JPH08195200A - Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with this active material - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with this active material

Info

Publication number
JPH08195200A
JPH08195200A JP7023424A JP2342495A JPH08195200A JP H08195200 A JPH08195200 A JP H08195200A JP 7023424 A JP7023424 A JP 7023424A JP 2342495 A JP2342495 A JP 2342495A JP H08195200 A JPH08195200 A JP H08195200A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
electrolyte secondary
positive electrode
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7023424A
Other languages
Japanese (ja)
Other versions
JP3036674B2 (en
Inventor
Hiroaki Yoshida
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7023424A priority Critical patent/JP3036674B2/en
Publication of JPH08195200A publication Critical patent/JPH08195200A/en
Application granted granted Critical
Publication of JP3036674B2 publication Critical patent/JP3036674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a nonaqueous electrolyte secondary battery having a long charge/discharge cycle life. CONSTITUTION: This nonaqueous electrolyte secondary battery is provided with a positive electrode 6 active material for the nonaqueous electrolyte secondary battery expressed by the general formula Lix Mn2-y By O4 (0<x<2, 0.001<=Y<0.02) and a lithium negative electrode 3 active material. A lithium-manganese-boron composite oxide has high stability in the charging state, i.e., the state that lithium ions are partially removed from a crystal structure, the capacity is rarely reduced after repeated charges and discharges, and a long life is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解質二次電池に関
するもので、利用率が高く安定な正極活物質の使用によ
り、充放電サイクル寿命の長い非水電解質二次電池を提
供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and provides a non-aqueous electrolyte secondary battery having a long charge / discharge cycle life by using a stable positive electrode active material. is there.

【0002】[0002]

【従来の技術】近年、各種電子機器の小型化に伴い、よ
り高エネルギー密度の二次電池が要望されている。非水
電解質を使用した二次電池は、従来の水溶液電解液を使
用した電池の数倍のエネルギー密度を有することから、
その実用化が待たれている。
2. Description of the Related Art In recent years, with the miniaturization of various electronic devices, there has been a demand for secondary batteries having higher energy density. A secondary battery using a non-aqueous electrolyte has several times the energy density of a battery using a conventional aqueous electrolyte solution,
Its practical application is awaited.

【0003】非水電解質は、非プロトン性の有機溶媒に
電解質となる金属塩を溶解させたものである。例えば、
リチウム塩に関しては、 LiClO4 、LiPF6 、LiBF4 、Li
AsF6 、LiCF3 SO3 等を、プロピレンカーボネート、エ
チレンカーボネート、1,2-ジメトキシタン、γ−ブチロ
ラクトン、ジオキソラン、2-メチルテトラヒドロフラ
ン、ジエルカーボネート、ジメチルカーボネート、スル
ホラン等の単独溶媒、あるいはこれらの混合溶媒に溶解
させたものが使用されている。
The non-aqueous electrolyte is obtained by dissolving a metal salt as an electrolyte in an aprotic organic solvent. For example,
Regarding lithium salts, LiClO 4 , LiPF 6 , LiBF 4 , Li
AsF 6 , LiCF 3 SO 3 and the like are mixed with propylene carbonate, ethylene carbonate, 1,2-dimethoxytane, γ-butyrolactone, dioxolane, 2-methyltetrahydrofuran, dier carbonate, dimethyl carbonate, sulfolane and the like as a single solvent or a mixture thereof. What is dissolved in a solvent is used.

【0004】これらの非水電解質は、電池容器に注入し
て使用されるが、多孔質のセパレータに含浸したり、高
分子量の樹脂を添加して高粘性にしたり、ゲル化させて
流動性をなくしたりして使用されることもある。また、
ポリエチレンオキサイドに代表されるポリマー電解質も
非水電解質二次電池の電解質として検討が進められてい
る。
These non-aqueous electrolytes are used by injecting them into a battery container. They are impregnated into a porous separator, a high molecular weight resin is added to make them highly viscous, or they are gelled to improve fluidity. It is sometimes used by losing it. Also,
A polymer electrolyte represented by polyethylene oxide is also being studied as an electrolyte for a non-aqueous electrolyte secondary battery.

【0005】非水電解質電池の負極活物質としては、従
来より様々な物質が検討されてきたが、高エネルギー密
度が期待されるものとして、リチウム系の負極が最適で
ある。特に非水電解質二次電池の負極として、リチウム
金属、リチウム合金、リチウムイオンを保持させた炭素
等が検討されている。
As a negative electrode active material for a non-aqueous electrolyte battery, various materials have been studied so far, but a lithium-based negative electrode is most suitable because a high energy density is expected. Particularly, as a negative electrode of a non-aqueous electrolyte secondary battery, lithium metal, a lithium alloy, carbon holding lithium ions, and the like have been studied.

【0006】非水電解質二次電池の正極活物質として
は、安価なスピネル型リチウムマンガン複合酸化物(Li
Mn2 O 4 )の研究が近年活発に行われている。この活物
質の結晶構造はスピネル型の立方晶であり、電位曲線は
4.0V付近と2.8V付近に平坦部をもつ2段となる。ここ
で、高エネルギー密度を得るには、充放電の電位範囲を
4.3V〜3.0Vまでとし、4.0Vの平坦部を用いて充放電する
必要がある。
As a positive electrode active material for a non-aqueous electrolyte secondary battery, an inexpensive spinel type lithium manganese composite oxide (Li
Mn 2 O 4 ) has been actively researched in recent years. The crystal structure of this active material is a spinel type cubic crystal, and the potential curve is
There are two steps with flat parts around 4.0V and 2.8V. Here, in order to obtain high energy density, the charge / discharge potential range should be set to
It is required to charge and discharge from 4.3V to 3.0V using the flat part of 4.0V.

【0007】[0007]

【発明が解決しようとする課題】スピネル型リチウムマ
ンガン複合酸化物LiMn2 O 4 は、そのままでは安定であ
るが、非水電解質電池の正極活物質として使用すると、
充放電サイクルの進行に伴う容量劣化が大きいという欠
点があった。LiMn2 O 4 は、充電によってLiが抜けると
結晶構造的に不安定な状態になり、Mnが溶失するという
性質がある。
The spinel type lithium manganese composite oxide LiMn 2 O 4 is stable as it is, but when it is used as a positive electrode active material of a non-aqueous electrolyte battery,
There is a drawback that the capacity is greatly deteriorated as the charge / discharge cycle progresses. LiMn 2 O 4 has a property that when Li is released by charging, it becomes unstable in its crystal structure and Mn is lost.

【0008】近年、高容量で充放電サイクルの進行にと
もなう容量低下が少ない活物質として、マンガンの一部
をほう素で置換した組成式Lix Mn2-y B y O 4 (0.85≦
X ≦1.15、0.02≦Y ≦0.5 )(特開平4-237970号公報参
照)、およびLi1+x Mny B 2-y O 4 (1.6 ≦Y ≦1.9 )
(特開平5-290846号公報参照)が提案されている。しか
しながら、両者には高率放電時の容量が少ないという問
題があった。
In recent years, a composition formula Li x Mn 2- y By O 4 (0.85 ≦
X ≤1.15, 0.02 ≤Y ≤0.5) (see Japanese Patent Laid-Open No. 4-237970), and Li 1 + x Mn y B 2-y O 4 (1.6 ≤Y ≤1.9)
(See Japanese Patent Laid-Open No. 5-290846). However, both have a problem that the capacity at the time of high rate discharge is small.

【0009】[0009]

【課題を解決するための手段】本発明はこのような課題
を解決するもので、高表面積である MnO2 を出発原料に
用い、特定割合のほう素を添加し、温度600 〜800 ℃の
比較的低温で合成するこで、高率放電時においても放電
容量が大きく、かつ充放電サイクル寿命の長い活物質を
得るものである。また、この活物質を用いることで、高
率放電時の容量が大きく、サイクルの進行に伴う容量劣
化の少ない非水電解質二次電池を提供するものである。
すなわち本発明は、非水電解質二次電池の正極活物質と
して、一般式Lix Mn2-y B y O 4 (0 <X <2 、0.001
≦Y <0.02)で示されるリチウムマンガンほう素複合酸
化物を用いることを特徴とする。
Means for Solving the Problems The present invention solves such a problem by using MnO 2 having a high surface area as a starting material, adding a specific proportion of boron, and comparing the temperature at 600 to 800 ° C. By synthesizing at an extremely low temperature, an active material having a large discharge capacity even at the time of high rate discharge and a long charge / discharge cycle life can be obtained. Further, by using this active material, it is possible to provide a non-aqueous electrolyte secondary battery which has a large capacity at high rate discharge and has a small capacity deterioration with the progress of cycles.
That is, the present invention, as a positive electrode active material of a non-aqueous electrolyte secondary battery, the general formula Li x Mn 2- y By O 4 (0 <X <2, 0.001
It is characterized by using a lithium manganese boron composite oxide represented by ≦ Y <0.02).

【0010】[0010]

【作用】一般式Lix Mn2-y B y O 4 (0 <X <2 、0.00
1 ≦Y <0.02)で示されるリチほう素複合酸化物からな
る正極活物質は、高率放電性能に優れかつ長寿命の非水
電解質二次電池の作製を可能とした。
Operation: General formula Li x Mn 2- y By O 4 (0 <X <2, 0.00
The positive electrode active material composed of the lithium boron composite oxide represented by 1 ≤ Y <0.02) made it possible to fabricate a non-aqueous electrolyte secondary battery having excellent high rate discharge performance and long life.

【0011】リチウムマンガンほう素複合酸化物の結晶
構造は、従来のスピネル型リチウムマンガン複合酸化物
と同じ立方晶系を有している。リチウムマンガンほう素
複合酸化物は、充電状態、すなわち結晶構造からリチウ
ムイオンが一部抜けた状態での安定性が高く、充放電を
繰り返しても容量の低下が少ない。この理由は明かでは
ないが、Mnの一部をB で置換することで、充電状態での
結晶構造が安定化されためではないかと思われる。ま
た、出発原料に高表面積を有する MnO2 を用い、温度60
0 〜800 ℃の比較的低温で合成すると、高率放電時の容
量が大きく、かつ長寿命活物質が合成できる。 MnO2
種類としては、化学合成二酸化マンガンおよび電二酸化
マンガンの2種を用いることができるが、価格および反
応性の点で前者を用いるのが好ましい。
The crystal structure of the lithium-manganese-boron composite oxide has the same cubic system as the conventional spinel type lithium-manganese composite oxide. The lithium-manganese-boron composite oxide has high stability in a charged state, that is, in a state in which a part of lithium ions has escaped from the crystal structure, and the capacity does not decrease much even if charging and discharging are repeated. The reason for this is not clear, but it seems that the substitution of a part of Mn with B stabilizes the crystal structure in the charged state. In addition, MnO 2 with a high surface area was used as the starting material, and
When synthesized at a relatively low temperature of 0 to 800 ° C., a large capacity at high rate discharge and a long-life active material can be synthesized. As the type of MnO 2 , two types of chemically synthesized manganese dioxide and electromanganese dioxide can be used, but it is preferable to use the former in terms of cost and reactivity.

【0012】上記活物質の合成において、リチウムおよ
びほう素については、出発原料の種類に影響されないこ
とが確認された。リチウム塩としては、水酸化リチウ
ム、硝酸リチウム、炭酸リチウムなどが、ほう素の原料
としては、ほう酸、酸化ほう素、ほう酸アンモニウムな
どを用いることができる。
In the synthesis of the above active material, it was confirmed that lithium and boron were not affected by the types of starting materials. As the lithium salt, lithium hydroxide, lithium nitrate, lithium carbonate and the like can be used, and as the raw material of boron, boric acid, boron oxide, ammonium borate and the like can be used.

【0013】[0013]

【実施例】【Example】

(実施例1)まず最初にLiMn2-y B y O 4 を合成した。
Y は0 、0.001 、0.005 、0.01、0.0.1 、0.2 である。
なお、Y=0 は、ほう素の未添加品であり、従来品の組成
を示いる。合成は次のようにして行った。水酸化リチウ
ムLiOHと化学合成二酸化マンガン MnO2 とほう酸 H3 BO
3 とを所定量のモル比にて乳鉢で混合し、700 ℃で18時
間熱処理した。熱処理後、乳鉢で粉砕した。これらのう
ち、ほう素の置換量 Yが0.02以上のものは、粉末X線回
折によりLi2 B 4 O 7 の回折ピークが現れ、単一相が得
られなかった。
It was synthesized LiMn 2-y B y O 4 ( Example 1) First.
Y is 0, 0.001, 0.005, 0.01, 0.0.1, 0.2.
It should be noted that Y = 0 represents a composition in which no boron was added and the composition of the conventional product. The synthesis was performed as follows. Lithium hydroxide LiOH and chemically synthesized manganese dioxide MnO 2 and boric acid H 3 BO
3 and 3 were mixed at a predetermined molar ratio in a mortar and heat-treated at 700 ° C. for 18 hours. After the heat treatment, it was ground in a mortar. Among these, those having a boron substitution amount Y of 0.02 or more showed a diffraction peak of Li 2 B 4 O 7 by powder X-ray diffraction, and a single phase was not obtained.

【0014】次に、得られたリチウムマンガンほう素複
合酸化物LiMn2-y B y O 4 を正極活物質に用いて非水電
解質二次電池を組立てた。図1は本発明の実施例におけ
る電池の縦断面図である。正極にLiMn2-y B y O4 、負
極に炭素材料を用いた。1は、耐有機電解質性のステン
レス鋼板をプレスによっ打ち抜き加工した正極端子を兼
ねるケース、2は同種の材料を打ち抜き加工した極端子
を兼ねる封口板である。その内壁には負極3が当接され
ている。5は有機電解質を含浸したポリプロピンからな
るセパレーター、6は正極である。正極端子を兼ねるケ
ース1の開口端部を内方へかしめ、ガスケット4(リフ
ルオロアルコキシ(PFA) 製)を介して、負極端子を兼ね
る封口板2の外周を締付けることにより密閉封口してい
る。
Next, a non-aqueous electrolyte secondary battery was assembled using the obtained lithium manganese boron composite oxide LiMn 2- y By O 4 as a positive electrode active material. FIG. 1 is a vertical sectional view of a battery according to an embodiment of the present invention. LiMn 2-y B y O 4 positive electrode, using a carbon material for the negative electrode. Reference numeral 1 denotes a case that also serves as a positive electrode terminal made by punching a stainless steel sheet having organic electrolyte resistance with a press, and 2 denotes a sealing plate that also serves as a pole terminal that is punched from the same type of material. The negative electrode 3 is in contact with the inner wall thereof. Reference numeral 5 is a separator made of polypropyne impregnated with an organic electrolyte, and 6 is a positive electrode. The open end of the case 1 also serving as the positive electrode terminal is caulked inward, and the outer periphery of the sealing plate 2 also serving as the negative electrode terminal is tightly sealed via a gasket 4 (made of refluoroalkoxy (PFA)).

【0015】負極は次ように作製した。炭素粉末(熱分
解炭素)92重量部に対してポリフッ化ビニリデン8 重量
部および溶剤としてのN-メチル-2- ピロリドンを適量添
加してよく混練し、負極合剤ペーストを調製した。この
ペーストを100 メッシュの銅金網(線径0.1mm)に均一に
塗布し、温度85℃で熱風乾燥、次いで温度250 ℃で真空
乾燥後、直径16mmの円板に打ち抜いて負極板とした。
The negative electrode was manufactured as follows. A negative electrode mixture paste was prepared by adding 8 parts by weight of polyvinylidene fluoride and N-methyl-2-pyrrolidone as a solvent in appropriate amounts to 92 parts by weight of carbon powder (pyrolytic carbon) and kneading well. This paste was uniformly applied to a 100-mesh copper wire mesh (wire diameter 0.1 mm), dried with hot air at a temperature of 85 ° C., then vacuum-dried at a temperature of 250 ° C., and punched into a disk having a diameter of 16 mm to obtain a negative electrode plate.

【0016】正極は次のように作製した。まず、LiMn
2-y B y O 4 82重量部に対してポリフッ化ビニリデン6.
5 重量部、グラファイト(ロンザFG6 )10重量部、ケッ
チェンブラック1.5 重量部、および溶剤としてのN-メチ
ル-2ロリドンを適量添加してよく混練し正極合剤ペース
トを調製した。このペーストを100 メッシュのアルミ金
網(線径0.1mm )に均一に塗布し、温度85℃で熱風乾、
次いで温度250 ℃で真空乾燥後、直径16mmの円板に打ち
抜いて正極板とした。
The positive electrode was manufactured as follows. First, LiMn
2-y B y O 4 82 polyvinylidene fluoride 6 relative parts by weight.
5 parts by weight, 10 parts by weight of graphite (Lonza FG6), 1.5 parts by weight of Ketjen Black, and N-methyl-2rollidone as a solvent were added in appropriate amounts and kneaded well to prepare a positive electrode mixture paste. Apply this paste evenly to a 100 mesh aluminum wire mesh (wire diameter 0.1 mm) and dry with hot air at a temperature of 85 ° C.
Then, after vacuum drying at a temperature of 250 ° C., it was punched into a disk having a diameter of 16 mm to obtain a positive electrode plate.

【0017】電解液としては、プロピレンカーボネート
とエチレンカーボネートの混合溶媒(容積比で1 :1 )
にLiPF6 を1 モル/リットルの割合で溶解したものを使
用した。
As the electrolytic solution, a mixed solvent of propylene carbonate and ethylene carbonate (volume ratio 1: 1)
LiPF 6 dissolved in 1 mol / liter was used.

【0018】このようにして作製した電池において、正
極活物質として使用したLiMn2-y By O 4 のY が0 、0.0
01 、0.005 、0.01、0.02、0.05、0.1 、0.2 のもの
を、それぞれ電池A 、B 、C 、D 、E 、F 、G 、H とし
た。電流値2mA (1mA/cm2 )で電圧4.3Vまで充電し、6m
A (3mA/cm2 )で電圧3.0Vまで放電する条件下で、充放
電サイクル試験を行った。上記放電条件は、リチウム電
池にとって高率放電に相当する。
In the battery thus manufactured, Y of LiMn 2- y By O 4 used as the positive electrode active material was 0, 0.0
Batteries A, B, C, D, E, F, G, and H were 01, 0.005, 0.01, 0.02, 0.05, 0.1, and 0.2, respectively. It was charged to a voltage 4.3V at a current value 2mA (1mA / cm 2), 6m
A charging / discharging cycle test was performed under the condition of discharging at a voltage of 3.0 V at A (3 mA / cm 2 ). The above discharge conditions correspond to high rate discharge for lithium batteries.

【0019】表1 に、10サイクル目および100 サイクル
目の放電容量を示した。LiMn2-y By O 4 のほう素の含
有量が少ない0.001 ≦Y <0.02の範囲の活物質は、比較
電池A に比べて10サイクル目の放電容量の低下が少な
く、かつ充放電サイクルの進行にともなう放電容量の低
下も抑制されている。しかし、ほう素の含有量が比較的
多い0.02≦Y 0.2 の範囲の活物質は、比較電池A に比べ
て10サイクル目の放電容量が低下し、放電サイクルの進
行にともなう容量の低下も大きくなる。10サイクル目の
放電容量が低下する理由としては3価の非遷移金属であ
るほう素が充放電反応に寄与していないことが、また寿
命性能が低下する理由としては活物質に含まれるLi2 B
4 O が悪影響を及ぼしていることが考えられる。
Table 1 shows the discharge capacities at the 10th cycle and the 100th cycle. Active material in the range of LiMn 2-y B y O 0.001 ≦ Y contains less boron in 4 <0.02 has little decrease in discharge capacity at the 10th cycle as compared with the comparison battery A, and the charge-discharge cycle The decrease in discharge capacity with the progress is also suppressed. However, in the active material having a relatively high boron content in the range of 0.02 ≦ Y 0.2, the discharge capacity at the 10th cycle is lower than that of the comparative battery A, and the capacity also decreases with the progress of the discharge cycle. . The reason why the discharge capacity at the 10th cycle decreases is that boron, which is a trivalent non-transition metal, does not contribute to the charge / discharge reaction, and the reason that the life performance decreases is that Li 2 contained in the active material is included. B
It is possible that 4 O has an adverse effect.

【0020】(比較例1)次に、LiMn2-y B y O 4 の放
電性能に及ぼすマンガン種の影響について検討した。ほ
う素含有量Y は0.0 1、0.05の2種類とし、出発原料に
Mn3 O 4 を用いたことの他は実施例1と同様にして活物
質を合成し、電池を作製した。作製した電池において、
正極活物質として使用したLiMn2-y B y O 4 のY が0.0
1、0.05のものをそれぞれ電池I 、J とし、実施例1と
同一条件で試験した。
Comparative Example 1 Next, the effect of manganese species on the discharge performance of LiMn 2- y By O 4 was examined. Boron content Y is 0.01 or 0.05.
An active material was synthesized and a battery was prepared in the same manner as in Example 1 except that Mn 3 O 4 was used. In the manufactured battery,
Y of LiMn 2- y By O 4 used as the positive electrode active material was 0.0
Batteries I and J of 1 and 0.05 were respectively tested under the same conditions as in Example 1.

【0021】表2に、10サイクル目および100 サイク目
の放電容量を示した。10サイクル目の放電容量は、比較
電池D 、F に比べて大く低下している。この理由は明ら
かではないが、出発原料にMn3 O 4 を用いた活物質は表
面積が小さいために、放電容量が小さくなったものと考
えられる。充放電サイクルの進行にともなう容量の低下
は比較電池A に比べ少ないが、10サイク目の容量が小さ
いため、100 サイクル目においても放電容量が小さい。
Table 2 shows the discharge capacities at the 10th cycle and 100th cycle. The discharge capacity at the 10th cycle is much lower than that of the comparative batteries D 1 and F 2. The reason for this is not clear, but it is considered that the discharge capacity is reduced because the active material using Mn 3 O 4 as the starting material has a small surface area. The decrease in capacity with the progress of the charge / discharge cycle is less than that of Comparative Battery A, but the discharge capacity is small even at the 100th cycle because the capacity at the 10th cycle is small.

【0022】(実施例2)次に、LiMn2-y B y O 4 に及
ぼす合成温度の影響について検討した。Y は0.01および
0.05とし、合成温度を500 、600 、800 、850 ℃とした
ことの他は実施例1と同様にして活物質を合成し、電池
を作製した。作製した電池において、正極活物質として
使用したLiMn2-y B y O 4 のY が0.01で、合成温度が50
0 、600 、800 、850 ℃のものをそれぞれ電池K 、L 、
M 、N とし、Y が0.05で合成温度が500 、600 、800 、
850 ℃のものを、それぞれ電池O 、P 、Q 、R とし、実
施例1と同一条件で試験した。
Example 2 Next, the influence of the synthesis temperature on LiMn 2- y By O 4 was examined. Y is 0.01 and
A battery was prepared by synthesizing an active material in the same manner as in Example 1 except that the synthesis temperature was set to 0.05 and the synthesis temperature was set to 500, 600, 800, and 850 ° C. In the fabricated battery, Y of LiMn 2- y By O 4 used as the positive electrode active material was 0.01 and the synthesis temperature was 50.
Batteries K, L, and 0, 600, 800, and 850 ℃ respectively
M and N, Y is 0.05, synthesis temperature is 500, 600, 800,
The batteries of 850 ° C. were used as batteries O 1, P 2, Q 3, and R 4, respectively, and tested under the same conditions as in Example 1.

【0023】表3に、10サイクル目および100 サイクル
目の放電容量を示した。温度500 ℃で合成した活物質は
放電容量が小さい。粉末X線回折を測定した結果、これ
ら活物質は結晶構造の発達が不十分であった。合成温度
600 ℃および800 ℃では、実施例1の結果と同じく、ほ
う素含有量Y=0.01の活物質がY=0.05に比較して高い放電
容量を示した。
Table 3 shows the discharge capacities at the 10th cycle and the 100th cycle. The active material synthesized at a temperature of 500 ° C has a small discharge capacity. As a result of measuring powder X-ray diffraction, the crystal structure of these active materials was insufficiently developed. Synthesis temperature
At 600 ° C. and 800 ° C., similarly to the results of Example 1, the active material having a boron content of Y = 0.01 showed a higher discharge capacity than that of Y = 0.05.

【0024】合成温度が850 ℃と高温になると、活物質
の放電容量が小さくなった。この理由として、活物質の
表面積の低下にともなう高率放電性能の低下が考えられ
る。また、ほう素置換量Y=0.01の活物質は、比較電池A
とほぼ同様の充放電サイクルの進行にともなう放電容量
の低下を示している。これは、合成温度が高温であるた
めに微量添加(Y=0.01) したほう素が揮散してしまった
ことが考えられる。
When the synthesis temperature was as high as 850 ° C., the discharge capacity of the active material decreased. The reason for this is considered to be a decrease in high rate discharge performance due to a decrease in surface area of the active material. In addition, the active material with a boron substitution amount Y = 0.01 is the comparative battery A
Almost the same as the above, the discharge capacity decreases with the progress of the charge / discharge cycle. This is probably because the synthesis temperature was high, so a small amount of boron (Y = 0.01) was volatilized.

【0025】なお、上記実施例では正極活物質として、
Lix Mn2-y B y O 4 のX 値が1 であるリチウムマンガン
ほう素複合酸化物を用いる場合を説明したが、特に1 に
限定されるものではない。X 値は、電気化学的に0 <X
<2 の範囲で可変であり、電池設計に応じて最適化する
ことができる。例えば、負極に炭素材料などの初期充電
時において容量損失を生じる材料を用いる場合は、電気
化学的に還元した方が好ましく、X 値は1 ≦X <2 の範
囲で用いることができる。一方、負極に金属リチウムな
どを用い、充電状態で電池を組み立てる場合は、電気化
学的に酸化した方が好ましく、X 値は0 <X ≦1の範囲
で用いることができる。
In the above embodiment, as the positive electrode active material,
Li X value of x Mn 2-y B y O 4 has described the case of using lithium manganese boron complex oxide is 1, but not particularly limited to 1. The X value is electrochemically 0 <X
It is variable in the range <2 and can be optimized according to the battery design. For example, when a material such as a carbon material that causes capacity loss during initial charging is used for the negative electrode, it is preferably electrochemically reduced, and the X value can be used within the range of 1 ≦ X <2. On the other hand, when a battery is assembled in a charged state using metallic lithium or the like for the negative electrode, it is preferable to electrochemically oxidize, and the X value can be used in the range of 0 <X ≤ 1.

【0026】また、負極として熱分解炭素を用いる場合
を説明したが、人造黒鉛、天然黒鉛、ピッチ系球状黒鉛
など種々の炭素材料を用いることができる。
Although the case where pyrolytic carbon is used as the negative electrode has been described, various carbon materials such as artificial graphite, natural graphite and pitch-based spherical graphite can be used.

【0027】さらに上記実施例では、電解質にLiPF6
用いる場合を説明したが、電解質の類や濃度も基本的に
限定されるものではない。たとえば、 LiAsF6 , LiB
F4 ,LiCLiCF3 SO3 などの1種以上を、濃度0.5〜2
モル/l程度の範囲で用いることできる。なお、前記の
実施例に係る電池はいずれもボタン形電池であるが、円
筒形、角形またはペーパー形電池に本発明を適用しても
同様の効果が得られる。
Further, in the above embodiment, the case where LiPF 6 is used as the electrolyte has been described, but the kind and concentration of the electrolyte are not basically limited. For example, LiAsF 6 , LiB
Concentration of one or more of F 4 , LiCLiCF 3 SO 3 etc. of 0.5 to 2
It can be used in the range of about mol / l. Although all the batteries according to the above-mentioned embodiments are button type batteries, the same effect can be obtained by applying the present invention to cylindrical, prismatic or paper type batteries.

【0028】[0028]

【発明の効果】以上のことから、非水電解質二次電池に
おいて、正極活物質にほう素を含有するLix Mn2-y
y 4 (0 <X <2 、0.001 ≦Y <0.02)組成の複合
酸化物を用いることにより、解質二次電池の充放電サイ
クル特性が向上し、長寿命の二次電池を提供することが
可能となった。Y の値は、0.001 という極微量でも効果
があった。Y の値が0.02以上では、充放電サイクル初期
の進行にともなう放電容量の低下が大きくなった。Y の
値は、0.001 ≦Y <0.02が好ましい。
As described above, in the non-aqueous electrolyte secondary battery, Li x Mn 2-y containing boron as the positive electrode active material is used.
By using a composite oxide having a composition of B y O 4 (0 <X <2, 0.001 ≤ Y <0.02), the charge / discharge cycle characteristics of the degradable secondary battery are improved and a long-life secondary battery is provided. It has become possible. The Y value was effective even at a very small amount of 0.001. When the value of Y was 0.02 or more, the decrease in discharge capacity with the progress of the initial charge / discharge cycle increased. The value of Y is preferably 0.001 ≤ Y <0.02.

【0029】本発明の電池は、充放電サイクルにおける
劣化が少ないために、小型のボタン電池から電気自動車
用の大型の電池まで適用が可能であり、非水電質二次電
池の実用化に大きな役割を果たすものである。
The battery of the present invention can be applied to a small button battery to a large battery for an electric vehicle because of little deterioration in charge / discharge cycles, and plays a major role in the practical application of a non-aqueous electrolyte secondary battery. To fulfill.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および比較例における電池の構
造を示す断面図。
FIG. 1 is a cross-sectional view showing a structure of a battery in an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 1 Battery Case 2 Sealing Plate 3 Negative Electrode 4 Gasket 5 Separator 6 Positive Electrode

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式Lix Mn2-y y 4 (0 <X
<2 、0.001 ≦Y <0.02)で表される非水電解質二次電
池用正極活物質。
1. The general formula Li x Mn 2- y By O 4 (0 <X
<2, 0.001 ≤ Y <0.02) A positive electrode active material for a non-aqueous electrolyte secondary battery.
【請求項2】 リチウムを活物質とする負極と、請求項
1記載の活物質を有する正極とを備えた非水電解質二次
電池。
2. A non-aqueous electrolyte secondary battery comprising a negative electrode containing lithium as an active material and a positive electrode containing the active material according to claim 1.
【請求項3】 リチウム化合物と二酸化マンガンとほう
素化合物とを混合し、温度600 ℃以上800 ℃以下で加熱
処理することを特徴する請求項1記載の非水電解質二次
電池用正極活物質の製造法。
3. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein a lithium compound, manganese dioxide and a boron compound are mixed and heat-treated at a temperature of 600 ° C. or higher and 800 ° C. or lower. Manufacturing method.
JP7023424A 1995-01-17 1995-01-17 Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith Expired - Lifetime JP3036674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7023424A JP3036674B2 (en) 1995-01-17 1995-01-17 Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7023424A JP3036674B2 (en) 1995-01-17 1995-01-17 Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith

Publications (2)

Publication Number Publication Date
JPH08195200A true JPH08195200A (en) 1996-07-30
JP3036674B2 JP3036674B2 (en) 2000-04-24

Family

ID=12110129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7023424A Expired - Lifetime JP3036674B2 (en) 1995-01-17 1995-01-17 Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith

Country Status (1)

Country Link
JP (1) JP3036674B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033103A (en) * 2000-07-17 2002-01-31 Yuasa Corp Lithium secondary battery
US6696200B1 (en) * 1999-08-04 2004-02-24 Sanyo Electric Co., Ltd. Lithium battery with boron-containing electrode
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP2008037749A (en) * 1996-08-12 2008-02-21 Toda Kogyo Corp Lithium nickel cobalt composite oxide, its manufacturing method and cathode active material for secondary battery
WO2009063630A1 (en) 2007-11-12 2009-05-22 Toda Kogyo Corporation Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2010032449A1 (en) 2008-09-18 2010-03-25 戸田工業株式会社 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
JP2011049180A (en) * 1999-07-07 2011-03-10 Showa Denko Kk Method for producing positive electrode active material for lithium ion secondary battery
EP2304828A1 (en) * 2008-06-24 2011-04-06 Süd-Chemie AG Mixed oxide containing a lithium-manganese spinel and process for producing it
JP2012146662A (en) * 2011-01-12 2012-08-02 Samsung Sdi Co Ltd Cathode active material, cathode and lithium battery employing the same, and method of preparing the same
CN109560284A (en) * 2018-11-06 2019-04-02 山西北斗星新材料有限公司 A kind of high performance doping type lithium manganate positive electrode and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2588831B (en) * 2019-11-11 2022-11-02 Evolution Power Tools Ltd A handheld circular cutter saw

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037749A (en) * 1996-08-12 2008-02-21 Toda Kogyo Corp Lithium nickel cobalt composite oxide, its manufacturing method and cathode active material for secondary battery
JP2011049180A (en) * 1999-07-07 2011-03-10 Showa Denko Kk Method for producing positive electrode active material for lithium ion secondary battery
US6696200B1 (en) * 1999-08-04 2004-02-24 Sanyo Electric Co., Ltd. Lithium battery with boron-containing electrode
JP2002033103A (en) * 2000-07-17 2002-01-31 Yuasa Corp Lithium secondary battery
JP4632005B2 (en) * 2000-07-17 2011-02-16 株式会社Gsユアサ Lithium secondary battery
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery
WO2009063630A1 (en) 2007-11-12 2009-05-22 Toda Kogyo Corporation Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
EP2304828A1 (en) * 2008-06-24 2011-04-06 Süd-Chemie AG Mixed oxide containing a lithium-manganese spinel and process for producing it
US9281522B2 (en) 2008-06-24 2016-03-08 Johnson Matthey Plc Mixed oxide containing a lithium manganese spinel and process for its preparation
US9562303B2 (en) 2008-06-24 2017-02-07 Johnson Matthey Plc Mixed oxide containing a lithium manganese spinel and process for its preparation
EP2304828B1 (en) * 2008-06-24 2018-10-31 Johnson Matthey PLC Mixed oxide containing a lithium-manganese spinel and process for producing it
US10483538B2 (en) 2008-06-24 2019-11-19 Johnson Matthey Public Limited Company Mixed oxide containing a lithium manganese spinel and process for its preparation
WO2010032449A1 (en) 2008-09-18 2010-03-25 戸田工業株式会社 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
KR20110061565A (en) 2008-09-18 2011-06-09 도다 고교 가부시끼가이샤 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
JP2012146662A (en) * 2011-01-12 2012-08-02 Samsung Sdi Co Ltd Cathode active material, cathode and lithium battery employing the same, and method of preparing the same
CN109560284A (en) * 2018-11-06 2019-04-02 山西北斗星新材料有限公司 A kind of high performance doping type lithium manganate positive electrode and preparation method thereof

Also Published As

Publication number Publication date
JP3036674B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
KR100904822B1 (en) Nonaqueous electrolyte secondary battery
US7666551B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery using the same
JP4207434B2 (en) Positive electrode active material and method for producing non-aqueous electrolyte battery
JPH10289731A (en) Nonaqueous electrolytic battery
JP3036674B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith
JP3212639B2 (en) Non-aqueous solvent secondary battery
JP2705529B2 (en) Organic electrolyte secondary battery
JPH07235330A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JPH09147864A (en) Nonaqueous electrolyte battery and its manufacture
JP2845069B2 (en) Organic electrolyte secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2002063904A (en) Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
JP2611265B2 (en) Non-aqueous electrolyte secondary battery
JPH0821431B2 (en) Organic electrolyte secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
JP4161422B2 (en) Non-aqueous electrolyte secondary battery
JP3439718B2 (en) Non-aqueous electrolyte secondary battery
JP3331608B2 (en) Non-aqueous electrolyte secondary battery
JPH04181660A (en) Nonaqueous secondary battery
JP2638849B2 (en) Non-aqueous electrolyte secondary battery
JPH09231975A (en) Positive electrode material for lithium secondary battery, and nonaqueous electrolyte secondary battery using it
JPH11260412A (en) Nonaqueous solvent secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

EXPY Cancellation because of completion of term