JP3431641B2 - Organic electrolyte and organic electrolyte battery using the same - Google Patents
Organic electrolyte and organic electrolyte battery using the sameInfo
- Publication number
- JP3431641B2 JP3431641B2 JP27040891A JP27040891A JP3431641B2 JP 3431641 B2 JP3431641 B2 JP 3431641B2 JP 27040891 A JP27040891 A JP 27040891A JP 27040891 A JP27040891 A JP 27040891A JP 3431641 B2 JP3431641 B2 JP 3431641B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- organic
- electrolytic solution
- organic electrolyte
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y02E60/12—
Landscapes
- Primary Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、有機電解液およびそれ
を使用した有機電解液電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte solution and an organic electrolyte battery using the same.
【0002】[0002]
【従来の技術】リチウムからなる負極と、二酸化マンガ
ンを正極活物質とする合剤からなる正極と、有機電解液
を使用したリチウム−二酸化マンガン電池に代表される
有機電解液電池は、高エネルギー密度で、かつ軽量であ
り、しかも長寿命であるため、増々需要が増加する傾向
にある。2. Description of the Related Art An organic electrolyte battery represented by a lithium-manganese dioxide battery using a negative electrode made of lithium, a positive electrode made of a mixture of manganese dioxide as a positive electrode active material, and an organic electrolyte has a high energy density. In addition, since it is lightweight, and has a long service life, demand for it tends to increase.
【0003】ところで、この種の有機電解液電池では、
負極にリチウムまたはリチウム化合物を用い、正極には
二酸化マンガンなどの金属酸化物や層間化合物を用いる
場合がほとんどであり、これらは反応性に富んでいるた
め、有機電解液はこれらの電極材料に対して反応性の低
いものを選んで使用しなければならない。By the way, in this type of organic electrolyte battery,
In most cases, lithium or a lithium compound is used for the negative electrode, and a metal oxide such as manganese dioxide or an intercalation compound is used for the positive electrode.Since these are highly reactive, the organic electrolytic solution is not suitable for these electrode materials. Therefore, the one with low reactivity must be selected and used.
【0004】そのため、有機電解液に使用される溶媒種
はかなり限定され、現在は主としてプロピレンカーボネ
ートなどのエステルや1,2−ジメトキシエタンなどの
エーテルなど、比較的反応性の低いものが使用されてい
る。Therefore, the kind of solvent used for the organic electrolyte is considerably limited, and at present, relatively low reactive ones such as esters such as propylene carbonate and ethers such as 1,2-dimethoxyethane are used. There is.
【0005】しかし、これらに頼っているだけでは、従
来以上に電池の出力特性を向上させることができない。However, relying solely on these cannot improve the output characteristics of the battery more than ever before.
【0006】また、アセトニトリルなどのヘテロ不飽和
結合を有する溶媒は、伝導度が高いものの、リチウム
(Li)などの負極との反応性が高く、安定性に欠け、
電池の貯蔵性を低下させるので、実用電池には使用しが
たい。Although a solvent having a heterounsaturated bond such as acetonitrile has high conductivity, it has high reactivity with a negative electrode such as lithium (Li) and lacks stability.
It is difficult to use as a practical battery because it reduces the storage properties of the battery.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上記のよう
な従来の有機電解液における問題点を解決し、有機電解
液に使用される溶媒の構造を変更して、有機電解液と電
極との反応性を低減し、安定性が高い有機電解液を開発
し、該有機電解液を使用することによって、貯蔵性の優
れた有機電解液電池を提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the conventional organic electrolytic solution and changes the structure of the solvent used in the organic electrolytic solution to provide the organic electrolytic solution and the electrode. It is an object of the present invention to provide an organic electrolytic solution battery having excellent storability by developing an organic electrolytic solution having reduced reactivity and high stability, and using the organic electrolytic solution.
【0008】[0008]
【課題を解決するための手段】本発明は、有機電解液の
溶媒として不飽和結合に隣接した炭素原子にフッ素原子
が結合した有機溶媒を使用することによって、有機電解
液の安定性を向上させ、この有機電解液を使用すること
によって電池の貯蔵性を高めたものである。また、有機
電解液の有機溶媒および電解質として、不飽和結合に隣
接した炭素原子にフッ素原子が結合した有機溶媒と、炭
素数が2以上のフルオロアルキル基を有するリチウム塩
とを組み合わせて使用することにより電池の安全性を向
上させたものである。The present invention improves the stability of an organic electrolytic solution by using an organic solvent having a fluorine atom bonded to a carbon atom adjacent to an unsaturated bond as a solvent for the organic electrolytic solution. By using this organic electrolyte, the storability of the battery is improved. Further, as an organic solvent and an electrolyte of the organic electrolytic solution, a combination of an organic solvent in which a fluorine atom is bonded to a carbon atom adjacent to an unsaturated bond and a lithium salt having a fluoroalkyl group having 2 or more carbon atoms are used. This improves the safety of the battery.
【0009】本発明を完成するにいたって経過を詳しく
説明すると、次の通りである。The process of completing the present invention will be described in detail as follows.
【0010】本発明者らは、まず、電解質としてLiC
4 F9 SO3 を用いた種々の溶媒系の有機電解液の伝導
度を調べたところ、LiC4 F9 SO3 /PC:DME
系の有機電解液〔プロピレンカーボネート(PC)と
1,2−ジメトキシエタン(DME)との混合溶媒にL
iC4 F9 SO3 を溶解させたもの〕が負極、正極など
の電極との反応性が小さく、かつ伝導度も高いことが判
明した。The present inventors firstly used LiC as an electrolyte.
