JP2705529B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP2705529B2
JP2705529B2 JP5210873A JP21087393A JP2705529B2 JP 2705529 B2 JP2705529 B2 JP 2705529B2 JP 5210873 A JP5210873 A JP 5210873A JP 21087393 A JP21087393 A JP 21087393A JP 2705529 B2 JP2705529 B2 JP 2705529B2
Authority
JP
Japan
Prior art keywords
secondary battery
organic electrolyte
dmc
battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5210873A
Other languages
Japanese (ja)
Other versions
JPH0745304A (en
Inventor
吉田  浩明
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16596514&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2705529(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP5210873A priority Critical patent/JP2705529B2/en
Publication of JPH0745304A publication Critical patent/JPH0745304A/en
Application granted granted Critical
Publication of JP2705529B2 publication Critical patent/JP2705529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ高い安全性を有する有機電解液二次電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-energy-density and high-safety organic electrolyte secondary battery as a power supply for driving electronic equipment or a power supply for holding a memory.

【0002】[0002]

【従来の技術とその課題】電子機器の急激なる小形軽量
化に伴い、その電源である電池に対して小形で軽量かつ
高エネルギー密度で、更に繰り返し充放電が可能な二次
電池の開発への要求が高まっている。これら要求を満た
す二次電池として、有機電解液二次電池が最も有望であ
る。
2. Description of the Related Art With the rapid reduction in size and weight of electronic equipment, the development of secondary batteries that are small, lightweight, have a high energy density, and can be repeatedly charged and discharged with respect to the battery that is the power source of the electronic equipment has been developed. Demands are growing. As a secondary battery satisfying these requirements, an organic electrolyte secondary battery is most promising.

【0003】有機電解液二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物およ
びスピネル型リチウムマンガン酸化物などは、4V(vs.
Li/Li+ ) 以上のきわめて貴な電位で充放電を行うた
め、正極として用いることで高い放電電圧を有する電池
が実現できる。
As the positive electrode active material of the organic electrolyte secondary battery, various substances such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been studied. ing. Among them, lithium cobalt composite oxide, spinel type lithium manganese oxide and the like are 4V (vs.
Since the battery is charged and discharged at a very noble potential of Li / Li + ) or more, a battery having a high discharge voltage can be realized by using it as a positive electrode.

【0004】有機電解液二次電池の負極活物質は、金属
リチウムをはじめとしてリチウムの吸蔵・放出が可能な
Li−Al合金や炭素材料など種々のものが検討されて
いるが、なかでも炭素材料は、安全性が高くかつサイク
ル寿命の長い電池が得られるという利点がある。
[0004] As the negative electrode active material of the organic electrolyte secondary battery, various materials such as lithium metal and a Li-Al alloy capable of occluding and releasing lithium and carbon materials have been studied. Has an advantage that a battery having high safety and a long cycle life can be obtained.

【0005】有機電解液二次電池の電解液には、広い使
用温度範囲(−20〜60℃)や高いイオン導電率が求
められるため、一般にエチレンカーボネートやプロピレ
ンカーボネートなどの高誘電率と1,2−ジメトキシエ
タンやジメチルカーボネートなどの低粘度溶媒とを1:
1の混合比で混合した有機溶媒が用いられている。
Since an electrolyte for an organic electrolyte secondary battery is required to have a wide operating temperature range (-20 to 60 ° C.) and a high ionic conductivity, a high dielectric constant such as ethylene carbonate or propylene carbonate is generally required. A low-viscosity solvent such as 2-dimethoxyethane or dimethyl carbonate is mixed with 1:
An organic solvent mixed at a mixing ratio of 1 is used.

【0006】しかし、正極にリチウムコバルト複合酸化
物,スピネル型リチウムマンガン酸化物(LixMn2 O4 )
などを用い、負極に炭素材料を用いた二次電池では、電
解液が厳しい酸化還元雰囲気にさらされるため、充放電
サイクルの進行にともなって電解液が劣化し電池の放電
容量が低下するという問題があった。
However, a lithium-cobalt composite oxide and a spinel-type lithium manganese oxide (LixMn 2 O 4 ) are used for the positive electrode.
In a secondary battery using a carbon material for the negative electrode, the electrolyte is exposed to a severe oxidation-reduction atmosphere, so that the electrolyte deteriorates with the progress of the charge / discharge cycle, and the discharge capacity of the battery decreases. was there.

【0007】そこで、電気化学的安定性が優れた電解液
の開発が求められていた。
Therefore, there has been a demand for the development of an electrolyte having excellent electrochemical stability.

【0008】[0008]

【課題を解決するための手段】本発明は、リチウムイオ
ンを吸蔵放出する物質からなる正極と、リチウムイオン
を吸蔵放出する炭素材料からなる負極と、有機電解液と
から構成される二次電池であって、電解液がエチレンカ
ーボネート(EC)とジメチルカーボネート(DMC)
とメチルエチルカーボネート(MEC)との混合溶媒か
らなるとともに、EC、DMCおよびMECの組成比率
が溶媒全体に対してそれぞれ30〜50vol%、10
〜50vol%および10〜50vol%であることを
特徴とする有機電解液二次電池を提供することで、上記
問題点を解決しようとするものである。
SUMMARY OF THE INVENTION The present invention relates to a secondary battery comprising a positive electrode made of a material capable of storing and releasing lithium ions, a negative electrode formed of a carbon material capable of storing and releasing lithium ions, and an organic electrolyte. The electrolyte is ethylene carbonate (EC) and dimethyl carbonate (DMC)
And methyl ethyl carbonate (MEC), and the composition ratio of EC, DMC and MEC is 30 to 50 vol%, 10
An object of the present invention is to solve the above problems by providing an organic electrolyte secondary battery characterized by being at 50 vol% and at 50 vol%.

【0009】[0009]

【作用】本発明の有機電解液二次電池は、従来の有機電
解液二次電池に比較して充放電サイクルを繰り返した場
合の放電容量の保持特性が優れているという作用があ
る。これは、本発明の有機電解液二次電池に用いた新し
い有機溶媒の電気化学的安定性が向上したことに起因す
るものと考えられる。
The organic electrolyte secondary battery of the present invention has an effect that the discharge capacity retention characteristics after repeated charge / discharge cycles are superior to the conventional organic electrolyte secondary battery. This is considered to be due to the improved electrochemical stability of the new organic solvent used in the organic electrolyte secondary battery of the present invention.

【0010】[0010]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
The present invention will be described below with reference to preferred embodiments.

【0011】有機溶媒には、エチレンカーボネート(E
C)、ジメチルカボネート(DMC)およびメチルエチ
ルカーボネート(MEC)の3種を用いた。電解液は、
EC,DMC,MECの組成比(体積比)を変化させ、
そのいずれも溶質として6フッ化燐酸リチウム(LiP
6 )を1モル/lの割合で溶解させた。
As the organic solvent, ethylene carbonate (E
C), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC). The electrolyte is
By changing the composition ratio (volume ratio) of EC, DMC, MEC,
Each of them as a solute is lithium hexafluorophosphate (LiP
F 6 ) was dissolved at a rate of 1 mol / l.

【0012】各種組成の上記混合電解液の凝固点を測定
した結果を図1に示す。電解液には−20℃で凝固しな
いことが求められるため、電池に使用できる混合溶媒の
組成範囲は自ずと限定されることがわかる。ECとDM
Cとの2成分混合系では、ECの組成比率は40〜50
vol%となり、ECとMECとの2成分混合系ではE
Cの組成比率は10〜50vol%となる。
FIG. 1 shows the results of measuring the freezing points of the above mixed electrolytes having various compositions. Since the electrolyte is required not to coagulate at −20 ° C., it can be seen that the composition range of the mixed solvent that can be used for the battery is naturally limited. EC and DM
In a two-component mixed system with C, the composition ratio of EC is 40 to 50.
vol%, and E in a binary mixture of EC and MEC.
The composition ratio of C is 10 to 50 vol%.

【0013】凝固点−20℃未満の組成範囲の電解液に
ついて、温度25℃でのイオン導電率を測定した結果を
図2に示す。ECとDMCとの2成分混合電解液のイオ
ン導電率が最も高く、MECの組成比率の高いECとM
ECとの2成分混合電解液が最も低いイオン導電率を示
す。電池の高率放電性能は、イオン導電率の影響を大き
く受けため、ECとDMCとの2成分混合電解液を用い
た電池が、高率放電性能に優れることが予想される。
FIG. 2 shows the results of measuring the ionic conductivity at a temperature of 25 ° C. for an electrolyte having a composition range of less than the freezing point of −20 ° C. EC and M, which have the highest ionic conductivity of the two-component mixed electrolyte of EC and DMC and have a high MEC composition ratio,
The binary electrolyte mixed with EC shows the lowest ionic conductivity. Since the high-rate discharge performance of a battery is greatly affected by the ionic conductivity, it is expected that a battery using a two-component mixed electrolyte of EC and DMC will have excellent high-rate discharge performance.

【0014】次に、電池による試験を行った。図3は、
正極に LiCoO2 、負極に炭素材料を用いた有機電解液二
次電池の縦断面図である。図中1は、耐有機電解液性の
ステンレス鋼板をプレスによって打ち抜き加工した正極
端子を兼ねるケース、2は同種の材料を打ち抜き加工し
た負極端子を兼ねる封口板である。その内壁には負極3
が当接されている。負極は次のように作製した。炭素粉
末(熱分解炭素)92重量部に対してポリフッ化ビニリ
デン8重量部および溶剤としてのN-メチル-2-ピロリド
ンを適量添加してよく混練し、負極合剤ペーストを調製
した。このペーストを100メッシュの銅金網(線径0.
1mm )に均一に塗布し、温度85℃で10時間熱風乾
燥、次いで温度250℃で3時間真空乾燥後、直径16mm
の円板に打ち抜いて負極板を試作した。この電極の充放
電容量は、約15mAh である。5は有機電解液を含浸し
たポリプロピレンからなるセパレーター、6は正極であ
りこれは次のように作製した。LiCoO2 82重量
部に対してポリフッ化ビニリデン6.5重量部、グラフ
ァイト(ロンザ製SFG6)10重量部、ケッチェンブラッ
ク1.5重量部および溶剤としてのN-メチル-2- ピロリ
ドンを適量添加してよく混練し正極合剤ペーストを調製
した。このペーストを100メッシュのアルミ金網(線
径0.1mm )に均一に塗布し、温度85℃で10時間熱風
乾燥、次いで温度250℃で3時間真空乾燥後、直径16
mmの円板に打ち抜いてリチウムコバルト複合酸化物電極
を試作した。この電極の理論容量は、活物質1モル当
り、0.5モルのリチウムが吸蔵・放出されるとする
と、約15mAh である。1は正極端子を兼ねるケースで
あり、開口端部を内方へかしめ、ガスケット4を介して
負極端子を兼ねる封口板2の内周を締め付けることによ
り密閉封口している。電解液の溶媒には、凝固点−20
℃未満の組成範囲となるものを用いた。
Next, a test using a battery was performed. FIG.
FIG. 3 is a longitudinal sectional view of an organic electrolyte secondary battery using LiCoO 2 for a positive electrode and a carbon material for a negative electrode. In the figure, reference numeral 1 denotes a case also serving as a positive electrode terminal punched out of a stainless steel sheet having resistance to organic electrolyte by a press, and reference numeral 2 denotes a sealing plate serving also as a negative electrode terminal punched out of the same material. Negative electrode 3 on the inner wall
Is abutted. The negative electrode was manufactured as follows. An appropriate amount of polyvinylidene fluoride (8 parts by weight) and N-methyl-2-pyrrolidone as a solvent were added to 92 parts by weight of carbon powder (pyrolyzed carbon) and kneaded well to prepare a negative electrode mixture paste. This paste was coated with a 100-mesh copper wire mesh (wire diameter
1mm), hot air drying at 85 ° C for 10 hours, and vacuum drying at 250 ° C for 3 hours.
A negative electrode plate was prototyped by punching into a circular plate. The charge / discharge capacity of this electrode is about 15 mAh. Reference numeral 5 denotes a separator made of polypropylene impregnated with an organic electrolyte, and reference numeral 6 denotes a positive electrode, which was produced as follows. To 82 parts by weight of LiCoO 2, 6.5 parts by weight of polyvinylidene fluoride, 10 parts by weight of graphite (SFG6 manufactured by Lonza), 1.5 parts by weight of Ketjen black and an appropriate amount of N-methyl-2-pyrrolidone as a solvent were added. And kneaded well to prepare a positive electrode mixture paste. This paste was uniformly applied to a 100-mesh aluminum wire mesh (wire diameter: 0.1 mm), dried with hot air at a temperature of 85 ° C. for 10 hours, and then vacuum-dried at a temperature of 250 ° C. for 3 hours.
A lithium-cobalt composite oxide electrode was fabricated by punching it into an mm disk. The theoretical capacity of this electrode is about 15 mAh, assuming that 0.5 mol of lithium is inserted and extracted per 1 mol of the active material. Numeral 1 denotes a case also serving as a positive electrode terminal, which is hermetically sealed by caulking an opening end inward and tightening an inner periphery of a sealing plate 2 also serving as a negative electrode terminal via a gasket 4. The solvent of the electrolyte solution has a freezing point of -20.
Those having a composition range of less than ° C were used.

【0015】次に、これらの電池を2.0mAの定電流
で、端子電圧が4.2V に至るまで充電して、つづい
て、同じく2.0mAの定電流で、端子電圧が2.7V に
達するまで放電する充放電サイクル寿命試験(温度60
℃)をおこなった。初期容量に対する100サイクル充
放電試験後の放電容量保持率を図4にまとめた。試験電
池数は、各条件3個とし、結果はその平均値とした。
Next, these batteries are charged at a constant current of 2.0 mA until the terminal voltage reaches 4.2 V, and subsequently, at a constant current of 2.0 mA, the terminal voltage is increased to 2.7 V. Charge-discharge cycle life test (temperature 60
° C). FIG. 4 shows the discharge capacity retention ratio after the 100-cycle charge / discharge test with respect to the initial capacity. The number of test batteries was three for each condition, and the results were average values.

【0016】ECとDMCとの2成分混合電解液やEC
とMECとの2成分混合電解液は、充放電サイクルの進
行にともなう劣化が大きいが、本発明のECとDMCと
MECとを混合した電解液は、充放電サイクルの進行に
ともなう容量低下が小さい。特に組成がEC40〜50
vol%、DMC20〜30vol%、MEC20〜3
0vol%の範囲にある電解液を用いた電池は、優れた
充放電サイクル特性を示した。ECとDMCとMECと
を特定な組成比で混合することで電池性能が向上した原
因は明かではないが、ECとDMCとMECとの相互作
用により電気化学的安定性が向上したことが考えられ
る。
A two-component mixed electrolyte of EC and DMC or EC
Of the two-component mixed electrolyte of MEC and MEC greatly deteriorates with the progress of the charge / discharge cycle, but the electrolyte of the present invention in which EC, DMC and MEC are mixed has a small decrease in capacity with the progress of the charge / discharge cycle. . Especially the composition is EC40-50
vol%, DMC20-30vol%, MEC20-3
The battery using the electrolyte in the range of 0 vol% exhibited excellent charge / discharge cycle characteristics. It is not clear why the battery performance was improved by mixing EC, DMC and MEC at a specific composition ratio, but it is considered that the electrochemical stability was improved by the interaction between EC, DMC and MEC. .

【0017】このように、電解液がECとDMCとME
Cとの混合溶媒からなり、かつEC、DMCおよびME
Cの組成比率が溶媒全体に対してそれぞれ30〜50v
ol%、10〜50vol%、10〜50vol%とす
ることで、充放電サイクル特性に優れた電池を提供する
ことができる。特に電池の高率放電性能を考慮すると好
ましい組成範囲はEC30〜50vol%、DMC20
〜50vol%、MEC10〜40vol%の溶媒組成
となり、サイクル寿命を考慮するとEC40〜50vo
l%、DMC20〜30vol%、MEC20〜30v
ol%が特に好ましい組成範囲となる。
As described above, the electrolyte is EC, DMC and ME.
EC, DMC and ME
The composition ratio of C is 30 to 50 v with respect to the entire solvent.
ol%, 10 to 50 vol%, and 10 to 50 vol%, a battery having excellent charge / discharge cycle characteristics can be provided. In particular, considering the high rate discharge performance of the battery, the preferred composition range is EC 30 to 50 vol%, DMC 20
~ 50 vol% and MEC10 ~ 40vol%, and EC40 ~ 50vol considering the cycle life.
1%, DMC 20-30 vol%, MEC 20-30 v
ol% is a particularly preferred composition range.

【0018】なお、上記実施例では正極活物質としてリ
チウムコバルト複合酸化物を用いる場合を説明したが、
二硫化チタンをはじめとして二酸化マンガン、スピネル
型リチウムマンガン酸化物(LixMn2 O4 ) 、五酸化バナ
ジウムおよび三酸化モリブデンなどの種々のものを用い
ることができる。また、負極として熱分解炭素を用いる
場合を説明したが、人造黒鉛、天然黒鉛、ピッチ系球状
黒鉛など種々の炭素材料を用いることができる。さらに
上記実施例では、電解質に6フッ化燐酸リチウムを用い
る場合を説明したが、電解質の種類や濃度も基本的に限
定されるものではない。たとえば、 LiAsF6 ,LiBF4
LiPF6 ,LiCF3 SO3 などの1種以上を、濃度0.5〜2
モル/l程度の範囲で用いることができる。なお、前記
の実施例に係る電池はいずれもボタン形電池であるが、
円筒形,角形またはペーパー形電池に本発明を適用して
も同様の効果が得られる。
In the above embodiment, the case where the lithium-cobalt composite oxide is used as the positive electrode active material has been described.
Various materials such as titanium disulfide, manganese dioxide, spinel type lithium manganese oxide (LixMn 2 O 4 ), vanadium pentoxide, and molybdenum trioxide can be used. Although the case where pyrolytic carbon is used as the negative electrode has been described, various carbon materials such as artificial graphite, natural graphite, and pitch-based spherical graphite can be used. Further, in the above embodiment, the case where lithium hexafluorophosphate is used as the electrolyte has been described, but the type and concentration of the electrolyte are not basically limited. For example, LiAsF 6 , LiBF 4 ,
LiPF 6 , LiCF 3 SO 3, etc., at a concentration of 0.5 to 2
It can be used in the range of about mol / l. The batteries according to the above embodiments are all button-type batteries,
Similar effects can be obtained by applying the present invention to a cylindrical, square or paper battery.

【0019】[0019]

【発明の効果】以上のごとく、本発明の有機電解液二次
電池は、充放電サイクルの進行にともなう放電容量の低
下が少ない。
As described above, in the organic electrolyte secondary battery of the present invention, the decrease in the discharge capacity with the progress of the charge / discharge cycle is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ECとDMCとMECとの混合電解液の凝固点
を示した図。
FIG. 1 is a diagram showing a freezing point of a mixed electrolytic solution of EC, DMC and MEC.

【図2】ECとDECとMECとの混合電解液のイオン
導電率を示した図。
FIG. 2 is a diagram showing the ionic conductivity of a mixed electrolytic solution of EC, DEC, and MEC.

【図3】有機電解液二次電池の一例であるボタン電池の
内部構造を示した図。
FIG. 3 is a diagram showing an internal structure of a button battery as an example of an organic electrolyte secondary battery.

【図4】試験電池の100サイクル充放電試験後(温度
60℃)の容量保持率を示した図。
FIG. 4 is a diagram showing a capacity retention ratio of a test battery after a 100-cycle charge / discharge test (at a temperature of 60 ° C.).

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Negative electrode 4 Gasket 5 Separator 6 Positive electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムイオンを吸蔵放出する物質からな
る正極と、リチウムイオンを吸蔵放出する炭素材料から
なる負極と、有機電解液とから構成される有機電解液二
次電池であって、 電解液はエチレンカーボネート(EC)とジメチルカー
ボネート(DMC)とメチルエチルカーボネート(ME
C)との混合溶媒からなり、 かつ、EC、DMCおよびMECの組成比率は、溶媒全
体に対してそれぞれ30〜50vol%、10〜50v
ol%および10〜50vol%であることを特徴とす
る有機電解液二次電池。
1. An organic electrolyte secondary battery comprising: a positive electrode made of a substance capable of storing and releasing lithium ions; a negative electrode formed of a carbon material storing and releasing lithium ions; and an organic electrolyte. Is ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (ME
C), and the composition ratio of EC, DMC and MEC is 30 to 50 vol% and 10 to 50 v, respectively, based on the whole solvent.
ol% and 10 to 50 vol%.
JP5210873A 1993-08-02 1993-08-02 Organic electrolyte secondary battery Expired - Lifetime JP2705529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5210873A JP2705529B2 (en) 1993-08-02 1993-08-02 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5210873A JP2705529B2 (en) 1993-08-02 1993-08-02 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0745304A JPH0745304A (en) 1995-02-14
JP2705529B2 true JP2705529B2 (en) 1998-01-28

Family

ID=16596514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210873A Expired - Lifetime JP2705529B2 (en) 1993-08-02 1993-08-02 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2705529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862933B2 (en) 2007-03-27 2011-01-04 Hitachi Vehicle Energy, Ltd. Lithium secondary battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557240B2 (en) * 1993-04-28 2004-08-25 ソニー株式会社 Non-aqueous electrolyte secondary battery
WO2003044882A1 (en) 2001-11-20 2003-05-30 Tdk Corporation Electrode active material, electrode, lithium ion secondary cell, method for producing electrode active material, and method for producing lithium ion secondary cell
JP5245191B2 (en) 2005-08-17 2013-07-24 パナソニック株式会社 Non-aqueous electrolyte secondary battery
CN100433441C (en) * 2005-10-21 2008-11-12 深圳市比克电池有限公司 Lithium ion cell electrolyte and cell
JP5380826B2 (en) * 2007-11-26 2014-01-08 株式会社豊田中央研究所 Lithium ion secondary battery
JP4526044B2 (en) * 2008-11-11 2010-08-18 日立マクセル株式会社 Lithium ion secondary battery
JP5035281B2 (en) * 2009-03-23 2012-09-26 宇部興産株式会社 Non-aqueous secondary battery
JP6449732B2 (en) * 2015-07-06 2019-01-09 太陽誘電株式会社 Electric double layer capacitor
JP6825701B2 (en) * 2016-10-06 2021-02-03 日本電気株式会社 Spacer-containing electrode structure and its application to high energy density and fast-chargeable lithium-ion batteries
JP6874860B2 (en) * 2017-01-27 2021-05-19 日本電気株式会社 Electrodes containing silicone balls and lithium-ion batteries containing them

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171674A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Nonaqueous-electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862933B2 (en) 2007-03-27 2011-01-04 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
EP2320512A1 (en) 2007-03-27 2011-05-11 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
US8263269B2 (en) 2007-03-27 2012-09-11 Hitachi Vehicle Energy, Ltd. Lithium secondary battery

Also Published As

Publication number Publication date
JPH0745304A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
US20120321955A1 (en) Lithium-ion secondary battery
US7651818B2 (en) Lithium ion secondary battery and charging method therefor
JP2705529B2 (en) Organic electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JP3036674B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JPH07153495A (en) Secondary battery
JPH11283667A (en) Lithium ion battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP3219928B2 (en) Non-aqueous electrolyte secondary battery
JP2001148258A (en) Non-aqueous electrolytic solution and lithium secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3348175B2 (en) Organic electrolyte secondary battery
JP2845069B2 (en) Organic electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP3449679B2 (en) Lithium secondary battery
JP2003031266A (en) Flat nonaqueous secondary battery
JP3620287B2 (en) Organic electrolyte secondary battery
JP3331608B2 (en) Non-aqueous electrolyte secondary battery
JPH07296851A (en) Lithium secondary battery
JP3650016B2 (en) Lithium battery
JP3979428B2 (en) Lithium secondary battery
JPH11329443A (en) Lithium secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 16

EXPY Cancellation because of completion of term