3a+3b+3c+(valence of M1 )×w=3.

上記式(1)で表されるNCM系複合酸化物粒子において、Ni、Co及びMnは、電子伝導性に優れ、電池容量及び出力特性に寄与することが知られている。また、サイクル特性の観点からは、かかる遷移元素の一部が他の金属元素M1により置換されていることが好ましい。これら金属元素M1により置換されることにより、式(1)で表されるNCM系複合酸化物粒子の結晶構造が安定化されるため、充放電を繰り返しても結晶構造の破壊が抑制でき、優れたサイクル特性が実現し得ると考えられる。
上記式(1)で表されるNCM系複合酸化物粒子としては、具体的には、例えばLiNi0.33Co0.33 Mn0.342、LiNi0.8Co0.1Mn0.12、LiNi0.6Co0.2Mn0.22、LiNi0.2Co0.4Mn0.42、LiNi0.33Co0.31Mn0.33Mg0.032、又はLiNi0.33Co0.31Mn0.33Zn0.032等が挙げられる。なかでも、LiNi0.8Co0.1Mn0.12、LiNi0.6Co0.2Mn0.22、LiNi0.33Co0.33 Mn0.342、LiNi0.33Co0.31Mn0.33Mg0.032からなる粒子が好ましい。
In the NCM-based composite oxide particles represented by the above formula (1), Ni, Co, and Mn are known to have excellent electronic conductivity and contribute to battery capacity and output characteristics. Moreover, from the viewpoint of cycle characteristics, it is preferable that a part of the transition element is replaced by another metal element M 1 . By being substituted with these metal elements M 1 , the crystal structure of the NCM-based composite oxide particles represented by formula (1) is stabilized, so even if charging and discharging are repeated, destruction of the crystal structure can be suppressed. It is believed that excellent cycle characteristics can be achieved.
Specifically, the NCM-based composite oxide particles represented by the above formula (1) include, for example, LiNi 0.33 Co 0.33 Mn 0.34 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.2 Co 0.4 Mn 0.4 O 2 , LiNi 0.33 Co 0.31 Mn 0.33 Mg 0.03 O 2 , or LiNi 0.33 Co 0.31 Mn 0.33 Zn 0.03 O 2 . Among them, LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.33 Co 0.33 Mn 0.34 O 2 , LiNi 0.33 Co 0.31 Mn 0.33 Mg 0.03 Particles consisting of O2 are preferred.

さらに、互いに組成が異なる2種以上の上記式(1)で表されるNCM系複合酸化物粒子は、コア部(内部)とシェル部(表層部)とを有するコア-シェル構造のリチウム複合酸化物二次粒子(A)(NCM系複合酸化物二次粒子(A))を形成していてもよい。 Furthermore, two or more types of NCM-based composite oxide particles represented by the above formula (1) having different compositions have a core-shell structure of lithium composite oxide particles having a core part (interior) and a shell part (surface layer part). secondary particles (A) (NCM-based composite oxide secondary particles (A)) may be formed.

このコア-シェル構造を形成してなるNCM系複合酸化物二次粒子(A)とすることによって、電解液に溶出しやすいNi濃度の高いNCM系複合酸化物粒子をコア部に配置し、電解液に接するシェル部にはNi濃度の低いNCM系複合酸化物粒子を配置することができるので、サイクル特性の低下の抑制と安全性の確保をより向上させることができる。このとき、コア部は1相であってもよいし、組成の異なる2相以上で構成していてもよい。コア部を2相以上で構成する態様として、同心円状に複数の相が層状となって積層された構造でもよいし、コア部の表面から中心部に向けて遷移的に組成が変化する構造でもよい。
さらに、シェル部は、コア部の外側に形成されてなるものであればよく、コア部同様に1相であってもよいし、組成の異なる2相以上で構成していてもよい。
By forming the NCM-based composite oxide secondary particles (A) formed with this core-shell structure, NCM-based composite oxide particles with a high Ni concentration that are easily eluted into the electrolytic solution are placed in the core part, and electrolytic Since NCM-based composite oxide particles with a low Ni concentration can be placed in the shell portion that comes into contact with the liquid, it is possible to further suppress deterioration of cycle characteristics and ensure safety. At this time, the core portion may be composed of one phase, or may be composed of two or more phases having different compositions. As an embodiment in which the core part is composed of two or more phases, it may be a structure in which a plurality of phases are laminated in concentric circles, or a structure in which the composition changes transitionally from the surface of the core part toward the center part. good.
Further, the shell portion may be formed outside the core portion, and may be formed of one phase like the core portion, or may be formed of two or more phases having different compositions.

このような組成が異なる2種以上のNCM系複合酸化物粒子によってコア-シェル構造を形成してなるNCM系複合酸化物二次粒子(A)として、具体的には(コア部)-(シェル部)が、例えば(LiNi0.8Co0.1Mn0.12)-(LiNi0.2Co0.4Mn0.42)、(LiNi0.8Co0.1Mn0.12)-(LiNi0.33Co0.33Mn0.342)、又は(LiNi0.8Co0.1Mn0.12)-(LiNi0.33Co0.31Mn0.33Mg0.032)等からなる粒子が挙げられる。 Specifically, the NCM-based composite oxide secondary particles (A) formed by forming a core-shell structure by two or more types of NCM-based composite oxide particles having different compositions include (core part) - (shell part). For example, (LiNi 0.8 Co 0.1 Mn 0.1 O 2 )-(LiNi 0.2 Co 0.4 Mn 0.4 O 2 ), (LiNi 0.8 Co 0.1 Mn 0.1 O 2 )-(LiNi 0.33 Co 0.33 Mn 0.34 O 2 ) or Examples include particles consisting of (LiNi 0.8 Co 0.1 Mn 0.1 O 2 )-(LiNi 0.33 Co 0.31 Mn 0.33 Mg 0.03 O 2 ).

さらに、上記式(1)で表されるNCM系複合酸化物粒子は、金属酸化物、金属フッ化物又は金属リン酸塩で被覆されていてもよい。これら金属酸化物、金属フッ化物又は金属リン酸塩でNCM系複合酸化物粒子を被覆することによって、電解液へのNCM系複合酸化物粒子からの金属成分(Ni、Mn、Co、M1)の溶出を抑制することができる。かかる被覆物としては、CeO2、SiO2、MgO、Al23、ZrO2、TiO2、ZnO、RuO2、SnO2、CoO、Nb25、CuO、V25、MoO3、La23、WO3、AlF3、NiF2、MgF2、Li3PO4、Li427、LiPO3、Li2PO3F、及びLiPO22から選択される1種又は2種以上、或いはこれらの複合化物を用いることができる。 Furthermore, the NCM-based composite oxide particles represented by the above formula (1) may be coated with a metal oxide, a metal fluoride, or a metal phosphate. By coating the NCM-based composite oxide particles with these metal oxides, metal fluorides, or metal phosphates, metal components (Ni, Mn, Co, M 1 ) from the NCM-based composite oxide particles are added to the electrolyte. The elution of can be suppressed. Such coatings include CeO2 , SiO2 , MgO , Al2O3 , ZrO2, TiO2 , ZnO, RuO2 , SnO2 , CoO, Nb2O5 , CuO , V2O5 , MoO3 , One or more selected from La 2 O 3 , WO 3 , AlF 3 , NiF 2 , MgF 2 , Li 3 PO 4 , Li 4 P 2 O 7 , LiPO 3 , Li 2 PO 3 F, and LiPO 2 F 2 Two or more types or a composite thereof can be used.

上記式(1)で表されるNCM系複合酸化物粒子の一次粒子としての平均粒径は、好ましくは500nm以下であり、より好ましくは300nm以下である。このように、NCM系複合酸化物粒子の一次粒子としての平均粒径を少なくとも500nm以下にすることで、リチウムイオンの挿入及び脱離に伴う上記一次粒子の膨張収縮量を抑制することができ、粒子割れを有効に防止することができる。なお、上記一次粒子の平均粒径の下限値は特に限定されないが、ハンドリングの観点から、50nm以上が好ましい。
ここで、平均粒径とは、SEM又はTEMの電子顕微鏡観察において、数十個の粒子の粒径(長軸の長さ)の測定値の平均値を意味し、以後の説明においても同義である。
The average particle diameter of the NCM-based composite oxide particles represented by the above formula (1) as primary particles is preferably 500 nm or less, more preferably 300 nm or less. In this way, by setting the average particle diameter of the NCM-based composite oxide particles as primary particles to at least 500 nm or less, it is possible to suppress the amount of expansion and contraction of the primary particles due to insertion and desorption of lithium ions, Particle cracking can be effectively prevented. Note that the lower limit of the average particle diameter of the primary particles is not particularly limited, but from the viewpoint of handling, it is preferably 50 nm or more.
Here, the average particle size means the average value of the measured values of the particle size (long axis length) of several dozen particles in SEM or TEM electron microscope observation, and it has the same meaning in the following explanation. be.

また、上記一次粒子が凝集して形成するNCM系複合酸化物二次粒子(A)の平均粒径は、好ましくは25μm以下であり、より好ましくは20μm以下である。かかる二次粒子の平均粒径が25μm以下であると、サイクル特性に優れた電池を得ることができる。なお、上記二次粒子の平均粒径の下限値は特に限定されないが、ハンドリングの観点から1μm以上が好ましく、5μm以上がより好ましい。
なお、本明細書において、NCM系複合酸化物二次粒子(A)は、二次粒子を形成してなる一次粒子のみを含み、リチウム正極活物質粒子(B)やリチウム系固体電解質(C)を含まない。
Further, the average particle size of the NCM-based composite oxide secondary particles (A) formed by agglomeration of the primary particles is preferably 25 μm or less, more preferably 20 μm or less. When the average particle size of such secondary particles is 25 μm or less, a battery with excellent cycle characteristics can be obtained. Note that the lower limit of the average particle diameter of the secondary particles is not particularly limited, but from the viewpoint of handling, it is preferably 1 μm or more, and more preferably 5 μm or more.
Note that in this specification, NCM-based composite oxide secondary particles (A) include only primary particles forming secondary particles, and include lithium positive electrode active material particles (B) and lithium-based solid electrolyte (C). Does not include.

上記式(1)で表されるNCM系複合酸化物粒子が、NCM系複合酸化物二次粒子(A)においてコア-シェル構造を形成してなる場合、コア部を形成する一次粒子としての平均粒径は、好ましくは50nm~500nmであり、より好ましくは50nm~300nmである。そして、上記一次粒子が凝集して形成するコア部の平均粒径は、好ましくは1μm~25μmであり、より好ましくは1μm~20μmである。
また、かかるコア部の表面を被覆するシェル部を構成するNCM系複合酸化物粒子の一次粒子としての平均粒径は、好ましくは50nm~500nmであり、より好ましくは50nm~300nmであって、かかる一次粒子が凝集して形成するシェル部の層厚は、好ましくは0.1μm~5μmであり、より好ましくは0.1μm~2.5μmである。
When the NCM-based composite oxide particles represented by the above formula (1) form a core-shell structure in the NCM-based composite oxide secondary particles (A), the average as the primary particles forming the core part The particle size is preferably 50 nm to 500 nm, more preferably 50 nm to 300 nm. The average particle diameter of the core portion formed by agglomeration of the primary particles is preferably 1 μm to 25 μm, more preferably 1 μm to 20 μm.
Further, the average particle diameter of the NCM-based composite oxide particles as primary particles constituting the shell portion covering the surface of the core portion is preferably 50 nm to 500 nm, more preferably 50 nm to 300 nm, and The layer thickness of the shell portion formed by agglomeration of primary particles is preferably 0.1 μm to 5 μm, more preferably 0.1 μm to 2.5 μm.

上記式(1)で表されるNCM系複合酸化物粒子からなるNCM系複合酸化物二次粒子(A)の内部空隙率は、リチウムイオンの挿入に伴うNCM系複合酸化物の膨張を二次粒子の内部空隙内で許容させる観点から、NCM系複合酸化物二次粒子(A)の100体積%中、4体積%~12体積%が好ましく、5体積%~10体積%がより好ましい。
かかる平均粒径及び内部空隙率を有することで、上記式(1)で表されるNCM系複合酸化物粒子からなるNCM系複合酸化物二次粒子(A)の表面では、NCM系複合酸化物粒子とリチウム正極活物質粒子(B)とが複合化して、リチウム正極活物質粒子(B)が、かかるNCM系複合酸化物二次粒子(A)の表面を被覆するように担持されて存在しているため、NCM系複合酸化物粒子に含まれる金属成分(Ni、Co、Mn、M1)の溶出を効果的に抑制しつつ、得られるリチウムイオン二次電池における放電容量やレート特性を充分に高めることができる。
The internal porosity of the NCM-based composite oxide secondary particles (A) consisting of the NCM-based composite oxide particles represented by the above formula (1) is determined by the expansion of the NCM-based composite oxide due to the insertion of lithium ions. From the viewpoint of allowing it within the internal voids of the particles, it is preferably 4% to 12% by volume, more preferably 5% to 10% by volume, based on 100% by volume of the NCM-based composite oxide secondary particles (A).
By having such an average particle size and internal porosity, on the surface of the NCM-based composite oxide secondary particles (A) consisting of the NCM-based composite oxide particles represented by the above formula (1), the NCM-based composite oxide The particles and the lithium positive electrode active material particles (B) are composited, and the lithium positive electrode active material particles (B) are supported so as to cover the surface of the NCM-based composite oxide secondary particles (A). Therefore, while effectively suppressing the elution of metal components (Ni, Co, Mn, M 1 ) contained in the NCM-based composite oxide particles, the discharge capacity and rate characteristics of the resulting lithium ion secondary battery can be sufficiently maintained. can be increased to

上記式(2)で表されるNCA系複合酸化物粒子は、上記NCM系複合酸化物粒子と同様、リチウム複合酸化物二次粒子(A)を形成する。式(2)中のM2は、Mg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。
また、上記式(2)中のd、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数である。
The NCA-based composite oxide particles represented by the above formula (2) form lithium composite oxide secondary particles (A) similarly to the above-mentioned NCM-based composite oxide particles. M 2 in formula (2) is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and Indicates one or more elements selected from Ge.
In addition, d, e, f, and x in the above formula (2) are 0.4≦d<1, 0<e≦0.6, 0<f≦0.3, 0≦x≦0.3, And it is a number that satisfies 3d+3e+3f+(valence of M 2 )×x=3.

上記式(2)で表されるNCA系複合酸化物粒子は、式(1)で表されるNCM系複合酸化物粒子よりも、さらに電池容量及び出力特性に優れている。加えて、Alの含有により、雰囲気中の湿分による変質も生じ難く、安全性にも優れている。
上記式(2)で表されるNCA系複合酸化物粒子としては、具体的には、例えばLiNi0.33Co0.33Al0.342、LiNi0.8Co0.1Al0.12、LiNi0.8Co0.15Al0.03Mg0.032、LiNi0.8Co0.15Al0.03Zn0.032等からなる粒子が挙げられる。なかでもLiNi0.8Co0.15Al0.03Mg0.032からなる粒子が好ましい。
The NCA-based composite oxide particles represented by the above formula (2) are even more excellent in battery capacity and output characteristics than the NCM-based composite oxide particles represented by the formula (1). In addition, due to the Al content, deterioration due to moisture in the atmosphere is less likely to occur, and it is also excellent in safety.
Specifically, the NCA-based composite oxide particles represented by the above formula (2) include, for example, LiNi 0.33 Co 0.33 Al 0.34 O 2 , LiNi 0.8 Co 0.1 Al 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.03 Mg 0.03 Examples include particles made of O 2 , LiNi 0.8 Co 0.15 Al 0.03 Zn 0.03 O 2 , and the like. Among these, particles made of LiNi 0.8 Co 0.15 Al 0.03 Mg 0.03 O 2 are preferred.

さらに、上記式(2)で表されるNCA系複合酸化物粒子は、金属酸化物、金属フッ化物又は金属リン酸塩で被覆されていてもよい。これら金属酸化物、金属フッ化物又は金属リン酸塩でNCA系複合酸化物粒子を被覆することによって、電解液へのNCA系複合酸化物粒子からの金属成分(Ni、Al、Co、M2)の溶出を抑制することができる。かかる被覆物としては、CeO2、SiO2、MgO、Al23、ZrO2、TiO2、ZnO、RuO2、SnO2、CoO、Nb25、CuO、V25、MoO3、La23、WO3、AlF3、NiF2、MgF2、Li3PO4、Li427、LiPO3、Li2PO3F、及びLiPO22から選択される1種又は2種以上、或いはこれらの複合化物を用いることができる。 Furthermore, the NCA-based composite oxide particles represented by the above formula (2) may be coated with a metal oxide, a metal fluoride, or a metal phosphate. By coating the NCA-based composite oxide particles with these metal oxides, metal fluorides, or metal phosphates, metal components (Ni, Al, Co, M 2 ) from the NCA-based composite oxide particles are added to the electrolyte. The elution of can be suppressed. Such coatings include CeO2 , SiO2 , MgO , Al2O3 , ZrO2, TiO2 , ZnO, RuO2 , SnO2 , CoO, Nb2O5 , CuO , V2O5 , MoO3 , One or more selected from La 2 O 3 , WO 3 , AlF 3 , NiF 2 , MgF 2 , Li 3 PO 4 , Li 4 P 2 O 7 , LiPO 3 , Li 2 PO 3 F, and LiPO 2 F 2 Two or more types or a composite thereof can be used.

上記式(2)で表されるNCA系複合酸化物の一次粒子としての平均粒径、及び上記一次粒子が凝集して形成される複合酸化物二次粒子(A)の平均粒径、並びにかかる二次粒子の内部空隙率は、上記のNCM系複合酸化物粒子(A)と同様である。すなわち、上記式(2)で表されるNCA系複合酸化物粒子の一次粒子としての平均粒径は、好ましくは500nm以下であり、より好ましくは300nm以下であり、上記一次粒子からなるNCA系複合酸化物二次粒子(A)の平均粒径は、好ましくは25μm以下であり、より好ましくは20μm以下である。また、上記式(2)で表されるNCA系複合酸化物粒子からなるNCA系複合酸化物二次粒子(A)の内部空隙率は、かかる二次粒子の体積100%中、4体積%~12体積%が好ましく、5体積%~10体積%がより好ましい。
かかる平均粒径及び内部空隙率を有することで、上記式(2)で表されるNCA系複合酸化物粒子からなるNCA系複合酸化物二次粒子(A)の表面では、NCA系複合酸化物粒子とリチウム正極活物質粒子(B)とが複合化して、リチウム正極活物質粒子(B)が、かかる二次粒子の表面を被覆するように担持されて存在しているため、NCA系複合酸化物粒子に含まれる金属成分(Ni、Co、Al、M2)の溶出を効果的に抑制しつつ、得られるリチウムイオン二次電池における放電容量やレート特性を充分に高めることができる。
The average particle size as primary particles of the NCA-based composite oxide represented by the above formula (2), the average particle size of the composite oxide secondary particles (A) formed by agglomeration of the above primary particles, and The internal porosity of the secondary particles is the same as that of the NCM-based composite oxide particles (A) described above. That is, the average particle diameter of the NCA-based composite oxide particles represented by the above formula (2) as primary particles is preferably 500 nm or less, more preferably 300 nm or less, and the NCA-based composite oxide particles consisting of the above primary particles The average particle size of the oxide secondary particles (A) is preferably 25 μm or less, more preferably 20 μm or less. Further, the internal porosity of the NCA-based composite oxide secondary particles (A) made of the NCA-based composite oxide particles represented by the above formula (2) is 4% by volume to 4% by volume based on 100% of the volume of such secondary particles. 12% by volume is preferred, and 5% to 10% by volume is more preferred.
By having such an average particle size and internal porosity, on the surface of the NCA-based composite oxide secondary particles (A) consisting of the NCA-based composite oxide particles represented by the above formula (2), the NCA-based composite oxide The particles and the lithium positive electrode active material particles (B) are composited, and the lithium positive electrode active material particles (B) are supported so as to cover the surface of the secondary particles, so that the NCA-based composite oxide The discharge capacity and rate characteristics of the resulting lithium ion secondary battery can be sufficiently increased while effectively suppressing the elution of metal components (Ni, Co, Al, M 2 ) contained in the particles.

本発明のリチウム複合酸化物二次粒子(A)は、上記式(1)で表されるNCM系複合酸化物粒子と上記式(2)で表されるNCA系複合酸化物粒子が混在していてもよい。その混在状態は、上記式(1)で表されるNCM系複合酸化物粒子である一次粒子と上記式(2)で表されるNCA系複合酸化物粒子である一次粒子が共存してなる二次粒子を形成してもよく、また上記式(1)で表されるNCM系複合酸化物粒子のみからなる二次粒子と上記式(2)で表されるNCA系複合酸化物粒子のみからなる二次粒子とが混在してもよく、さらには上記式(1)で表されるNCM系複合酸化物粒子である一次粒子と上記式(2)で表されるNCA系複合酸化物粒子である一次粒子が共存してなる二次粒子、上記式(1)で表されるNCM系複合酸化物粒子のみからなる二次粒子と上記式(2)で表されるNCA系複合酸化物粒子のみからなる二次粒子とが混在するものであってもよい。 The lithium composite oxide secondary particles (A) of the present invention are a mixture of NCM-based composite oxide particles represented by the above formula (1) and NCA-based composite oxide particles represented by the above formula (2). You can. The mixed state is a secondary particle formed by the coexistence of primary particles that are NCM-based composite oxide particles represented by the above formula (1) and primary particles that are NCA-based composite oxide particles represented by the above formula (2). Secondary particles may be formed, and secondary particles may be formed only of NCM-based composite oxide particles represented by the above formula (1) and NCA-based composite oxide particles represented by the above formula (2). Secondary particles may be mixed, and further, primary particles that are NCM-based composite oxide particles represented by the above formula (1) and NCA-based composite oxide particles represented by the above formula (2) may be mixed. Secondary particles formed by the coexistence of primary particles, secondary particles consisting only of NCM-based composite oxide particles expressed by the above formula (1), and only NCA-based complex oxide particles expressed by the above formula (2) The secondary particles may also be mixed.

上記式(1)で表されるNCM系複合酸化物粒子と上記式(2)で表されるNCA系複合酸化物粒子が混在する場合の、NCM系複合酸化物粒子とNCA系複合酸化物粒子の割合(質量%)は、求める電池特性によって適宜調整すればよい。例えば、レート特性を重視する場合には、上記式(1)で表されるNCM系複合酸化物粒子が占める割合を高くするのが好ましく、具体的には、NCM系複合酸化物粒子とNCA系複合酸化物粒子の質量比(NCM系複合酸化物:NCA系複合酸化物)は、99.9:0.1~60:40であるのが好ましい。また、例えば、電池容量を重視する場合には、上記式(2)で表されるNCA系複合酸化物粒子が占める割合を高くするのが好ましく、具体的には、例えばNCM系複合酸化物粒子とNCA系複合酸化物粒子の質量比(NCM系複合酸化物:NCA系複合酸化物)は、40:60~0.1:99.9であるのが好ましい。 NCM-based composite oxide particles and NCA-based composite oxide particles when NCM-based composite oxide particles represented by the above formula (1) and NCA-based composite oxide particles represented by the above formula (2) coexist. The ratio (mass %) may be adjusted as appropriate depending on the desired battery characteristics. For example, when placing importance on rate characteristics, it is preferable to increase the proportion of NCM-based composite oxide particles represented by the above formula (1). Specifically, NCM-based composite oxide particles and NCA-based The mass ratio of the composite oxide particles (NCM-based composite oxide:NCA-based composite oxide) is preferably 99.9:0.1 to 60:40. For example, when placing emphasis on battery capacity, it is preferable to increase the proportion of NCA-based composite oxide particles represented by the above formula (2). Specifically, for example, NCM-based composite oxide particles The mass ratio of NCM-based composite oxide and NCA-based composite oxide particles (NCM-based composite oxide:NCA-based composite oxide) is preferably 40:60 to 0.1:99.9.

本発明のリチウムイオン二次電池用正極活物質複合体(D)を構成するリチウム正極活物質粒子(B)は、下記式(3)、式(4)、式(5)、又は式(6):
LiM3 gCoh2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
LiM4 iMnj4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
LiNikMn1-k4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
Li2MnO3-LiM62 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表され、かかるリチウム正極活物質粒子(B)は、リチウム複合酸化物二次粒子(A)の表面を被覆するように、リチウム複合酸化物粒子と複合化しつつ担持されてなる。
The lithium positive electrode active material particles (B) constituting the positive electrode active material composite (D) for lithium ion secondary batteries of the present invention can be expressed by the following formula (3), formula (4), formula (5), or formula (6). ):
LiM3gCohO2 ... ( 3 )
(In formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) In, g and h indicate numbers that satisfy 0≦g≦0.1, 0<h≦1, and (valence of M 3 )×g+3h=3.)
LiM 4 i Mn j O 4 ...(4)
(In formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In formula (4), i and j represent numbers satisfying 0≦i≦0.1, 0<j≦2, and (valence of M4 )×i+(valence of Mn)×j=7 .)
LiNik Mn 1-k O 4 ...(5)
(In formula (5), k represents a number satisfying 0.3≦k≦0.7.)
Li2MnO3 -LiM6O2 ... ( 6 )
(In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. (Indicates one or more elements selected from.)
The lithium positive electrode active material particles (B) are supported in a composite manner with the lithium composite oxide particles so as to cover the surface of the lithium composite oxide secondary particles (A).

上記式(3):
LiM3 gCoh2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
で表されるリチウム正極活物質粒子(B)は、層状岩塩型構造の結晶構造を有するリチウム正極活物質からなる粒子である。
Above formula (3):
LiM3gCohO2 ... ( 3 )
(In formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) In, g and h indicate numbers that satisfy 0≦g≦0.1, 0<h≦1, and (valence of M 3 )×g+3h=3.)
The lithium positive electrode active material particles (B) represented by are particles made of a lithium positive electrode active material having a layered rock salt crystal structure.

上記式(3)で表されるリチウム正極活物質粒子(B)としては、良好なサイクル特性を発現させる観点からは、M3としてNi及びMnから選択されるいずれか1種以上の元素であるものが好ましく、より好ましくはM3の50モル%以上がNiである。
具体的には、LiCoO2、LiMn0.05Co0.952、LiAl0.05Co0.952、LiMg0.03Co0.982、LiSi0.03Co0.962を用いることができる。なかでも、LiCoO2が好ましい。
In the lithium positive electrode active material particles (B) represented by the above formula (3), from the viewpoint of developing good cycle characteristics, M 3 is one or more elements selected from Ni and Mn. More preferably, 50 mol% or more of M 3 is Ni.
Specifically, LiCoO 2 , LiMn 0.05 Co 0.95 O 2 , LiAl 0.05 Co 0.95 O 2 , LiMg 0.03 Co 0.98 O 2 , and LiSi 0.03 Co 0.96 O 2 can be used. Among them, LiCoO 2 is preferred.

上記式(3)で表されるリチウム正極活物質粒子(B)の平均粒径は、リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子と密に複合化する観点から、好ましくは100nm~500nmであり、より好ましくは100nm~400nmであり、さらに好ましくは100nm~300nmである。 The average particle diameter of the lithium positive electrode active material particles (B) represented by the above formula (3) is determined from the viewpoint that the lithium positive electrode active material particles (B) are densely composited with the lithium composite oxide particles only on the surface of the lithium composite oxide secondary particles (A). Therefore, the wavelength is preferably 100 nm to 500 nm, more preferably 100 nm to 400 nm, and even more preferably 100 nm to 300 nm.

リチウム複合酸化物二次粒子(A)への複合化によって担持される、上記式(3)で表されるリチウム正極活物質粒子(B)の担持量は、リチウム複合酸化物二次粒子(A)の活物質としての性能を最大限に使用する観点から、複合化して得られるリチウムイオン二次電池用正極活物質複合体(D)の全量100質量%中に、好ましくは5質量%~50質量%であり、より好ましくは7質量%~45質量%であり、さらに好ましくは9質量%~40質量%である。 The amount of the lithium positive electrode active material particles (B) represented by the above formula (3) supported by the lithium composite oxide secondary particles (A) is as follows: ) from the viewpoint of maximizing the performance as an active material, preferably 5% by mass to 50% by mass in 100% by mass of the total amount of positive electrode active material composite (D) for lithium ion secondary batteries obtained by composite. % by mass, more preferably 7% by mass to 45% by mass, still more preferably 9% by mass to 40% by mass.

この際の、式(3)で表されるリチウム正極活物質粒子(B)の担持によりリチウム複合酸化物二次粒子(A)の表面に形成されるリチウム正極活物質粒子(B)の担持層の厚さは、好ましくは100nm~3μmであり、より好ましくは300nm~3μmであり、さらに好ましくは500nm~3μmである。 At this time, a support layer of lithium positive electrode active material particles (B) is formed on the surface of the lithium composite oxide secondary particles (A) by supporting the lithium positive electrode active material particles (B) represented by formula (3). The thickness is preferably 100 nm to 3 μm, more preferably 300 nm to 3 μm, even more preferably 500 nm to 3 μm.

上記式(4):
LiM4 iMnj4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
で表されるリチウム正極活物質粒子(B)は、層状岩塩型構造の結晶構造を有するリチウム正極活物質からなる粒子である。
The above formula (4):
LiM 4 i Mn j O 4 ...(4)
(In formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In formula (4), i and j represent numbers satisfying 0≦i≦0.1, 0<j≦2, and (valence of M4 )×i+(valence of Mn)×j=7 .)
The lithium positive electrode active material particles (B) represented by are particles made of a lithium positive electrode active material having a layered rock salt crystal structure.

上記式(4)で表されるリチウム正極活物質粒子(B)としては、具体的には、LiMn24、LiNi0.5Mn1.54、LiCoMnO4、LiCrMnO4、LiFeMnO4、LiAlMnO4、LiCu0.5Mn1.54を用いることができる。なかでも、LiMn24が好ましい。 Specifically, the lithium positive electrode active material particles (B) represented by the above formula (4) include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiCoMnO 4 , LiCrMnO 4 , LiFeMnO 4 , LiAlMnO 4 , LiCu 0.5 Mn 1.5 O 4 can be used. Among them, LiMn 2 O 4 is preferred.

上記式(4)で表されるリチウム正極活物質粒子(B)の平均粒径は、リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子と密に複合化する観点から、好ましくは100nm~500nmであり、より好ましくは100nm~400nmであり、さらに好ましくは100nm~300nmである。 The average particle diameter of the lithium positive electrode active material particles (B) expressed by the above formula (4) is determined from the viewpoint that the lithium positive electrode active material particles (B) are densely composited with the lithium composite oxide particles only on the surface of the lithium composite oxide secondary particles (A). Therefore, the wavelength is preferably 100 nm to 500 nm, more preferably 100 nm to 400 nm, and even more preferably 100 nm to 300 nm.

リチウムイオン二次電池用正極活物質複合体(D)における式(4)で表されるリチウム正極活物質粒子(B)の担持量及び担持により形成されるリチウム正極活物質粒子(B)の担持層の厚さは、上記式(3)で表されるリチウム正極活物質粒子(B)と同じであって、担持量は、リチウムイオン二次電池用正極活物質複合体(D)の全量100質量%中に、好ましくは5質量%~50質量%であり、より好ましくは7質量%~45質量%であり、さらに好ましくは9質量%~40質量%であり、担持層の厚さは、好ましくは100nm~3μmであり、より好ましくは300nm~3μmであり、さらに好ましくは500nm~3μmである。 Amount of supported lithium positive electrode active material particles (B) represented by formula (4) in positive electrode active material composite (D) for lithium ion secondary batteries and support of lithium positive electrode active material particles (B) formed by the support The thickness of the layer is the same as that of the lithium positive electrode active material particles (B) represented by the above formula (3), and the supported amount is 100% of the total amount of the positive electrode active material composite for lithium ion secondary batteries (D). In the mass %, preferably 5 mass % to 50 mass %, more preferably 7 mass % to 45 mass %, still more preferably 9 mass % to 40 mass %, and the thickness of the support layer is Preferably it is 100 nm to 3 μm, more preferably 300 nm to 3 μm, even more preferably 500 nm to 3 μm.

上記式(5):
LiNikMn1-k4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
で表されるリチウム正極活物質粒子(B)は、スピネル構造を有するリチウム正極活物質からなる粒子である。
The above formula (5):
LiNik Mn 1-k O 4 ...(5)
(In formula (5), k represents a number satisfying 0.3≦k≦0.7.)
The lithium positive electrode active material particles (B) represented by are particles made of a lithium positive electrode active material having a spinel structure.

上記式(5)で表されるリチウム正極活物質粒子(B)としては、具体的には、LiNi0.4Mn0.64、LiNi0.5Mn0.54、LiNi0.6Mn0.44を用いることができる。なかでも、LiNi0.5Mn0.54が好ましい。 Specifically, as the lithium positive electrode active material particles (B) represented by the above formula (5), LiNi 0.4 Mn 0.6 O 4 , LiNi 0.5 Mn 0.5 O 4 , and LiNi 0.6 Mn 0.4 O 4 can be used. . Among them, LiNi 0.5 Mn 0.5 O 4 is preferred.

上記式(5)で表されるリチウム正極活物質粒子(B)の平均粒径は、リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子と密に複合化する観点から、好ましくは100nm~500nmであり、より好ましくは100nm~400nmであり、さらに好ましくは100nm~300nmである。 The average particle size of the lithium positive electrode active material particles (B) represented by the above formula (5) is determined from the viewpoint that the lithium positive electrode active material particles (B) are densely composited with the lithium composite oxide particles only on the surface of the lithium composite oxide secondary particles (A). Therefore, the wavelength is preferably 100 nm to 500 nm, more preferably 100 nm to 400 nm, and even more preferably 100 nm to 300 nm.

リチウムイオン二次電池用正極活物質複合体(D)における式(5)で表されるリチウム正極活物質粒子(B)の担持量及び担持より形成されるリチウム正極活物質粒子(B)の担持層の厚さは、上記式(3)及び式(4)で表されるリチウム正極活物質粒子(B)と同じであって、担持量は、リチウムイオン二次電池用正極活物質複合体(D)の全量100質量%中に、好ましくは5質量%~50質量%であり、より好ましくは7質量%~45質量%であり、さらに好ましくは9質量%~40質量%であり、担持層の厚さは、好ましくは100nm~3μmであり、より好ましくは300nm~3μmであり、さらに好ましくは500nm~3μmである。 Amount of supported lithium positive electrode active material particles (B) represented by formula (5) in positive electrode active material composite (D) for lithium ion secondary batteries and support of lithium positive electrode active material particles (B) formed by the support The thickness of the layer is the same as that of the lithium positive electrode active material particles (B) represented by the above formulas (3) and (4), and the supported amount is the same as that of the positive electrode active material composite for lithium ion secondary batteries ( It is preferably 5% by mass to 50% by mass, more preferably 7% by mass to 45% by mass, even more preferably 9% by mass to 40% by mass, in 100% by mass of the total amount of D). The thickness is preferably 100 nm to 3 μm, more preferably 300 nm to 3 μm, even more preferably 500 nm to 3 μm.

上記式(6):
Li2MnO3-LiM62 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表されるリチウム正極活物質粒子(B)は、層状岩塩型構造の結晶構造を有する固溶体を形成するリチウム正極活物質からなる粒子である。
Above formula (6):
Li2MnO3 -LiM6O2 ... ( 6 )
(In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. (Indicates one or more elements selected from.)
The lithium positive electrode active material particles (B) represented by are particles made of a lithium positive electrode active material that forms a solid solution having a layered rock salt crystal structure.

上記式(6)で表されるリチウム正極活物質粒子(B)としては、良好なサイクル特性を発現させる観点からは、M6としてCo、Ni及びMnから選択される1種または2種以上の元素であるものが好ましい。
具体的には、Li2MnO3-LiNiO2、Li2MnO3-LiCoO2、Li2MnO3-LiMn24、Li2MnO3-LiNixMn1-x2(0<x<1)、Li2MnO3-LiNixCo1-x2(0<x<1)、Li2MnO3-LiCoxMn1-x2(0<x<1)、Li2MnO3-LiNi1-x-yCoxMny2(0<x<1、0<y<1、0<x+y<1)を用いることができる。なかでも、Li2MnO3-LiNi1/3Co1/3Mn1/32が好ましい。
From the viewpoint of developing good cycle characteristics, the lithium positive electrode active material particles (B) represented by the above formula (6) include one or more types selected from Co, Ni, and Mn as M6 . Preferably, it is an element.
Specifically, Li 2 MnO 3 -LiNiO 2 , Li 2 MnO 3 -LiCoO 2 , Li 2 MnO 3 -LiMn 2 O 4 , Li 2 MnO 3 -LiNi x Mn 1-x O 2 (0<x<1 ), Li 2 MnO 3 -LiNi x Co 1-x O 2 (0<x<1), Li 2 MnO 3 -LiCo x Mn 1-x O 2 (0<x<1), Li 2 MnO 3 -LiNi 1-x-y Co x Mn y O 2 (0<x<1, 0<y<1, 0<x+y<1) can be used. Among them, Li 2 MnO 3 --LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferred.

上記式(6)で表されるリチウム正極活物質粒子(B)の平均粒径は、リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子と密に複合化する観点から、好ましくは50nm~200nmであり、より好ましくは50nm~150nmであり、さらに好ましくは50nm~100nmである。 The average particle size of the lithium positive electrode active material particles (B) expressed by the above formula (6) is determined from the viewpoint that the lithium positive electrode active material particles (B) are densely composited with the lithium composite oxide particles only on the surface of the lithium composite oxide secondary particles (A). Therefore, the wavelength is preferably 50 nm to 200 nm, more preferably 50 nm to 150 nm, and even more preferably 50 nm to 100 nm.

リチウムイオン二次電池用正極活物質複合体(D)における式(6)で表されるリチウム正極活物質粒子(B)の担持量は、リチウムイオン二次電池用正極活物質複合体(D)の全量100質量%中に、好ましくは5質量%~50質量%であり、より好ましくは7質量%~45質量%であり、さらに好ましくは9質量%~40質量%であり、担持層の厚さは、好ましくは100nm~3μmであり、より好ましくは300nm~3μmであり、さらに好ましくは500nm~3μmである。 The supported amount of lithium positive electrode active material particles (B) represented by formula (6) in the positive electrode active material composite for lithium ion secondary batteries (D) is as follows: It is preferably 5% to 50% by mass, more preferably 7% to 45% by mass, even more preferably 9% to 40% by mass, based on the total amount of 100% by mass, and the thickness of the supporting layer The thickness is preferably 100 nm to 3 μm, more preferably 300 nm to 3 μm, even more preferably 500 nm to 3 μm.

上記式(3)、式(4)、式(5)、又は式(6)で表されるリチウム正極活物質粒子(B)は、その表面にリチウム系固体電解質(C)が担持されてなる。
リチウムイオン二次電池用正極活物質複合体(D)におけるリチウム複合酸化物二次粒子(A)の含有量と、リチウム正極活物質粒子(B)及びリチウム系固体電解質(C)の合計含有量との質量比((A):(B)+(C))は、好ましくは95:5~50:50であり、より好ましくは93:7~55:45であり、さらに好ましくは91:9~57:43である。
The lithium positive electrode active material particles (B) represented by the above formula (3), formula (4), formula (5), or formula (6) have a lithium-based solid electrolyte (C) supported on the surface thereof. .
Content of lithium composite oxide secondary particles (A) in positive electrode active material composite for lithium ion secondary battery (D) and total content of lithium positive electrode active material particles (B) and lithium-based solid electrolyte (C) The mass ratio ((A):(B)+(C)) is preferably 95:5 to 50:50, more preferably 93:7 to 55:45, even more preferably 91:9. ~57:43.

上記リチウム正極活物質粒子(B)の表面の全体を被覆することとなるリチウム系固体電解質(C)の担持層の厚さは、好ましくは1nm~20nmであり、より好ましくは5nm~20nmであり、さらに好ましくは10nm~20nmである。
ここで、リチウム系固体電解質の担持層の厚さとは、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)の断面(クロスセクション)に関するTEM観察において、十個のリチウム正極活物質粒子(B)表面におけるリチウム系固体電解質(C)の担持層の厚さの測定値の平均値を意味し、以後の説明においても同義である。
The thickness of the supporting layer of the lithium-based solid electrolyte (C) that covers the entire surface of the lithium positive electrode active material particles (B) is preferably 1 nm to 20 nm, more preferably 5 nm to 20 nm. , more preferably 10 nm to 20 nm.
Here, the thickness of the supporting layer of the lithium-based solid electrolyte refers to the thickness of the lithium-based solid electrolyte support layer, which is determined by TEM observation of the cross section of the lithium positive electrode active material particles (B) having the lithium-based solid electrolyte (C) supported on the surface. It means the average value of the measured thickness of the supporting layer of the lithium-based solid electrolyte (C) on the surface of the lithium positive electrode active material particles (B), and has the same meaning in the following description.

リチウム正極活物質粒子(B)の表面に担持される、リチウム系固体電解質(C)とは、少なくとも良好なリチウムイオン伝導性を有するものであり、後述する製造方法において、焼成工程において形成することができるリチウム系固体電解質である。具体的には、例えば、Li3PO4-Li4SiO4及びLi1.3Al0.3Ti1.7(PO43のいずれか1種以上が挙げられ、なかでもLi1.3Al0.3Ti1.7(PO43が好ましい。 The lithium-based solid electrolyte (C) supported on the surface of the lithium positive electrode active material particles (B) has at least good lithium ion conductivity, and can be formed in the firing step in the manufacturing method described below. It is a lithium-based solid electrolyte that can Specifically, for example, one or more of Li 3 PO 4 -Li 4 SiO 4 and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 can be mentioned, and among them, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is preferred.

上記リチウム系固体電解質(C)の平均粒径は、好ましくは1nm~10nmであり、より好ましくは1nm~8nmであり、さらに好ましくは1nm~5nmである。
ここで、リチウム系固体電解質(C)の平均粒径は、リチウム正極活物質粒子(B)の断面(クロスセクション)に関するTEM観察において、リチウム正極活物質粒子(B)表面部における回折コントラストで識別される、数十個のリチウム系固体電解質粒子の粒径(長軸の長さ)の測定値の平均値を意味し、以後の説明においても同義である。
The average particle size of the lithium-based solid electrolyte (C) is preferably 1 nm to 10 nm, more preferably 1 nm to 8 nm, and even more preferably 1 nm to 5 nm.
Here, the average particle size of the lithium-based solid electrolyte (C) is determined by the diffraction contrast on the surface of the lithium positive electrode active material particles (B) in TEM observation of the cross section of the lithium positive electrode active material particles (B). It means the average value of the measured values of the particle diameter (long axis length) of several dozen lithium-based solid electrolyte particles, and the same meaning will apply in the following description.

本発明のリチウムイオン二次電池用正極活物質複合体(D)の平均粒径は、好ましくは2μm~30μmであり、より好ましくは3μm~20μmであり、特に好ましくは5μm~15μmである。かかるリチウムイオン二次電池用正極活物質複合体(D)の平均粒径が2μmよりも小さい場合、タップ密度が低下して作成した電極に十分な剥離強度が付与できず、電池のサイクル特性が低下するおそれがある。また、平均粒径が30μmよりも大きい場合、電極を均一に塗工することが困難になって均一な電極が得られず、電池の放電容量が低下するおそれがある。
また、本発明のリチウムイオン二次電池用正極活物質複合体(D)のタップ密度は、好ましくは0.5g/cm3~3.5g/cm3であり、より好ましくは1.5g/cm3~3.5g/cm3である。かかるリチウムイオン二次電池用正極活物質複合体(D)のタップ密度が0.5g/cm3よりも小さい場合、上述のとおり電池のサイクル特性が低下するおそれがある。
The average particle size of the positive electrode active material composite (D) for lithium ion secondary batteries of the present invention is preferably 2 μm to 30 μm, more preferably 3 μm to 20 μm, particularly preferably 5 μm to 15 μm. When the average particle size of the positive electrode active material composite (D) for lithium ion secondary batteries is smaller than 2 μm, the tap density decreases and sufficient peel strength cannot be imparted to the prepared electrode, resulting in poor cycle characteristics of the battery. There is a risk that it will decrease. Moreover, if the average particle size is larger than 30 μm, it becomes difficult to uniformly apply the electrode, and a uniform electrode may not be obtained, which may reduce the discharge capacity of the battery.
Further, the tap density of the positive electrode active material composite (D) for lithium ion secondary batteries of the present invention is preferably 0.5 g/cm 3 to 3.5 g/cm 3 , more preferably 1.5 g/cm 3 3 to 3.5 g/cm 3 . If the tap density of the positive electrode active material composite (D) for a lithium ion secondary battery is smaller than 0.5 g/cm 3 , the cycle characteristics of the battery may deteriorate as described above.

本発明のリチウムイオン二次電池用正極活物質複合体(D)は、次の工程(I)~工程(III):
(I)リチウム正極活物質粒子(B)、及びリチウム系固体電解質(C)の原料化合物を含む、固形分濃度が20質量%~65質量%のスラリー(a-1)を調製した後、熱風の供給量G(L/分)とスラリー(a-1)の供給量S(L/分)との比(G/S)が500~10000の条件で噴霧乾燥して造粒物(a)を得る工程、
(II)得られた造粒物(a)を、500℃~800℃で10分間~3時間焼成して、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)からなる、空隙率が45体積%~80体積%の予備造粒物(b)を得る工程、並びに
(III)得られた予備造粒物(b)とリチウム複合酸化物二次粒子(A)とを圧縮力及びせん断力を付加しながら混合して、予備造粒物(b)を解砕させながら、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)とリチウム複合酸化物二次粒子(A)とを複合化する工程
により得ることができる。このように、リチウム正極活物質粒子(B)からなる空隙率の高い予備造粒物(b)を得る工程(II)を経ることにより、続く工程(III)において過度な負荷を与えることなく容易に予備造粒物(b)を解砕させ、細粒化することができる。このように、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)からなる予備造粒物(b)は、細粒化されながら、かかるリチウム正極活物質粒子(B)を分離、供給することとなり、リチウム複合酸化物二次粒子(A)の表面において、リチウム複合酸化物粒子にかかるリチウム正極活物質粒子(B)を効率的かつ良好に複合化させつつ担持させることが可能となる。
The positive electrode active material composite (D) for a lithium ion secondary battery of the present invention is produced by the following steps (I) to (III):
(I) After preparing a slurry (a-1) containing the lithium positive electrode active material particles (B) and the raw material compound of the lithium-based solid electrolyte (C) and having a solid content concentration of 20% to 65% by mass, hot air The ratio (G/S) of supply amount G (L/min) of slurry (a-1) to supply amount S (L/min) of slurry (a-1) is 500 to 10,000 to obtain granules (a). The process of obtaining
(II) The obtained granules (a) are fired at 500°C to 800°C for 10 minutes to 3 hours, and the lithium positive electrode active material particles (B ), and (III) obtaining a pre-granulated product (b) with a porosity of 45% to 80% by volume, and (III) obtaining a pre-granulated product (b) and lithium composite oxide secondary particles (A ) while applying compressive force and shearing force to crush the pre-granulated material (b), and produce lithium positive electrode active material particles (B) having a lithium-based solid electrolyte (C) supported on the surface. ) and lithium composite oxide secondary particles (A). In this way, by going through the step (II) of obtaining the pre-granulated material (b) with high porosity consisting of lithium positive electrode active material particles (B), the subsequent step (III) can be easily carried out without applying an excessive load. The pre-granulated material (b) can be crushed and made into fine particles. In this way, the preliminary granules (b) consisting of the lithium positive electrode active material particles (B) with the lithium-based solid electrolyte (C) supported on the surface are finely granulated, while the lithium positive electrode active material particles ( B) is separated and supplied, and the lithium positive electrode active material particles (B) related to the lithium composite oxide particles are supported on the surface of the lithium composite oxide secondary particles (A) while being efficiently and well composited. It becomes possible to do so.

本発明の製造方法が備える工程(I)は、リチウム正極活物質粒子(B)、及びリチウム系固体電解質(C)の原料化合物を含むスラリー(a-1)を調製した後、熱風の供給量G(L/分)とスラリー(a-1)の供給量S(L/分)との比(G/S)が500~10000の条件で噴霧乾燥して造粒物(a)を得る工程である。 Step (I) included in the production method of the present invention includes preparing a slurry (a-1) containing lithium positive electrode active material particles (B) and a raw material compound of a lithium-based solid electrolyte (C), and then A step of obtaining granules (a) by spray drying under conditions where the ratio (G/S) between G (L/min) and the supply amount S (L/min) of slurry (a-1) is 500 to 10,000. It is.

工程(I)で用いるリチウム正極活物質粒子(B)は、次工程(II)において表面にリチウム系固体電解質(C)が担持された後、続く工程(III)においてリチウム複合酸化物二次粒子(A)の表面に複合化される上記式(3)~式(6)で表されるリチウム正極活物質の粒子であり、その平均粒径は上記式(3)~式(5)で表されるリチウム正極活物質粒子(B)を用いる場合は100nm~500nmであり、式(6)で表されるリチウム正極活物質粒子(B)を用いる場合は50nm~200nmである。 The lithium positive electrode active material particles (B) used in step (I) have a lithium-based solid electrolyte (C) supported on their surfaces in the next step (II), and then are lithium composite oxide secondary particles in the subsequent step (III). These are particles of lithium positive electrode active material represented by the above formulas (3) to (6) that are composited on the surface of (A), and the average particle diameter is represented by the above formulas (3) to (5). The diameter is 100 nm to 500 nm when using lithium positive electrode active material particles (B) represented by formula (6), and 50 nm to 200 nm when using lithium positive electrode active material particles (B) represented by formula (6).

スラリー(a-1)における、リチウム正極活物質粒子(B)の含有量は、水100質量部に対し、好ましくは30質量部~185質量部であり、より好ましくは50質量部~150質量部である。 The content of the lithium positive electrode active material particles (B) in the slurry (a-1) is preferably 30 parts by mass to 185 parts by mass, more preferably 50 parts by mass to 150 parts by mass, based on 100 parts by mass of water. It is.

造粒物(a)を構成するリチウム系固体電解質(C)の原料化合物は、次工程(III)において焼成されることにより、リチウム系固体電解質(C)を生成するものである。用いる原料化合物としては、スラリー(a-1)に溶解するものが好ましく、リチウム系固体電解質(C)を構成する各元素、具体的には、チタン、リチウム、アルミニウム、ケイ素、ホウ素、リンの水酸化物、炭酸塩、硫酸塩、酢酸塩等が挙げられるが、これらに限定されるものではない。 The raw material compound of the lithium-based solid electrolyte (C) constituting the granules (a) is fired in the next step (III) to produce the lithium-based solid electrolyte (C). The raw material compounds to be used are preferably those that dissolve in the slurry (a-1), and each element constituting the lithium-based solid electrolyte (C), specifically titanium, lithium, aluminum, silicon, boron, and water of phosphorus. Examples include, but are not limited to, oxides, carbonates, sulfates, acetates, and the like.

リチウム正極活物質粒子(B)の表面に、次工程(III)において焼成することにより上記原料化合物から生成するリチウム系固体電解質(C)を担持させるにあたり、スラリー(a-1)における、上記リチウム系固体電解質(C)の原料化合物の合計含有量は、次工程(III)にて得られるリチウム正極活物質粒子(B)及びかかる粒子表面に担持されるリチウム系固体電解質(C)の合計量100質量%中に、0.1質量%~15質量%となるような量であるのが望ましい。具体的には、例えばスラリー(a-1)における水100質量部に対し、好ましくは0.03質量部~35質量部であり、より好ましくは0.05質量部~20質量部である。
そして、スラリー(a-1)100質量%中における固形分濃度は、20質量%~65質量%であって、好ましくは30質量%~60質量%であり、より好ましくは40質量%~55質量%である。
In order to support the lithium-based solid electrolyte (C) produced from the raw material compound by firing in the next step (III) on the surface of the lithium positive electrode active material particles (B), the lithium in the slurry (a-1) The total content of the raw material compounds of the system solid electrolyte (C) is the total amount of the lithium positive electrode active material particles (B) obtained in the next step (III) and the lithium-based solid electrolyte (C) supported on the particle surface. The amount is desirably 0.1% by mass to 15% by mass in 100% by mass. Specifically, for example, it is preferably 0.03 parts by mass to 35 parts by mass, more preferably 0.05 parts by mass to 20 parts by mass, per 100 parts by mass of water in slurry (a-1).
The solid content concentration in 100% by mass of slurry (a-1) is 20% by mass to 65% by mass, preferably 30% to 60% by mass, more preferably 40% to 55% by mass. %.

スラリー(a-1)を調製するにあたり、リチウム正極活物質粒子(B)と溶解したリチウム系固体電解質(C)の原料を均一に分散させる観点から、分散機(ホモジナイザー)を用いた処理を行うことが好ましい。かかる分散機としては、例えば、離解機、叩解機、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等が挙げられる。なかでも、分散効率の観点から、超音波攪拌機が好ましい。スラリー(a-1)の分散均一性の程度は、例えば、UV・可視光分光装置を使用した光線透過率や、E型粘度計を使用した粘度で定量的に評価することもでき、また目視によって白濁度が均一であることを確認することで、簡便に評価することもできる。分散機で処理する時間は、好ましくは1分間~30分間であり、より好ましくは2分間~15分間である。 In preparing the slurry (a-1), a process is performed using a dispersion machine (homogenizer) in order to uniformly disperse the lithium positive electrode active material particles (B) and the dissolved lithium-based solid electrolyte (C) raw material. It is preferable. Examples of such a dispersing machine include a disintegrating machine, a beating machine, a low-pressure homogenizer, a high-pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short-screw extruder, a twin-screw extruder, an ultrasonic stirrer, a household juicer mixer, etc. Can be mentioned. Among these, an ultrasonic stirrer is preferred from the viewpoint of dispersion efficiency. The degree of dispersion uniformity of slurry (a-1) can be quantitatively evaluated, for example, by the light transmittance using a UV/visible light spectrometer or the viscosity using an E-type viscometer, or by visual observation. It can also be easily evaluated by confirming that the white turbidity is uniform. The time for treatment with a disperser is preferably 1 minute to 30 minutes, more preferably 2 minutes to 15 minutes.

次いで、得られたスラリー(a-1)を、熱風の供給量G(L/分)とスラリー(a-1)の供給量S(L/分)との比(G/S)が500~10000の条件で噴霧乾燥して、造粒物(a)を得る。かかる造粒物(a)は、次工程(II)を経ることによって、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)により形成されてなる予備造粒物(b)となる。本発明の製造方法では、リチウム正極活物質粒子(B)を堅固に凝集させてなる堅牢な二次粒子を用いることを回避して、過度な負荷を与えることなく容易に解砕させることのできる予備造粒物(b)を用いるため、かかる予備造粒物(b)を構成してなるリチウム正極活物質粒子(B)を、過大なせん断力等を必要とすることなく、リチウム複合酸化物二次粒子(A)の表面に担持させることを可能とする。 Next, the obtained slurry (a-1) is heated at a ratio (G/S) of supply amount G (L/min) of hot air to supply amount S (L/min) of slurry (a-1) of 500 to Spray drying is carried out under the conditions of 10,000 to obtain granules (a). The granules (a) undergo the next step (II) to obtain preliminary granules (formed from lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported). b). In the production method of the present invention, it is possible to avoid using strong secondary particles formed by firmly aggregating lithium positive electrode active material particles (B), and to easily crush them without applying an excessive load. Since the preliminary granules (b) are used, the lithium positive electrode active material particles (B) constituting the preliminary granules (b) can be processed into lithium composite oxide without requiring excessive shearing force or the like. This enables it to be supported on the surface of the secondary particles (A).

かかる熱風の供給量G(L/分)と、スラリー(a-1)の供給量S(L/分)との比(G/S)は、500~10000であって、1000~9000が好ましい。噴霧乾燥の際の熱風温度は、110℃~160℃が好ましく、120℃~140℃がより好ましい。 The ratio (G/S) between the supply amount G (L/min) of the hot air and the supply amount S (L/min) of the slurry (a-1) is 500 to 10000, preferably 1000 to 9000. . The hot air temperature during spray drying is preferably 110°C to 160°C, more preferably 120°C to 140°C.

工程(I)で得られる造粒物(a)の粒径は、レーザー回折・散乱法に基づく粒度分布におけるD50値で、好ましくは5μm~25μmであり、より好ましくは5μm~15μmである。
ここで、粒度分布測定におけるD50値とは、レーザー回折・散乱法に基づく体積基準の粒度分布により得られる値であり、D50値は累積50%での粒径(メジアン径)を意味する。
The particle size of the granulated product (a) obtained in step (I) is preferably 5 μm to 25 μm, more preferably 5 μm to 15 μm, as measured by the D 50 value in the particle size distribution based on laser diffraction/scattering method.
Here, the D 50 value in particle size distribution measurement is a value obtained by volume-based particle size distribution based on laser diffraction/scattering method, and the D 50 value means the particle size at 50% cumulative (median diameter). .

本発明の製造方法が備える工程(II)は、工程(I)で得られた造粒物(a)を、500℃~800℃で10分間~3時間焼成して、空隙率が45体積%~80体積%の予備造粒物(b)を得る工程である。かかる工程(II)を経ることにより、予備造粒物(b)を構成するリチウム正極活物質粒子(B)の表面にリチウム系固体電解質(C)を堅固に担持させつつ、空隙率を45体積%~80体積%に調整された、適度な解砕性を有する予備造粒物(b)を形成させることができる。 Step (II) included in the production method of the present invention is to sinter the granules (a) obtained in step (I) at 500°C to 800°C for 10 minutes to 3 hours so that the porosity becomes 45% by volume. This is the step of obtaining a pre-granulated material (b) of ~80% by volume. By going through this step (II), the lithium-based solid electrolyte (C) is firmly supported on the surface of the lithium positive electrode active material particles (B) constituting the preliminary granules (b), and the porosity is increased to 45% by volume. It is possible to form a pre-granulated material (b) having an appropriate crushability adjusted to % to 80% by volume.

焼成温度は、リチウム系固体電解質(C)を有効に生成させる観点、及び予備造粒物(b)の空隙率を45体積%~80体積%に調整して適度な解砕性を付与する観点から、500℃~800℃であって、好ましくは600℃~770℃であり、より好ましくは650℃~750℃である。また、焼成時間は、10分間~3時間であって、好ましくは30分間~1.5時間とするのがよい。 The firing temperature is determined from the viewpoint of effectively generating the lithium-based solid electrolyte (C), and from the viewpoint of imparting appropriate crushability by adjusting the porosity of the preliminary granules (b) to 45% to 80% by volume. 500°C to 800°C, preferably 600°C to 770°C, more preferably 650°C to 750°C. Further, the firing time is 10 minutes to 3 hours, preferably 30 minutes to 1.5 hours.

表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)の空隙率は、水銀圧入法に基づく空隙率で、45体積%~80体積%であって、好ましくは50体積%~80体積%である。 The porosity of the preliminary granules (b) consisting of lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported is 45% by volume to 80% by volume based on the mercury intrusion method. %, preferably 50% to 80% by volume.

また、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)のタップ密度は、好ましくは3.5g/cm3以下であり、より好ましくは1.5g/cm3~3.5g/cm3である。 Further, the tap density of the preliminary granules (b) consisting of lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported is preferably 3.5 g/cm 3 or less, and more preferably Preferably it is 1.5 g/cm 3 to 3.5 g/cm 3 .

さらに、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)の平均粒径は、レーザー回折・散乱法に基づく粒度分布におけるD50値で、好ましくは5μm~25μmであり、より好ましくは5μm~15μmである。 Furthermore, the average particle size of the pre-granulated material (b) consisting of lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported is D 50 in the particle size distribution based on the laser diffraction/scattering method. The value is preferably 5 μm to 25 μm, more preferably 5 μm to 15 μm.

表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)の解砕強度は、好ましくは1.8KN/mm以下であり、より好ましくは1.75KN/mm以下である。かかる解砕強度とは、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)の圧縮による解砕のし易さを示し、下記式(7)により求められる値を意味する。
予備造粒物(b)の解砕強度(KN/mm)=10/(t0-t10) ・・・(7) 式(7)中のt0は、直径20mmの円筒容器内に表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)を3g投入し、高さ1cmからの落下によるタッピングを10回繰返した後の密充填状態における予備造粒物(b)の層厚(mm)を示し、t10は、かかる密充填状態の予備造粒物(b)に、上部から10KNの荷重を掛けた際の予備造粒物(b)の層厚(mm)を示す。
The crushing strength of the preliminary granules (b) consisting of lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported is preferably 1.8 KN/mm or less, more preferably It is 1.75KN/mm or less. The crushing strength refers to the ease with which the preliminary granules (b) made of lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported can be crushed by compression. It means the value determined by equation (7).
Crushing strength of pre-granulated material (b) (KN/mm) = 10/(t 0 - t 10 )...(7) t 0 in formula (7) is 3 g of pre-granulated material (b) consisting of lithium positive electrode active material particles (B) on which a lithium-based solid electrolyte (C) is supported is added to the lithium-ion solid electrolyte (C), and after repeated tapping by dropping from a height of 1 cm 10 times, the densification is confirmed. Indicates the layer thickness (mm) of the pre-granulated material (b) in the packed state, and t10 is the layer thickness (mm) of the pre-granulated material (b) in the densely packed state when a load of 10 KN is applied from above. The layer thickness (mm) of object (b) is shown.

本発明の製造方法が備える工程(III)は、工程(II)で得られた予備造粒物(b)とリチウム複合酸化物二次粒子(A)とを圧縮力及びせん断力を付加しながら混合して、予備造粒物(b)を解砕させながら、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)とリチウム複合酸化物二次粒子(A)とを複合化する工程である。かかる工程を経ることにより、リチウム複合酸化物二次粒子(A)の表面に、予備造粒物(b)が解砕してなり、かつその表面にリチウム系固体電解質(C)が担持された微細なリチウム正極活物質粒子(B)を、緻密かつ広範囲に被覆するように担持させてなるリチウムイオン二次電池用正極活物質複合体(D)を得ることができる。 Step (III) included in the production method of the present invention is to combine the preliminary granules (b) obtained in step (II) with the lithium composite oxide secondary particles (A) while applying compressive force and shear force. While mixing and crushing the preliminary granules (b), lithium positive electrode active material particles (B) having a lithium-based solid electrolyte (C) supported on their surfaces and lithium composite oxide secondary particles (A) are mixed. This is the process of combining the Through this process, the preliminary granules (b) were crushed on the surface of the lithium composite oxide secondary particles (A), and the lithium-based solid electrolyte (C) was supported on the surface. It is possible to obtain a positive electrode active material composite for a lithium ion secondary battery (D) in which fine lithium positive electrode active material particles (B) are supported so as to be densely and extensively covered.

工程(III)では、圧縮力及びせん断力を付加しながら混合する前に、リチウム複合酸化物二次粒子(A)と上記予備造粒物(b)の混合物を、充分に乾式混合するのが好ましい。乾式混合の方法としては、ボールミルやVブレンダー等の、通常の乾式混合機による混合であるのが好ましく、自公転可能な遊星ボールミルによる混合がより好ましい。 In step (III), the mixture of the lithium composite oxide secondary particles (A) and the preliminary granules (b) is sufficiently dry mixed before being mixed while applying compressive force and shear force. preferable. As for the dry mixing method, it is preferable to use an ordinary dry mixer such as a ball mill or a V-blender, and mixing using a planetary ball mill that can rotate around its axis is more preferable.

圧縮力及びせん断力を付加しながら混合する(以下、「複合化する」ともいう)処理は、インペラやローター工具等を備える密閉容器で行うのがよい。かかる密閉容器を備える装置として、高速せん断ミル、ブレード型混練機、高速混合機等が挙げられ、具体的には、例えば、粒子設計装置 COMPOSI、メカノハイブリット、高性能流動式混合機FMミキサー(日本コークス工業社製)微粒子複合化装置 メカノフュージョン、ノビルタ(ホソカワミクロン社製)、表面改質装置ミラーロ、ハイブリダイゼーションシステム(奈良機械製作所社製)、アイリッヒインテンシブミキサー(日本アイリッヒ社製)を好適に用いることができる。上記複合化する処理条件としては、温度が、好ましくは5℃~80℃、より好ましくは10℃~50℃である。また、雰囲気としては、特に限定されないが、不活性ガス雰囲気又は大気雰囲気であるのが好ましい。 The process of mixing while applying compressive force and shear force (hereinafter also referred to as "compounding") is preferably performed in a closed container equipped with an impeller, rotor tool, etc. Examples of devices equipped with such a closed container include high-speed shear mills, blade-type kneaders, and high-speed mixers. Mechanofusion, a particle compounding device (manufactured by Coke Kogyo Co., Ltd.), Nobilta (manufactured by Hosokawa Micron Co., Ltd.), a surface modification device Miraro, a hybridization system (manufactured by Nara Kikai Seisakusho Co., Ltd.), and an Eirich intensive mixer (manufactured by Nippon Eirich Co., Ltd.) are preferably used. be able to. The temperature is preferably 5°C to 80°C, more preferably 10°C to 50°C. Further, the atmosphere is not particularly limited, but is preferably an inert gas atmosphere or an air atmosphere.

より具体的には、例えば、複合化を行う装置として、インペラを備えた乾式粒子複合化装置であるノビルタ(ホソカワミクロン社製)を用いる場合、かかるインペラの回転数は、上記予備造粒物(b)を効率的に解砕させつつ、リチウム複合酸化物二次粒子(A)の表面に、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)が良好に被覆するよう担持した複合酸化物を得る観点から、好ましくは2000rpm~6000rpmであり、より好ましくは2000rpm~4000rpmである。また、複合化する時間は、好ましくは1分間~10分間であり、より好ましくは1分間~7分間である。
また、かかる複合化を行う装置として、ローター工具を備えた高速攪拌混合機であるアイリッヒインテンシブミキサー(日本アイリッヒ社製)を用いた場合、かかるローター工具の回転数は、好ましくは2000rpm~8000rpmであり、より好ましくは2000rpm~6000rpmである。また、複合化する時間は、好ましくは1分間~10分間であり、より好ましくは1分間~7分間である。
More specifically, for example, when Nobilta (manufactured by Hosokawa Micron Corporation), which is a dry particle compositing device equipped with an impeller, is used as a device for compositing, the rotation speed of the impeller is set to ), the surface of the lithium composite oxide secondary particles (A) is well coated with the lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported. From the viewpoint of obtaining a supported composite oxide, the speed is preferably 2000 rpm to 6000 rpm, more preferably 2000 rpm to 4000 rpm. Further, the time for compounding is preferably 1 minute to 10 minutes, more preferably 1 minute to 7 minutes.
Further, when an Eirich intensive mixer (manufactured by Nippon Eirich Co., Ltd.), which is a high-speed stirring mixer equipped with a rotor tool, is used as a device for performing such compounding, the rotation speed of the rotor tool is preferably 2000 rpm to 8000 rpm. The speed is more preferably 2000 rpm to 6000 rpm. Further, the time for compounding is preferably 1 minute to 10 minutes, more preferably 1 minute to 7 minutes.

工程(III)における、上記複合化する時間及び/又はインペラ等の回転数は、密閉容器に投入するリチウム複合酸化物二次粒子(A)と予備造粒物(b)の混合物の量に応じて適宜調整する必要がある。そして、密閉容器を稼動させることにより、インペラ等と密閉容器内壁との間でこれら混合物に圧縮力及びせん断力が付加されつつ、予備造粒物(b)を良好に解砕させながら、リチウム複合酸化物二次粒子(A)と、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)とを複合化する処理を行うことが可能となり、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)が、上記リチウム複合酸化物二次粒子(A)の表面において良好に複合化されて被覆するよう担持してなる、リチウムイオン二次電池用正極活物質複合体(D)を得ることができる。
例えば、上記複合化を、回転数2000rpm~5000rpmで回転するインペラを備える密閉容器内で1分間~8分間行う場合、密閉容器に投入する上記混合物の量は、有効容器(インペラを備える密閉容器のうち、上記混合物を収容可能な部位に相当する容器)1cm3当たり、好ましくは0.1g~0.7gであり、より好ましくは0.15g~0.4gである。
In step (III), the time for the above-mentioned compounding and/or the rotation speed of the impeller etc. depend on the amount of the mixture of lithium composite oxide secondary particles (A) and preliminary granules (b) to be charged into the closed container. It is necessary to adjust accordingly. Then, by operating the sealed container, compressive force and shear force are applied to the mixture between the impeller, etc. and the inner wall of the sealed container, and while the preliminary granules (b) are finely crushed, the lithium composite It is now possible to perform a process of compositing oxide secondary particles (A) and lithium positive electrode active material particles (B) on which a lithium-based solid electrolyte (C) is supported. Lithium ion secondary particles (C) supported on the lithium positive electrode active material particles (B) are supported on the surfaces of the lithium composite oxide secondary particles (A) so as to be well composited and coated. A battery positive electrode active material composite (D) can be obtained.
For example, when the above-mentioned compounding is performed for 1 minute to 8 minutes in a closed container equipped with an impeller that rotates at a rotation speed of 2000 rpm to 5000 rpm, the amount of the above mixture to be put into the closed container is the effective container (closed container equipped with an impeller). Among them, the amount is preferably 0.1 g to 0.7 g, more preferably 0.15 g to 0.4 g per 1 cm 3 of the container (corresponding to the area that can accommodate the above mixture).

工程(III)において複合化させるリチウム複合酸化物二次粒子(A)の配合量と、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)の配合量との質量比(粒子(A):粒子(B)+粒子(C))は、リチウムイオン二次電池用正極活物質複合体(D)におけるリチウム複合酸化物二次粒子(A)の含有量と、リチウム正極活物質粒子(B)及びリチウム系固体電解質(C)の合計含有量との質量比((A):(B)+(C))と同じであり、かかる量となるよう、上記混合物中における予備造粒物(b)の量を調整すればよい。 The mass of the compounding amount of the lithium composite oxide secondary particles (A) to be composited in step (III) and the compounding amount of the lithium positive electrode active material particles (B) having the lithium-based solid electrolyte (C) supported on the surface The ratio (particles (A): particles (B) + particles (C)) is the content of lithium composite oxide secondary particles (A) in the positive electrode active material composite for lithium ion secondary batteries (D) and the lithium The mass ratio ((A):(B)+(C)) of the total content of the positive electrode active material particles (B) and the lithium-based solid electrolyte (C) is the same as that of the above mixture. What is necessary is just to adjust the amount of pre-granulated material (b) in .

本発明のリチウムイオン二次電池用正極活物質複合体を正極材料として適用し、これを含むリチウムイオン二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。 In particular, if the positive electrode active material composite for lithium ion secondary batteries of the present invention is applied as a positive electrode material, and the lithium ion secondary batteries containing the same include a positive electrode, a negative electrode, an electrolyte, and a separator as essential components, Not limited.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト、シリコン系(Si、SiOx)、チタン酸リチウム又は非晶質炭素等の炭素材料等を用いることができる。そしてリチウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。さらに、2種以上の上記の負極材料を併用してもよく、たとえばグラファイトとシリコン系の組み合わせを用いることができる。 Here, the material composition of the negative electrode is not particularly limited as long as it can occlude lithium ions during charging and release them during discharging, and any known material composition can be used. For example, lithium metal, graphite, silicon-based (Si, SiO x ), lithium titanate, carbon materials such as amorphous carbon, etc. can be used. It is preferable to use an electrode made of an intercalating material that can electrochemically absorb and release lithium ions, particularly a carbon material. Furthermore, two or more of the above negative electrode materials may be used in combination; for example, a combination of graphite and silicon may be used.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、一般的にリチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。 The electrolytic solution is one in which a supporting salt is dissolved in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is generally used in electrolytes of lithium ion secondary batteries, and examples thereof include carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, Lactones, oxolane compounds, etc. can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The supporting salt is not particularly limited in type, but includes inorganic salts selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , derivatives of the inorganic salts, LiSO 3 CF 3 , LiC(SO 3 CF 3 ) 2 and an organic salt selected from LiN(SO 3 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 and LiN(SO 2 CF 3 )(SO 2 C 4 F 9 ), and a derivative of the organic salt. It is preferable that it is at least one kind of.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。 The separator serves to electrically insulate the positive electrode and the negative electrode and to retain the electrolyte. For example, a porous synthetic resin membrane, particularly a porous membrane of polyolefin polymer (polyethylene, polypropylene) may be used.

上記の構成を有するリチウムイオン二次電池の形状としては、特に制限を受けるものではなく、コイン型、円筒型,角型等種々の形状や、ラミネート外装体に封入した不定形状であってもよい。 The shape of the lithium ion secondary battery having the above structure is not particularly limited, and may be various shapes such as a coin shape, a cylindrical shape, a square shape, or an irregular shape enclosed in a laminate exterior body. .

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples.

[製造例1:リチウム複合酸化物二次粒子(A-1)の製造]
Ni:Co:Mnのモル比が1:1:1となるように、硫酸ニッケル六水和物263g、硫酸コバルト七水和物281g、硫酸マンガン五水和物241g、及び水3Lを混合した後、かかる混合溶液に25%アンモニア水を、滴下速度300ml/分で滴下して、pHが11の金属複合水酸化物を含むスラリーA1を得た。
次いで、スラリーA1をろ過、乾燥して、金属複合水酸化物の混合物A2を得た後、かかる混合物A2に炭酸リチウム37gをボールミルで混合して粉末混合物A3を得た。
得られた粉末混合物A3を、大気雰囲気下で800℃×5時間仮焼成して解砕した後に造粒し、次いで本焼成として大気雰囲気下で800℃×10時間焼成し、リチウム複合酸化物二次粒子(A-1)(LiNi0.33Co0.33Mn0.342、平均粒径10μm)を得た。
[Production Example 1: Production of lithium composite oxide secondary particles (A-1)]
After mixing 263 g of nickel sulfate hexahydrate, 281 g of cobalt sulfate heptahydrate, 241 g of manganese sulfate pentahydrate, and 3 L of water so that the molar ratio of Ni:Co:Mn was 1:1:1. 25% ammonia water was added dropwise to the mixed solution at a dropping rate of 300 ml/min to obtain slurry A1 containing the metal composite hydroxide having a pH of 11.
Next, the slurry A1 was filtered and dried to obtain a metal composite hydroxide mixture A2, and then 37 g of lithium carbonate was mixed with the mixture A2 using a ball mill to obtain a powder mixture A3.
The obtained powder mixture A3 was pre-calcined in the air at 800°C for 5 hours, pulverized, and then granulated.Then, the powder mixture A3 was calcined in the air at 800°C for 10 hours to form a lithium composite oxide. Secondary particles (A-1) (LiNi 0.33 Co 0.33 Mn 0.34 O 2 , average particle size 10 μm) were obtained.

[製造例2:リチウム複合酸化物二次粒子(A-2)の製造]
Li:Ni:Co:Alのモル比が1:0.8:0.15:0.05となるように、炭酸リチウム370g、炭酸ニッケル950g、炭酸コバルト150g、炭酸アルミニウム58g、及び水3Lを混合した後、ボールミルで混合して粉末混合物A4を得た。得られた粉末混合物A4を、大気雰囲気下で800℃×5時間仮焼成して解砕した後、本焼成として大気雰囲気下で800℃×24時間焼成し、リチウム複合酸化物二次粒子(A-2)(LiNi0.8Co0.15Al0.052、平均粒径10μm)を得た。
[Production Example 2: Production of lithium composite oxide secondary particles (A-2)]
Mix 370 g of lithium carbonate, 950 g of nickel carbonate, 150 g of cobalt carbonate, 58 g of aluminum carbonate, and 3 L of water so that the molar ratio of Li:Ni:Co:Al is 1:0.8:0.15:0.05. After that, the mixture was mixed in a ball mill to obtain a powder mixture A4. The obtained powder mixture A4 was pre-calcined in an air atmosphere at 800°C for 5 hours and crushed, and then main calcination was performed in an air atmosphere at 800°C for 24 hours to form lithium composite oxide secondary particles (A -2) (LiNi 0.8 Co 0.15 Al 0.05 O 2 , average particle size 10 μm) was obtained.

[製造例3:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC-1)の製造]
Li:Coのモル比が1:1となるように、炭酸リチウム222g及び酸化コバルト482gの粉末をボールミルで混合し、粉末混合物B1を作製した。粉末混合物B1を成型圧500kg/cm3で圧密成型し、大気雰囲気下700℃×5時間で仮焼成を行った。その後、この成型体を再度粉砕、混合し、成型圧1000kg/cm3で圧密成型して、大気雰囲気下900℃×10時間の焼成を行うことにより、コバルト酸リチウム(LiCoO2)を得た。得られたコバルト酸リチウムを複合化に適した粒径にするために粉砕して、コバルト酸リチウム粒子B2(LiCoO2、平均粒径200nm)を得た。
得られたコバルト酸リチウム粒子B2を500g分取し、LiNO3 1.8g、Al(NO33・9H2O 2.25g、TiCl4 6.46g、85%H3PO4 5.88gと、水500mLを添加し、さらにpH調整剤として28%アンモニア水21.86gを添加して、スラリーB3(固形分濃度51%)を得た。得られたスラリーB3を超音波攪拌機(T25、IKA社製)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(MDL-050M、藤崎電機株式会社製)を用いて噴霧乾燥に付して予備造粒物B4を得た。
得られた予備造粒物B4を、大気雰囲気下、700℃×1時間焼成して、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO43が担持された粒子(BC-1)(LiCoO2、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:5nm)を得た。
[Production Example 3: Production of particles (BC-1) in which lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
Powders of 222 g of lithium carbonate and 482 g of cobalt oxide were mixed in a ball mill so that the molar ratio of Li:Co was 1:1 to prepare a powder mixture B1. Powder mixture B1 was compacted at a molding pressure of 500 kg/cm 3 and pre-calcined at 700° C. for 5 hours in an air atmosphere. Thereafter, this molded body was crushed and mixed again, compacted at a molding pressure of 1000 kg/cm 3 , and fired at 900° C. for 10 hours in an air atmosphere to obtain lithium cobalt oxide (LiCoO 2 ). The obtained lithium cobalt oxide was pulverized to obtain a particle size suitable for composite formation to obtain lithium cobalt oxide particles B2 (LiCoO 2 , average particle size 200 nm).
500g of the obtained lithium cobalt oxide particles B2 were collected and mixed with 1.8g of LiNO3 , 2.25g of Al( NO3 ) 3.9H2O , 6.46g of TiCl4 , and 5.88g of 85% H3PO4 . , 500 mL of water was added, and further 21.86 g of 28% ammonia water was added as a pH adjuster to obtain slurry B3 (solid content concentration 51%). The obtained slurry B3 was dispersed for 1 minute using an ultrasonic stirrer (T25, manufactured by IKA) to uniformly color the entire slurry, and then dispersed using a spray drying device (MDL-050M, manufactured by Fujisaki Electric Co., Ltd.). The pre-granulated product B4 was obtained by spray drying.
The obtained preliminary granules B4 were fired at 700°C for 1 hour in an air atmosphere to form particles ( BC- 1) (LiCoO 2 , average particle size: 200 nm, thickness of lithium-based solid electrolyte support layer: 5 nm) was obtained.

[製造例4:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC-2)の製造]
製造例3において、得られたコバルト酸リチウム粒子B2を500g分取し、LiNO3 18g、Al(NO33・9H2O 22.5g、TiCl4 64.6g、85%H3PO458.8gと、水1Lを添加し、さらにpH調整剤として28%アンモニア水218.6gを添加してスラリーB5(固形分濃度42%)を得た以外は、製造例3と同様にして、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO43が担持された粒子(BC-2)(LiCoO2、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:20nm)を得た。
[Production Example 4: Production of particles (BC-2) in which lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
In Production Example 3, 500 g of the obtained lithium cobalt oxide particles B2 were collected, and 18 g of LiNO 3 , 22.5 g of Al(NO 3 ) 3 .9H 2 O, 64.6 g of TiCl 4 , 58% of 85% H 3 PO 4 Lithium was prepared in the same manner as in Production Example 3, except that slurry B5 (solid content concentration 42%) was obtained by adding 218.6 g of 28% ammonia water as a pH adjuster. Particles (BC-2) in which Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of positive electrode active material particles (LiCoO 2 , average particle size: 200 nm, thickness of lithium-based solid electrolyte support layer: 20 nm) ) was obtained.

[製造例5:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC-3)の製造]
Mn:Liのモル比が2:1となるように、酸化マンガン348gと炭酸リチウム739gを混合、粉砕した後に、大気雰囲気下において800℃×12時間で焼成を行うことによりマンガン酸リチウム(LiMn24)を得た後、得られたマンガン酸リチウムを粉砕して、マンガン酸リチウム粒子B6(LiMn24、平均粒径200nm)を得た。
得られたマンガン酸リチウム粒子B6を500g分取し、LiNO3 1.8g、Al(NO33・9H2O 2.25g、TiCl4 6.46g、85%H3PO4 5.88gと、水500mLを添加し、さらにpH調整剤として28%アンモニア水21.86gを添加して、スラリーB7(固形分濃度51%)を得た。得られたスラリーB7を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて噴霧乾燥に付して予備造粒物B8を得た。
得られた予備造粒物B8を、大気雰囲気下、700℃×1時間焼成して、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO43が担持された粒子(BC-3)(LiMn24、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:5nm)を得た。
[Production Example 5: Production of particles (BC-3) in which lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
Lithium manganate (LiMn 2 After obtaining O 4 ), the obtained lithium manganate was pulverized to obtain lithium manganate particles B6 (LiMn 2 O 4 , average particle size 200 nm).
500 g of the obtained lithium manganate particles B6 were collected and mixed with 1.8 g of LiNO 3 , 2.25 g of Al ( NO 3 ) 3.9H 2 O, 6.46 g of TiCl 4 , and 5.88 g of 85% H 3 PO 4 , 500 mL of water was added, and further 21.86 g of 28% ammonia water was added as a pH adjuster to obtain slurry B7 (solid content concentration 51%). The obtained slurry B7 was dispersed for 1 minute using an ultrasonic stirrer (same as above) to uniformly color the entire slurry, and then spray-dried using a spray dryer (same as above) to obtain pre-granulated material B8. I got it.
The obtained preliminary granules B8 were fired at 700° C. for 1 hour in an air atmosphere to form particles (BC- 3) (LiMn 2 O 4 , average particle size: 200 nm, thickness of lithium-based solid electrolyte support layer: 5 nm) was obtained.

[製造例6:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC-4)の製造]
Li:Ni:Mnのモル比が2:1:3となるように、炭酸リチウム147.8g、酸化ニッケル149.4g、及び炭酸マンガン690gをボールミルで混合した後に、大気雰囲気下において900℃×24時間焼成してLiNi0.5Mn1.54を得た後、粉砕して、LiNi0.5Mn1.54粒子B9(平均粒径200nm)を得た。
得られたLiNi0.5Mn1.54粒子B9を500g分取し、LiNO3 1.8g、Al(NO33・9H2O 2.25g、TiCl46.46g、85%H3PO4 5.88gと、水500mLを添加し、さらにpH調整剤として28%アンモニア水21.86gを添加して、スラリーB10(固形分濃度51%)を得た。得られたスラリーB10を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて噴霧乾燥に付して予備造粒物B11を得た。
得られた予備造粒物B11を、大気雰囲気下、700℃×1時間焼成して、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO43が担持された粒子(BC-4)(LiNi0.5Mn1.54、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:5nm)を得た。
[Production Example 6: Production of particles (BC-4) in which lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
After mixing 147.8 g of lithium carbonate, 149.4 g of nickel oxide, and 690 g of manganese carbonate in a ball mill so that the molar ratio of Li:Ni:Mn was 2:1:3, the mixture was heated at 900° C. After baking for a time to obtain LiNi 0.5 Mn 1.5 O 4 , it was pulverized to obtain LiNi 0.5 Mn 1.5 O 4 particles B9 (average particle size 200 nm).
500 g of the obtained LiNi 0.5 Mn 1.5 O 4 particles B9 were collected, and 1.8 g of LiNO 3 , 2.25 g of Al ( NO 3 ) 3.9H 2 O, 6.46 g of TiCl 4 , 85% H 3 PO 4 5 .88 g and 500 mL of water were added, and further 21.86 g of 28% ammonia water was added as a pH adjuster to obtain slurry B10 (solid content concentration 51%). The obtained slurry B10 was dispersed for 1 minute using an ultrasonic stirrer (same as above) to uniformly color the entire slurry, and then spray-dried using a spray dryer (same as above) to obtain pre-granulated material B11. I got it.
The obtained preliminary granules B11 were fired at 700 ° C. for 1 hour in an air atmosphere to form particles (BC- 4) (LiNi 0.5 Mn 1.5 O 4 , average particle size: 200 nm, thickness of lithium-based solid electrolyte support layer: 5 nm) was obtained.

[製造例7:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC-5)の製造]
酢酸マンガン4水和物1324g、酢酸ニッケル4水和物323.5g、酢酸コバルト4水和物323.8gと、炭酸ナトリウム848gと、水3Lを添加し、溶液を60℃に保ちつつ撹拌しながら混合し、さらにpH調整剤として28%アンモニア水を、滴下速度300ml/分でpHが7.5になるまで添加し、スラリーB12を得た。得られたスラリーB12を水洗し乾燥させ、これに炭酸リチウム487.7gを混合し、500℃で5時間の仮焼成を行った後、粉砕、混合し、900℃×20時間焼成を行い、0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332粒子B13(平均粒径:100nm)を得た。
得られた0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332粒子B13を500g分取し、LiNO3 1.8g、Al(NO33・9H2O 2.25g、TiCl4 6.46g、85%H3PO4 5.88gと、水500mLを添加し、さらにpH調整剤として28%アンモニア水21.86gを添加して、スラリーB14(固形分濃度51%)を得た。得られたスラリーB14を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて噴霧乾燥に付して予備造粒物B15を得た。
得られた予備造粒物B15を、大気雰囲気下、700℃×1時間焼成して、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO43が担持された粒子(BC-5)(0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332、平均粒径:100nm、リチウム系固体電解質の担持層の厚さ:3nm)を得た。
[Production Example 7: Production of particles (BC-5) in which lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
Add 1324 g of manganese acetate tetrahydrate, 323.5 g of nickel acetate tetrahydrate, 323.8 g of cobalt acetate tetrahydrate, 848 g of sodium carbonate, and 3 L of water, and while stirring while maintaining the solution at 60 ° C. After mixing, 28% ammonia water was added as a pH adjuster at a dropping rate of 300 ml/min until the pH reached 7.5, thereby obtaining slurry B12. The obtained slurry B12 was washed with water and dried, mixed with 487.7 g of lithium carbonate, and pre-calcined at 500°C for 5 hours, crushed, mixed, and fired at 900°C for 20 hours. .5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles B13 (average particle size: 100 nm) were obtained.
500 g of the obtained 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles B13 were collected, and 1.8 g of LiNO 3 , 2.25 g of Al(NO 3 ) 3.9H 2 O, and TiCl 4 6.46 g, 85% H 3 PO 4 5.88 g, and 500 mL of water were added, and further 21.86 g of 28% ammonia water was added as a pH adjuster to obtain slurry B14 (solid content concentration 51%). . The obtained slurry B14 was dispersed for 1 minute using an ultrasonic stirrer (same as above) to uniformly color the entire slurry, and then spray-dried using a spray dryer (same as above) to obtain pre-granulated material B15. I got it.
The obtained preliminary granules B15 were fired at 700° C. for 1 hour in an air atmosphere to form particles ( BC- 5) (0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 , average particle size: 100 nm, thickness of lithium-based solid electrolyte support layer: 3 nm) was obtained.

[製造例8:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC-6)の製造]
製造例3の工程途中で得られたコバルト酸リチウム粒子B2(LiCoO2、平均粒径200nm)500gと、水500mL、水酸化リチウム一水和物6.22g、及びテトラエトキシシラン4.42gを混合して、スラリーB16を得た。次いで、得られたスラリーB16を25℃の温度に保持しながら、撹拌速度200rpmで10分間撹拌した後、そのまま撹拌を継続しているスラリーに、85%リン酸2.44gを滴下して混合した後、さらに撹拌速度200rpmで30分間撹拌してスラリーB17(固形分濃度50%)を得た。得られたスラリーB17を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて噴霧乾燥に付して予備造粒物B18を得た。
得られた予備造粒物B18を、大気雰囲気下において700℃×4時間焼成してリチウム正極活物質粒子の表面にLi3.5Si0.50.54が担持された粒子(BC-6)(LiCoO2、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:5nm)を得た。
[Production Example 8: Production of particles (BC-6) in which lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
Mix 500 g of lithium cobalt oxide particles B2 (LiCoO 2 , average particle size 200 nm) obtained during the process of Production Example 3 with 500 mL of water, 6.22 g of lithium hydroxide monohydrate, and 4.42 g of tetraethoxysilane. As a result, slurry B16 was obtained. Next, the obtained slurry B16 was stirred at a stirring speed of 200 rpm for 10 minutes while maintaining the temperature at 25 ° C., and 2.44 g of 85% phosphoric acid was added dropwise to the slurry while stirring was continued. After that, the slurry was further stirred for 30 minutes at a stirring speed of 200 rpm to obtain slurry B17 (solid content concentration 50%). The obtained slurry B17 was dispersed for 1 minute using an ultrasonic stirrer (same as above) to uniformly color the entire slurry, and then spray-dried using a spray dryer (same as above) to obtain pre-granulated product B18. I got it.
The obtained preliminary granules B18 were fired at 700°C for 4 hours in the air to obtain particles (BC - 6) ( LiCoO 2 , average particle size: 200 nm, thickness of lithium-based solid electrolyte support layer: 5 nm).

[製造例9:固体電解質粒子(S-1)の製造]
硝酸リチウム71.8g、硝酸アルミニウム9水和物90g、塩化チタン516.8g、リン酸235.2g、及びpH調整剤として28%アンモニア水874.2gを添加して、遊星ボールミルを用いて200rpmで2時間粉砕混合した後、乾燥させ、混合物B19を得た。得られた混合物B19をペレットに成形した後、空気雰囲気下において900℃×12時間焼成した後、乳鉢で解砕して、固体電解質粒子(S-1)(Li1.3Al0.3Ti1.7(PO43、平均粒径:500nm)を得た。
[Production Example 9: Production of solid electrolyte particles (S-1)]
71.8 g of lithium nitrate, 90 g of aluminum nitrate nonahydrate, 516.8 g of titanium chloride, 235.2 g of phosphoric acid, and 874.2 g of 28% ammonia water as a pH adjuster were added, and the mixture was heated at 200 rpm using a planetary ball mill. After pulverizing and mixing for 2 hours, the mixture was dried to obtain mixture B19. The obtained mixture B19 was formed into pellets, fired at 900°C for 12 hours in an air atmosphere, and then crushed in a mortar to form solid electrolyte particles (S-1) (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , average particle size: 500 nm) was obtained.

[実施例1:リチウムイオン二次電池用正極活物質複合体(D-1)の製造]
製造例1で得られたリチウム複合酸化物二次粒子(A-1)300gと、製造例3で得られた粒子(BC-1)200gを、メカノフュージョン(ホソカワミクロン社製、AMS-Lab)を用いて、2600rpm(20m/秒)で10分間の複合化処理を行い、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-1)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Example 1: Production of positive electrode active material composite (D-1) for lithium ion secondary battery]
300 g of lithium composite oxide secondary particles (A-1) obtained in Production Example 1 and 200 g of particles (BC-1) obtained in Production Example 3 were subjected to Mechanofusion (manufactured by Hosokawa Micron Corporation, AMS-Lab). A composite treatment was carried out for 10 minutes at 2600 rpm (20 m/sec) using the NCM-based composite oxide secondary particles (A) so that the lithium cobalt oxide particles (B) were supported on the surface of the NCM composite oxide secondary particles (A), and the lithium cobalt oxide particles were formed. Positive electrode active material composite for lithium ion secondary batteries (D-1) in which lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of particles (B) (average particle size 14 μm, surface Lithium cobalt oxide particles (B) having a thickness of 2 μm and a tap density of 2.8 g /cm 3 ) were obtained.

[実施例2:リチウムイオン二次電池用正極活物質複合体(D-2)の製造]
リチウム正極活物質粒子(B-1)200gを、製造例4で得られた粒子(BC-2)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-2)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.6g/cm3)を得た。
[Example 2: Production of positive electrode active material composite (D-2) for lithium ion secondary battery]
NCM-based composite oxide secondary particles (A ) lithium cobalt oxide particles (B) are supported on the surface of the lithium cobalt oxide particles (B), and a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the lithium cobalt oxide particles (B). Positive electrode active material composite for secondary batteries (D-2) (average particle size 14 μm, made of lithium cobalt oxide particles (B) carrying a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 on the surface) A supporting layer thickness of 2 μm and a tap density of 2.6 g/cm 3 were obtained.

[実施例3:リチウムイオン二次電池用正極活物質複合体(D-3)の製造]
リチウム正極活物質粒子(B-1)200gを、製造例5で得られた粒子(BC-3)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にマンガン酸リチウム粒子(B)が担持してなり、かつマンガン酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-3)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるマンガン酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.2g/cm3)を得た。
[Example 3: Production of positive electrode active material composite (D-3) for lithium ion secondary battery]
NCM-based composite oxide secondary particles (A ) lithium manganate particles (B) are supported on the surface of the lithium manganate particles (B), and the lithium solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the lithium manganate particles (B). Positive electrode active material composite for secondary batteries (D-3) (average particle size 14 μm, made of lithium manganate particles (B) having a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported on the surface. A supporting layer thickness of 2 μm and a tap density of 2.2 g/cm 3 were obtained.

[実施例4:リチウムイオン二次電池用正極活物質複合体(D-4)の製造]
リチウム正極活物質粒子(B-1)200gを、製造例6で得られた粒子(BC-4)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にLiNi0.5Mn1.54粒子(B)が担持してなり、かつLiNi0.5Mn1.54粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-4)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるLiNi0.5Mn1.54粒子(B)の担持層の厚さ:2μm、タップ密度2.1g/cm3)を得た。
[Example 4: Production of positive electrode active material composite (D-4) for lithium ion secondary battery]
NCM-based composite oxide secondary particles (A ) , and a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the LiNi 0.5 Mn 1.5 O 4 particles ( B ) . Lithium ion secondary battery positive electrode active material composite (D-4) (average particle size 14 μm, LiNi 0.5 supported on the surface of a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3) A supporting layer of Mn 1.5 O 4 particles (B) had a thickness of 2 μm and a tap density of 2.1 g/cm 3 ).

[実施例5:リチウムイオン二次電池用正極活物質複合体(D-5)の製造]
リチウム正極活物質粒子(B-1)200gを、製造例7で得られた粒子(BC-5)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面に0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332粒子(B)が担持してなり、かつかかる粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-5)(平均粒径13μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなる0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332粒子(B)の担持層の厚さ:1.5μm、タップ密度1.9g/cm3)を得た。
[Example 5: Production of positive electrode active material composite for lithium ion secondary battery (D-5)]
NCM-based composite oxide secondary particles (A ) are supported on the surface of 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles (B), and a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 is supported on the surface of the particles (B). Positive electrode active material composite (D-5) for lithium ion secondary batteries supported by (PO 4 ) 3 (average particle size 13 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 on the surface) A supporting layer of supported 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles (B) had a thickness of 1.5 μm and a tap density of 1.9 g/cm 3 ).

[実施例6:リチウムイオン二次電池用正極活物質複合体(D-6)の製造]
リチウム複合酸化物二次粒子(A-1)300gを450gに、粒子(BC-1)200gを50gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-6)(平均粒径12μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:1μm、タップ密度2.6g/cm3)を得た。
[Example 6: Production of positive electrode active material composite (D-6) for lithium ion secondary battery]
NCM-based composite oxide secondary particles (A) were prepared in the same manner as in Example 1 except that 300 g of lithium composite oxide secondary particles (A-1) were changed to 450 g and 200 g of particles (BC-1) were changed to 50 g. A lithium ion diode formed by carrying lithium cobalt oxide particles (B) on the surface of the lithium cobalt oxide particles, and a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported on the surface of the lithium cobalt oxide particles (B). Positive electrode active material composite for next battery (D-6) (average particle size 12 μm, supporting lithium cobalt oxide particles (B) with a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported on the surface) A layer thickness of 1 μm and a tap density of 2.6 g/cm 3 ) were obtained.

[実施例7:リチウムイオン二次電池用正極活物質複合体(D-7)の製造]
リチウム複合酸化物二次粒子(A-1)300gを450gに、粒子(BC-1)200gを、製造例5で得られた粒子(BC-3)50gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にマンガン酸リチウム粒子(B)が担持してなり、かつマンガン酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-7)(平均粒径12μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるマンガン酸リチウム粒子(B)の担持層の厚さ:1μm、タップ密度2.5g/cm3)を得た。
[Example 7: Production of positive electrode active material composite for lithium ion secondary battery (D-7)]
Same as Example 1 except that 300 g of lithium composite oxide secondary particles (A-1) was changed to 450 g, and 200 g of particles (BC-1) were changed to 50 g of particles (BC-3) obtained in Production Example 5. Lithium manganate particles (B) are supported on the surface of NCM-based composite oxide secondary particles (A), and lithium-based solid electrolyte Li 1.3 Al 0.3 Ti is supported on the surface of the lithium manganate particles (B). Positive electrode active material composite for lithium ion secondary batteries (D-7) supported by 1.7 (PO 4 ) 3 (average particle size 12 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 on the surface) lithium manganate particles (B) having a thickness of 1 μm and a tap density of 2.5 g/cm 3 ) were obtained.

[実施例8:リチウムイオン二次電池用正極活物質複合体(D-8)の製造]
リチウム複合酸化物二次粒子(A-1)300gを450gに、粒子(BC-1)200gを、製造例6で得られた粒子(BC-4)50gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にLiNi0.5Mn1.54粒子(B)が担持してなり、かつかかる粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-8)(平均粒径12μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるLiNi0.5Mn1.54粒子(B)の担持層の厚さ:1μm、タップ密度2.6g/cm3)を得た。
[Example 8: Production of positive electrode active material composite for lithium ion secondary battery (D-8)]
Same as Example 1 except that 300 g of lithium composite oxide secondary particles (A-1) was changed to 450 g, and 200 g of particles (BC-1) were changed to 50 g of particles (BC-4) obtained in Production Example 6. LiNi 0.5 Mn 1.5 O 4 particles (B) are supported on the surface of NCM-based composite oxide secondary particles (A), and a lithium-based solid electrolyte Li 1.3 Al 0.3 is supported on the surface of the particles (B). Positive electrode active material composite for lithium ion secondary batteries (D-8) supported by Ti 1.7 (PO 4 ) 3 (average particle size 12 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) on the surface) LiNi 0.5 Mn 1.5 O 4 particles (B) having a thickness of 1 μm and a tap density of 2.6 g/cm 3 ) were obtained.

[実施例9:リチウムイオン二次電池用正極活物質複合体(D-9)の製造]
リチウム複合酸化物二次粒子(A-1)300gを450gに、粒子(BC-1)200gを、製造例7で得られた粒子(BC-5)50gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面に0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332粒子(B)が担持してなり、かつかかる粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-9)(平均粒径11.5μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなる0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332粒子(B)の担持層の厚さ:750nm、タップ密度2.4g/cm3)を得た。
[Example 9: Production of positive electrode active material composite for lithium ion secondary battery (D-9)]
Same as Example 1 except that 300 g of lithium composite oxide secondary particles (A-1) was changed to 450 g, and 200 g of particles (BC-1) were changed to 50 g of particles (BC-5) obtained in Production Example 7. 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles (B) are supported on the surface of NCM-based composite oxide secondary particles (A), and such particles (B) A positive electrode active material composite for lithium ion secondary batteries (D-9) comprising a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported on the surface (average particle size 11.5 μm, lithium on the surface). Thickness of support layer of 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles (B) supporting system solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 : 750 nm, tap A density of 2.4 g/cm 3 ) was obtained.

[実施例10:リチウムイオン二次電池用正極活物質複合体(D-10)の製造]
リチウム複合酸化物二次粒子(A-1)300gを、製造例2で得られたリチウム複合酸化物二次粒子(A-2)300gに変更した以外、実施例1と同様にして、NCA系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(D-10)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Example 10: Production of positive electrode active material composite for lithium ion secondary battery (D-10)]
The NCA system was prepared in the same manner as in Example 1, except that 300 g of lithium composite oxide secondary particles (A-1) was changed to 300 g of lithium composite oxide secondary particles (A-2) obtained in Production Example 2. Lithium cobalt oxide particles (B) are supported on the surface of the composite oxide secondary particles (A), and a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) is supported on the surface of the lithium cobalt oxide particles (B). Positive electrode active material composite for lithium ion secondary batteries (D-10) (average particle size 14 μm, supporting lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 on the surface ) A supporting layer of lithium cobalt oxide particles (B) had a thickness of 2 μm and a tap density of 2.8 g/cm 3 ).

[実施例11:リチウムイオン二次電池用正極活物質複合体(D-11)の製造]
粒子(BC-1)200gを、製造例8で得られた粒子(BC-6)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li3.5Si0.50.54が担持してなるリチウムイオン二次電池用正極活物質複合体(D-11)(平均粒径14μm、表面にリチウム系固体電解質Li3.5Si0.50.54を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Example 11: Production of positive electrode active material composite for lithium ion secondary battery (D-11)]
On the surface of NCM-based composite oxide secondary particles (A) in the same manner as in Example 1, except that 200 g of particles (BC-1) was changed to 200 g of particles (BC-6) obtained in Production Example 8. A positive electrode active material for a lithium ion secondary battery, in which lithium cobalt oxide particles (B) are supported, and a lithium-based solid electrolyte Li 3.5 Si 0.5 P 0.5 O 4 is supported on the surface of the lithium cobalt oxide particles (B). Composite (D-11) (average particle size 14 μm, thickness of support layer of lithium cobalt oxide particles (B) with lithium-based solid electrolyte Li 3.5 Si 0.5 P 0.5 O 4 supported on the surface: 2 μm, tap density 2.8 g/cm 3 ) was obtained.

[比較例1:リチウム複合粒子(E-1)の製造]
製造例1で得られたリチウム複合酸化物二次粒子(A-1)500gに、硝酸リチウム0.9g、硝酸アルミニウム9水和物1.13g、塩化チタン3.23g、リン酸2.94gと水500mLを添加し、さらにpH調整剤として28%アンモニア水10.93gを添加してスラリーC1を得た。得られたスラリーC1を超音波攪拌機(T25、IKA社製)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(MDL-050M、藤崎電機株式会社製)を用いて噴霧乾燥に付して予備造粒物C2を得た。
得られた予備造粒物C2を、大気雰囲気下、700℃×1時間焼成して、リチウム複合酸化物二次粒子(LiNi0.33Co0.33Mn0.342)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウム複合粒子(E-1)(平均粒径:10μm、固体電解質Li1.3Al0.3Ti1.7(PO43の担持層の厚さ:5nm、タップ密度2.6g/cm3)を得た。
[Comparative Example 1: Production of lithium composite particles (E-1)]
To 500 g of lithium composite oxide secondary particles (A-1) obtained in Production Example 1, 0.9 g of lithium nitrate, 1.13 g of aluminum nitrate nonahydrate, 3.23 g of titanium chloride, and 2.94 g of phosphoric acid were added. 500 mL of water was added, and 10.93 g of 28% ammonia water was further added as a pH adjuster to obtain slurry C1. The obtained slurry C1 was dispersed for 1 minute using an ultrasonic stirrer (T25, manufactured by IKA) to uniformly color the entire slurry, and then dispersed using a spray drying device (MDL-050M, manufactured by Fujisaki Electric Co., Ltd.). The pre-granulated product C2 was obtained by spray drying.
The obtained preliminary granules C2 are fired at 700° C. for 1 hour in an air atmosphere to form a lithium-based solid electrolyte Li 1.3 Al on the surface of lithium composite oxide secondary particles (LiNi 0.33 Co 0.33 Mn 0.34 O 2 ). Lithium composite particles (E-1) supported by 0.3 Ti 1.7 (PO 4 ) 3 (average particle size: 10 μm, thickness of supporting layer of solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 : 5 nm, A tap density of 2.6 g/cm 3 ) was obtained.

[比較例2:リチウムイオン二次電池用正極活物質複合体(E-2)の製造]
製造例1で得られたリチウム複合酸化物二次粒子(A-1)300gと、製造例9で得られた固体電解質粒子(S-1)200gを、メカノフュージョン(同上)を用いて、2600rpm(20m/秒)で10分間の複合化処理を行い、NCM系複合酸化物二次粒子(A)の表面にリチウム系固体電解質粒子Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(E-2)(平均粒径12μm、リチウム系固体電解質粒子の担持層の厚さ:1μm、タップ密度2.0g/cm3)を得た。
[Comparative Example 2: Production of positive electrode active material composite (E-2) for lithium ion secondary battery]
300 g of lithium composite oxide secondary particles (A-1) obtained in Production Example 1 and 200 g of solid electrolyte particles (S-1) obtained in Production Example 9 were heated at 2600 rpm using Mechanofusion (same as above). (20 m/sec) for 10 minutes, and lithium-based solid electrolyte particles Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 are supported on the surface of NCM-based composite oxide secondary particles (A). A positive electrode active material composite (E-2) for lithium ion secondary batteries (average particle size 12 μm, thickness of lithium-based solid electrolyte particle support layer: 1 μm, tap density 2.0 g/cm 3 ) was obtained.

[比較例3:リチウムイオン二次電池用正極活物質複合体(E-3)の製造]
リチウム正極活物質粒子(B-1)200gを、製造例3の中間生成物であるコバルト酸リチウム粒子B2を200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E-3)(平均粒径14μm、コバルト酸リチウム粒子の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Comparative Example 3: Production of positive electrode active material composite (E-3) for lithium ion secondary battery]
NCM-based composite oxide secondary particles were prepared in the same manner as in Example 1, except that 200 g of lithium positive electrode active material particles (B-1) were changed to 200 g of lithium cobalt oxide particles B2, which is an intermediate product of Production Example 3. Positive electrode active material composite (E-3) for lithium ion secondary batteries, in which lithium cobalt oxide particles are supported on the surface of (A) (average particle size 14 μm, thickness of supporting layer of lithium cobalt oxide particles: 2 μm, A tap density of 2.8 g/cm 3 ) was obtained.

[比較例4:リチウムイオン二次電池用正極活物質複合体(E-4)の製造]
リチウム正極活物質粒子(B-1)200gを、製造例5の中間生成物であるマンガン酸リチウム粒子B5を200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にマンガン酸リチウム粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E-4)(平均粒径14μm、マンガン酸リチウム粒子の担持層の厚さ:2μm、タップ密度2.2g/cm3)を得た。
[Comparative Example 4: Production of positive electrode active material composite (E-4) for lithium ion secondary battery]
NCM-based composite oxide secondary particles were prepared in the same manner as in Example 1, except that 200 g of lithium positive electrode active material particles (B-1) were changed to 200 g of lithium manganate particles B5, which is an intermediate product of Production Example 5. Positive electrode active material composite (E-4) for lithium ion secondary batteries, in which lithium manganate particles are supported on the surface of (A) (average particle size 14 μm, thickness of supporting layer of lithium manganate particles: 2 μm, A tap density of 2.2 g/cm 3 ) was obtained.

[比較例5:リチウムイオン二次電池用正極活物質複合体(E-5)の製造]
リチウム正極活物質粒子(B-1)200gを、製造例6の中間生成物であるLiNi0.5Mn1.54粒子B8を200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にLiNi0.5Mn1.54粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E-5)(平均粒径14μm、LiNi0.5Mn1.54粒子の担持層の厚さ:2μm、タップ密度2.1g/cm3)を得た。
[Comparative Example 5: Production of positive electrode active material composite (E-5) for lithium ion secondary battery]
NCM-based composite oxide was prepared in the same manner as in Example 1, except that 200 g of lithium positive electrode active material particles (B-1) was replaced with 200 g of LiNi 0.5 Mn 1.5 O 4 particles B8, which was an intermediate product of Production Example 6. Positive electrode active material composite for lithium ion secondary batteries (E-5) in which LiNi 0.5 Mn 1.5 O 4 particles are supported on the surface of secondary particles (A) (average particle size 14 μm, LiNi 0.5 Mn 1.5 O 4 particles) A supporting layer thickness of 2 μm and a tap density of 2.1 g/cm 3 ) were obtained.

[比較例6:リチウムイオン二次電池用正極活物質複合体(E-6)の製造]
リチウム正極活物質粒子(B-1)200gを、製造例7の中間生成物である0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332粒子B12を200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面に0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E-6)(平均粒径13μm、0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.332粒子の担持層の厚さ:1.5μm、タップ密度1.9g/cm3)を得た。
[Comparative Example 6: Production of positive electrode active material composite (E-6) for lithium ion secondary battery]
Example except that 200 g of lithium positive electrode active material particles (B-1) was changed to 200 g of 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles B12, which was an intermediate product of Production Example 7. A positive electrode for a lithium ion secondary battery in which 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles are supported on the surface of NCM-based composite oxide secondary particles (A) in the same manner as in 1. Active material composite (E-6) (average particle size 13 μm, thickness of supporting layer of 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles: 1.5 μm, tap density 1.9 g/ cm 3 ) was obtained.

[比較例7:リチウムイオン二次電池用正極活物質複合体(E-7)の製造]
リチウム複合酸化物二次粒子(A-1)300gを、製造例2で得られたリチウム複合酸化物二次粒子(A-2)300gに、リチウム正極活物質粒子(B-1)200gを、製造例3の中間生成物であるコバルト酸リチウム粒子B2を200gに変更した以外、実施例1と同様にして、NCA系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E-7)(平均粒径14μm、コバルト酸リチウム粒子の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Comparative Example 7: Production of positive electrode active material composite for lithium ion secondary battery (E-7)]
300 g of lithium composite oxide secondary particles (A-1), 300 g of lithium composite oxide secondary particles (A-2) obtained in Production Example 2, 200 g of lithium positive electrode active material particles (B-1), Lithium cobalt oxide particles were supported on the surface of NCA-based composite oxide secondary particles (A) in the same manner as in Example 1, except that 200 g of lithium cobalt oxide particles B2, which was an intermediate product in Production Example 3, was changed. A positive electrode active material composite (E-7) for a lithium ion secondary battery (average particle size: 14 μm, thickness of supporting layer of lithium cobalt oxide particles: 2 μm, tap density: 2.8 g/cm 3 ) was obtained.

[比較例8:リチウムイオン二次電池用正極活物質複合体(E-8)の製造]
リチウム複合酸化物二次粒子(A-1)300gを490gに、リチウム正極活物質粒子(B-1)200gを10gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(E-8)(平均粒径10.5μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:200nm、タップ密度2.6g/cm3)を得た。
[Comparative Example 8: Production of positive electrode active material composite for lithium ion secondary battery (E-8)]
NCM-based composite oxide secondary particles were prepared in the same manner as in Example 1, except that 300 g of lithium composite oxide secondary particles (A-1) were changed to 490 g, and 200 g of lithium positive electrode active material particles (B-1) were changed to 10 g. Lithium cobalt oxide particles (B) are supported on the surface of the particles (A), and a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the lithium cobalt oxide particles (B). Positive electrode active material composite (E-8) for lithium ion secondary batteries (average particle size 10.5 μm, lithium cobalt oxide with a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported on the surface) A supporting layer of particles (B) had a thickness of 200 nm and a tap density of 2.6 g/cm 3 ).

[比較例9:リチウムイオン二次電池用正極活物質複合体(E-9)の製造]
リチウム複合酸化物二次粒子(A-1)300gを200gに、リチウム正極活物質粒子(B-1)200gを300gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43が担持してなるリチウムイオン二次電池用正極活物質複合体(E-9)(平均粒径18μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO43を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:4μm、タップ密度2.8g/cm3)を得た。
[Comparative Example 9: Production of positive electrode active material composite for lithium ion secondary battery (E-9)]
NCM-based composite oxide secondary particles were prepared in the same manner as in Example 1, except that 300 g of lithium composite oxide secondary particles (A-1) were changed to 200 g, and 200 g of lithium positive electrode active material particles (B-1) were changed to 300 g. Lithium cobalt oxide particles (B) are supported on the surface of the particles (A), and a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the lithium cobalt oxide particles (B). Positive electrode active material composite (E-9) for lithium ion secondary batteries (lithium cobalt oxide particles having an average particle size of 18 μm and carrying a lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 on the surface) The thickness of the supporting layer of B) was 4 μm and the tap density was 2.8 g/cm 3 ).

《放電容量及びレート特性の評価》
実施例1~11及び比較例1~9で得られた全てのリチウムイオン二次電池用正極活物質複合体を正極材料として用い、リチウムイオン二次電池の正極を作製した。具体的には、得られた各リチウムイオン二次電池用正極活物質複合体、ケッチェンブラック、ポリフッ化ビニリデンを質量比90:5:5の配合割合で混合し、これにN-メチル-2-ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解したものを用いた。セパレータには、高分子多孔フィルムを用いた。これらの電池部品を露点が-50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR-2032)を得た。
得られた二次電池を用い、充放電試験を行った。具体的には、電流34mA/g、電圧4.25Vの定電流充電後に、電流34mA/g、終止電圧3.0Vの定電流放電とし、電流密度34mA/g(0.2C)における放電容量を求めた。さらに、同条件で定電流充電を行い、電流密度510mA/g、終止電圧3.0Vの定電流放電とし、電流密度510mA/g(3C)における放電容量を求めた。なお、充放電試験は全て30℃で行った。結果を表1に示す。
また、得られた放電容量から、下記式(8)により放電容量比(%)を求めた。結果を表1に示す。
放電容量比(%)=(3Cにおける放電容量)/
(0.2Cにおける放電容量)×100 ・・・(8)
《Evaluation of discharge capacity and rate characteristics》
All of the positive electrode active material composites for lithium ion secondary batteries obtained in Examples 1 to 11 and Comparative Examples 1 to 9 were used as positive electrode materials to produce positive electrodes for lithium ion secondary batteries. Specifically, each of the obtained positive electrode active material composites for lithium ion secondary batteries, Ketjenblack, and polyvinylidene fluoride were mixed at a mass ratio of 90:5:5, and N-methyl-2 - Pyrrolidone was added and thoroughly kneaded to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of aluminum foil with a thickness of 20 μm using a coating machine, and vacuum-dried at 80° C. for 12 hours. Thereafter, it was punched out into a disk shape of φ14 mm and pressed using a hand press at 16 MPa for 2 minutes to obtain a positive electrode.
Next, a coin-type secondary battery was constructed using the above positive electrode. A lithium foil punched to a diameter of 15 mm was used as the negative electrode. The electrolytic solution was prepared by dissolving LiPF 6 at a concentration of 1 mol/L in a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 3:7. A porous polymer film was used as the separator. These battery parts were assembled and housed in an atmosphere with a dew point of −50° C. or lower by a conventional method to obtain a coin-type secondary battery (CR-2032).
A charge/discharge test was conducted using the obtained secondary battery. Specifically, after constant current charging with a current of 34 mA/g and a voltage of 4.25 V, constant current discharge with a current of 34 mA/g and a final voltage of 3.0 V is performed, and the discharge capacity at a current density of 34 mA/g (0.2 C) is determined. I asked for it. Further, constant current charging was performed under the same conditions, and constant current discharge was performed at a current density of 510 mA/g and a final voltage of 3.0 V, and the discharge capacity at a current density of 510 mA/g (3C) was determined. Note that all charge/discharge tests were conducted at 30°C. The results are shown in Table 1.
Furthermore, the discharge capacity ratio (%) was determined from the obtained discharge capacity using the following formula (8). The results are shown in Table 1.
Discharge capacity ratio (%) = (discharge capacity at 3C)/
(Discharge capacity at 0.2C) x 100 (8)

《吸着水分量の測定》
実施例1~11及び比較例1~9で得られた全てのリチウムイオン二次電池用正極活物質複合体について、温度20℃、相対湿度50%の環境に1日間静置して平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、250℃に昇温し終わった時を始点とし、250℃での恒温状態を終えたときを終点とした間に揮発した水分量をカールフィッシャー水分計(MKC-610、京都電子工業(株)製)で測定した。測定結果を表1に示す。
《Measurement of adsorbed water content》
All of the positive electrode active material composites for lithium ion secondary batteries obtained in Examples 1 to 11 and Comparative Examples 1 to 9 were allowed to stand for one day in an environment with a temperature of 20°C and a relative humidity of 50% to reach equilibrium. The temperature was raised to 150°C and held for 20 minutes, and then the temperature was further raised to 250°C and held for 20 minutes.The starting point was when the temperature had finished rising to 250°C. The amount of moisture volatilized during the end point of constant temperature at ℃ was measured using a Karl Fischer moisture meter (MKC-610, manufactured by Kyoto Denshi Kogyo Co., Ltd.). The measurement results are shown in Table 1.

Figure 0007403289000001
Figure 0007403289000001

表1の結果より、全ての実施例で、良好な放電容量及びレート特性(放電容量比)を有し、かつ正極活物質複合体の水分吸着量が有効に低減されていることがわかる。
一方、比較例では、放電容量及びレート特性の少なくともいずれかが実施例よりも劣ることがわかる。また、正極活物質複合体の水分吸着量は、実施例よりも劣るものがほとんどである。
以上より、本発明のリチウムイオン二次電池用正極活物質複合体は、放電容量及びレート特性に優れていることがわかる。さらに、水分吸着量も低減されていることから、サイクル特性等の耐久性に係る特性についても、本発明のリチウムイオン二次電池用正極活物質複合体は、良好な性能を有していることがわかる。
From the results in Table 1, it can be seen that all Examples had good discharge capacity and rate characteristics (discharge capacity ratio), and the amount of water adsorption in the positive electrode active material composite was effectively reduced.
On the other hand, it can be seen that in the comparative example, at least one of discharge capacity and rate characteristics is inferior to the example. In addition, the amount of water adsorption of the positive electrode active material composites was mostly inferior to that of the Examples.
From the above, it can be seen that the positive electrode active material composite for lithium ion secondary batteries of the present invention has excellent discharge capacity and rate characteristics. Furthermore, since the amount of water adsorption is reduced, the positive electrode active material composite for lithium ion secondary batteries of the present invention has good performance in terms of durability-related properties such as cycle characteristics. I understand.

Claims (6)

下記式(1)、又は式(2):
LiNiaCobMnc1 w2・・・(1)
(式(1)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
LiNidCoeAlf2 x2 ・・・(2)
(式(2)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなるリチウム複合酸化物二次粒子(A)の表面において、下記式(3)、式(4)、式(5)、又は式(6):
LiM3 gCoh2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
LiM4 iMnj4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
LiNikMn1k4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
Li2MnO3-LiM62 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表されるリチウム正極活物質粒子(B)が担持してなるとともに、リチウム正極活物質粒子(B)の表面にリチウム系固体電解質(C)が担持してなるリチウムイオン二次電池用正極活物質複合体であって、
リチウム複合酸化物二次粒子(A)の含有量と、リチウム正極活物質粒子(B)及びリチウム系固体電解質(C)の合計含有量との質量比((A):(B)+(C))が、95:5~50:50であるリチウムイオン二次電池用正極活物質複合体。
The following formula (1) or formula (2):
LiNia Co b Mn c M 1 w O 2 ...(1)
(In formula (1), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Represents one or more elements selected from Bi and Ge. a, b, c, and w are 0.3≦a<1, 0<b≦0.7, 0<c≦0.7, Indicates a number that satisfies 0≦w≦0.3 and 3a+3b+3c+(valence of M1 )×w=3.)
LiNi d Co e Al f M 2 x O 2 ...(2)
(In formula (2), M2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi, and Represents one or more elements selected from Ge. d, e, f, x are 0.4≦d<1, 0<e≦0.6, 0<f≦0.3, 0≦ Indicates a number that satisfies x≦0.3 and 3d+3e+3f+(valence of M2 )×x=3.)
On the surface of lithium composite oxide secondary particles (A) consisting of lithium composite oxide particles represented by the following formula (3), formula (4), formula (5), or formula (6):
LiM3gCohO2 ... ( 3 )
(In formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) In, g and h indicate numbers that satisfy 0≦g≦0.1, 0<h≦1, and (valence of M 3 )×g+3h=3.)
LiM 4 i Mn j O 4 ...(4)
(In formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In formula (4), i and j represent numbers satisfying 0≦i≦0.1, 0<j≦2, and (valence of M4 )×i+(valence of Mn)×j=7 .)
LiNikMn1 - kO4 ...( 5 )
(In formula (5), k represents a number satisfying 0.3≦k≦0.7.)
Li2MnO3 -LiM6O2 ... ( 6 )
(In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. (Indicates one or more elements selected from.)
A positive electrode active for a lithium ion secondary battery , in which lithium positive electrode active material particles (B) represented by: A material complex,
The mass ratio between the content of lithium composite oxide secondary particles (A) and the total content of lithium positive electrode active material particles (B) and lithium-based solid electrolyte (C) ((A):(B)+(C) )) is 95:5 to 50:50, a positive electrode active material composite for a lithium ion secondary battery.
リチウム正極活物質粒子(B)の含有量とリチウム系固体電解質(C)の含有量との質量比((B):(C))が、99.5:0.5~85:15である請求項に記載のリチウムイオン二次電池用正極活物質複合体。 The mass ratio ((B):(C)) of the content of the lithium positive electrode active material particles (B) and the content of the lithium-based solid electrolyte (C) is 99.5:0.5 to 85:15. The positive electrode active material composite for a lithium ion secondary battery according to claim 1 . リチウム系固体電解質(C)が、Li3PO4-Li4SiO4及びLi1.3Al0.3Ti1.7(PO43のいずれか1種以上である請求項1又は2に記載のリチウムイオン二次電池用正極活物質複合体。 The lithium ion secondary according to claim 1 or 2 , wherein the lithium-based solid electrolyte (C) is one or more of Li 3 PO 4 -Li 4 SiO 4 and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 . Cathode active material composite for batteries. 平均粒径が、2μm~30μmである請求項1~のいずれか1項に記載のリチウムイオン二次電池用正極活物質複合体。 The positive electrode active material composite for a lithium ion secondary battery according to any one of claims 1 to 3 , having an average particle size of 2 μm to 30 μm. 次の工程(I)~工程(III):
(I)リチウム正極活物質粒子(B)、及びリチウム系固体電解質(C)の原料化合物を含む、固形分濃度が20質量%~65質量%のスラリー(a-1)を調製した後、熱風の供給量G(L/分)とスラリー(a-1)の供給量S(L/分)との比(G/S)が500~10000の条件で噴霧乾燥して造粒物(a)を得る工程、
(II)得られた造粒物(a)を、500℃~800℃で10分間~3時間焼成して、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)からなる、空隙率が45体積%~80体積%の予備造粒物(b)を得る工程、並びに
(III)得られた予備造粒物(b)とリチウム複合酸化物二次粒子(A)とを圧縮力及びせん断力を付加しながら混合して、予備造粒物(b)を解砕させながら、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)とリチウム複合酸化物二次粒子(A)とを複合化する工程
を備える請求項1~のいずれか1項に記載のリチウムイオン二次電池用正極活物質複合体の製造方法。
Next steps (I) to (III):
(I) After preparing a slurry (a-1) containing the lithium positive electrode active material particles (B) and the raw material compound of the lithium-based solid electrolyte (C) and having a solid content concentration of 20% to 65% by mass, hot air The ratio (G/S) of supply amount G (L/min) of slurry (a-1) to supply amount S (L/min) of slurry (a-1) is 500 to 10,000 to obtain granules (a). The process of obtaining
(II) The obtained granules (a) are fired at 500°C to 800°C for 10 minutes to 3 hours, and the lithium positive electrode active material particles (B ), and (III) obtaining a pre-granulated product (b) with a porosity of 45% to 80% by volume, and (III) obtaining a pre-granulated product (b) and lithium composite oxide secondary particles (A ) while applying compressive force and shearing force to crush the pre-granulated material (b), and produce lithium positive electrode active material particles (B) having a lithium-based solid electrolyte (C) supported on the surface. ) and lithium composite oxide secondary particles (A), the method for producing a positive electrode active material composite for a lithium ion secondary battery according to any one of claims 1 to 4 .
工程(I)で得られる造粒物(a)の粒径が、5μm~25μmである請求項に記載のリチウムイオン二次電池用正極活物質複合体の製造方法。 The method for producing a positive electrode active material composite for a lithium ion secondary battery according to claim 5 , wherein the granules (a) obtained in step (I) have a particle size of 5 μm to 25 μm.
JP2019214534A 2019-11-27 2019-11-27 Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same Active JP7403289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019214534A JP7403289B2 (en) 2019-11-27 2019-11-27 Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019214534A JP7403289B2 (en) 2019-11-27 2019-11-27 Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2021086723A JP2021086723A (en) 2021-06-03
JP7403289B2 true JP7403289B2 (en) 2023-12-22

Family

ID=76087944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019214534A Active JP7403289B2 (en) 2019-11-27 2019-11-27 Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP7403289B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4333117A1 (en) * 2021-11-02 2024-03-06 Contemporary Amperex Technology Co., Limited Positive electrode active material and preparation method therefor, lithium-ion battery comprising same, battery module, battery pack, and electric apparatus
CN114933333A (en) * 2022-06-09 2022-08-23 广西百色市德柳锰业有限公司 Composite doped modified capacity type lithium manganate and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017056A (en) 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2015060767A (en) 2013-09-20 2015-03-30 日立マクセル株式会社 Positive electrode material for lithium secondary battery, and lithium secondary battery
CN107039634A (en) 2017-05-04 2017-08-11 北京科技大学 Composite lithium ion battery anode and flexible lithium battery, solid state lithium battery preparation method
CN108054378A (en) 2017-12-29 2018-05-18 中国科学院物理研究所 Lithium battery composite positive pole with nucleocapsid and preparation method thereof
JP2018156941A (en) 2017-03-16 2018-10-04 太平洋セメント株式会社 Electrode active material for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
CN109004201A (en) 2018-07-30 2018-12-14 清陶(昆山)新能源材料研究院有限公司 A kind of preparation method and applications of the high-voltage anode material of the nucleocapsid structure suitable for polymer-based solid state electrolyte
CN109390553A (en) 2017-08-02 2019-02-26 宁德新能源科技有限公司 Composite positive pole, positive plate and solid lithium battery
JP2019050104A (en) 2017-09-08 2019-03-28 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017056A (en) 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2015060767A (en) 2013-09-20 2015-03-30 日立マクセル株式会社 Positive electrode material for lithium secondary battery, and lithium secondary battery
JP2018156941A (en) 2017-03-16 2018-10-04 太平洋セメント株式会社 Electrode active material for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
CN107039634A (en) 2017-05-04 2017-08-11 北京科技大学 Composite lithium ion battery anode and flexible lithium battery, solid state lithium battery preparation method
CN109390553A (en) 2017-08-02 2019-02-26 宁德新能源科技有限公司 Composite positive pole, positive plate and solid lithium battery
JP2019050104A (en) 2017-09-08 2019-03-28 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery
CN108054378A (en) 2017-12-29 2018-05-18 中国科学院物理研究所 Lithium battery composite positive pole with nucleocapsid and preparation method thereof
CN109004201A (en) 2018-07-30 2018-12-14 清陶(昆山)新能源材料研究院有限公司 A kind of preparation method and applications of the high-voltage anode material of the nucleocapsid structure suitable for polymer-based solid state electrolyte

Also Published As

Publication number Publication date
JP2021086723A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7052072B2 (en) Positive electrode material for rechargeable lithium-ion batteries
JP4524339B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP6431236B1 (en) Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
JP4644895B2 (en) Lithium secondary battery
JP5266861B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP7379856B2 (en) Nickel manganese cobalt-containing composite hydroxide and its manufacturing method, lithium nickel manganese cobalt-containing composite oxide and its manufacturing method, positive electrode active material for lithium ion secondary battery and its manufacturing method, and lithium ion secondary battery
JP7272134B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
WO2016148096A1 (en) Method for producing lithium metal complex oxide having layered structure
WO2021251416A1 (en) Positive electrode active material for lithium ion secondary batteries, method for producing said positive electrode active material, and lithium ion secondary battery
JP7271945B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7172301B2 (en) Transition metal composite hydroxide, method for producing transition metal composite hydroxide, lithium transition metal composite oxide active material, and lithium ion secondary battery
JP7366662B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP7403289B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP2004311427A (en) Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery
JP6008578B2 (en) Method for producing positive electrode active material for secondary battery and secondary battery
JP7484283B2 (en) Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP2020033234A (en) Method for producing transition metal composite hydroxide, transition metal composite hydroxide, method for producing cathode active material for lithium ion secondary battery, and cathode active material for lithium ion secondary battery
JP7235130B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP7165608B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for producing the same
JP7272140B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2014044897A (en) Lithium composite oxide and method for producing the same, positive electrode active material for secondary battery including the lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as positive electrode
JP7205198B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP6590973B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231212

R150 Certificate of patent or registration of utility model

Ref document number: 7403289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150