When the conductivity of various solvent-based organic electrolytes using 4 F 9 SO 3 was examined, it was found that LiC 4 F 9 SO 3 / PC: DME
-Based organic electrolytic solution [L in a mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME)
iC 4 F 9 SO 3 dissolved therein] has low reactivity with electrodes such as a negative electrode and a positive electrode, and has high conductivity.
【0011】また、LiC4 F9 SO3 /AN:DME
系の有機電解液〔アセトニトリル(AN)と1,2−ジ
メトキシエタン(DME)との混合溶媒にLiC4 F9
SO3 を溶解させたもの〕や、LiC4 F9 SO3 /P
C:DME:AN系の有機電解液〔プロピレンカーボネ
ート(PC)と1,2−ジメトキシエタン(DME)と
アセトニトリル(AN)との混合溶媒にLiC4 F9 S
O3 を溶解させたもの〕は、さらに高い伝導度を示すこ
とが判明したが、これらは、いずれも負極のLi(リチ
ウム)などと反応し、負極に対する安定性に欠けている
ことが判明した。Further, LiC 4 F 9 SO 3 / AN: DME
-Based organic electrolytic solution [LiC 4 F 9 in a mixed solvent of acetonitrile (AN) and 1,2-dimethoxyethane (DME)]
SO 3 dissolved], LiC 4 F 9 SO 3 / P
C: DME: AN-based organic electrolyte solution [LiC 4 F 9 S in a mixed solvent of propylene carbonate (PC), 1,2-dimethoxyethane (DME) and acetonitrile (AN)]
It has been found that those having dissolved O 3 ] have higher conductivity, but all of them react with Li (lithium) of the negative electrode and are found to lack stability to the negative electrode. .
【0012】これは、アセトニトリルの中に含まれる−
C≡N(ニトリル基)などの不飽和結合のため、不飽和
結合に隣接した置換基(アセトニトリルの場合はCH3
基)が不安定になるからであると考えられる。This is contained in acetonitrile-
Because of an unsaturated bond such as C≡N (nitrile group), a substituent adjacent to the unsaturated bond (CH 3 in the case of acetonitrile)
It is thought that this is because the group becomes unstable.
【0013】実際に、アセトニトリルがLiと反応して
生成したガスを確認したところ、H2 (水素)とCH4
(メタン)が主成分であった。Actually, when the gas produced by the reaction of acetonitrile with Li was confirmed, H 2 (hydrogen) and CH 4
(Methane) was the main component.
【0014】これは−C≡Nに結合したCH3 基そのも
の、あるいはCH3 基のC−H結合が切れやすくなった
ためであると考えられる。[0014] This is probably because the bound CH 3 group itself or CH bond CH 3 group is easily cut to -C≡N.
【0015】そこで、本発明者らは、CH3 基の炭素原
子にハロゲンを付けると、その原子の大きさやハロゲン
と炭素原子との結合力のために、炭素原子の結合が保護
され、Liなどとの反応性が軽減できるという推測の下
に実験を行った。Therefore, the inventors of the present invention, when a halogen atom is added to the carbon atom of the CH 3 group, the bond of the carbon atom is protected by the size of the atom and the bonding force between the halogen atom and the carbon atom, and Li etc. The experiment was conducted on the assumption that the reactivity with
【0016】その結果、アセトニトリルを含む有機電解
液はすぐにLiと反応し、H2 やCH4 を発生するのに
対し、アセトニトリルのCH3 基中のH原子を1個フッ
素原子で置換しただけのFCH2 C≡N(フルオロアセ
トニトリル)を含む有機電解液は、ほとんどLiと反応
せず、貯蔵後もLi表面の金属光沢が保たれていた。As a result, the organic electrolyte containing acetonitrile immediately reacts with Li to generate H 2 and CH 4 , whereas only one H atom in the CH 3 group of acetonitrile is replaced with a fluorine atom. The organic electrolyte containing FCH 2 C≡N (fluoroacetonitrile) hardly reacted with Li, and the metallic gloss of the Li surface was maintained even after storage.
【0017】以上のことから、−C≡Nなどの不飽和結
合によって不安定になった隣接の炭素原子をフッ素原子
により安定化することができ、有機電解液とLiなどと
の反応性が減少して、有機電解液の安定性や、電池の貯
蔵性を向上させることができることが判明した。From the above, it is possible to stabilize adjacent carbon atoms that have become unstable due to an unsaturated bond such as -C≡N by the fluorine atom, and reduce the reactivity between the organic electrolytic solution and Li or the like. It was then found that the stability of the organic electrolytic solution and the storability of the battery can be improved.
【0018】上記フッ素原子は、隣接原子に対する保護
効果が大きく、しかも有機電解液の伝導度を大きく損な
うことがない。The above-mentioned fluorine atoms have a great effect of protecting adjacent atoms, and do not significantly impair the conductivity of the organic electrolyte.
【0019】本発明における有機溶媒において、不飽和
結合に隣接した原子は炭素原子であるが、上記フッ素原
子は不飽和結合に隣接した炭素原子に少なくとも1個結
合すればよく、もとより2個以上結合してもよい。In the organic solvent of the present invention, the atom adjacent to the unsaturated bond is a carbon atom, but it is sufficient that at least one fluorine atom is bonded to the carbon atom adjacent to the unsaturated bond, and two or more bonds are naturally formed. You may.
【0020】本発明において、不飽和結合は有機電解液
の伝導度を向上させる要因となるものであるが、この不
飽和結合としては、たどえば−C≡N(ニトリル基)、
>C=O(カルボニル基)、>S=O(スルホキシル
基)、NO2 (ニトロ基)などがある。In the present invention, the unsaturated bond is a factor that improves the conductivity of the organic electrolyte solution. The unsaturated bond is, for example, -C≡N (nitrile group),
> C = O (carbonyl group),> S = O (sulfoxyl group), NO 2 (nitro group) and the like.
【0021】特に、ヘテロ不飽和結合は、極性が大き
く、電解質の電離度が大きくなるため、有機電解液の伝
導度を高める作用が大きい。なかでも、−C≡Nは、特
に極性が大きく、有機電解液の伝導度を高める作用が特
に優れていることから、本発明における不飽和結合とし
て特に適している。In particular, the hetero-unsaturated bond has a large polarity and a large ionization degree of the electrolyte, and therefore has a large effect of increasing the conductivity of the organic electrolytic solution. Among them, -C≡N is particularly suitable as the unsaturated bond in the present invention because it has a particularly large polarity and is particularly excellent in the action of increasing the conductivity of the organic electrolytic solution.
【0022】上記のような不飽和結合に隣接した炭素原
子にフッ素原子が結合した有機溶媒の具体例としては、
たとえばフルオロアセトニトリル(FCH2 C≡N)、
ジフルオロアセトニトリル(F2 CHC≡N)、フルオ
ロ酢酸メチル(FCH2 COOCH3 )などが挙げられ
る。Specific examples of the organic solvent having a fluorine atom bonded to the carbon atom adjacent to the unsaturated bond as described above include:
For example, fluoroacetonitrile (FCH 2 C≡N),
Examples thereof include difluoroacetonitrile (F 2 CHC≡N) and methyl fluoroacetate (FCH 2 COOCH 3 ).
【0023】本発明において、有機電解液の調製にあた
り、上記不飽和結合に隣接した炭素原子にフッ素原子が
結合した有機溶媒は他の有機溶媒と併用することができ
る。そのような、併用可能な有機溶媒としては、たとえ
ば1,2−ジメトキシエタン、ジメトキシメタン、ジメ
トキシプロパン、1,3−ジオキソラン、テトラヒドロ
フラン、2−メチルテトラヒドロフラン、4−メチル−
1,3−ジオキソランなどのエーテル、プロピレンカー
ボネート、エチレンカーボネート、ブチレンカーボネー
ト、γ−ブチロラクトン、γ−バレロラクトンなどのエ
ステル、さらにはスルフォランなどが挙げられる。In the present invention, in the preparation of the organic electrolytic solution, the organic solvent having a fluorine atom bonded to the carbon atom adjacent to the unsaturated bond can be used in combination with another organic solvent. As such an organic solvent which can be used in combination, for example, 1,2-dimethoxyethane, dimethoxymethane, dimethoxypropane, 1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyl-
Examples thereof include ethers such as 1,3-dioxolane, propylene carbonate, ethylene carbonate, butylene carbonate, esters such as γ-butyrolactone and γ-valerolactone, and sulfolane.
【0024】特に低温での放電特性の優れた電池を得る
ためには、上記有機溶媒のなかでも凝固点が低く、伝導
度の向上効果が大きい1,2−ジメトキシエタンを併用
するのが好ましい。In particular, in order to obtain a battery having excellent discharge characteristics at low temperature, it is preferable to use 1,2-dimethoxyethane among the above organic solvents, which has a low freezing point and a large effect of improving conductivity.
【0025】有機電解液の調製にあたって、上記不飽和
結合に隣接した炭素原子にフッ素原子が結合した有機溶
媒の使用量は、全溶媒中10体積%以上、特に30体積
%以上にするのが好ましい。これは、上記不飽和結合に
隣接した炭素原子にフッ素原子が結合した有機溶媒が全
溶媒中10体積%より少ない場合は、有機電解液の伝導
度を高め、かつ電極との反応性を低減させる効果が充分
に発揮されないからである。In the preparation of the organic electrolytic solution, the amount of the organic solvent in which the fluorine atom is bonded to the carbon atom adjacent to the unsaturated bond is preferably 10% by volume or more, and more preferably 30% by volume or more in the total solvent. . This is because when the organic solvent in which the fluorine atom is bonded to the carbon atom adjacent to the unsaturated bond is less than 10% by volume in the total solvent, the conductivity of the organic electrolytic solution is increased and the reactivity with the electrode is reduced. This is because the effect is not fully exerted.
【0026】上記不飽和結合に隣接した炭素原子にフッ
素原子が結合した有機溶媒だけで、有機電解液の全溶媒
を構成することも可能であるが、低温での伝導度を考慮
すると、上記不飽和結合に隣接した炭素原子にフッ素原
子が結合した有機溶媒の使用量は全溶媒中90体積%以
下、特に80体積%以下にとどめることが好ましい。Although it is possible to form the entire solvent of the organic electrolyte by using only the organic solvent in which the fluorine atom is bonded to the carbon atom adjacent to the unsaturated bond, the above-mentioned unsaturated solvent is taken into consideration in view of the conductivity at low temperature. The amount of the organic solvent in which the fluorine atom is bonded to the carbon atom adjacent to the saturated bond is 90% by volume or less, preferably 80% by volume or less in the total solvent.
【0027】また、有機電解液の調製にあたって、1,
2−ジメトキエタンなどのエーテルを併用する場合、そ
れらのエーテルは10〜80体積%、特に30〜50体
積%にするのが好ましい。つまり、上記エーテルを多く
加えすぎると、伝導度が低下し、また、上記エーテルが
少なすぎても伝導度が低下して、電池に使用した場合に
インピーダンスが増加する。When preparing the organic electrolyte,
When an ether such as 2-dimethoethane is used in combination, the amount of the ether is preferably 10 to 80% by volume, more preferably 30 to 50% by volume. In other words, if too much ether is added, the conductivity will decrease, and if too little ether will decrease the conductivity, increasing the impedance when used in a battery.
【0028】本発明の有機電解液の調製にあたり、電解
質としては、たとえばLiCn F2n+1 SO3 に代表さ
れるフルオロアルカンスルホン酸リチウム、Li2 (C
n F2n)(SO3 )2 、LiN(Cn F2n+1S
O2 )2 、LiC(CF3 SO2)3 、LiN(CF3
CO)2 、LiCn F2n+1CO2 、 LiB(C
6 H5 )4 、LiClO4 、LiPF6 、LiA
S F6 、LiSbF6 、LiBF4 が単独でまたは2種
以上混合して用いられる。なお、化学式中におけるnは
整数である。In the preparation of the organic electrolytic solution of the present invention, as the electrolyte, for example, lithium fluoroalkanesulfonate represented by LiC n F 2n + 1 SO 3 and Li 2 (C
n F 2n ) (SO 3 ) 2 , LiN (C n F 2n + 1 S
O 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3
CO) 2 , LiC n F 2n + 1 CO 2 , LiB (C
6 H 5 ) 4 , LiClO 4 , LiPF 6 , LiA
S F 6 , LiSbF 6 , and LiBF 4 are used alone or in combination of two or more. Note that n in the chemical formula is an integer.
【0029】なかでも、本発明においては、上記電解質
中、炭素数が2以上、特に炭素数が4以上のフルオロア
ルキル基を有するリチウム塩が電池としての安全性が優
れているので好ましい。とりわけ、パーフルオロアルカ
ンスルホン酸リチウム塩は安全性が特に優れており、か
つ、ある程度の電池特性も得られるので最も好ましい。[0029] Among them, in the present invention, in the electrolyte is preferable because carbon atoms on 2 or more, the lithium salt is excellent in safety as a battery, in particular having a fluoroalkyl group with a carbon number of the 4 or more. Above all, the lithium salt of perfluoroalkanesulfonic acid is most preferable because it is particularly excellent in safety and can obtain battery characteristics to some extent.
【0030】つぎに、電池の主要構成部材について説明
する。Next, the main constituent members of the battery will be described.
【0031】本発明において、負極はアルカリ金属また
はアルカリ金属を含む化合物をステンレス鋼製網などの
集電材料と一体化したものからなるが、アルカリ金属と
して、たとえばリチウム、ナトリウム、カリウムなどが
挙げられ、アルカリ金属を含む化合物としては、たとえ
ばアルカリ金属とアルミニウム、鉛、インジウム、カリ
ウム、カドミウム、スズ、マグネシウムなどとの合金、
さらにはアルカリ金属と炭素材料との化合物、低電位の
アルカリ金属と金属酸化物、硫化物との化合物などが挙
げられる。In the present invention, the negative electrode comprises an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net. Examples of the alkali metal include lithium, sodium and potassium. As the compound containing an alkali metal, for example, an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin, magnesium or the like,
Further, a compound of an alkali metal and a carbon material, a compound of a low potential alkali metal and a metal oxide, a compound of a sulfide and the like can be mentioned.
【0032】正極には、たとえば二酸化マンガン、五酸
化バナジウム、クロム酸化物、リチウムコバルト酸化
物、リチウムニッケル酸化物などの正極活物質、または
これらの正極活物質に導電助剤やポリテトラフルオロエ
チレンなどの結着剤などを適宜添加した合剤を、ステン
レス鋼製網などの集電材料を芯材として成形体に仕上げ
たものが用いられる。For the positive electrode, for example, a positive electrode active material such as manganese dioxide, vanadium pentoxide, chromium oxide, lithium cobalt oxide, lithium nickel oxide, or a conductive auxiliary agent or polytetrafluoroethylene is added to these positive electrode active materials. A mixture obtained by appropriately adding a binder or the like is used as a molded body by using a current collecting material such as a stainless steel net as a core material.
【0033】[0033]
【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。EXAMPLES Next, the present invention will be described more specifically with reference to examples.
【0034】実施例1
PC:DME:FANの体積比1:1:1の混合溶媒
〔プロピレンカーボネート(PC)と1,2−ジメトキ
シエタン(DME)とフルオロアセトニトリル(FA
N)との体積比1:1:1の混合溶媒〕にLiC4 F9
SO3 を0.3mol/l溶解して、有機電解液を調製
した。Example 1 PC: DME: FAN mixed solvent having a volume ratio of 1: 1: 1 [propylene carbonate (PC), 1,2-dimethoxyethane (DME), fluoroacetonitrile (FA
N) in a volume ratio of 1: 1: 1] to LiC 4 F 9
SO 3 was dissolved at 0.3 mol / l to prepare an organic electrolytic solution.
【0035】また、熱処理した二酸化マンガンとカーボ
ンブラックとポリテトラフルオロエチレンとの混合物か
らなる二酸化マンガン合剤をステンレス鋼製網を芯材と
して厚さ0.4mm、幅30mmのシート状に成形し、
ステンレス鋼製の集電体を取り付けた帯状正極を、25
0℃で乾燥し、乾燥後、乾燥雰囲気中で室温まで冷却し
た。A manganese dioxide mixture composed of a mixture of heat-treated manganese dioxide, carbon black and polytetrafluoroethylene was molded into a sheet having a thickness of 0.4 mm and a width of 30 mm using a stainless steel net as a core material.
A strip positive electrode with a stainless steel collector attached
It was dried at 0 ° C., and after drying, it was cooled to room temperature in a dry atmosphere.
【0036】つぎに、上記帯状正極を厚さ25μmの微
孔性ポリプロピレンフィルムからなるセパレータで包
み、これに厚さ0.18mm、幅30mmのシート状リ
チウムをステンレス鋼製網に圧着した帯状負極を重ね、
渦巻状に巻回して渦巻状電極体とした後、外径15mm
の有底円筒状の電池ケース内に充填し、正極および負極
のリード体のスポット溶接を行った後、上記の有機電解
液を電池ケース内に注入した。Next, the above strip-shaped positive electrode was wrapped with a separator made of a microporous polypropylene film having a thickness of 25 μm, and a strip-shaped negative electrode obtained by crimping a sheet-shaped lithium sheet having a thickness of 0.18 mm and a width of 30 mm onto a stainless steel net was prepared. Overlap
Outer diameter of 15 mm after spirally winding into a spiral electrode body
After filling in the bottomed cylindrical battery case, spot welding of the positive electrode and negative electrode lead bodies was performed, and then the above-mentioned organic electrolytic solution was injected into the battery case.
【0037】つぎに、常法にしたがって、電池ケースの
開口部を封口し、図1に示す構造の筒形の有機電解液電
池を作製した。Then, the opening of the battery case was sealed by a conventional method to produce a cylindrical organic electrolyte battery having the structure shown in FIG.
【0038】図1に示す電池について説明すると、1は
前記の正極で、2は負極である。ただし、図1では、繁
雑化を避けるため、正極1や負極2の作製にあたって使
用されたステンレス鋼製網や集電体などは図示していな
い。そして、3はセパレータで、4は上記の有機電解液
である。Explaining the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the stainless steel net, the current collector, and the like used in manufacturing the positive electrode 1 and the negative electrode 2 are not shown. And 3 is a separator and 4 is the above-mentioned organic electrolytic solution.
【0039】5はステンレス鋼製の電池ケースであり、
この電池ケース5は負極端子を兼ねている。電池ケース
5の底部にはポリテトラフルオロエチレンシートからな
る絶縁体6が設置され、電池ケース5の内周部にもポリ
テトラフルオロエチレンシートからなる絶縁体7が配設
されていて、前記正極1、負極2およびセパレータ3か
らなる渦巻状電極体や、有機電解液4などは、この電池
ケース5内に収容されている。5 is a stainless steel battery case,
The battery case 5 also serves as a negative electrode terminal. An insulator 6 made of a polytetrafluoroethylene sheet is installed on the bottom of the battery case 5, and an insulator 7 made of a polytetrafluoroethylene sheet is also arranged on the inner peripheral part of the battery case 5. The spiral electrode body including the negative electrode 2 and the separator 3, the organic electrolytic solution 4, and the like are contained in the battery case 5.
【0040】8はステンレス鋼製の封口板であり、この
封口板8の中央部にはガス通気孔8aが設けられてい
る。9はポリプロピレン製の環状パッキング、10はチ
タン製の可撓性薄板で、11は環状のポリプロピレン製
の熱変形部材である。Reference numeral 8 is a stainless steel sealing plate, and a gas vent hole 8a is provided at the center of the sealing plate 8. Reference numeral 9 is a polypropylene-made annular packing, 10 is a flexible thin plate made of titanium, and 11 is an annular heat-deformable member made of polypropylene.
【0041】上記の熱変形部材11は温度によって変形
することにより、可撓性薄板10の破壊圧力を変える作
用をする。The thermal deformation member 11 acts to change the breaking pressure of the flexible thin plate 10 by being deformed by the temperature.
【0042】12はニッケルメッキを施した圧延鋼製の
端子板であり、この端子板12には切刃12aとガス排
出孔12bとが設けられていて、電池内部にガスが発生
して、電池の内部圧力が上昇し、その内圧上昇によって
可撓性薄板10が変形したときに、上記切刃12aによ
って可撓性薄板10を破壊し、電池内部のガスを上記ガ
ス排出孔12bから電池外部に排出して、電池の破裂が
防止できるように設計されている。Reference numeral 12 denotes a nickel-plated terminal plate made of rolled steel. The terminal plate 12 is provided with a cutting edge 12a and a gas discharge hole 12b, and gas is generated inside the battery, When the flexible thin plate 10 is deformed due to the increase of the internal pressure of the flexible thin plate 10, the cutting blade 12a destroys the flexible thin plate 10 and the gas inside the battery is discharged from the gas discharge hole 12b to the outside of the battery. It is designed to drain and prevent the battery from bursting.
【0043】13は絶縁パッキングで、14はリード体
であり、このリード体14は正極1と封口板8とを電気
的に接続しており、端子板12は封口板8との接触によ
り正極端子として作用する。また、15は負極2と電池
ケース5とを電気的に接続するリード体である。Reference numeral 13 is an insulating packing, and 14 is a lead body. This lead body 14 electrically connects the positive electrode 1 and the sealing plate 8, and the terminal plate 12 comes into contact with the sealing plate 8 to make a positive electrode terminal. Acts as. Reference numeral 15 is a lead body that electrically connects the negative electrode 2 and the battery case 5.
【0044】比較例1
PC:DME:ANの体積比1:1:1の混合溶媒〔プ
ロピレンカーボネート(PC)と1,2−ジメトキシエ
タン(DME)とアセトニトリル(AN)との体積比
1:1:1の混合溶媒〕にLiC4 F9 SO3 を0.3
mol/l溶解して、有機電解液を調製した。Comparative Example 1 PC: DME: AN mixed solvent with a volume ratio of 1: 1: 1 [Propylene carbonate (PC), 1,2-dimethoxyethane (DME) and acetonitrile (AN) with a volume ratio of 1: 1). 1 mixed solvent] and 0.3% of LiC 4 F 9 SO 3
Mol / l was dissolved to prepare an organic electrolytic solution.
【0045】この有機電解液を用いたほかは、実施例1
と同様にして筒形の有機電解液電池を作製した。Example 1 was repeated except that this organic electrolytic solution was used.
A cylindrical organic electrolyte battery was prepared in the same manner as in.
【0046】比較例2
PC:DMEの体積比1:2の混合溶媒〔プロピレンカ
ーボネート(PC)と1,2−ジメトキシエタン(DM
E)との体積比1:2の混合溶媒〕にLiC4 F9 SO
3 を0.3mol/l溶解して、有機電解液を調製し
た。Comparative Example 2 PC: DME mixed solvent with a volume ratio of 1: 2 [propylene carbonate (PC) and 1,2-dimethoxyethane (DM
E) mixed solvent with a volume ratio of 1: 2] to LiC 4 F 9 SO
0.3 mol / l of 3 was dissolved to prepare an organic electrolytic solution.
【0047】この有機電解液を用いたほかは、実施例1
と同様にして有機電解液電池を作製した。Example 1 was repeated except that this organic electrolytic solution was used.
An organic electrolyte battery was produced in the same manner as in.
【0048】上記のように作製した実施例1および比較
例1の電池ならびに該電池に使用された有機電解液につ
いて、その特性を調べたThe characteristics of the batteries of Example 1 and Comparative Example 1 produced as described above and the organic electrolyte used in the batteries were examined.
【0049】まず、実施例1の電池に使用された有機電
解液および比較例1の電池に使用された有機電解液を1
0mlずつと、厚さ0.2mmで10mm×40mmの
リチウム片とをバイアルビンに入れ、密閉後、60℃で
3日間貯蔵し、リチウム表面の様子を観察した。その結
果を表1に示す。First, the organic electrolytic solution used in the battery of Example 1 and the organic electrolytic solution used in the battery of Comparative Example 1 were
0 ml each and a 0.2 mm-thick 10 mm × 40 mm lithium piece were placed in a vial, sealed and stored at 60 ° C. for 3 days, and the appearance of the lithium surface was observed. The results are shown in Table 1.
【0050】[0050]
【表1】 [Table 1]
【0051】表1に示すように、アセトニトリルを含む
比較例1の有機電解液は、リチウムと反応し黄色に変色
したが、実施例1の有機電解液はほとんどリチウムと反
応せず、金属光沢が保たれていた。As shown in Table 1, the organic electrolyte of Comparative Example 1 containing acetonitrile reacted with lithium and turned yellow, but the organic electrolyte of Example 1 hardly reacted with lithium and had a metallic luster. It was kept.
【0052】これは、実施例1の有機電解液では、アセ
トニトリルに代えて、アセトニトリルの−C≡Nに隣接
する炭素原子に結合した水素原子のうち1個をフッ素原
子で置換したフルオロアセトニトリルを使用したことに
より、負極のリチウムとの反応性が低減したためである
と考えられる。In the organic electrolyte solution of Example 1, instead of acetonitrile, fluoroacetonitrile in which one of the hydrogen atoms bonded to the carbon atom adjacent to -C≡N of acetonitrile was replaced by a fluorine atom was used. It is considered that this is because the reactivity of the negative electrode with lithium was reduced.
【0053】つぎに、実施例1の電池および比較例1の
電池を80℃で10日間貯蔵し、貯蔵による開路電圧の
変化を調べた。その結果を表2に示す。また、表2に
は、実施例1の電池の貯蔵前の放電容量に対する各電池
の放電容量の比率を併せて示す。Next, the battery of Example 1 and the battery of Comparative Example 1 were stored at 80 ° C. for 10 days, and the change in open circuit voltage due to storage was examined. The results are shown in Table 2. In addition, Table 2 also shows the ratio of the discharge capacity of each battery to the discharge capacity of the battery of Example 1 before storage.
【0054】[0054]
【表2】 [Table 2]
【0055】表2に示すように、有機電解液の溶媒とし
てアセトニトリルを用いた比較例1の電池は、電池貯蔵
前に電圧が3V近くまで低下し、放電がほとんどできな
かった。これは、負極のリチウムが有機電解液と反応し
たためである。また、比較例1の電池は、複数個作製す
ると、電池によっては漏液したり、破裂防止装置が作動
するものがあった。As shown in Table 2, in the battery of Comparative Example 1 in which acetonitrile was used as the solvent of the organic electrolyte, the voltage dropped to about 3 V before the battery was stored, and almost no discharge was possible. This is because the lithium of the negative electrode has reacted with the organic electrolytic solution. In addition, when a plurality of batteries of Comparative Example 1 were manufactured, some of the batteries leaked liquid or the burst preventive device was activated.
【0056】これに対し、実施例1の電池では、80℃
で10日間という厳しい条件下での貯蔵でも、開路電圧
の低下がなく、かつ充分に放電可能であった。On the other hand, in the battery of Example 1, 80 ° C.
Even under storage under severe conditions such as 10 days, the open circuit voltage did not decrease and sufficient discharge was possible.
【0057】つぎに、実施例1の電池および該電池に使
用された有機電解液と、比較例2の電池および該電池に
使用された有機電解液との特性を比較した結果について
示す。なお、比較例2の電池に使用された有機電解液
は、PC:DME〔プロピレンカーボネート(PC)と
1,2−ジメトキシエタン(DME)との混合溶媒〕系
のものであり、このPC:DMEは従来最も一般的に採
用されていた溶媒系である。Next, the results of comparing the characteristics of the battery of Example 1 and the organic electrolytic solution used for the battery with the battery of Comparative Example 2 and the organic electrolytic solution used for the battery will be shown. The organic electrolyte used in the battery of Comparative Example 2 was a PC: DME [mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME)] system. Is the most commonly adopted solvent system.
【0058】まず、実施例1の電池に使用された有機電
解液と比較例2の電池の有機電解液との−20℃、0℃
および20℃におけるイオン伝導度を調べた結果を表3
に示す。First, the organic electrolyte used in the battery of Example 1 and the organic electrolyte of the battery of Comparative Example 2 were -20 ° C. and 0 ° C.
Table 3 shows the results of examining the ionic conductivity at 20 ° C and 20 ° C.
Shown in.
【0059】[0059]
【表3】 [Table 3]
【0060】比較例2の有機電解液は、高伝導度が得ら
れるPC:DME系の中でも特に高伝導度を示す溶媒組
成を選択しているが、表3に示すように、実施例1の有
機電解液は、いずれの温度においても、比較例2の有機
電解液より、高伝導度であった。As the organic electrolyte of Comparative Example 2, a solvent composition showing particularly high conductivity was selected among PC: DME systems which can obtain high conductivity, but as shown in Table 3, as shown in Table 3, The organic electrolytic solution had higher conductivity than the organic electrolytic solution of Comparative Example 2 at any temperature.
【0061】つぎに、実施例1の電池および比較例2の
電池の閉路電圧とインピーダンスを測定した結果を表4
に示す。閉路電圧は3Aで0.5秒間通電後の電池電圧
であり、インピーダンスは1kHzおよび10kHzに
おける値をLCRメーターで測定したものである。Next, the results of measuring the closed circuit voltage and the impedance of the battery of Example 1 and the battery of Comparative Example 2 are shown in Table 4.
Shown in. The closed circuit voltage is the battery voltage after energization at 3 A for 0.5 seconds, and the impedance is the value at 1 kHz and 10 kHz measured by an LCR meter.
【0062】[0062]
【表4】 [Table 4]
【0063】表4に示すように、実施例1の電池は、従
来の溶媒系を使用した比較例2の電池より閉路電圧が高
く、かつインピーダンスが小さかった。この結果は、実
施例1の電池に使用されている有機電解液の伝導度が高
いことを示している。As shown in Table 4, the battery of Example 1 had a higher closed circuit voltage and a lower impedance than the battery of Comparative Example 2 using the conventional solvent system. This result indicates that the conductivity of the organic electrolyte used in the battery of Example 1 is high.
【0064】[0064]
【発明の効果】以上説明したように、本発明では、有機
電解液の溶媒として、不飽和結合に隣接した炭素原子に
フッ素原子が結合した有機溶媒を用いることにより、電
極との反応性が低く、安定性の高い有機電解液を得るこ
とができた。INDUSTRIAL APPLICABILITY As described above, in the present invention, as a solvent for the organic electrolyte, carbon atoms adjacent to unsaturated bonds are used.
By using the organic solvent having fluorine atoms bonded, it was possible to obtain an organic electrolytic solution having low reactivity with the electrode and high stability.
【0065】また、上記有機電解液を使用することによ
り、貯蔵性の優れた電池を得ることができた。さらに、
有機電解液の有機溶媒および電解質として、不飽和結合
に隣接した炭素原子にフッ素原子が結合した有機溶媒
と、炭素数が2以上のフルオロアルキル基を有するリチ
ウム塩とを組み合わせて使用することにより電池の安全
性を向上させることができる。Further, by using the above-mentioned organic electrolytic solution, a battery having excellent storability can be obtained. further,
A battery using a combination of an organic solvent having a fluorine atom bonded to a carbon atom adjacent to an unsaturated bond and a lithium salt having a fluoroalkyl group having 2 or more carbon atoms as an organic solvent and an electrolyte of an organic electrolytic solution. Can improve the safety of.
【図1】本発明に係る有機電解液電池の一例を模式的に
示す断面図である。FIG. 1 is a sectional view schematically showing an example of an organic electrolyte battery according to the present invention.
1 正極 2 負極 3 セパレータ 4 有機電解液 1 positive electrode 2 Negative electrode 3 separator 4 organic electrolyte
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 勝昭 三重県四日市市東邦町1番地 三菱油化 株式会社 四日市総合研究所内 (72)発明者 木村 牧男 三重県四日市市東邦町1番地 三菱油化 株式会社 四日市総合研究所内 (56)参考文献 特開 昭51−87726(JP,A) 特開 昭59−203368(JP,A) 特開 平3−49157(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 6/16 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuaki Hasegawa 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Petrochemical Co., Ltd. Yokkaichi Research Institute (72) Inventor Makio Kimura 1-place, Toho-cho, Yokkaichi-shi, Mie Mitsubishi Petrochemical Co., Ltd. Company Yokkaichi Research Institute (56) Reference JP-A-51-87726 (JP, A) JP-A-59-203368 (JP, A) JP-A-3-49157 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) H01M 6/16 H01M 10/40
Claims (5)
原子が結合した有機溶媒を用いたことを特徴とする有機
電解液。1. An organic electrolytic solution comprising an organic solvent in which a fluorine atom is bonded to a carbon atom adjacent to an unsaturated bond.
求項1記載の有機電解液。2. The organic electrolytic solution according to claim 1, wherein the unsaturated bond is a heterounsaturated bond.
項2記載の有機電解液。3. The organic electrolytic solution according to claim 2, wherein the heterounsaturated bond is —C≡N.
化合物からなる負極と、正極と、請求項1、2または3
記載の有機電解液を備えたことを特徴とする有機電解液
電池。4. A negative electrode made of an alkali metal or a compound containing an alkali metal, a positive electrode, and 1, 2, or 3.
An organic electrolytic solution battery comprising the described organic electrolytic solution.
化合物からなる負極と、正極と、有機電解液を有し、電
池内部のガスを電池外部に排出して電池の破裂を防止す
る破裂防止装置を備えた有機電解液電池であって、該有
機電解液の溶媒として不飽和結合に隣接した炭素原子に
フッ素原子が結合した有機溶媒を用い、かつ電解質とし
て炭素数が2以上のフルオロアルキル基を有するリチウ
ム塩を用いたことを特徴とする有機電解液電池。5. A rupture prevention device which has a negative electrode made of an alkali metal or a compound containing an alkali metal, a positive electrode, and an organic electrolyte solution and discharges gas inside the battery to the outside of the battery to prevent the battery from rupturing. An organic electrolyte battery having a carbon atom adjacent to an unsaturated bond as a solvent of the organic electrolyte solution.
An organic electrolyte battery comprising an organic solvent having a fluorine atom bonded thereto and a lithium salt having a fluoroalkyl group having 2 or more carbon atoms as an electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27040891A JP3431641B2 (en) | 1991-09-20 | 1991-09-20 | Organic electrolyte and organic electrolyte battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27040891A JP3431641B2 (en) | 1991-09-20 | 1991-09-20 | Organic electrolyte and organic electrolyte battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0582139A JPH0582139A (en) | 1993-04-02 |
JP3431641B2 true JP3431641B2 (en) | 2003-07-28 |
Family
ID=17485850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27040891A Expired - Lifetime JP3431641B2 (en) | 1991-09-20 | 1991-09-20 | Organic electrolyte and organic electrolyte battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3431641B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4609751B2 (en) * | 2002-07-15 | 2011-01-12 | 宇部興産株式会社 | Lithium secondary battery |
CN100585935C (en) | 2002-07-15 | 2010-01-27 | 宇部兴产株式会社 | Non-aqueous electrolyte and lithium cell |
JP4608197B2 (en) * | 2002-10-28 | 2011-01-05 | 三井化学株式会社 | Non-aqueous electrolyte and secondary battery using the same |
JP2009123497A (en) * | 2007-11-14 | 2009-06-04 | Sony Corp | Nonaqueous electrolyte composition and nonaqueous electrolyte battery |
-
1991
- 1991-09-20 JP JP27040891A patent/JP3431641B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0582139A (en) | 1993-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1991020104A1 (en) | Organic electrolytic battery | |
JP3396990B2 (en) | Organic electrolyte secondary battery | |
US6589689B2 (en) | Non-aqueous electrolyte secondary battery and method for producing the same | |
JP3431641B2 (en) | Organic electrolyte and organic electrolyte battery using the same | |
JP3512114B2 (en) | Organic electrolyte for organic electrolyte battery and organic electrolyte battery using the same | |
JP3451781B2 (en) | Organic electrolyte secondary battery | |
JP3288068B2 (en) | Organic electrolyte battery | |
JPH06215775A (en) | Organic electrolytic liquid and organic electrolytic battery | |
JPH0765843A (en) | Organic electrolyte battery | |
JP3169248B2 (en) | Organic electrolyte battery | |
JP3095268B2 (en) | Organic electrolyte and organic electrolyte battery using the same | |
JP2974739B2 (en) | Organic electrolyte battery | |
JP3518687B2 (en) | Organic electrolyte battery | |
JP2674651B2 (en) | Non-aqueous solvent secondary battery | |
JP4007636B2 (en) | Organic electrolyte secondary battery | |
JP3722824B2 (en) | Stacked organic electrolyte battery | |
JPH06176769A (en) | Organic electrolyte battery | |
JP2003249201A (en) | Flat-type nonaqueous electrolyte secondary battery | |
JPH06196138A (en) | Nonaqueous electrolyte battery | |
JP3722823B2 (en) | Stacked organic electrolyte battery | |
JP3236122B2 (en) | Organic electrolyte battery | |
JP3423168B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3128230B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0554913A (en) | Nonaqueous electrolytic secondary battery | |
JP3722825B2 (en) | Stacked organic electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020812 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030508 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |