JP4632005B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4632005B2
JP4632005B2 JP2000216421A JP2000216421A JP4632005B2 JP 4632005 B2 JP4632005 B2 JP 4632005B2 JP 2000216421 A JP2000216421 A JP 2000216421A JP 2000216421 A JP2000216421 A JP 2000216421A JP 4632005 B2 JP4632005 B2 JP 4632005B2
Authority
JP
Japan
Prior art keywords
lithium
battery
positive electrode
powder
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000216421A
Other languages
Japanese (ja)
Other versions
JP2002033103A (en
Inventor
一弥 岡部
修竹 黄
明博 藤井
竜二 塩崎
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2000216421A priority Critical patent/JP4632005B2/en
Publication of JP2002033103A publication Critical patent/JP2002033103A/en
Application granted granted Critical
Publication of JP4632005B2 publication Critical patent/JP4632005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質電池に関するもので、さらに詳しくは非水電解質電池の正極活物質に関するものである。
【0002】
【従来の技術】
現在、4V系リチウム二次電池の正極活物質として、LiCoO2、LiNiO2等のα−NaFeO2構造を有する含リチウム酸化物や、リチウムマンガン複合酸化物等のスピネル構造を有する含リチウム酸化物等が用いられている。なかでも、スピネル構造を有するLiMn24は、材料コストが低く、かつ安全性の高い正極活物質である。
【0003】
一方、負極に炭素質材料を用いた場合、電解液と炭素質材料表面との間に生じる被膜状態が、炭素質材料へのリチウムの吸蔵、放出(インターカレーション、デインターカレーション)反応に大きく影響を与える。例えば、負極活物質にリチウム金属を用いた場合に代表されるように、緻密でイオン導伝性の高い被膜を有する場合、その電池特性も優れており、逆に厚くイオン伝導性の低い被膜を有する場合、高率放電特性や、充放電サイクル性能が悪いことが知られている。ここで、前者は炭酸リチウムや酸化リチウム等を主成分とする被膜であり、後者はフッ化リチウム等を主成分とする被膜であることが報告されている。同様のことが炭素質材料の表面に生じる被膜についてもいえる。即ち、炭素質材料を用いた電極の界面抵抗を増大させる要因の一つとして、炭素質材料の表面にイオン伝導度の低い被膜の形成が挙げられる。イオン伝導度の低い被膜としては、前記フッ化リチウム等の被膜の他、例えばMnF2のような、正極から溶解した元素とフッ素との化合物による被膜等が挙げられる。即ち、正極に用いられるマンガン化合物からマンガン等の元素が溶出することが性能低下の原因の一つであった。
【0004】
リチウムマンガン複合酸化物の充放電サイクル性能を向上させるため、特開平4−233161号公報、特開平5−21067号公報、特開平6−187993号公報には、スピネル構造を有するリチウムマンガン複合酸化物のマンガンの一部をマンガン以外の元素で置換する技術が示されている。このような置換を行うことによって、フッ化リチウム等の被膜の形成やリチウムマンガン複合酸化物の溶解は、ある程度抑制される。
【0005】
ところが、置換元素の種類によっては、特に充電末状態において高温放置すると、該置換元素が電解液中へ溶解し、これに伴い、スピネル構造を有するリチウムマンガン複合酸化物の結晶構造に歪みが生じ、該リチウムマンガン複合酸化物自体の溶解を引き起こし、電池の充放電容量を低下させるといった問題があった。
【0006】
このように、これら従来技術を用いても、特に電池を高温で放置した場合、マンガン元素の溶出や、前記置換元素の溶出を十分に抑制することができなかった。特に、負極に炭素質材料を用いている場合には、前記溶出したマンガン等の元素が、負極炭素質材料の表面上に不良な被膜を形成し、これによって負極の充放電容量が減少し、保存による電池性能の劣化が発生するといった問題点があった。
【0007】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みなされたものであって、正極にリチウムマンガン複合酸化物を用いた電池において、高温放置によっても正極構成元素の電解液への溶出を抑え、炭素質負極の性能低下を防止し、高容量、高エネルギー密度で、充放電サイクル性能の優れたリチウム二次電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明のリチウム二次電池はMnの一部が少なくとも元素M及びLiで置換されたリチウムマンガン複合酸化物を正極に用いたリチウム二次電池において、前記元素Mは、前記リチウム二次電池に用いられている有機電解液中において該元素Mの酸化物または水酸化物が不動態化する性質を有する元素から選ばれたことを特徴としている。
【0009】
即ち、本発明者らは上記問題を解決すべく鋭意検討した結果、リチウムマンガン複合酸化物のマンガン元素の一部を置換する元素の選択にあたって、特定の法則を用いることにより、驚くべきことに、電池を高温で保存した場合においても、マンガン元素や置換元素の溶出が高度に抑制できることがわかった。即ち、置換元素Mは、少なくともLiPF6を溶解している有機電解液中において該元素Mの酸化物または水酸化物が不動態化し、電解液に不溶または難溶となる性質を有する元素から選ばれる。従って、このような元素で置換されたリチウムマンガン複合酸化物を正極に用いることにより、充放電サイクル性能並びに高温保存性能に優れたリチウム二次電池を提供できる。
【0010】
ここで、本発明のリチウム電池が充放電特性、特に高温保存特性に優れる理由としては、必ずしも明らかではないが、以下のように考察される。一般に、電池内部には電池の充放電に関与しない種々の不純物を含んでいる。例えば、LiPF6を電解質塩に用いる場合、前記電解質塩に含まれる水分や、電池内部や溶媒中に含まれる極微量の水が前記電解質塩と反応してフッ酸(HF)等を生じる。リチウムイオンが負極炭素質材料に吸蔵される際、炭素質材料表面では、電解液と炭素質材料の間に炭酸リチウム等のイオン伝導性の高い被膜を形成するが、この被膜の形成時あるいは形成後に、前記フッ酸等の酸が存在すると、イオン伝導性の低いハロゲン化リチウムからなる被膜を生じる。このような、ハロゲン化リチウムからなる被膜は、負極の界面抵抗を増大させ、炭素質材料へのリチウムイオンの吸蔵放出を妨げる結果、放電容量が低減する。前記電解質塩と水との反応によってフッ酸が生じる過程において、正極活物質であるリチウムマンガン複合酸化物が触媒的に電解質塩の分解を促進すると考えられる。そこで、マンガンの一部を特定の元素で置換したスピネル構造を有するリチウムマンガン複合酸化物を用いることにより、触媒活性を落とし、フッ酸の生成が抑制される。
【0011】
また、本発明のリチウム二次電池はMnの一部が少なくとも元素M及びLiで置換されたリチウムマンガン複合酸化物を正極に用いたリチウム二次電池において、前記元素Mは、前記リチウム二次電池に用いられている有機電解液中において該元素Mの酸化物または水酸化物が、標準水素電極電位より1.2V以上貴な電位において形成され、不動態化する性質を有する元素から選ばれたことを特徴としている。
【0012】
置換元素Mの酸化物または水酸化物は、電池の全作動電圧範囲にわたって不溶・不融であることが好ましい。例えばCaやFeを置換元素として用いると、これらの酸化物または水酸化物はリチウム電池の充電末電位である4.2V、即ち標準水素電極電位に対して1.2V付近において有機溶媒中で可溶であるため、電解液への溶出が生じる虞れがあるので、好ましくない。従って、このような元素で置換されたリチウムマンガン複合酸化物を正極に用いることにより、充放電サイクル性能並びに高温保存性能に優れたリチウム二次電池を提供できる。
【0013】
一方、また、スピネル構造を有するLiMn24は、充電末状態において一部γ−MnO2を生成することがある。該γ−MnO2は前記触媒活性が極めて高い物質である。ところが、前記充電電位においても前記置換元素が溶出せずリチウムマンガン複合酸化物の結晶構造中に保持されていると、該γ−MnO2の生成を抑制する効果が期待できる。
【0014】
また、本発明のリチウム二次電池は前記元素Mは、該元素Mの原子半径がマンガンの原子半径と同等以下である元素から選択されたことを特徴としている。
【0015】
このような構成によれば、置換元素がマンガンの原子半径と同程度以下の原子半径を有する元素から選択されているので、前記置換元素はリチウムマンガン複合酸化物の結晶構造中に安定に存在できるので、電解液への溶出が起こりにくい。従って、このような元素で置換されたリチウムマンガン複合酸化物を正極に用いることにより、充放電サイクル性能並びに高温保存性能に優れたリチウム二次電池を提供できる。
【0016】
また、本発明のリチウム二次電池は前記元素Mは、Be、Al、Si、Sc、Ti、Co、Ni、Cu、Zn、Gaから構成される群から選択されたことを特徴としている。 このような構成によれば、置換元素がリチウムマンガン複合酸化物の結晶構造中に安定に存在できる元素から選択されているので、電解液への溶出が起こりにくい。従って、このような元素で置換されたリチウムマンガン複合酸化物を正極に用いることにより、充放電サイクル性能並びに高温保存性能に優れたリチウム二次電池を提供できる。
【0017】
また、本発明のリチウム二次電池は前記リチウムマンガン複合酸化物がホウ素を含むことを特徴としている。
【0018】
即ち、置換元素として、ホウ素を併用すると、本発明の効果をさらに増大させることができる。置換元素として用いたホウ素は、電池の高温保存によって溶解し、電解液および負極から検出されるものの、溶解したホウ素元素は電池の充放電サイクル性能にほとんど悪影響を与えない。この理由については必ずしも明らかではないが、ホウ素元素はリチウムマンガン複合酸化物を合成する際に結晶の成長を助けたり、粒子の良好な成長を助ける作用があり、これによって電池の充放電サイクル性能を向上させ、高温放置時の容量低下を抑制する作用があるものと考えられる。また、置換元素としてホウ素元素を併用したリチウムマンガン複合酸化物を空気中で保存すると、ホウ酸が遊離するが、ホウ酸が遊離したリチウムマンガン複合酸化物を電極に用いても、高温保存時の容量低下を抑制する作用には変わりがない。さらに、充放電に伴ってリチウムマンガン複合酸化物からホウ素元素が電解液中に溶出し、負極表面に移動し、該リチウムマンガン複合酸化物表面部のホウ素濃度が大きく低下した状態においてもなお、高温保存時の容量低下を抑制する作用には変わりがない。従って、ホウ素元素は必ずしも置換元素としてリチウムマンガン複合酸化物中に存在している必要はないものと考えられる。
【0019】
ここに、本発明のリチウム二次電池は、請求項1に記載しように、下記の一般式で示される組成を有するリチウムマンガン複合酸化物を正極に用いたリチウム二次電池である。
Li(1-z)[Mn(2-x-y-w)xwLiy4
但し、
x=0.01〜0.1
y=0〜0.2
x+y+w≦0.2
w=0.0005〜0.01
0≦z≦1
M;BeSi、Sc、Ti中から選ばれた少なくとも1種の元素。
【0020】
本発明の置換元素の量が多いほど、本発明の効果が大きく発揮される一方、可逆的に利用できるLiの量が少なくなるため電池容量が低下する。このため、リチウムマンガン複合酸化物の一般式を上記式で表したとき、x+y+w≦0.2であることが好ましい。
【0021】
また、ホウ素は結晶性を向上させる効果を有するため、合成時に添加しておくことが好ましいが、合成されたリチウムマンガン複合酸化物中には残存しないか、またはわずかな量が残存し、大部分は電解液中に溶解してしまう。従って、ホウ素の添加量は、結晶性を向上できれば少ないほどよい。w=0.0005〜0.01とすると、十分な結晶性向上を得られ、溶解によるマンガン酸リチウムの影響も少ない点で好ましい。
【0022】
また、置換元素としてのLiは、置換量に比例して充放電サイクル性能の向上効果が発現するが、yの値を0.2より大きくしても、添加量に対する効果が比例せず、前記効果の大きな向上が望めないため、y=0〜0.2が好ましい。
【0023】
また、置換元素Mの量は、x=0.01以上の置換元素量で効果が発現するが、xの値を0.1より大きくしても、効果は変わらなくなるため、x=0.01〜0.1が好ましい。
【0024】
ここで、上記数値範囲は本発明のリチウムマンガン複合酸化物粒子内部の均一組成部分について示したものであり、表層部においてはこれらの値は大きく異なる。具体的には、下記の数値範囲となる。
Li(1-z)[Mn(2-x-y-w)xwLiy4
但し、 x=0.05以上
y=0〜0.2
x+y+w≦0.2
w=0.05以上
0≦z≦1
【0025】
【発明の実施の形態】
以下、本発明を実施例に基づき説明するが、本発明はこれらの記載により限定されるものではない。 置換元素を添加する方法としては、リチウムマンガン複合酸化物の合成時に、焼成原料にあらかじめ前記置換元素を含む物質を添加する方法、置換元素を含まないリチウムマンガン複合酸化物に対してイオン交換法等により異種元素を置換する方法等が挙げられるが、これらに限定されるものではない。
【0026】
この有機電解液の有機溶媒として、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン等のエステル類が挙げられ、これらを単独又は混合溶媒として用いることができる。
【0027】
電解質塩としては、例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO22,LiSCN,LiBr,LiI,Li2SO4,Li210Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiN(CF3SO22,LiN(C25SO22,(CH34NBF4,(CH34NBr,(C254NClO4,(C254NI,(C374NBr,(n−C494NClO4,(n−C494NI,(C254N−maleate,(C254N−benzoate,(C254N−phtalate等の四級アンモニウム塩、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
【0028】
また、前記リチウム含有化合物に他の正極活物質を混合して用いてもよく、他の正極活物質としては、CuO,Cu2O,Ag2O,CuS,CuSO4等のI族金属化合物、TiS2,SiO2,SnO等のIV族金属化合物、V25,V612,VOx,Nb25,Bi23,Sb23等のV族金属化合物、CrO3,Cr23,MoO3,MoS2,WO3,SeO2等のVI族金属化合物、MnO2,Mn23等のVII族金属化合物、Fe23,FeO,Fe34,Ni23,NiO,CoO3,CoO等のVIII族金属化合物、または、一般式LixMX2,LixMNy2(M、NはIからVIII族の金属、Xは酸素、硫黄などのカルコゲン化合物を示す。)等で表される、例えばリチウム−コバルト系複合酸化物やリチウム−マンガン系複合酸化物等の金属化合物、さらに、ジスルフィド,ポリピロール,ポリアニリン,ポリパラフェニレン,ポリアセチレン,ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素質材料等が挙げられるが、これらに限定されるものではない。
【0029】
負極の主要構成成分である負極活物質としては、炭素質材料、スズ酸化物,珪素酸化物等の金属酸化物、さらにこれらの物質に負極特性を向上させる目的でリンやホウ素を添加し改質を行った材料等が挙げられる。炭素質材料の中でもグラファイトは、金属リチウムに極めて近い作動電位を有するので電解質塩としてリチウム塩を採用した場合に自己放電を少なくでき、かつ充放電における不可逆容量を少なくできるので、負極活物質として好ましい。
【0030】
以下に、好適に用いることのできるグラファイトのX線回折等による分析結果を示す;

Figure 0004632005
【0031】
また、グラファイトに、スズ酸化物,ケイ素酸化物等の金属酸化物、リン、ホウ素、アモルファスカーボン等を添加して改質を行うことも可能である。特に、グラファイトの表面を上記の方法によって改質することで、電解液の分解を抑制し電池特性を高めることが可能であり望ましい。さらに、グラファイトに対して、リチウム金属、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,およびウッド合金等のリチウム金属含有合金等を併用することや、あらかじめ電気化学的に還元することによってリチウムが挿入されたグラファイト等も負極活物質として使用可能である。
【0032】
また、正極活物質の粉体及び負極活物質の粉体の少なくとも表面層部分を電子伝導性やイオン伝導性の良いもの、あるいは疎水基を有する化合物で修飾することも可能である。例えば、金,銀,カーボン,ニッケル,銅等の電子伝導性のよい物質や、炭酸リチウム,ホウ素ガラス,固体電解質等のイオン伝導性のよい物質、あるいはシリコーンオイル等の疎水基を有する物質をメッキ,焼結,メカノフュージョン,蒸着,焼き付け等の技術を応用して被覆することが挙げられる。
【0033】
正極活物質の粉体及び負極活物質の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
【0034】
以上、正極活物質および負極活物質について詳述したが、正極および負極には、主要構成成分である前記活物質の他に、導電剤、結着剤およびフィラーが、他の構成成分として含有されてもよい。
【0035】
導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。
【0036】
これらの中で、導電剤としては、導電性及び塗工性の観点よりアセチレンブラックとケッチャンブラックを併用することが望ましい。導電剤の添加量は、正極または負極の総質量に対して1質量%〜10質量%が好ましく、特に3質量%〜6質量%にすると、電極密度の低下を最小限に抑えつつ、十分な伝導性が得られる点で好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。
【0037】
結着剤としては、通常、ポリテトラフルオロエチレン,ポリフッ化ビニリデン,ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレンジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマー、カルボキシメチルセルロース等の多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類の様にリチウムと反応する官能基を有する結着剤は、例えばメチル化するなどしてその官能基を失活させておくことが望ましい。結着剤の添加量は、正極または負極の総質量に対して1〜10質量%が好ましく、特に3〜6質量%にすると電極密度の低下を最小限に抑えつつ、十分な結着性が得られる点で好ましい。
【0038】
フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、アエロジル、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総質量に対して添加量は30質量%以下が好ましい。
【0039】
正極および負極は、前記活物質、導電剤および結着剤をN−メチルピロリドン,トルエン等の有機溶媒に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、乾燥することによって、好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコーダー等の手段を用いて任意の厚さおよび任意の形状に塗布することが望ましいが、これらに限定されるものではない。
【0040】
集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極用集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性および耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極用集電体としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。
【0041】
集電体の形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発砲体、繊維群の形成体等が用いられる。厚さの限定は特にないが、5〜30μmのものが用いられる。これらの集電体の中で、正極としては、耐酸化性に優れているアルミニウム箔が、負極としては、還元場において安定であり、且つ電導性に優れ、安価な銅箔、ニッケル箔、鉄箔、およびそれらの一部を含む合金箔を使用することが好ましい。さらに、粗面表面粗さが0.2μmRa以上の箔であることが好ましく、これにより正極活物質または負極活物質と集電体との密着性は優れたものとなる。よって、このような粗面を有することから、電解箔を使用するのが好ましい。特に、ハナ付き処理を施した電解箔は最も好ましい。
【0042】
非水電解質電池用セパレータとしては、優れた高率放電特性を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
【0043】
非水電解質電池用セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。 セパレータの孔径は、一般に電池に用いられる範囲のものであり、例えば0.01〜1μmである。また、その厚さについても同様で、一般に電池に用いられる範囲のものであり、例えば20〜40μmである。
【0044】
非水電解質電池用セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解液とで構成されるポリマーゲルを用いてもよい。
【0045】
電解質の形態としては、例えば有機電解液、高分子固体電解質、無機固体電解質、溶融塩等を用いることができ、この中でも有機電解液を用いることが好ましい。
【0046】
【実施例】
(実施例1)
正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと酸化ベリリウムと硼酸と硼酸をLi:Mn:Be:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0047】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Be0.050.001Oであることが判った。この粉末を粉末Aとする。前記粉末Aを正極活物質として用い、次のようにして図2に示す容量16〜17mAhのコイン型リチウム電池を試作した。
【0048】
正極1は、粉末A〜粉末Kとアセチレンブラック及びポリテトラフルオロエチレン粉末とを質量比85:10:5で混合し、トルエンを加えて十分混練した。これをローラープレスにより厚さ0.8mmのシート状に成形した。次にこれを直径16mmの円形に打ち抜き、減圧下200℃で15時間乾燥し正極1を得た。正極1は正極集電体6の付いた正極缶4に圧着して用いた。負極活物質として、人造黒鉛(平均粒径;6μm、X線回折法による面間隔(d002);0.337nmで、c軸方向の結晶の大きさ(Lc);55nm)とポリテトラフルオロエチレン粉末とを質量比95:5で混合し、トルエンを加えて十分混練した。これをローラープレスにより厚さ0.1mmのシート状に成形した。次にこれを直径16mmの円形に打ち抜き、減圧下200℃で15時間乾燥して負極2を得た。負極2は負極集電体7の付いた負極缶5に圧着して用いた。エチレンカーボネート、ジエチレンカーボネート及びジメチレンカーボネートの体積比1:1:1の混合溶剤にLiPF6を1mol/lの濃度で溶解した電解液を用い、セパレータ3にはポリプロピレン製微多孔膜を用いた。上記正極、負極、電解液及びセパレータを用いて直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を本発明電池Aとする。
【0049】
参考例2)正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと水酸化アルミニウムと硼酸をLi:Mn:Al:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0050】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Al0.050.001Oであることが判った。この粉末を粉末Bとする。前記粉末Bを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を参考電池Bとする。
【0051】
(実施例3)
正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと酸化珪素と硼酸をLi:Mn:Si:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0052】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Si0.050.001Oであることが判った。この粉末を粉末Cとする。前記粉末Cを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を本発明電池Cとする。
【0053】
(実施例4)
正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと酸化スカンジウムと硼酸をLi:Mn:Sc:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0054】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Sc0.050.001Oであることが判った。この粉末を粉末Dとする。前記粉末Dを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を本発明電池Dとする。
【0055】
(実施例5)
正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと酸化チタンと硼酸をLi:Mn:Ti:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0056】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Ti0.050.001Oであることが判った。この粉末を粉末Eとする。前記粉末Eを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を本発明電池Eとする。
【0057】
参考例6)正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと水酸化コバルトと硼酸をLi:Mn:Co:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0058】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Co0.050.001Oであることが判った。この粉末を粉末Fとする。前記粉末Fを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を参考電池Fとする。
【0059】
参考例7)正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと水酸化ニッケルと硼酸をLi:Mn:Ni:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0060】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Ni0.050.001Oであることが判った。この粉末を粉末Gとする。前記粉末Gを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を参考電池Gとする。
【0061】
参考例8)正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと酸化銅と硼酸をLi:Mn:Cu:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0062】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Cu0.050.001Oであることが判った。この粉末を粉末Hとする。前記粉末Hを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を参考電池Hとする。
【0063】
参考例9)正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと酸化亜鉛と硼酸をLi:Mn:Zn:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0064】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Zn0.050.001Oであることが判った。この粉末を粉末Iとする。前記粉末Iを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を参考電池Iとする。
【0065】
参考例10)正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと酸化ガリウムと硼酸をLi:Mn:Ga:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0066】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849 Ga 0.050.001Oであることが判った。この粉末を粉末Jとする。前記粉末Jを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を参考電池Jとする。
【0067】
参考例11)正極活物質の調整にあたっては、市販試薬特級の水酸化リチウムと二酸化マンガンと水酸化アルミニウムと硼酸をLi:Mn:Al:Bの原子比が1.10:1.809:0.09:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0068】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.809Al0.090.001Oであることが判った。この粉末を粉末Kとする。前記粉末Kを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を参考電池Kとする。
【0069】
(比較例1)
市販試薬特級の水酸化リチウムと二酸化マンガンと水酸化マグネシウムと硼酸をLi:Mn:Mg:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0070】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Mg0.050.001Oであることが判った。この粉末を粉末Lとする。前記粉末Lを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を比較電池Lとする。
【0071】
(比較例2)
市販試薬特級の水酸化リチウムと二酸化マンガンと水酸化カルシウムと硼酸をLi:Mn:Ca:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0072】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Ca0.050.001Oであることが判った。この粉末を粉末Mとする。前記粉末Mを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を比較電池Mとする。
【0073】
(比較例3)
市販試薬特級の水酸化リチウムと二酸化マンガンと酸化クロムと硼酸をLi:Mn:Cr:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0074】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Cr0.050.001Oであることが判った。この粉末を粉末Nとする。前記粉末Nを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を比較電池Nとする。
【0075】
(比較例4)
市販試薬特級の水酸化リチウムと二酸化マンガンと酸化鉄と硼酸をLi:Mn:Fe:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0076】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.849Fe0.050.001Oであることが判った。この粉末を粉末Oとする。前記粉末Oを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を比較電池Oとする。
【0077】
(比較例5)
市販試薬特級の水酸化リチウムと二酸化マンガンと酸化ゲルマニウムと硼酸をLi:Mn:Ge:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0078】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物の一部のマンガンとゲルマニウムが置換するものの、多くの酸化イットリウムが分離して得られていることが分かった。この粉末を粉末Pとする。前記粉末Pを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を比較電池Pとする。
【0079】
(比較例6)
市販試薬特級の水酸化リチウムと二酸化マンガンと酸化イットリウムと硼酸をLi:Mn:Y:Bの原子比が1.10:1.849:0.05:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0080】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物の一部のマンガンとイットリウムが置換するものの、多くの酸化イットリウムが分離して得られていることが分かった。この粉末を粉末Qとする。前記粉末Qを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を比較電池Qとする。
【0081】
(比較例7)
市販試薬特級の水酸化リチウムと二酸化マンガンと硼酸をLi:Mn:Bの原子比が1.10:1.899:0.001になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0082】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.8990.001Oであることが判った。この粉末を粉末Rとする。前記粉末Rを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を比較電池Rとする。
【0083】
(比較例8)
市販試薬特級の水酸化リチウムと二酸化マンガンをLi:Mnの原子比が1.10:1.90になるようにボールミルで粉砕しながら十分混合し、混合物をアルミナ坩堝に入れて空気中650℃で5時間仮焼成した後、850℃で20時間焼成した。
【0084】
得られた焼成物を粉砕し、エックス線回折法による解析を行った結果、スピネル構造を有するリチウムマンガン複合酸化物が得られていることが分かった。更にこの生成物について化学定量分析を行ったところ、その組成はLi1.10Mn1.90Oであることが判った。この粉末を粉末Sとする。前記粉末Sを正極活物質として用い、実施例1と同様の方法で直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この電池を比較電池Sとする。
【0085】
(常温充放電サイクル性能試験)本発明電池(又は参考電池)A〜K及び比較電池L〜Sをそれぞれ複数個用いて充放電試験を行なった。まず、試験温度25℃で定電流充放電を5サイクル行った。充電終止電圧4.2V、放電終止電圧3.0V、充放電電流0.05mAとした。得られた5サイクル目の放電容量を「25℃5サイクル目放電容量」として表1に示した。続いて、充放電電流を1mAに変え、定電流充放電を続けた。得られた100サイクル目の放電容量の結果を、「25℃5サイクル目放電容量」と比較し、「25℃100サイクル目放電容量率」として表1に併せて示した。
【0086】
(高温充放電サイクル性能試験)本発明電池(又は参考電池)A〜K及び比較電池L〜Sをそれぞれ複数個用いて充放電試験を行なった。まず、試験温度25℃で定電流充放電を5サイクル行った。充電終止電圧4.2V、放電終止電圧3.0V、充放電電流0.05mAとした。続いて、充放電電流を1mAに変え、温度を50℃とし、定電流充放電を続けた。得られた100サイクル目の放電容量の結果を、「25℃5サイクル目放電容量」と比較し、「50℃100サイクル目放電容量率」として表1に併せて示した。
【0087】
(高温保存試験)本発明電池(又は参考電池)A〜K及び比較電池L〜Sをそれぞれ複数個用いて充放電試験を行なった。まず、試験温度25℃で定電流充放電を5サイクル行った。充電終止電圧4.2V、放電終止電圧3.0V、充放電電流1mAとした。6サイクル目の充電後、回路を開放し、80℃の高温槽中で2週間保存した。保存後、温度を25℃に戻し、再び同じ条件で定電流充放電を3サイクル行った。最終サイクルの放電容量を、80℃放置前の5サイクル目容量と比較し、「高温保存後回復容量維持率」として表1に併せて示した。
【0088】
【表1】
【0089】
また、表1に示された結果のうち、「50℃100サイクル目放電容量」と「高温保存後回復容量維持率」について、置換元素Mの原子番号の順に整理した結果を図1に示した。
【0090】
(結果の考察)置換元素にBのみを用いた比較電池Rや、置換元素を用いない比較電池Sに比べ、本発明電池(又は参考電池)A〜Kでは、初期の放電容量は低下するものの、充放電サイクル性能、高温保存性能の何れも大きく向上している。
【0091】
参考電池B、Kは、いずれも置換元素にAlを用いているが、置換元素の量は後者の方が多い。両者の結果から、置換量が多い方が初期の放電容量は低下するものの、充放電サイクル性能、高温保存性能の何れも向上している。
【0092】
置換元素にCaを用いた比較電池Mや、置換元素にFeを用いた比較電池Oでは、これらの置換元素を用いない比較電離Rに比べ、充放電サイクル性能は向上しているものの、高温保存性能は悪くなっている。この原因は必ずしも明らかではないが、標準水素電極より1.2V以上貴な電位において形成されるこれらの元素の酸化物または水酸化物が有機電解液中で不動態化せず、可溶であるため、これらの元素が溶出した後、該置換元素が一部抜け落ちた状態であるリチウムマンガン複合酸化物のマンガンが溶解し易くなっている為と考えられる。また、前記溶出は高温下において発生しやすいものと考えられる。
【0093】
置換元素にGeを用いた比較電池Pや、置換元素にYを用いた比較電池Qでは、本発明電池(又は参考電池)A〜Kや比較電池L〜Oと比べると、充放電サイクル性能、高温保存性能のいずれも非常に悪い結果となった。これら劣化後の比較電池P、Qを解体し、電解液および負極中の元素を分析した結果、Ge、Y共に僅かながら検出されたものの、Mnの検出量は他の全ての電池に比較して非常に大きいことが判った。この原因は必ずしも明らかでないが、原子半径がGe以上に大きい元素は一部のMnとしか置換せず、置換に供さなかった元素が溶解して炭素質電極上に不良な被膜が生成して容量が低下するだけでなく、これらの元素が溶出した後、該置換元素が一部抜け落ちた状態であるリチウムマンガン複合酸化物のマンガンが溶解し易くなっている為と考えられる。しかしながら、これらの元素は一部ではあるがMnと置換される性質を持っているので、焼成条件等を最適化することによって、完全な置換が可能となり、置換元素として有効に用いられる可能性がある。
【0094】
置換元素にMgを用いた比較電池Lや、置換元素にCrを用いた比較電池Nでは、LiとBを除くMn以外の元素を置換していない比較電池Rと比較し、これらの置換元素を用いない比較電離Rに比べ、充放電サイクル性能は向上しているものの、高温保存性能は比較電池Rと同等以上には向上していない。しかしながら、これら2つの元素については、電解液の成分、支持塩の選択、電解液の水分管理等を検討することで、標準水素電極より1.2V以上貴な電位において形成される酸化物または水酸化物が有機電解液中で不動態化し、溶解が抑制できる場合がある。このため、これらの元素については今後、電解液の開発の進展等によって、置換元素として有効に用い用いられる可能性がある。
【0095】
以上のように、本発明によれば、電解質塩の分解を抑え、これによってフッ酸の生成が抑制されるため、Mn等の正極構成元素の溶出が抑制されるので、負極の炭素質材料表面に生成する表面被膜が、抵抗の高いフッ化リチウムやマンガンを含む被膜等ではなく、フッ素の含有が少なく、比較的抵抗の低い炭酸リチウムや酸化リチウム等の被膜が形成され、界面抵抗増大が抑制され、良好な充放電サイクル性能を有したリチウム電池を提供することができる。
【0096】
また、標準水素電極より1.2V以上貴な電位において形成される酸化物または水酸化物が有機電解液中で不動態化する性質を有する元素を用いたため、80℃での高温保存においても置換元素が溶解せず、リチウムマンガン複合酸化物正極の安定性を向上でき、高温保存特性に優れたリチウム電池を提供することができる。
【0097】
ホウ素については、上述したように初期の充放電試験において、正極から溶出し電解液、負極から検出される。従って、B量は置換元素としては最小限で良く、0.0005〜0.01であれば十分である。
【0098】
又、負極材料として人造黒鉛を用いたリチウム二次電池について実施例を挙げたが、同様の効果がその他の負極材料についても確認された。
【0099】
なお、本発明は上記実施例に記載された活物質の出発原料、製造方法、正極、負極、電解質、セパレータ及び電池形状などに限定されるものではない。
【0100】
【発明の効果】
本発明は上述の如く構成されているので、高温保存後容量回復維持率の優れたリチウム二次電池を提供できる。
【図面の簡単な説明】
【図1】 高温サイクル性能及び高温保存性能を置換元素Mとの関係で示したグラフである[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery, and more particularly to a positive electrode active material for a non-aqueous electrolyte battery.
[0002]
[Prior art]
Currently, as a positive electrode active material for 4V lithium secondary batteries, LiCoO2, LiNiO2Α-NaFeO2A lithium-containing oxide having a structure, a lithium-containing oxide having a spinel structure such as a lithium manganese composite oxide, and the like are used. Among them, LiMn having a spinel structure2OFourIs a positive electrode active material with low material cost and high safety.
[0003]
On the other hand, when a carbonaceous material is used for the negative electrode, the state of the film formed between the electrolyte and the surface of the carbonaceous material is the reaction of occlusion and release (intercalation, deintercalation) of lithium into the carbonaceous material. It has a big impact. For example, as represented by the case where lithium metal is used for the negative electrode active material, when it has a dense and highly ion conductive film, its battery characteristics are also excellent, and conversely, a thick and low ion conductive film. When it has, it is known that a high rate discharge characteristic and charge / discharge cycle performance are bad. Here, it is reported that the former is a film mainly composed of lithium carbonate, lithium oxide or the like, and the latter is a film mainly composed of lithium fluoride or the like. The same can be said for the film formed on the surface of the carbonaceous material. That is, one of the factors that increase the interfacial resistance of an electrode using a carbonaceous material is the formation of a film having low ionic conductivity on the surface of the carbonaceous material. As a film having low ionic conductivity, in addition to the film such as lithium fluoride, for example, MnF2And a film made of a compound of fluorine and an element dissolved from the positive electrode. That is, elution of elements such as manganese from the manganese compound used for the positive electrode was one of the causes of the performance deterioration.
[0004]
In order to improve the charge / discharge cycle performance of the lithium manganese composite oxide, JP-A-4-233161, JP-A-5-21067, and JP-A-6-187993 disclose a lithium manganese composite oxide having a spinel structure. A technique for substituting a part of manganese with an element other than manganese is shown. By performing such substitution, the formation of a film such as lithium fluoride and the dissolution of the lithium manganese composite oxide are suppressed to some extent.
[0005]
However, depending on the type of the substitution element, particularly when left at a high temperature in the end-of-charge state, the substitution element dissolves in the electrolytic solution, and accordingly, the crystal structure of the lithium manganese composite oxide having a spinel structure is distorted, There has been a problem that the lithium manganese composite oxide itself is dissolved and the charge / discharge capacity of the battery is lowered.
[0006]
As described above, even when these conventional techniques are used, elution of the manganese element and elution of the substitution element cannot be sufficiently suppressed particularly when the battery is left at a high temperature. In particular, when a carbonaceous material is used for the negative electrode, the eluted elements such as manganese form a defective film on the surface of the negative carbonaceous material, thereby reducing the charge / discharge capacity of the negative electrode, There was a problem that battery performance deteriorated due to storage.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and in a battery using a lithium manganese composite oxide for the positive electrode, the elution of the positive electrode constituent elements into the electrolytic solution is suppressed even when left at high temperature, and the performance of the carbonaceous negative electrode An object of the present invention is to provide a lithium secondary battery that prevents deterioration, has a high capacity, a high energy density, and is excellent in charge / discharge cycle performance.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the lithium secondary battery of the present invention is,In a lithium secondary battery using, as a positive electrode, a lithium-manganese composite oxide in which a part of Mn is substituted with at least the element M and Li, the element M is contained in the organic electrolyte used in the lithium secondary battery. The oxide or hydroxide of the element M is selected from elements having a passivating property.
[0009]
That is, as a result of intensive studies to solve the above problems, the present inventors surprisingly use a specific law in selecting an element that replaces a part of the manganese element of the lithium manganese composite oxide, It was found that even when the battery was stored at a high temperature, elution of manganese elements and substitutional elements could be suppressed to a high degree. That is, the substitution element M is at least LiPF.6The element M is selected from elements having a property that the oxide or hydroxide of the element M is passivated and becomes insoluble or hardly soluble in the electrolyte. Therefore, a lithium secondary battery excellent in charge / discharge cycle performance and high-temperature storage performance can be provided by using a lithium manganese composite oxide substituted with such an element for the positive electrode.
[0010]
Here, the reason why the lithium battery of the present invention is excellent in charge / discharge characteristics, particularly high-temperature storage characteristics, is not necessarily clear, but is considered as follows. Generally, the battery contains various impurities that are not involved in charging / discharging of the battery. For example, LiPF6Is used as the electrolyte salt, the moisture contained in the electrolyte salt and the trace amount of water contained in the battery or in the solvent react with the electrolyte salt to produce hydrofluoric acid (HF) or the like. When lithium ions are occluded in the negative electrode carbonaceous material, a film with high ion conductivity such as lithium carbonate is formed between the electrolyte and the carbonaceous material on the surface of the carbonaceous material. Later, in the presence of an acid such as hydrofluoric acid, a film made of lithium halide having low ion conductivity is formed. Such a film made of lithium halide increases the interfacial resistance of the negative electrode and prevents the occlusion / release of lithium ions into the carbonaceous material, resulting in a reduction in discharge capacity. In the process of generating hydrofluoric acid by the reaction between the electrolyte salt and water, it is considered that the lithium manganese composite oxide, which is the positive electrode active material, catalytically promotes decomposition of the electrolyte salt. Therefore, by using a lithium manganese composite oxide having a spinel structure in which a part of manganese is substituted with a specific element, the catalytic activity is reduced and the generation of hydrofluoric acid is suppressed.
[0011]
The lithium secondary battery of the present invention is,In a lithium secondary battery using, as a positive electrode, a lithium-manganese composite oxide in which a part of Mn is substituted with at least the element M and Li, the element M is contained in the organic electrolyte used in the lithium secondary battery. The oxide or hydroxide of the element M is selected from elements having a property of being passivated and formed at a potential 1.2 V or more higher than the standard hydrogen electrode potential.
[0012]
The oxide or hydroxide of the substitution element M is preferably insoluble and infusible over the entire operating voltage range of the battery. For example, when Ca or Fe is used as a substitution element, these oxides or hydroxides can be used in an organic solvent at the end-of-charge potential of a lithium battery of 4.2 V, that is, 1.2 V with respect to a standard hydrogen electrode potential. Since it is dissolved, there is a possibility that elution into the electrolytic solution may occur. Therefore, a lithium secondary battery excellent in charge / discharge cycle performance and high-temperature storage performance can be provided by using a lithium manganese composite oxide substituted with such an element for the positive electrode.
[0013]
On the other hand, LiMn having a spinel structure2OFourIs partially γ-MnO in the end-of-charge state2May be generated. The γ-MnO2Is a substance with extremely high catalytic activity. However, when the substitutional element does not elute even at the charging potential and is retained in the crystal structure of the lithium manganese composite oxide, the γ-MnO2The effect of suppressing the generation of can be expected.
[0014]
The lithium secondary battery of the present invention is,The element M is selected from elements whose atomic radius of the element M is equal to or less than that of manganese.
[0015]
According to such a configuration, since the substitution element is selected from elements having an atomic radius equal to or less than the atomic radius of manganese, the substitution element can exist stably in the crystal structure of the lithium manganese composite oxide. Therefore, elution into the electrolytic solution is unlikely to occur. Therefore, a lithium secondary battery excellent in charge / discharge cycle performance and high-temperature storage performance can be provided by using a lithium manganese composite oxide substituted with such an element for the positive electrode.
[0016]
The lithium secondary battery of the present invention is,The element M is selected from the group consisting of Be, Al, Si, Sc, Ti, Co, Ni, Cu, Zn, and Ga. According to such a configuration, since the substitution element is selected from elements that can stably exist in the crystal structure of the lithium manganese composite oxide, elution into the electrolytic solution hardly occurs. Therefore, a lithium secondary battery excellent in charge / discharge cycle performance and high-temperature storage performance can be provided by using a lithium manganese composite oxide substituted with such an element for the positive electrode.
[0017]
The lithium secondary battery of the present invention is,The lithium manganese composite oxide contains boron.
[0018]
That is, when boron is used as a substitution element, the effect of the present invention can be further increased. Although boron used as a substitution element is dissolved by high-temperature storage of the battery and detected from the electrolyte and the negative electrode, the dissolved boron element has little adverse effect on the charge / discharge cycle performance of the battery. Although the reason for this is not necessarily clear, boron element has the effect of assisting crystal growth and good particle growth when synthesizing lithium-manganese composite oxide, thereby improving the charge / discharge cycle performance of the battery. It is considered that there is an action to improve and suppress a decrease in capacity when left at high temperature. In addition, when lithium manganese composite oxide combined with boron element as a substitute element is stored in the air, boric acid is liberated, but even if lithium manganese composite oxide from which boric acid is liberated is used for the electrode, There is no change in the effect of suppressing the capacity drop. Furthermore, the boron element elutes from the lithium manganese composite oxide in the electrolytic solution along with charge and discharge, migrates to the negative electrode surface, and the boron concentration in the surface part of the lithium manganese composite oxide is greatly reduced. There is no change in the effect of suppressing the capacity drop during storage. Therefore, it is considered that the boron element is not necessarily present in the lithium manganese composite oxide as a substitution element.
[0019]
Here, the lithium secondary battery of the present invention is a lithium secondary battery using a lithium manganese composite oxide having a composition represented by the following general formula as a positive electrode, as described in claim 1.
  Li(1-z)[Mn(2-xyw)MxBwLiyOFour]
  However,
  x = 0.01-0.1
  y = 0-0.2
  x + y + w ≦ 0.2
  w = 0.005-0.01
  0 ≦ z ≦ 1
  M; Be,Si, Sc, TiofAt least one element selected from the inside.
[0020]
The greater the amount of the substitution element of the present invention, the greater the effect of the present invention, while the smaller the amount of Li that can be used reversibly, the lower the battery capacity. For this reason, when the general formula of the lithium manganese composite oxide is expressed by the above formula, it is preferable that x + y + w ≦ 0.2.
[0021]
Further, since boron has an effect of improving crystallinity, it is preferable to add it at the time of synthesis. However, boron does not remain in the synthesized lithium manganese composite oxide or a slight amount remains, which is mostly Dissolves in the electrolyte. Therefore, the smaller the amount of boron added, the better the crystallinity. When w = 0.005 to 0.01, it is preferable in that sufficient crystallinity can be improved and the influence of lithium manganate due to dissolution is small.
[0022]
Further, Li as a substitution element exhibits an effect of improving the charge / discharge cycle performance in proportion to the substitution amount, but even if the value of y is larger than 0.2, the effect on the addition amount is not proportional, Since it is not possible to expect a great improvement in the effect, y = 0 to 0.2 is preferable.
[0023]
In addition, the amount of the substitution element M is effective when the substitution element amount is x = 0.01 or more. However, even if the value of x is greater than 0.1, the effect does not change, so x = 0.01. ~ 0.1 is preferred.
[0024]
Here, the above numerical range shows the uniform composition portion inside the lithium manganese composite oxide particles of the present invention, and these values are greatly different in the surface layer portion. Specifically, the numerical value range is as follows.
Li(1-z)[Mn(2-xyw)MxBwLiyOFour]
However, x = 0.05 or more
y = 0-0.2
x + y + w ≦ 0.2
w = 0.05 or more
0 ≦ z ≦ 1
[0025]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited by these description. As a method for adding a substitution element, at the time of synthesis of a lithium manganese composite oxide, a method of previously adding a substance containing the substitution element to the firing raw material, an ion exchange method for a lithium manganese composite oxide not containing a substitution element, etc. However, the method is not limited to these.
[0026]
Examples of the organic solvent of the organic electrolyte include esters such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, and these can be used alone or as a mixed solvent.
[0027]
Examples of the electrolyte salt include LiClO.Four, LiBFFour, LiAsF6, LiPF6, LiCFThreeSOThree, LiN (CFThreeSO2)2, LiN (C2FFiveSO2)2, LiN (CFThreeSO2) (CFourF9SO2)2, LiSCN, LiBr, LiI, Li2SOFour, Li2BTenClTen, NaClOFour, NaI, NaSCN, NaBr, KClOFour, KSCN, and other inorganic ion salts containing one of lithium (Li), sodium (Na) or potassium (K), LiN (CFThreeSO2)2, LiN (C2FFiveSO2)2, (CHThree)FourNBFFour, (CHThree)FourNBr, (C2HFive)FourNClOFour, (C2HFive)FourNI, (CThreeH7)FourNBr, (n-CFourH9)FourNClOFour, (N-CFourH9)FourNI, (C2HFive)FourN-maleate, (C2HFive)FourN-benzoate, (C2HFive)FourExamples include organic ionic salts such as quaternary ammonium salts such as N-phtalate, lithium stearyl sulfonate, lithium octyl sulfonate, lithium dodecylbenzene sulfonate, etc., and these ionic compounds are used alone or in admixture of two or more. It is possible.
[0028]
In addition, other positive electrode active materials may be mixed with the lithium-containing compound, and examples of other positive electrode active materials include CuO and Cu.2O, Ag2O, CuS, CuSOFourGroup I metal compounds such as TiS2, SiO2Group IV metal compounds such as SnO, V2OFive, V6O12, VOx, Nb2OFive, Bi2OThree, Sb2OThreeGroup V metal compounds such as CrOThree, Cr2OThree, MoOThree, MoS2, WOThree, SeO2Group VI metal compounds such as MnO2, Mn2OThreeGroup VII metal compounds such as Fe2OThree, FeO, FeThreeOFour, Ni2OThree, NiO, CoOThreeGroup VIII metal compounds such as CoO, or the general formula LixMX2, LixMNyX2(M and N represent metals of groups I to VIII, X represents a chalcogen compound such as oxygen and sulfur), and the like, for example, a metal such as a lithium-cobalt composite oxide or a lithium-manganese composite oxide Examples of such compounds include, but are not limited to, conductive polymer compounds such as disulfide, polypyrrole, polyaniline, polyparaphenylene, polyacetylene, and polyacene materials, pseudographite-structured carbonaceous materials, and the like.
[0029]
The negative electrode active material, which is the main component of the negative electrode, is modified by adding carbonaceous materials, metal oxides such as tin oxide and silicon oxide, and adding phosphorus and boron to these materials for the purpose of improving negative electrode characteristics. The material etc. which performed were mentioned. Among carbonaceous materials, graphite has a working potential very close to that of metallic lithium, so that when lithium salt is used as an electrolyte salt, self-discharge can be reduced, and irreversible capacity in charge / discharge can be reduced, which is preferable as a negative electrode active material. .
[0030]
Below, the analysis result by X-ray diffraction etc. of the graphite which can be used suitably is shown;
Figure 0004632005
[0031]
It is also possible to modify graphite by adding a metal oxide such as tin oxide or silicon oxide, phosphorus, boron, amorphous carbon or the like. In particular, by modifying the surface of graphite by the above method, it is possible to suppress the decomposition of the electrolytic solution and improve the battery characteristics, which is desirable. In addition to graphite, lithium metal-containing alloys such as lithium metal, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys can be used in combination. Graphite in which lithium is inserted by chemical reduction can also be used as the negative electrode active material.
[0032]
It is also possible to modify at least the surface layer portion of the positive electrode active material powder and the negative electrode active material powder with a material having good electron conductivity or ion conductivity, or a compound having a hydrophobic group. For example, plating materials with good electron conductivity such as gold, silver, carbon, nickel, copper, materials with good ion conductivity such as lithium carbonate, boron glass, solid electrolyte, or materials having hydrophobic groups such as silicone oil Coating by applying techniques such as sintering, mechanofusion, vapor deposition, and baking.
[0033]
The positive electrode active material powder and the negative electrode active material powder preferably have an average particle size of 100 μm or less. In particular, the positive electrode active material powder is desirably 10 μm or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte battery. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. There is no particular limitation on the classification method, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.
[0034]
As described above, the positive electrode active material and the negative electrode active material have been described in detail. The positive electrode and the negative electrode contain, in addition to the active material as the main component, a conductive agent, a binder, and a filler as other components. May be.
[0035]
The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .
[0036]
Among these, as the conductive agent, it is desirable to use acetylene black and Ketchan black in combination from the viewpoints of conductivity and coatability. The amount of conductive agent added is the total amount of positive electrode or negative electrode.mass1 againstmass% -10mass% Is preferred, especially 3mass% ~ 6mass% Is preferable in that sufficient conductivity can be obtained while minimizing the decrease in electrode density. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.
[0037]
As the binder, usually, thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, and the like These polymers having rubber elasticity, polysaccharides such as carboxymethylcellulose, and the like can be used as one or a mixture of two or more. In addition, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The amount of binder added is the total amount of positive electrode or negative electrode.mass1 to 10mass% Is preferred, especially 3-6mass%,It is preferable in that sufficient binding properties can be obtained while minimizing the decrease in electrode density.
[0038]
As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The amount of filler added is the total amount of positive electrode or negative electrode.massThe amount added is 30mass% Or less is preferable.
[0039]
The positive electrode and the negative electrode are prepared by mixing the active material, the conductive agent and the binder in an organic solvent such as N-methylpyrrolidone and toluene, and then applying the obtained mixture onto the current collector described in detail below. Then, it is preferably produced by drying. About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coder, etc. It is not limited to.
[0040]
The current collector may be anything as long as it is an electronic conductor that does not adversely affect the constructed battery. For example, as a current collector for positive electrode, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc. are used for the purpose of improving adhesion, conductivity and oxidation resistance. A material obtained by treating the surface of copper or copper with carbon, nickel, titanium, silver or the like can be used. In addition to copper, nickel, iron, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., the negative electrode current collector is adhesive, conductive, and oxidation resistant. For the purpose of improving the property, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. The surface of these materials can be oxidized.
[0041]
Regarding the shape of the current collector, a film shape, a sheet shape, a net shape, a punched or expanded object, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like are used in addition to a foil shape. The thickness is not particularly limited, but a thickness of 5 to 30 μm is used. Among these current collectors, an aluminum foil excellent in oxidation resistance is used as a positive electrode, and as a negative electrode, copper foil, nickel foil, iron, which is stable in a reduction field, has excellent conductivity, and is inexpensive. It is preferred to use foils and alloy foils containing parts thereof. Furthermore, a foil having a rough surface surface roughness of 0.2 μmRa or more is preferable, whereby the adhesion between the positive electrode active material or the negative electrode active material and the current collector is excellent. Therefore, it is preferable to use an electrolytic foil because it has such a rough surface. In particular, an electrolytic foil that has been subjected to a cracking treatment is most preferable.
[0042]
As a separator for a nonaqueous electrolyte battery, it is preferable to use a porous film or a nonwoven fabric exhibiting excellent high rate discharge characteristics alone or in combination. Examples of the material constituting the separator for nonaqueous electrolyte batteries include polyolefin resins typified by polyethylene, polypropylene, etc., polyester resins typified by polyethylene terephthalate, polybutylene terephthalate, etc., polyvinylidene fluoride, vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.
[0043]
The porosity of the non-aqueous electrolyte battery separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics. The pore diameter of the separator is in a range generally used for batteries, and is, for example, 0.01 to 1 μm. Moreover, it is the same also about the thickness, and is a thing of the range generally used for a battery, for example, 20-40 micrometers.
[0044]
As the separator for a nonaqueous electrolyte battery, for example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolytic solution may be used.
[0045]
As the form of the electrolyte, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used, and among these, the organic electrolyte is preferably used.
[0046]
【Example】
Example 1
In preparing the positive electrode active material, lithium reagent, manganese dioxide, beryllium oxide, boric acid, and boric acid, which are special grades of commercially available reagents, have an atomic ratio of Li: Mn: Be: B of 1.10: 1.849: 0.05: 0. The mixture was sufficiently mixed while being pulverized with a ball mill so as to be 0.001, and the mixture was placed in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours, and then baked at 850 ° C. for 20 hours.
[0047]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Be0.05B0.001It turned out to be O. This powder is referred to as powder A. Using the powder A as a positive electrode active material, a coin-type lithium battery having a capacity of 16 to 17 mAh shown in FIG.
[0048]
The positive electrode 1 includes powders A to K, acetylene black, and polytetrafluoroethylene powder.massThe mixture was mixed at a ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.8 mm by a roller press. Next, this was punched out into a circle having a diameter of 16 mm and dried at 200 ° C. under reduced pressure for 15 hours to obtain a positive electrode 1. The positive electrode 1 was used by being crimped to a positive electrode can 4 with a positive electrode current collector 6 attached thereto. Artificial graphite (average particle size: 6 μm, surface spacing by X-ray diffraction method (d002); 0.337 nm, c-axis direction crystal size (Lc); 55 nm) and polytetrafluoroethylene powdermassThe mixture was mixed at a ratio of 95: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.1 mm by a roller press. Next, this was punched out into a circle having a diameter of 16 mm and dried at 200 ° C. under reduced pressure for 15 hours to obtain a negative electrode 2. The negative electrode 2 was used by being pressure-bonded to the negative electrode can 5 with the negative electrode current collector 7 attached thereto. LiPF in a mixed solvent of ethylene carbonate, diethylene carbonate and dimethylene carbonate with a volume ratio of 1: 1: 16Was used at a concentration of 1 mol / l, and a polypropylene microporous membrane was used for the separator 3. A coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was manufactured using the positive electrode, the negative electrode, the electrolytic solution, and the separator. This battery is referred to as a battery A of the present invention.
[0049]
(referenceExample 2) In preparing the positive electrode active material, a commercially available reagent-grade lithium hydroxide, manganese dioxide, aluminum hydroxide, and boric acid were mixed in an atomic ratio of Li: Mn: Al: B of 1.10: 1.849: 0.05. : Sufficiently mixed while being pulverized by a ball mill so as to be 0.001, and the mixture was put in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours, and then baked at 850 ° C. for 20 hours.
[0050]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Al0.05B0.001It turned out to be O. This powder is referred to as powder B. Using the powder B as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This batteryreferenceBattery B is assumed.
[0051]
(Example 3)
In preparing the positive electrode active material, a commercially available reagent-grade lithium hydroxide, manganese dioxide, silicon oxide, and boric acid are mixed with an atomic ratio of Li: Mn: Si: B of 1.10: 1.849: 0.05: 0.001. The mixture was sufficiently mixed while being pulverized with a ball mill, and the mixture was placed in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours, and then baked at 850 ° C. for 20 hours.
[0052]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Si0.05B0.001It turned out to be O. This powder is referred to as powder C. Using the powder C as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a battery C of the present invention.
[0053]
Example 4
In preparing the positive electrode active material, lithium reagent, manganese dioxide, scandium oxide, and boric acid, which are special grades of commercially available reagents, have an atomic ratio of Li: Mn: Sc: B of 1.10: 1.849: 0.05: 0.001. The mixture was sufficiently mixed while being pulverized with a ball mill, and the mixture was placed in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours, and then baked at 850 ° C. for 20 hours.
[0054]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Sc0.05B0.001It turned out to be O. This powder is referred to as powder D. Using the powder D as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a battery D of the present invention.
[0055]
(Example 5)
In preparing the positive electrode active material, a commercially available reagent-grade lithium hydroxide, manganese dioxide, titanium oxide, and boric acid have an atomic ratio of Li: Mn: Ti: B of 1.10: 1.849: 0.05: 0.001. The mixture was sufficiently mixed while being pulverized with a ball mill, and the mixture was placed in an alumina crucible and pre-baked in air at 650 ° C for 5 hours, and then baked at 850 ° C for 20 hours.
[0056]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Ti0.05B0.001It turned out to be O. This powder is designated as powder E. Using the powder E as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a battery E of the present invention.
[0057]
(referenceExample 6) In preparing the positive electrode active material, a commercially available reagent-grade lithium hydroxide, manganese dioxide, cobalt hydroxide, and boric acid were mixed in an atomic ratio of Li: Mn: Co: B of 1.10: 1.849: 0.05. : Sufficiently mixed while being pulverized by a ball mill so as to be 0.001, and the mixture was put in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours, and then baked at 850 ° C. for 20 hours.
[0058]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Co0.05B0.001It turned out to be O. This powder is designated as powder F. Using the powder F as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This batteryreferenceThe battery F is assumed.
[0059]
(referenceExample 7) In preparing the positive electrode active material, a commercially available reagent-grade lithium hydroxide, manganese dioxide, nickel hydroxide, and boric acid were mixed in an atomic ratio of Li: Mn: Ni: B of 1.10: 1.849: 0.05. : Sufficiently mixed while being pulverized by a ball mill so as to be 0.001, and the mixture was put in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours, and then baked at 850 ° C. for 20 hours.
[0060]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Ni0.05B0.001It turned out to be O. This powder is referred to as powder G. Using the powder G as the positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This batteryreferenceBattery G is assumed.
[0061]
(referenceExample 8) In preparing the positive electrode active material, lithium reagent, manganese dioxide, copper oxide, and boric acid, which are special grades of commercially available reagents, have an atomic ratio of Li: Mn: Cu: B of 1.10: 1.849: 0.05: The mixture was sufficiently mixed while being pulverized with a ball mill to 0.001 and the mixture was placed in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours and then baked at 850 ° C. for 20 hours.
[0062]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Cu0.05B0.001It turned out to be O. This powder is referred to as powder H. Using the powder H as the positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This batteryreferenceBattery H is assumed.
[0063]
(referenceExample 9) In preparing the positive electrode active material, a commercially available reagent-grade lithium hydroxide, manganese dioxide, zinc oxide, and boric acid were mixed in an atomic ratio of Li: Mn: Zn: B of 1.10: 1.849: 0.05: The mixture was sufficiently mixed while being pulverized with a ball mill to 0.001 and the mixture was placed in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours and then baked at 850 ° C. for 20 hours.
[0064]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Zn0.05B0.001It turned out to be O. This powder is referred to as Powder I. Using the powder I as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This batteryreferenceBattery I.
[0065]
(referenceExample 10) In preparing the positive electrode active material, commercially available reagent-grade lithium hydroxide, manganese dioxide, gallium oxide and boric acid were mixed with Li: Mn:Ga: B is sufficiently mixed while being pulverized with a ball mill so that the atomic ratio is 1.10: 1.849: 0.05: 0.001, and the mixture is placed in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours. And then baked at 850 ° C. for 20 hours.
[0066]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849 Ga 0.05B0.001It turned out to be O. This powder is designated as powder J. Using the powder J as the positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This batteryreferenceAssume battery J.
[0067]
(referenceExample 11) In preparing the positive electrode active material, a commercially available reagent-grade lithium hydroxide, manganese dioxide, aluminum hydroxide, and boric acid were mixed with an atomic ratio of Li: Mn: Al: B of 1.10: 1.809: 0.09. : Sufficiently mixed while being pulverized by a ball mill so as to be 0.001, and the mixture was put in an alumina crucible and pre-baked in air at 650 ° C. for 5 hours, and then baked at 850 ° C. for 20 hours.
[0068]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.809Al0.09B0.001It turned out to be O. This powder is designated as powder K. Using the powder K as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This batteryreferenceBattery K is assumed.
[0069]
(Comparative Example 1)
Commercially available reagent-grade lithium hydroxide, manganese dioxide, magnesium hydroxide and boric acid were pulverized with a ball mill so that the atomic ratio of Li: Mn: Mg: B was 1.10: 1.849: 0.05: 0.001. The mixture was placed in an alumina crucible and calcined at 650 ° C. for 5 hours in air, and then calcined at 850 ° C. for 20 hours.
[0070]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Mg0.05B0.001It turned out to be O. This powder is designated as powder L. Using the powder L as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a comparative battery L.
[0071]
(Comparative Example 2)
Commercially available reagent-grade lithium hydroxide, manganese dioxide, calcium hydroxide, and boric acid are pulverized with a ball mill so that the atomic ratio of Li: Mn: Ca: B is 1.10: 1.849: 0.05: 0.001. The mixture was placed in an alumina crucible and calcined at 650 ° C. for 5 hours in air, and then calcined at 850 ° C. for 20 hours.
[0072]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Ca0.05B0.001It turned out to be O. This powder is referred to as powder M. Using the powder M as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a comparative battery M.
[0073]
(Comparative Example 3)
Commercially available reagent-grade lithium hydroxide, manganese dioxide, chromium oxide and boric acid were pulverized with a ball mill so that the atomic ratio of Li: Mn: Cr: B was 1.10: 1.849: 0.05: 0.001. The mixture was placed in an alumina crucible and calcined in air at 650 ° C. for 5 hours and then calcined at 850 ° C. for 20 hours.
[0074]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Cr0.05B0.001It turned out to be O. This powder is referred to as powder N. Using the powder N as the positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a comparative battery N.
[0075]
(Comparative Example 4)
Commercially available reagent-grade lithium hydroxide, manganese dioxide, iron oxide, and boric acid were pulverized with a ball mill so that the atomic ratio of Li: Mn: Fe: B was 1.10: 1.849: 0.05: 0.001. The mixture was placed in an alumina crucible and calcined in air at 650 ° C. for 5 hours and then calcined at 850 ° C. for 20 hours.
[0076]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.849Fe0.05B0.001It turned out to be O. This powder is referred to as powder O. Using the powder O as the positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a comparative battery O.
[0077]
(Comparative Example 5)
Commercially available reagent-grade lithium hydroxide, manganese dioxide, germanium oxide, and boric acid were pulverized with a ball mill so that the atomic ratio of Li: Mn: Ge: B was 1.10: 1.849: 0.05: 0.001. The mixture was placed in an alumina crucible and calcined in air at 650 ° C. for 5 hours and then calcined at 850 ° C. for 20 hours.
[0078]
The obtained fired product was pulverized and analyzed by the X-ray diffraction method. As a result, although some manganese and germanium in the lithium manganese composite oxide having a spinel structure were replaced, many yttrium oxides were obtained. I found out. This powder is designated as powder P. Using the powder P as the positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a comparative battery P.
[0079]
(Comparative Example 6)
Commercially available reagent-grade lithium hydroxide, manganese dioxide, yttrium oxide, and boric acid were pulverized with a ball mill so that the atomic ratio of Li: Mn: Y: B was 1.10: 1.849: 0.05: 0.001. The mixture was placed in an alumina crucible and calcined in air at 650 ° C. for 5 hours and then calcined at 850 ° C. for 20 hours.
[0080]
The obtained fired product was pulverized and analyzed by the X-ray diffraction method. As a result, although some manganese and yttrium in the lithium manganese composite oxide having a spinel structure were substituted, many yttrium oxides were obtained. I found out. This powder is designated as powder Q. Using the powder Q as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a comparative battery Q.
[0081]
(Comparative Example 7)
Commercially available reagent-grade lithium hydroxide, manganese dioxide, and boric acid were sufficiently mixed while being pulverized with a ball mill so that the Li: Mn: B atomic ratio was 1.10: 1.899: 0.001, and the mixture was mixed with an alumina crucible. And calcined in air at 650 ° C. for 5 hours and then calcined at 850 ° C. for 20 hours.
[0082]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.899B0.001It turned out to be O. This powder is designated as powder R. Using the powder R as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a comparative battery R.
[0083]
(Comparative Example 8)
Commercially available reagent-grade lithium hydroxide and manganese dioxide were sufficiently mixed while being pulverized with a ball mill so that the atomic ratio of Li: Mn was 1.10: 1.90, and the mixture was placed in an alumina crucible at 650 ° C. in air. After calcination for 5 hours, calcination was performed at 850 ° C. for 20 hours.
[0084]
The obtained fired product was pulverized and analyzed by X-ray diffraction. As a result, it was found that a lithium manganese composite oxide having a spinel structure was obtained. Furthermore, when this product was subjected to chemical quantitative analysis, its composition was Li.1.10Mn1.90It turned out to be O. This powder is designated as powder S. Using the powder S as a positive electrode active material, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1. This battery is referred to as a comparative battery S.
[0085]
(Normal temperature charge / discharge cycle performance test) Battery of the present invention(Or reference battery)A charge / discharge test was performed using a plurality of A to K and a plurality of comparative batteries L to S. First, 5 cycles of constant current charge / discharge were performed at a test temperature of 25 ° C. The final charge voltage was 4.2V, the final discharge voltage was 3.0V, and the charge / discharge current was 0.05 mA. The obtained discharge capacity at the fifth cycle is shown in Table 1 as “25 ° C. fifth cycle discharge capacity”. Subsequently, the charge / discharge current was changed to 1 mA, and constant current charge / discharge was continued. The obtained discharge capacity results at the 100th cycle were compared with “25 ° C. 5th cycle discharge capacity” and are shown in Table 1 as “25 ° C. 100th cycle discharge capacity rate”.
[0086]
(High temperature charge / discharge cycle performance test) Battery of the present invention(Or reference battery)A charge / discharge test was performed using a plurality of A to K and a plurality of comparative batteries L to S. First, 5 cycles of constant current charge / discharge were performed at a test temperature of 25 ° C. The final charge voltage was 4.2V, the final discharge voltage was 3.0V, and the charge / discharge current was 0.05 mA. Subsequently, the charge / discharge current was changed to 1 mA, the temperature was set to 50 ° C., and constant current charge / discharge was continued. The obtained discharge capacity results at the 100th cycle were compared with “25 ° C. 5th cycle discharge capacity” and are shown in Table 1 as “50 ° C. 100th cycle discharge capacity rate”.
[0087]
(High temperature storage test) Battery of the present invention(Or reference battery)A charge / discharge test was performed using a plurality of A to K and a plurality of comparative batteries L to S. First, 5 cycles of constant current charge / discharge were performed at a test temperature of 25 ° C. The charge end voltage was 4.2 V, the discharge end voltage was 3.0 V, and the charge / discharge current was 1 mA. After charging at the sixth cycle, the circuit was opened and stored in a high-temperature bath at 80 ° C. for 2 weeks. After the storage, the temperature was returned to 25 ° C., and constant current charge / discharge was repeated 3 cycles under the same conditions. The discharge capacity of the final cycle was compared with the capacity of the fifth cycle before being left at 80 ° C., and is also shown in Table 1 as “recovery capacity retention rate after high-temperature storage”.
[0088]
[Table 1]
[0089]
In addition, among the results shown in Table 1, FIG. 1 shows the results of arranging the “discharging capacity at the 50th cycle at 100 ° C.” and the “recovery capacity retention rate after high-temperature storage” in order of the atomic number of the substitution element M. .
[0090]
(Consideration of results) Compared to the comparative battery R using only B as the substitution element and the comparison battery S not using the substitution element, the battery of the present invention.(Or reference battery)In AK, although the initial discharge capacity is reduced, both the charge / discharge cycle performance and the high-temperature storage performance are greatly improved.
[0091]
referenceThe batteries B and K both use Al as a substitution element, but the latter has a larger amount of substitution element. From both results, although the initial discharge capacity decreases as the amount of substitution increases, both the charge / discharge cycle performance and the high-temperature storage performance are improved.
[0092]
In the comparative battery M using Ca as the substitution element and the comparison battery O using Fe as the substitution element, the charge / discharge cycle performance is improved as compared with the comparison ionization R not using these substitution elements, but it is stored at high temperature. Performance is getting worse. The cause of this is not necessarily clear, but the oxides or hydroxides of these elements formed at a potential no less than 1.2 V above the standard hydrogen electrode are not passivated in the organic electrolyte and are soluble. Therefore, it is considered that after these elements are eluted, manganese of the lithium manganese composite oxide, in which the substitution element is partially removed, is easily dissolved. The elution is likely to occur at high temperatures.
[0093]
In the comparative battery P using Ge as the substitution element and the comparison battery Q using Y as the substitution element, the charge / discharge cycle performance, compared to the present invention batteries (or reference batteries) A to K and the comparison batteries L to O, Both high-temperature storage performances were very bad. As a result of disassembling these deteriorated comparative batteries P and Q and analyzing elements in the electrolytic solution and the negative electrode, both Ge and Y were detected, but the detected amount of Mn was higher than that of all other batteries. It turned out to be very big. The reason for this is not necessarily clear, but elements with an atomic radius larger than Ge can only be replaced by a portion of Mn, and the elements that have not been used for replacement dissolve and a defective film is formed on the carbonaceous electrode. This is presumably because not only the capacity is reduced, but also the manganese of the lithium manganese composite oxide, in which some of the substituted elements are missing after the elution of these elements, is easily dissolved. However, since these elements are partially substituted with Mn, they can be completely replaced by optimizing the firing conditions and the like, and may be used effectively as replacement elements. is there.
[0094]
The comparative battery L using Mg as a substitution element and the comparison battery N using Cr as a substitution element are compared with the comparison battery R in which elements other than Mn except Li and B are not substituted. Although the charge / discharge cycle performance is improved as compared with the comparative ionization R that is not used, the high-temperature storage performance is not improved to be equal to or higher than that of the comparative battery R. However, for these two elements, the oxide or water formed at a noble potential of 1.2 V or more from the standard hydrogen electrode by examining the components of the electrolyte, the selection of the supporting salt, the moisture management of the electrolyte, etc. In some cases, the oxide is passivated in the organic electrolyte, and dissolution can be suppressed. For this reason, these elements may be used effectively as replacement elements in the future due to the progress of the development of electrolytes.
[0095]
As described above, according to the present invention, since the decomposition of the electrolyte salt is suppressed, and thus the generation of hydrofluoric acid is suppressed, the elution of the positive electrode constituent elements such as Mn is suppressed. The surface film produced on the surface is not a film containing high resistance lithium fluoride or manganese, but a film containing less fluorine and relatively low resistance such as lithium carbonate or lithium oxide is formed, suppressing an increase in interface resistance. Thus, a lithium battery having good charge / discharge cycle performance can be provided.
[0096]
In addition, since the oxide or hydroxide formed at a noble potential of 1.2 V or more from the standard hydrogen electrode is used in an organic electrolyte solution, it is replaced even when stored at a high temperature of 80 ° C. It is possible to provide a lithium battery that does not dissolve the element, can improve the stability of the lithium manganese composite oxide positive electrode, and has excellent high-temperature storage characteristics.
[0097]
As described above, boron is eluted from the positive electrode and detected from the electrolytic solution and the negative electrode in the initial charge / discharge test. Therefore, the amount of B may be a minimum as a substitution element, and 0.0005 to 0.01 is sufficient.
[0098]
Moreover, although the Example was given about the lithium secondary battery using artificial graphite as negative electrode material, the same effect was confirmed also about the other negative electrode material.
[0099]
In addition, this invention is not limited to the starting material of the active material described in the said Example, the manufacturing method, a positive electrode, a negative electrode, an electrolyte, a separator, a battery shape, etc.
[0100]
【The invention's effect】
Since the present invention is configured as described above,A lithium secondary battery having an excellent capacity recovery maintenance rate after high-temperature storage can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing high-temperature cycle performance and high-temperature storage performance in relation to a substitution element M.

Claims (3)

正極、負極及び有機電解液を備え、下記の一般式で示される組成を有するリチウムマンガン複合酸化物を前記正極に用いたリチウム二次電池。
Li(1-z)[Mn(2-x-y-w)xwLiy4
但し、
x=0.01〜0.1
y=0〜0.2
x+y+w≦0.2
w=0.0005〜0.01
0≦z≦1
M;BeSi、Sc、Ti中から選ばれた少なくとも1種の元素
A lithium secondary battery comprising a positive electrode, a negative electrode, and an organic electrolyte , wherein a lithium manganese composite oxide having a composition represented by the following general formula is used for the positive electrode.
Li (1-z) [Mn (2-xyw) M x B w Li y O 4 ]
However,
x = 0.01-0.1
y = 0-0.2
x + y + w ≦ 0.2
w = 0.005-0.01
0 ≦ z ≦ 1
M; Be, Si, Sc, at least one element selected from among Ti.
炭素質材料を前記負極に用いた請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein a carbonaceous material is used for the negative electrode. 前記有機電解液はLiPFThe organic electrolyte is LiPF 6 を溶解している請求項1又は2記載のリチウム二次電池。The lithium secondary battery according to claim 1 or 2, wherein
JP2000216421A 2000-07-17 2000-07-17 Lithium secondary battery Expired - Fee Related JP4632005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216421A JP4632005B2 (en) 2000-07-17 2000-07-17 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216421A JP4632005B2 (en) 2000-07-17 2000-07-17 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002033103A JP2002033103A (en) 2002-01-31
JP4632005B2 true JP4632005B2 (en) 2011-02-16

Family

ID=18711689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216421A Expired - Fee Related JP4632005B2 (en) 2000-07-17 2000-07-17 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4632005B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709648B2 (en) 2002-06-04 2014-04-29 Ener1, Inc. Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
WO2003103076A1 (en) * 2002-06-04 2003-12-11 伊藤忠商事株式会社 Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material
JPWO2011138965A1 (en) * 2010-05-06 2013-07-22 旭硝子株式会社 Silicic acid-boric acid compound and silicic acid-boric acid-phosphoric acid compound, positive electrode for secondary battery, and method for producing secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521067A (en) * 1991-07-12 1993-01-29 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic battery
JPH08195200A (en) * 1995-01-17 1996-07-30 Japan Storage Battery Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with this active material
JPH09270259A (en) * 1996-04-01 1997-10-14 Masataka Wakihara Electrode and lithium secondary battery
JPH11240721A (en) * 1997-05-07 1999-09-07 Fuji Chem Ind Co Ltd New production of spinel type lithium manganese compound oxide and positive electrode active substance for secondary battery
JPH11283621A (en) * 1998-03-30 1999-10-15 Sony Corp Nonaqueous electrolyte secondary battery and manufacture of positive electrode material used therefor
JP2000072443A (en) * 1998-08-26 2000-03-07 Ube Ind Ltd Production of lithium manganese multiple oxide and its use
JP2000156229A (en) * 1998-11-20 2000-06-06 Yuasa Corp Nonaqueous electrolyte lithium secondary battery
JP2000353522A (en) * 1999-06-08 2000-12-19 Toyota Motor Corp Positive electrode material for lithium ion secondary battery
JP2001196062A (en) * 2000-01-12 2001-07-19 Mitsui Mining & Smelting Co Ltd Lithium manganate mixture and lithium secondary battery using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521067A (en) * 1991-07-12 1993-01-29 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic battery
JPH08195200A (en) * 1995-01-17 1996-07-30 Japan Storage Battery Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with this active material
JPH09270259A (en) * 1996-04-01 1997-10-14 Masataka Wakihara Electrode and lithium secondary battery
JPH11240721A (en) * 1997-05-07 1999-09-07 Fuji Chem Ind Co Ltd New production of spinel type lithium manganese compound oxide and positive electrode active substance for secondary battery
JPH11283621A (en) * 1998-03-30 1999-10-15 Sony Corp Nonaqueous electrolyte secondary battery and manufacture of positive electrode material used therefor
JP2000072443A (en) * 1998-08-26 2000-03-07 Ube Ind Ltd Production of lithium manganese multiple oxide and its use
JP2000156229A (en) * 1998-11-20 2000-06-06 Yuasa Corp Nonaqueous electrolyte lithium secondary battery
JP2000353522A (en) * 1999-06-08 2000-12-19 Toyota Motor Corp Positive electrode material for lithium ion secondary battery
JP2001196062A (en) * 2000-01-12 2001-07-19 Mitsui Mining & Smelting Co Ltd Lithium manganate mixture and lithium secondary battery using the same

Also Published As

Publication number Publication date
JP2002033103A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP7228773B2 (en) Positive electrode active material and battery
US7504180B2 (en) Positive electrode material for lithium secondary battery and process for producing the same
JP4807467B1 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP7113300B2 (en) Positive electrode active material and battery
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
CN112219297B (en) Positive electrode active material precursor and lithium secondary battery using same
WO2013047569A1 (en) Lithium-rich lithium metal complex oxide
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP7228772B2 (en) Positive electrode active material and battery
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
JP7220431B2 (en) POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP5103923B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP7113301B2 (en) Positive electrode active material and battery
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2007299668A (en) Positive electrode active material for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using it
JP7241359B2 (en) Positive electrode active material and battery provided with the same
JP7209163B2 (en) POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
CN114256450A (en) Positive electrode active material for lithium secondary battery and method for producing same
KR20160012558A (en) Composite positive electrode active electrode material for lithium secondary battery and lithium secondary battery comprising positive electrode including the positive electrode active material
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2020004506A (en) Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP7249600B2 (en) POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees