JPH06215775A - Organic electrolytic liquid and organic electrolytic battery - Google Patents

Organic electrolytic liquid and organic electrolytic battery

Info

Publication number
JPH06215775A
JPH06215775A JP5225236A JP22523693A JPH06215775A JP H06215775 A JPH06215775 A JP H06215775A JP 5225236 A JP5225236 A JP 5225236A JP 22523693 A JP22523693 A JP 22523693A JP H06215775 A JPH06215775 A JP H06215775A
Authority
JP
Japan
Prior art keywords
organic
anion
metal salt
electrolytic solution
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5225236A
Other languages
Japanese (ja)
Other versions
JP3537165B2 (en
Inventor
Fusaji Kita
房次 喜多
Koji Murakami
幸治 村上
Akira Kawakami
章 川上
Takaaki Sonoda
高明 園田
Hiroshi Kobayashi
宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP22523693A priority Critical patent/JP3537165B2/en
Publication of JPH06215775A publication Critical patent/JPH06215775A/en
Application granted granted Critical
Publication of JP3537165B2 publication Critical patent/JP3537165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve storage stability by using a metal salt as an electrolyte of an organic electrolytic liquid wherein, regarding the anion the salt contains, the maximum distance between the center of a charge center atom of the anion and the center of other atoms is 4 or more and the anion is an organic anion having an electron attractive group. CONSTITUTION:An anion of an alkali metal salt to be used as an electrolyte of an electrolytic liquid has a steric hindrance barrier structure. That is, the metal salt is a salt containing an organic anion which has the maximum distance 4 or more, preferably 6 or more, between the center of an atom to be charge center in the anion and the center of other atoms. Moreover, the organic anion is needed to have total 4 or more electron attractive groups. Halogen atoms, -COO- group, -CN group, etc., are among the electron attractive groups and one containing halogenated alkyl groups using fluorine as the halogen is especially preferable. Due to the electron attractive property of itself, the metal salt is stabilized and the storage ability of the electrolytic liquid can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機電解液および有機
電解液電池に関する。
FIELD OF THE INVENTION The present invention relates to an organic electrolyte and an organic electrolyte battery.

【0002】[0002]

【従来の技術】二酸化マンガン−リチウム電池に代表さ
れる有機電解液電池は、3V以上の高電圧、かつ高エネ
ルギー密度であることから、ますます需要が増えてい
る。
2. Description of the Related Art Organic electrolyte batteries represented by a manganese dioxide-lithium battery have a high voltage of 3 V or more and a high energy density, and therefore, their demands are increasing more and more.

【0003】従来、この種の電池の有機電解液(以下、
電池を表すとき以外は、単に電解液という)には、電解
質としてLiClO4 が用いられてきたが、最近は電池
の安全性が重視され、LiClO4 のような危険物を使
用することは好まれない状況になってきている。
Conventionally, organic electrolytes of batteries of this type (hereinafter,
LiClO 4 has been used as an electrolyte in (only referred to as an electrolytic solution except when it represents a battery), but recently, safety of the battery has been emphasized, and it is preferable to use a dangerous substance such as LiClO 4. There is no situation.

【0004】上記LiClO4 以外のリチウム塩として
は、たとえばLiBF4 やLiB(C6 5 4 などの
ホウ素系リチウム塩を電解質として用いることが行われ
ている。
As a lithium salt other than LiClO 4 , for example, a boron-based lithium salt such as LiBF 4 or LiB (C 6 H 5 ) 4 is used as an electrolyte.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のLiB
4 やLiB(C6 5 4 などを電解質として用いた
電解液は、貯蔵しておくと変色したり、一部の電解液溶
媒をポリマー化させたりする。また、その電解液を電池
に用いた場合には電池の貯蔵性が低下する。
However, the above-mentioned LiB
An electrolyte solution using F 4 , LiB (C 6 H 5 ) 4 or the like as an electrolyte may be discolored when stored, or a part of the electrolyte solution solvent may be polymerized. Further, when the electrolytic solution is used in a battery, the storage property of the battery is lowered.

【0006】したがって、本発明は、上記従来品が持っ
ていた問題点を解決し、貯蔵性の優れた電解液および有
機電解液電池を提供することを目的とする。
Therefore, an object of the present invention is to solve the problems of the above conventional products and to provide an electrolytic solution and an organic electrolytic solution battery having excellent storability.

【0007】[0007]

【課題を解決するための手段】本発明は、電解液の電解
質として用いるアルカリ金属塩のアニオンが立体障害バ
リヤ−構造を有することを特徴とする。ここで、立体障
害バリヤ−構造とは、アニオンの電荷中心にカチオンが
近づきにくい構造をいい、より具体的にはアニオン内の
電荷中心となる原子と他の原子の中心間の最大距離が4
Å以上、好ましくは5Å以上、最も望ましくは6Å以上
の有機アニオンを含む金属塩である。
The present invention is characterized in that the anion of the alkali metal salt used as the electrolyte of the electrolytic solution has a steric hindrance barrier structure. Here, the steric hindrance barrier structure refers to a structure in which a cation does not easily approach the charge center of the anion, and more specifically, the maximum distance between the charge center atom of the anion and the center of another atom is 4
It is a metal salt containing Å or more, preferably 5 Å or more, and most preferably 6 Å or more organic anions.

【0008】有機アニオンは、さらに電子求引性基を有
することが必要である。電子求引性基の数は合計4個以
上が望ましい。そして、5個以上になると、さらに好ま
しく、6個以上になると最も望ましく貯蔵性がさらに向
上する。
The organic anion needs to further have an electron-withdrawing group. The total number of electron-withdrawing groups is preferably 4 or more. And when it is 5 or more, it is more preferable, and when it is 6 or more, it is most desirable and the storability is further improved.

【0009】電子求引性基としてはハロゲン原子、−C
OO−基、−CN基などが挙げられるが、ハロゲン原子
を有することが望ましい。ハロゲン原子はアニオン中心
とカチオン中心とのク-ロン引力を低減し各イオン間の
距離を大きくする。特にハロゲン化アルキル基を含むの
が望ましく、ハロゲンはフッ素が最も望ましい。上記ハ
ロゲン化アルキル基の作用は、それ自体の電子求引性の
ために金属塩を安定化することができ、電解液の貯蔵性
を向上させることができる点である。そして、このハロ
ゲン化アルキル基の数は4個以上であることが望まし
い、より貯蔵性を高めるためには5個以上が好ましく、
6個以上であるとさらに好ましい特性が得られる。
As the electron-withdrawing group, a halogen atom, --C
Examples thereof include an OO- group and a -CN group, but it is preferable to have a halogen atom. The halogen atom reduces the coulomb attractive force between the anion center and the cation center and increases the distance between the ions. In particular, it is desirable to contain a halogenated alkyl group, and halogen is most desirably fluorine. The action of the above-mentioned halogenated alkyl group is that the metal salt can be stabilized due to its own electron-withdrawing property, and the storability of the electrolytic solution can be improved. And, it is desirable that the number of the halogenated alkyl groups is 4 or more. In order to further improve the storability, 5 or more is preferable,
More preferable characteristics are obtained when the number is 6 or more.

【0010】また、アニオン中心となる原子は、O(酸
素),N(窒素),C(炭素),B(硼素),Al(ア
ルミ)等があり、周期律表IIIb−VIb族の原子で
ある。中でも3つ以上の置換基を結合させられるIII
b−IVb族原子が望ましく特にIIIb族原子が望ま
しい、これはB(硼素)等のIIIb族原子がアニオン
中心となるとき4つの結合を有することができ、アニオ
ン中心の周りに置換基によって立体障害を形成しやすい
からである。さらに、IIIb族原子の中でもB(硼
素)原子は最も分子量が小さくアニオンの分子量を小さ
くできるため望ましい。このようなアニオンを含む金属
塩を用いることによって、電解液の貯蔵性を向上させ、
また、その電解液を用いることによって有機電解液電池
の貯蔵性を向上させることができる。
Further, the atom serving as the anion center includes O (oxygen), N (nitrogen), C (carbon), B (boron), Al (aluminum), etc., and is an atom of group IIIb-VIb of the periodic table. is there. Above all, three or more substituents can be bonded III
Group b-IVb atoms are preferred and group IIIb atoms are particularly preferred, which may have four bonds when the group IIIb atom such as B (boron) is the anion center and is sterically hindered by substituents around the anion center. Is easy to form. Further, among the IIIb group atoms, the B (boron) atom has the smallest molecular weight, and the molecular weight of the anion can be reduced, which is desirable. By using a metal salt containing such an anion, the storability of the electrolytic solution is improved,
Further, by using the electrolytic solution, the storability of the organic electrolytic solution battery can be improved.

【0011】本発明において、上記電解質を用いること
によって、電解液および電池の貯蔵性が向上する理由
を、上記電解質を具体的に説明していくなかで、明らか
にする。
In the present invention, the reason why the storage properties of the electrolytic solution and the battery are improved by using the above-mentioned electrolyte will be clarified in the concrete explanation of the above-mentioned electrolyte.

【0012】まず、この塩を形成するカチオンはアルカ
リ金属、アルカリ土類金属構成されることが望ましく、
特にリチウムが好ましい。
First, it is desirable that the cation forming the salt is composed of an alkali metal or an alkaline earth metal,
Lithium is particularly preferable.

【0013】一般的な電子求引性基と立体障害バリヤ−
構造を有するアニオンを含む金属塩の具体例としては、
(CF3 SO2 2 N・ME、(CF3 SO2 3 C・
ME、〔C6 4 (F)〕4 B・ME、〔C6 4 (C
l)〕4 B・MEなどの金属塩が挙げられる(ここでM
EはLi、Na、Kなどの金属である)。また、C4
9 SO3 Liなどのように炭素数が2より大きいもの特
に4より大きいものも、立体障害バリアー構造を有して
いる。また、特に望ましい金属塩の具体例としては、た
とえばLiB〔C6 4 (CF3 )〕4 、LiB〔C6
3 (CF3 2 4 (リチウムテトラキス〔3,5−
ビス(トリフルオロメチル)フェニル〕ボレート)(以
下、LiTFPBで示す)、LiB(C6 3 2 4
〔ここで、Aは−C(CF3 2 OCH3 〕などが挙げ
られる。などが挙げられる。
General electron-withdrawing groups and steric hindrance barriers
Specific examples of the metal salt containing an anion having a structure include:
(CF 3 SO 2 ) 2 N ・ ME, (CF 3 SO 2 ) 3 C ・
ME, [C 6 H 4 (F)] 4 B ・ ME, [C 6 H 4 (C
l)] Metal salts such as 4 B · ME (here, M
E is a metal such as Li, Na or K). Also, C 4 F
Those having more than 2 carbon atoms, especially those having more than 4 carbon atoms, such as 9 SO 3 Li, also have a steric hindrance barrier structure. Specific examples of particularly desirable metal salts include, for example, LiB [C 6 H 4 (CF 3 )] 4 and LiB [C 6
H 3 (CF 3) 2] 4 (lithium tetrakis [3,5
Bis (trifluoromethyl) phenyl] borate) (hereinafter referred to as LiTFPB), LiB (C 6 H 3 A 2 ] 4
[Wherein, A is -C (CF 3) 2 OCH 3], and the like. And so on.

【0014】特に、ハロゲン原子を含む有機ホウ素系金
属塩が電解液および電池の貯蔵性を向上させることがで
きるのは次の理由によるものである。
In particular, the organoboron metal salt containing a halogen atom can improve the storage properties of the electrolytic solution and the battery for the following reason.

【0015】ホウ素(B)は、有機物に含まれる元素と
しては酸素(O)やチッ素(N)よりも多い4本の結合
が可能であり、その多様な結合性に基づいて、多くの電
子求引性を有する置換基と結合できる能力を持ってい
る。しかも、ホウ素は4本の結合を有する炭素(C)に
比べても金属性が強く、結合した金属をイオン化させる
のに好都合な元素である。
Boron (B) is capable of forming four bonds, which are larger than oxygen (O) and nitrogen (N) as an element contained in an organic substance, and many electrons can be formed on the basis of its various bond properties. It has the ability to bind to a substituent having an attractive property. Moreover, boron is more metallic than carbon (C) having four bonds, and is a convenient element for ionizing the bonded metal.

【0016】ただし、このホウ素(B)原子に単に電子
供与性のアルキル基やベンゼン環を結合させたLiBR
4 (Rはアルキル基またはフェニル基)はB原子上での
電子密度が高まるため、電子をより放出しやすくなる。
However, LiBR in which an electron-donating alkyl group or a benzene ring is simply bonded to the boron (B) atom
4 (where R is an alkyl group or a phenyl group) has an increased electron density on the B atom, so that it becomes easier to emit electrons.

【0017】つまり、より酸化されやすくなり、金属酸
化物などの高電圧で活性の高い正極活物質を用いると、
正極と一部反応することなどによって、かえって電池の
貯蔵性が損なわれてしまう。
That is, when a positive electrode active material such as a metal oxide which is more easily oxidized and has high activity at high voltage is used,
Due to a partial reaction with the positive electrode, the storability of the battery is rather deteriorated.

【0018】したがって、B原子を結合する置換基にさ
らに電子求引性基を導入し、B原子に電子が集中するの
を防止する必要がある。電子求引性基の代表的なものは
ハロゲン原子を含むアルキル基やハロゲン原子などであ
り、特にフルオロアルキル基はより強固な結合を作るの
で好ましく、これらの電子求引性基がB原子に結合する
置換基に導入されることによって電子が放出されにくく
なり、電解液が酸化されにくくなって貯蔵性が向上す
る。
Therefore, it is necessary to further introduce an electron-withdrawing group into the substituent that binds the B atom to prevent electrons from concentrating on the B atom. Typical examples of the electron-withdrawing group are an alkyl group containing a halogen atom and a halogen atom, and a fluoroalkyl group is particularly preferable because it forms a stronger bond. These electron-withdrawing groups are bonded to the B atom. By being introduced into the substituent, the electron is less likely to be released, the electrolytic solution is less likely to be oxidized, and the storability is improved.

【0019】特に上記LiTFPBは、後記の実施例で
も用いるが、B原子に結合したフェニル基のオルト位、
メタ位に2つのトリフルオロメチル基を有しており、合
計で8個の電子求引性基を有しており、特に特性が優れ
ている。なお、アニオン電荷中心原子と他の原子との中
心間の最大距離はLiTFPBの場合B原子とF原子中
心間で約6.1Åである。
In particular, the above-mentioned LiTFPB is also used in Examples described later, but the ortho position of the phenyl group bonded to the B atom,
It has two trifluoromethyl groups at the meta position, and has a total of eight electron-withdrawing groups, and is particularly excellent in characteristics. The maximum distance between the center of the anion charge center atom and another atom is about 6.1Å between the B atom and F atom centers in the case of LiTFPB.

【0020】ここで、上記LiTFPBの化学式を示し
ておくと、次の通りです。
Here, the chemical formula of LiTFPB is shown below.

【0021】[0021]

【化1】 [Chemical 1]

【0022】これらの立体障害バリアー構造を有する金
属塩は、電解液溶媒に溶解させたときは単に嵩(かさ)
高い分子にすぎないが、これらが高電圧下で正極集電体
の金属成分を電解液中に溶出させる場合を想定すると、
通常、上記金属成分は2価以上のカチオンとなり、これ
らのカチオンと上記立体障害バリアー構造を有する金属
塩のアニオン部分とが対イオンになると、上記金属塩が
かさ高いので立体障害が大きくなり、それ以上反応が進
まなくなって、正極集電体の金属成分の溶出が抑制され
るようになるものと考えられる。
These metal salts having a steric hindrance barrier structure are simply bulky when dissolved in an electrolyte solvent.
Although it is only a high molecule, assuming that these elute the metal component of the positive electrode current collector into the electrolytic solution under high voltage,
Usually, the metal component becomes a cation having a valence of 2 or more, and when these cations and the anion portion of the metal salt having the steric hindrance barrier structure serve as counterions, the steric hindrance becomes large because the metal salt is bulky. It is considered that the reaction does not proceed as described above and the elution of the metal component of the positive electrode current collector is suppressed.

【0023】正極集電体の材料としては、たとえばAl
(アルミニウム)、Ti(チタン)、Ni(ニッケ
ル)、Cu(銅)またはそれらを主成分とする合金が用
いられる。なかでも、正極集電体の金属材料が溶出した
場合のカチオンの価数が高い方が溶出しにくく、この意
味でAlは3価であり、他の2価の金属に比べて、溶出
しにくく、好ましい。Tiも3〜4価であるので、より
好ましい。
The material of the positive electrode current collector is, for example, Al.
(Aluminum), Ti (titanium), Ni (nickel), Cu (copper) or an alloy containing them as a main component is used. Above all, when the metal material of the positive electrode current collector is eluted, the one with higher valence of cations is more difficult to elute. In this sense, Al is trivalent, which is more difficult to elute than other divalent metals. ,preferable. Since Ti is also trivalent to tetravalent, it is more preferable.

【0024】上記立体障害バリアー構造を有する金属塩
からなる電解質は、そのアニオン部分が単に立体障害の
大きなアニオンであるだけでなく、アニオン自体も酸化
に対して安定であることが望ましい。
In the electrolyte composed of the metal salt having the steric hindrance barrier structure, it is desirable that the anion portion is not only an anion having a large steric hindrance but also the anion itself is stable to oxidation.

【0025】上記電解液を用いて電池を作製するにあた
り、負極にアルカリ金属またはアルカリ金属を含む化合
物をステンレス鋼製網などの集電材料と一体化したもの
が用いられるが、そのアルカリ金属として、たとえばリ
チウム、ナトリウム、カリウムなどが挙げられ、アルカ
リ金属を含む化合物としては、たとえばアルカリ金属と
アルミニウム、鉛、インジウム、カリウム、カドミウ
ム、スズ、マグネシウムなどの合金、さらにはアルカリ
金属と炭素材料との化合物、低電位のアルカリ金属と金
属酸化物、硫化物との化合物などが挙げられる。
In producing a battery using the above-mentioned electrolytic solution, an alkaline metal or a compound containing an alkaline metal integrated with a current collecting material such as a stainless steel net is used for the negative electrode. Examples thereof include lithium, sodium, potassium, and the like.Examples of the compound containing an alkali metal include, for example, an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin, magnesium, and the like, and a compound of an alkali metal and a carbon material. Examples thereof include compounds of low-potential alkali metals with metal oxides and sulfides.

【0026】電解液の調製にあたって、上記電解質を溶
解させるために使用する有機溶媒としては、たとえば、
1,2−ジメトキシエタン、1,2−ジメトキシメタ
ン、ジメトキシプロパン、1,3−ジオキソラン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、4−
メチル−1,3−ジオキソランなどのエーテル類、プロ
ピレンカーボネート、エチレンカーボネート、ブチレン
カーボネート、γ−ブチロラクトン、γ−バレロラクト
ンなどのエステル、さらにはスルフォランなどが挙げら
れる。なかでも、エステル類は前記の立体障害バリヤ−
構造を有するアニオンを含む金属塩、特にハロゲン化ア
ルキル基を4つ以上含む金属塩またはハロゲン原子を含
む有機ホウ素系金属塩からなる電解質と組み合わせて用
いるときに、電解液の貯蔵性をより向上させるので好ま
しい。
The organic solvent used to dissolve the above-mentioned electrolyte in the preparation of the electrolytic solution is, for example,
1,2-dimethoxyethane, 1,2-dimethoxymethane, dimethoxypropane, 1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 4-
Examples thereof include ethers such as methyl-1,3-dioxolane, esters such as propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone and γ-valerolactone, and sulfolane. Among them, the esters are the above-mentioned steric hindrance barriers.
When used in combination with an electrolyte composed of a metal salt containing an anion having a structure, particularly a metal salt containing four or more halogenated alkyl groups or an organic boron-based metal salt containing halogen atoms, the storage stability of the electrolytic solution is further improved. Therefore, it is preferable.

【0027】電解液中における電解質の濃度は、特に限
定されるものではないが、通常、電解液は上記の有機溶
媒に電解質として上記のハロゲン化アルキル基を4つ以
上含む金属塩またはハロゲン原子を含む有機ホウ素系金
属塩を0.01〜2mol/l、特に0.05〜1mo
l/l程度溶解させるのが好ましい。
The concentration of the electrolyte in the electrolytic solution is not particularly limited, but usually the electrolytic solution contains a metal salt or halogen atom containing four or more of the above halogenated alkyl groups as an electrolyte in the above organic solvent. 0.01 to 2 mol / l, especially 0.05 to 1 mo containing an organic boron-based metal salt
It is preferable to dissolve about 1 / l.

【0028】ここで、電池に用いる金属塩をあらかじめ
非ハロゲン溶媒で処理しておくと溶媒に溶解しやすくな
りさらに好ましい。本発明者らは、まず、金属塩を溶解
しにくい代表的な含ハロゲン溶媒であるCH2 Cl2
種々のリチウム塩を溶解させようとしたが、多くのリチ
ウム塩はこのCH2 Cl2 にほとんど溶けず沈殿してし
まい、電解液としての伝導度を測定しても数十μS/c
m以下にすぎなかった。
Here, it is more preferable that the metal salt used in the battery is previously treated with a non-halogen solvent because it is easily dissolved in the solvent. The present inventors first tried to dissolve various lithium salts in CH 2 Cl 2 which is a typical halogen-containing solvent in which a metal salt is difficult to dissolve, but many lithium salts are dissolved in this CH 2 Cl 2 . It almost does not melt and precipitates, and even if the conductivity as an electrolyte is measured, it is several tens of μS / c.
It was no more than m.

【0029】また、他の含ハロゲン溶媒であるフロン系
溶媒のパーフルオロトリアルキルアミンなどでも同様で
あった。
The same was true for other fluorocarbon-based solvents such as perfluorotrialkylamine, which is a halogen-containing solvent.

【0030】しかし、各種の検討を繰り返していった中
で、上記LiTFPBをエーテルに溶解させ、真空乾燥
した後、CH2 Cl2 を加えると、LiTFPBをCH
2 Cl2 に20mmol/lすみやかに溶解させること
ができるようになり、また伝導度が820μS/cmに
まで達し、伝導度が10倍以上に向上した。この様な効
果は含ハロゲン溶媒だけでなく粘度の高いエステル等で
も確認した。
However, in the course of repeating various studies, the above-mentioned LiTFPB was dissolved in ether, vacuum-dried, and then CH 2 Cl 2 was added.
It became possible to quickly dissolve it in 2 Cl 2 in an amount of 20 mmol / l, the conductivity reached 820 μS / cm, and the conductivity was improved 10 times or more. This effect was confirmed not only with halogen-containing solvents but also with highly viscous esters.

【0031】以上のことから、含ハロゲン溶媒、エステ
ル等にほとんど溶けない金属塩でも、あらかじめ非ハロ
ゲン溶媒で処理することにより、溶媒に対する溶解速度
や溶解度を高めることができることが判明した。
From the above, it was revealed that even a metal salt which is hardly soluble in a halogen-containing solvent, an ester or the like can be treated with a non-halogen solvent in advance to increase the dissolution rate or solubility in the solvent.

【0032】本発明のより望ましい電解液は、金属塩を
あらかじめ非ハロゲン溶媒で処理(たとえば、溶解、付
着、含浸)した後に、溶媒を加えて、アルカリ金属塩を
溶媒に溶解させることによって調製される。特に望まし
いのは処理後の金属塩に対する非ハロゲン溶媒の重量比
が望ましくは0.1以下、より望ましくは0.05以下
が好ましい。また、非ハロゲン溶媒の金属塩に対する含
量が重量比で0.0005以上が望ましく、0.005
以上であればより望ましい。
A more desirable electrolyte of the present invention is prepared by previously treating (for example, dissolving, depositing, impregnating) the metal salt with a non-halogen solvent, and then adding the solvent to dissolve the alkali metal salt in the solvent. It It is particularly desirable that the weight ratio of the non-halogenated solvent to the treated metal salt is preferably 0.1 or less, more preferably 0.05 or less. Further, the content of the non-halogen solvent to the metal salt is preferably 0.0005 or more by weight ratio,
The above is more desirable.

【0033】ここで、非ハロゲン溶媒処理が有効な溶媒
としては含ハロゲン溶媒、たとえばCH2 Cl2 、CH
Cl3 、CCl4 、CBrF3 、CF3 CF2 CHCl
2 、CClF2 CF2 CHClFなどのハロゲン元素を
含む溶媒、そのほか粘度の大きいプロピレンカーボネー
ト、エチレンカーボネート、ブチレンカーボネート、γ
−ブチロラクトン、γ−バレロラクトンなどのエステ
ル、さらにはスルフォランなどにも効果がある。非ハロ
ゲン溶媒処理が効果的な高粘度溶媒の粘度は25℃にお
いて1cp(センチポイズ)以上望ましくは1.5cp
より望ましくは2.0cp以上が良い。
Here, as a solvent for which treatment with a non-halogen solvent is effective, a halogen-containing solvent such as CH 2 Cl 2 or CH 2 is used .
Cl 3 , CCl 4 , CBrF 3 , CF 3 CF 2 CHCl
2 , a solvent containing a halogen element such as CClF 2 CF 2 CHClF, and other high viscosity propylene carbonate, ethylene carbonate, butylene carbonate, γ
It is also effective for esters such as -butyrolactone and γ-valerolactone, and sulfolane. The viscosity of a high-viscosity solvent for which treatment with a non-halogen solvent is effective is preferably 1 cp (centipoise) or more at 25 ° C.
More desirably, 2.0 cp or more is preferable.

【0034】非ハロゲン溶媒としては、たとえばジエチ
ルエーテル、1,2−ジメトキシエタン、テトラヒドロ
フラン、グライム、ポリエチレンオキサイドなどのエー
テル類、プロピレンカーボネート、γ−ブチロラクト
ン、ギ酸メチルなどのエステル類、そのほかアミン類、
ケトン類、含イオウ化合物、さらにはアルコール、水な
どのプロトン性溶媒などが挙げられるが、エーテル類、
エステル類が好ましく、特にエーテル類がアルカリ金属
塩の溶解性が大きく、かつ負極との反応性が低いことか
ら好ましい。
Examples of the non-halogen solvent include ethers such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran, glyme and polyethylene oxide, esters such as propylene carbonate, γ-butyrolactone and methyl formate, and other amines.
Ketones, sulfur-containing compounds, alcohols, protic solvents such as water, and the like, ethers,
Esters are preferable, and ethers are particularly preferable because they have high solubility of alkali metal salts and low reactivity with the negative electrode.

【0035】なお、アルコールなどのプロトン性溶媒は
リチウムなどと反応しやすく、負極に悪影響を及ぼすこ
とが多いので、有機電解液電池では、あまり使用される
ことがないが、本発明のような使用方法では、プロトン
性溶媒はアルカリ金属塩に強く束縛されるため、負極と
の反応性は低くなる。
Since a protic solvent such as alcohol easily reacts with lithium or the like and has a bad influence on the negative electrode in many cases, it is rarely used in an organic electrolyte battery, but it is used as in the present invention. In the method, since the protic solvent is strongly bound to the alkali metal salt, the reactivity with the negative electrode becomes low.

【0036】正極には、たとえば二酸化マンガン、五酸
化バナジウム、クロム酸化物、リチウムコバルト酸化
物、リチウムニッケル酸化物などの金属酸化物または二
硫化モリブデンなどの金属硫化物、またはそれらの正極
活物質に導電助剤やポリテトラフルオロエチレンなどの
結着剤などを適宜添加した合剤を、アルミ箔、ステンレ
ス鋼製網などの集電材料を芯材として成形体に仕上げた
ものが用いられる。
For the positive electrode, for example, a metal oxide such as manganese dioxide, vanadium pentoxide, chromium oxide, lithium cobalt oxide, lithium nickel oxide or a metal sulfide such as molybdenum disulfide, or a positive electrode active material thereof is used. A mixture obtained by appropriately adding a conductive auxiliary agent, a binder such as polytetrafluoroethylene, or the like is finished into a molded body using a current collecting material such as aluminum foil or stainless steel net as a core material.

【0037】正極活物質として金属酸化物を用いた場合
は高電圧が得られるが、そのように高電圧になった場
合、従来のLiBF4 やLiB(C6 5 4 ではさら
に貯蔵性が悪くなるが、本発明で用いる電解質はそのよ
うな高電圧下でも貯蔵性を低下させることがないので、
その意義が大きい。
When a metal oxide is used as the positive electrode active material, a high voltage can be obtained. However, at such a high voltage, conventional LiBF 4 and LiB (C 6 H 5 ) 4 are more storable. Although worse, since the electrolyte used in the present invention does not deteriorate the storage property even under such a high voltage,
Its significance is great.

【0038】正極集電体にAlを用いた場合を例にと
り、Alの電解液中への溶出抑制効果を説明すると、本
発明で用いる電解質(フッ素原子を含む立体障害バリア
ー構造を有する金属塩)は、従来使用のCF3 SO3
iを用いた場合に比べて3.1V付近から差が現れはじ
める。
Taking the case of using Al for the positive electrode current collector as an example, the effect of suppressing the elution of Al into the electrolytic solution will be described. The electrolyte used in the present invention (a metal salt having a steric hindrance barrier structure containing a fluorine atom). Is the conventional CF 3 SO 3 L
A difference begins to appear from around 3.1 V as compared with the case where i is used.

【0039】そして、それ以上の電位では、CF3 SO
3 Li系では完全に酸化電流が立ち上がっている(つま
り、Alに酸化電流が流れてAl自体が酸化され、電解
液中へ溶出する)のに対し、たとえばC4 9 SO3
iを用いた場合には、ほとんど酸化電流が流れず顕著な
差となって現れ、酸化電流が立ち上がるのは約4.6V
である。さらに、LiTFPBを用いた場合は約10V
になっても電流が急激に立ち上がる領域が見られず大変
安定な金属塩であった。
At a potential higher than that, CF 3 SO
In the 3 Li system, the oxidation current is completely raised (that is, the oxidation current flows in Al and Al itself is oxidized and eluted into the electrolytic solution), whereas, for example, C 4 F 9 SO 3 L
When i is used, almost no oxidation current flows and a remarkable difference appears, and the oxidation current rises at about 4.6 V.
Is. Furthermore, about 10 V when using LiTFFP
Even when it became, it was a very stable metal salt without showing a region where the current suddenly rises.

【0040】また、本発明の電解質を用いる際、正極集
電体にAlまたはその合金を使用すると、安全性上も好
ましい組合せになる。
Further, when using the electrolyte of the present invention, the use of Al or its alloy for the positive electrode current collector is a preferable combination in terms of safety.

【0041】すなわち、電池異常放電時に正極の電位が
Li基準で350mV以下になった場合、正極集電体が
合金化してボロボロになり、正極の集電がとれなくなっ
て、電流が遮断され、電池の異常発熱を防止できるから
である。
That is, when the potential of the positive electrode becomes 350 mV or less on the basis of Li at the time of abnormal discharge of the battery, the positive electrode current collector is alloyed and becomes smashed, the current collection of the positive electrode cannot be obtained, and the current is cut off. This is because abnormal heat generation can be prevented.

【0042】このためには、構造上の設計を適正にし、
次に示す事項に留意すればよい。
To this end, the structural design must be proper,
You should pay attention to the following matters.

【0043】まず、電流を遮断する場所の設定である
が、この電流を遮断するのに最も適しているのは、集電
体のタブ部分(板状の正極の一辺に接続されて、金属で
できた正極集電部材で正極と正極端子部とを連結するリ
ード部)であり、この部分が合金化すると、この部分だ
けがボロボロになって脱落するだけで電流が遮断され
る。
First, the setting of the place where the current is cut off is performed. The most suitable for cutting off this current is the tab portion of the current collector (which is connected to one side of the plate-shaped positive electrode and is made of metal). It is a lead portion which connects the positive electrode and the positive electrode terminal portion with the formed positive electrode current collecting member. When this portion is alloyed, only this portion is broken and drops off to interrupt the current.

【0044】第2に、電流を遮断すべき場所が電解液で
濡れていることである。すなわち、アルミニウムの合金
化は電解液のあるところでしか起こらないからである。
したがって、電流を遮断する場所まで電解液を満たす
か、電解液浸透性のもので覆い、電解液で濡れている状
態に保つことが望ましい。
Secondly, the place where the current should be cut off is wet with the electrolytic solution. That is, aluminum alloying occurs only in the presence of the electrolytic solution.
Therefore, it is desirable to fill the electrolytic solution up to the place where the electric current is cut off, or to cover the area with the electrolytic solution permeable material and keep it wet with the electrolytic solution.

【0045】第3に、電流を遮断すべき部分に引張応力
がかかっていることである。もし、圧縮応力がかかって
いるとすると、ある程度のAl合金が脱落しても再度く
っついてしまうからである。
Thirdly, tensile stress is applied to the portion where the current should be cut off. This is because, if a compressive stress is applied, even if a certain amount of Al alloy falls off, it will stick again.

【0046】但し、引張応力の方向は問わない。一部で
もボロボロになってはずれると、それぞれ横方向に離れ
るため、確実に電流を遮断できるためである。
However, the direction of the tensile stress does not matter. This is because even if some of them are broken apart and separated, they separate from each other in the lateral direction, so that the current can be reliably cut off.

【0047】また、望ましい条件として、電流遮断部分
が他の部分より細くなっていることが挙げられる。これ
は、所望の部分以外でリード体が切断されると、その部
分に縮み応力がかかっていたりする場合に充分な効果が
得られないことが起こるからである。
A desirable condition is that the current interruption portion is thinner than the other portions. This is because if the lead body is cut at a portion other than the desired portion, a sufficient effect may not be obtained when the portion is subjected to shrinkage stress.

【0048】ここで、この様な引張応力はアルミ等の集
電材の4.2V以上での安定性を損なう場合があるもの
の本発明の有機金属塩を用いた場合はその影響が軽微に
押さえられるのである。例えば、冷間圧延により形成さ
れた、歪の大きいアルミと高温から焼きなました歪の小
さいアルミとでは、歪の小さいアルミのほうがより安定
であった。LiCF3SO3等を電解質として用いた場合
は、歪の大きいアルミを用いた場合、高電圧でアルミが
容易に溶出してしまうが、本発明の金属塩の場合は歪の
大きいアルミでも安定性は優れていた。従って、本発明
の金属塩を用いた場合はアルミ等の集電材に引張応力に
より歪が生じてもその影響は小さい。
Here, although such a tensile stress may impair the stability of the current collector such as aluminum at 4.2 V or more, when the organometallic salt of the present invention is used, the influence thereof is slightly suppressed. Of. For example, between aluminum having a large strain formed by cold rolling and aluminum having a small strain annealed from a high temperature, the aluminum having a small strain was more stable. When LiCF 3 SO 3 or the like is used as the electrolyte, when aluminum with large strain is used, aluminum easily elutes at high voltage. However, in the case of the metal salt of the present invention, stability even with aluminum with large strain Was excellent. Therefore, when the metal salt of the present invention is used, even if the current collector such as aluminum is distorted due to tensile stress, its influence is small.

【0049】ところで、圧延により、歪の大きくなった
アルミにも長所がある。圧延によってアルミの粒界が小
さくなり、電池異常放電時におけるアルミとリチウムの
合金化がより均一に進行し確実な電流遮断に寄与する、
かつ30ミクロン以下の薄い集電体でも引っ張り強さが
10〜12kg/mm2以上となり充分な強度が得られ
るのである。
By the way, there is an advantage in aluminum whose strain is increased by rolling. By rolling, the grain boundaries of aluminum become smaller, and the alloying of aluminum and lithium proceeds more uniformly during abnormal battery discharge, contributing to reliable current interruption.
Moreover, even with a thin current collector having a thickness of 30 microns or less, the tensile strength is 10 to 12 kg / mm 2 or more, and sufficient strength can be obtained.

【0049】また、正極活物質の表面積が小さくなると
貯蔵性はさらに向上する。本発明の電池に用いる正極活
物質は、表面積が50m2 /g以下であることが好まし
く、望ましくは30m2 /g以下、さらに望ましくは2
0m2 /g以下である。
Further, if the surface area of the positive electrode active material is reduced, the storability is further improved. The positive electrode active material used in the battery of the present invention preferably has a surface area of 50 m 2 / g or less, preferably 30 m 2 / g or less, and more preferably 2 m 2 / g or less.
It is 0 m 2 / g or less.

【0050】さらに、正極活物質の金属酸化物の活性表
面をアルカリ金属またはアルカリ土類金属化合物で処理
して、アルカリ金属またはアルカリ土類金属を含有させ
ると、さらに貯蔵性が向上するので好ましい。また、電
池作製後予備放電を行なうことによっても貯蔵性を多少
向上させることができる。
Further, it is preferable that the active surface of the metal oxide of the positive electrode active material is treated with an alkali metal or alkaline earth metal compound to contain an alkali metal or an alkaline earth metal, because the storability is further improved. In addition, the storability can be improved to some extent by performing preliminary discharge after the battery is manufactured.

【0051】[0051]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例に限定さ
れるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to those examples.

【0052】実施例1 (CF3 SO2 3 C・Li、C4 9 SO3 Li、L
iTFPBを非ハロゲン溶媒であるエチルエ−テルに溶
解し、真空乾燥を行ない、エチルエ−テルのリチウム塩
に対する重量比を約0.04にしたのち、プロピレンカ
ーボネートを加えて混合し、0.1mol/lLiTF
PB+0.1mol/l(CF3 SO23 C・Li+
0.1mol/lC4 9 SO3 Li/PCで組成が示
される電解液を調製した。
Example 1 (CF 3 SO 2 ) 3 C.Li, C 4 F 9 SO 3 Li, L
iTFPB was dissolved in a non-halogen solvent, ethyl ether, and vacuum-dried to adjust the weight ratio of ethyl ether to a lithium salt to about 0.04. Then, propylene carbonate was added to and mixed with 0.1 mol / l LiTF.
PB + 0.1 mol / l (CF 3 SO 2 ) 3 C · Li +
An electrolytic solution having a composition of 0.1 mol / l C 4 F 9 SO 3 Li / PC was prepared.

【0053】上記電解液におけるLiTFPBは前述し
たようにリチウムテトラキス〔3,5−ビス(トリフル
オロメチル)フェニル〕ボレートの略称であり、PCは
プロピレンカーボネートの略称である。したがって、上
記電解液を示す0.1mol/l LiTFPB+0.
1mol/l (CF3 SO2 3 C・Li+0.1m
ol/l C4 9 SO3 Li/PCは、電解液がプロ
ピレンカーボネート溶媒にリチウムテトラキス〔3,5
−ビス(トリフルオロメチル)フェニル〕ボレートと
(CF3 SO2 3 C・LiとC4 9 SO3 Liを
0.1mol/lづつ溶解させたものであることを示し
ている。ここで、プロピレンカーボネートの25℃にお
ける粘度は2.5cpである。
LiTFPB in the electrolytic solution is an abbreviation for lithium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate as described above, and PC is an abbreviation for propylene carbonate. Therefore, 0.1 mol / l LiTFPB + 0.
1 mol / l (CF 3 SO 2 ) 3 C · Li + 0.1 m
In ol / l C 4 F 9 SO 3 Li / PC, the electrolyte solution is lithium tetrakis [3,5] in propylene carbonate solvent.
- shows that bis and (trifluoromethyl) phenyl] borate (CF 3 SO 2) 3 C · Li and C 4 F 9 SO 3 Li is obtained by dissolving 0.1 mol / l each time. Here, the viscosity of propylene carbonate at 25 ° C. is 2.5 cp.

【0054】また、電解二酸化マンガンを熱処理後、水
酸化リチウム水溶液で熱処理して表面積18m2 /gの
活物質とした後、この二酸化マンガン100重量部とカ
ーボンブラック5重量部とポリテトラフルオロエチレン
を分散させた水−溶媒混合溶液5重量部(固形分換算重
量)を混合した後、これを20ミクロン厚のアルミ箔を
芯材として両面に塗布し乾燥後、厚さ0.4mm、幅3
0mmのシート状に成形し、リ−ド部(厚み30ミクロ
ンで圧延により歪が大きくかつ引張り張力17kg/m
2となったもの。その形状は図2に示す。)を取り付
けた帯状正極を、250℃で乾燥し、乾燥後、乾燥雰囲
気中で室温まで冷却した。
Further, after electrolytically manganese dioxide was heat-treated and then heat-treated with an aqueous solution of lithium hydroxide to obtain an active material having a surface area of 18 m 2 / g, 100 parts by weight of this manganese dioxide, 5 parts by weight of carbon black and polytetrafluoroethylene were added. After mixing 5 parts by weight of the dispersed water-solvent mixed solution (weight in terms of solid content), this was applied to both surfaces using a 20-micron-thick aluminum foil as a core material and dried, and then 0.4 mm in thickness and 3 in width.
Molded into a sheet of 0 mm, the lead portion (thickness of 30 μm has large strain due to rolling and tensile tension of 17 kg / m
What became m 2 . Its shape is shown in FIG. ) Was attached to the strip-shaped positive electrode to dry it at 250 ° C., and after drying, it was cooled to room temperature in a dry atmosphere.

【0054】つぎに、上記帯状正極を厚さ25μmの微
孔性ポリプロピレンフィルムからなるセパレータではさ
みこみ、これに厚さ0.18mm、幅30mmのシート
状リチウムをステンレス鋼製網に圧着した帯状負極を重
ね、渦巻状に巻回して渦巻状電極体とした後、外径15
mmの有底円筒状の電池ケース内に充填し、正極および
負極のリード体のスポット溶接を行なった後、前記の電
解液を電池ケース内に注入した。
Next, the above strip-shaped positive electrode was sandwiched with a separator made of a microporous polypropylene film having a thickness of 25 μm, and a strip-shaped negative electrode obtained by crimping a sheet-shaped lithium sheet having a thickness of 0.18 mm and a width of 30 mm to a stainless steel net was prepared. After stacking and spirally winding a spiral electrode body, the outer diameter 15
After filling in a cylindrical battery case having a bottom of 1 mm and spot welding of the positive electrode and negative electrode lead bodies, the above-mentioned electrolytic solution was injected into the battery case.

【0055】つぎに、常法にしたがって、電池ケースの
開口部を封口し、図1に示す構造の筒形の有機電解液電
池を作製した。
Then, the opening of the battery case was sealed according to a conventional method to produce a cylindrical organic electrolyte battery having the structure shown in FIG.

【0056】ただし、上記の正極集電体には、後に詳述
するように電解液への浸漬部分に特定の態様で引張方向
への応力をかけている。
However, in the positive electrode current collector described above, stress in the tensile direction is applied in a specific manner to the portion immersed in the electrolytic solution, as will be described later.

【0057】図1に示す電池について説明すると、1は
前記の正極で、2は負極である。ただし、図1では、繁
雑化を避けるため、正極1や負極2の作製にあたって使
用された集電体などは図示していない。そして、3はセ
パレータで、4は電解液である。
Explaining the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the current collector and the like used in manufacturing the positive electrode 1 and the negative electrode 2 are not shown. And 3 is a separator and 4 is an electrolytic solution.

【0058】5はステンレス鋼製の電池ケースであり、
この電池ケース5は負極端子を兼ねている。電池ケース
5の底部にはポリテトラフルオロエチレンシートからな
る絶縁体6が配置され、電池ケース5の内周部にもポリ
テトラフルオロエチレンシートからなる絶縁体7が配置
されていて、前記正極1、負極2およびセパレータ3か
らなる渦巻状電極体や、電解液4などは、この電池ケー
ス5内に収容されている。
5 is a stainless steel battery case,
The battery case 5 also serves as a negative electrode terminal. An insulator 6 made of a polytetrafluoroethylene sheet is arranged at the bottom of the battery case 5, and an insulator 7 made of a polytetrafluoroethylene sheet is also arranged at the inner peripheral part of the battery case 5. The spiral electrode body including the negative electrode 2 and the separator 3, the electrolytic solution 4, and the like are contained in the battery case 5.

【0059】8はステンレス鋼製の封口板であり、この
封口板8の中央部にはガス通気孔8aが設けられてい
る。9はポリプロピレン製の環状パッキング、10はチ
タン製の可撓性薄板で、11は環状のポリプロピレン製
の熱変形部材である。
Reference numeral 8 is a stainless steel sealing plate, and a gas vent hole 8a is provided at the center of the sealing plate 8. Reference numeral 9 is a polypropylene-made annular packing, 10 is a flexible thin plate made of titanium, and 11 is an annular heat-deformable member made of polypropylene.

【0060】上記の熱変形部材11は温度によって変形
することにより、可撓性薄板10の破壊圧力を変える作
用をする。
The above-mentioned thermal deformation member 11 acts to change the breaking pressure of the flexible thin plate 10 by being deformed by the temperature.

【0061】12はニッケルメッキを施した圧延鋼製の
端子板であり、この端子板12には切刃12aとガス排
出孔12bとが設けられていて、電池内部にガスが発生
して電池の内部圧力が上昇し、その内圧上昇によって可
撓性薄板10が変形したときに、上記切刃12aによっ
て可撓性薄板10を破壊し、電池内部のガスを上記ガス
排出孔12bから電池外部に排出して、電池の破壊が防
止できるように設計されている。
Reference numeral 12 denotes a nickel-plated terminal plate made of rolled steel. The terminal plate 12 is provided with a cutting edge 12a and a gas discharge hole 12b. When the internal pressure rises and the flexible thin plate 10 is deformed due to the increase in the internal pressure, the cutting blade 12a breaks the flexible thin plate 10 to discharge the gas inside the battery from the gas discharge hole 12b to the outside of the battery. Then, it is designed to prevent the destruction of the battery.

【0062】13は絶縁パッキングで、14はリード体
(集電体の一部)であり、このリード体14は正極1と
封口板8とを電気的に接続しており、端子板12は封口
板8との接触により正極端子として作用する。また、1
5は負極2と電池ケース5とを電気的に接続するリード
体である。
Reference numeral 13 is an insulating packing, 14 is a lead body (a part of the current collector), the lead body 14 electrically connects the positive electrode 1 and the sealing plate 8, and the terminal plate 12 is a sealing body. The contact with the plate 8 serves as a positive electrode terminal. Also, 1
Reference numeral 5 is a lead body that electrically connects the negative electrode 2 and the battery case 5.

【0063】そして、上記正極集電体14の電解液4へ
の浸漬部分には、次に示すように引張方向への応力が負
荷されている。
A stress in the pulling direction is applied to the portion of the positive electrode current collector 14 immersed in the electrolytic solution 4, as shown below.

【0064】すなわち、封口にあたり端子板12をあら
かじめA方向にずらしておき、この端子板12を横方向
にずらして所定の位置におさめて封口することによっ
て、正極集電体14のC点にはB方向への応力(図では
横方向の応力に見えるが、正極集電体14に対しては引
張方向の応力になる)がかけられている。また、その正
極集電体14のC点は、図2に示すように、他の部分よ
り細くされている。
That is, when the terminal plate 12 is displaced in the A direction in advance for sealing, and the terminal plate 12 is laterally displaced and held at a predetermined position for sealing, the positive electrode current collector 14 has a point C. A stress in the B direction (which looks like a lateral stress in the figure, but a tensile stress on the positive electrode current collector 14) is applied. Further, the point C of the positive electrode current collector 14 is thinner than the other portions, as shown in FIG.

【0065】比較例1 PC溶媒にLiB(C6 5 4 を溶解して、0.3m
ol/l LiB(C6 5 4 /PCで組成が示され
る電解液を調製した。
Comparative Example 1 LiB (C 6 H 5 ) 4 was dissolved in a PC solvent to give 0.3 m.
An electrolytic solution having a composition of ol / l LiB (C 6 H 5 ) 4 / PC was prepared.

【0066】上記電解液におけるPCはプロピレンカー
ボネートの略称である。したがって、上記電解液を示す
0.1mol/l LiB(C6 5 4 /PCは、電
解液がプロピレンカーボネート溶媒にLiB(C
6 5 4 を0.3mol/l溶解させたものであるこ
とを示している。LiB(C6 5 4 のアニオン中心
と他の原子との最大原子中心間距離は約5.6Åであっ
た、しかし、ハロゲン原子は含んでいない。
PC in the above electrolytic solution is an abbreviation for propylene carbonate. Therefore, in the case of 0.1 mol / l LiB (C 6 H 5 ) 4 / PC representing the above-mentioned electrolytic solution, the electrolytic solution is LiB (C
6 H 5 ) 4 is dissolved at 0.3 mol / l. The maximum interatomic center distance between the anion center of LiB (C 6 H 5 ) 4 and another atom was about 5.6Å, but it did not contain a halogen atom.

【0067】比較例2 PC溶媒にCF3 SO3 Liを溶解して、0.3mol
/l CF3 SO3 Li/PCで組成が示される電解液
を調製した。
Comparative Example 2 CF 3 SO 3 Li was dissolved in a PC solvent to give 0.3 mol.
An electrolytic solution having a composition of / l CF 3 SO 3 Li / PC was prepared.

【0068】上記電解液におけるPCはプロピレンカー
ボネートの略称である。したがって、上記電解液を示す
0.1mol/l CF3 SO3 Li/PCは、電解液
がプロピレンカーボネート溶媒にCF3 SO3 Liを
0.3mol/l溶解させたものであることを示してい
る。CF3 SO3 Liはハロゲン原子は含んでいるがア
ニオン中心と他の原子との最大原子中心間距離は約3.
9Åに過ぎない。
PC in the above electrolytic solution is an abbreviation for propylene carbonate. Therefore, 0.1 mol / l CF 3 SO 3 Li / PC indicating the above-mentioned electrolytic solution indicates that the electrolytic solution is obtained by dissolving CF 3 SO 3 Li in a propylene carbonate solvent at 0.3 mol / l. . CF 3 SO 3 Li contains halogen atoms, but the maximum distance between the centers of anions and other atoms is about 3.
It's just 9Å.

【0069】また、上記電解液を用いた実施例1と同様
に図1に示す構造の筒形有機電解液電池を作製した。
A tubular organic electrolyte battery having the structure shown in FIG. 1 was prepared in the same manner as in Example 1 using the above electrolyte solution.

【0070】つぎに、上記実施例1の電池および比較例
1、2の電池を0.3Aで10ミリ秒間放電した時の最
小電圧を測定した。また、両電池を50mA定電流で放
電し、80℃で10日間貯蔵後の容量を測定し、貯蔵前
の容量と比較した。その結果を表1に示す。
Next, the minimum voltage when the battery of Example 1 and the batteries of Comparative Examples 1 and 2 were discharged at 0.3 A for 10 milliseconds was measured. Both batteries were discharged at a constant current of 50 mA, and the capacity after storage at 80 ° C. for 10 days was measured and compared with the capacity before storage. The results are shown in Table 1.

【0071】[0071]

【表1】 [Table 1]

【0072】表1に示すように、実施例1の電池は、
0.3Aで10ミリ秒放電時の電圧が高く、かつ貯蔵に
よる容量劣化も少なく、貯蔵性が優れていた。これに対
して、比較例1および2の電池は貯蔵後にほとんど放電
できず、貯蔵性が悪かった。
As shown in Table 1, the battery of Example 1 was
The voltage at the time of discharge at 0.3 A for 10 milliseconds was high, the capacity deterioration due to storage was small, and the storability was excellent. On the other hand, the batteries of Comparative Examples 1 and 2 could hardly be discharged after storage and had poor storability.

【0073】また、正極集電体リ−ドの一部が細くなく
応力がかかってなかったり、圧縮方向への応力をかけて
作成された電池を、10Aで強制的に過放電し、−3V
に達した後は−3V定電圧で過放電実験を行ったとこ
ろ、電流の遮断が不充分である場合があり、確実性の高
い機能は得られなかった。一方、実施例1の電池は、い
ずれも過放電途中で電流が遮断されて安全な挙動を示し
た。
A part of the positive electrode current collector lead is not thin and is not stressed, or a battery prepared by applying a stress in the compressing direction is forcibly over-discharged at 10 A, and then -3 V is applied.
After that, an overdischarge experiment was performed at a constant voltage of -3 V. As a result, the interruption of the current was sometimes insufficient, and a highly reliable function could not be obtained. On the other hand, the batteries of Example 1 all exhibited safe behavior because the current was cut off during overdischarge.

【0074】[0074]

【発明の効果】以上説明したように、本発明によれば、
電解液および有機電解液電池の貯蔵性を向上させること
ができる。
As described above, according to the present invention,
The storability of the electrolytic solution and the organic electrolytic solution battery can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る有機電解液電池の一例を模式的に
示す断面図である。
FIG. 1 is a sectional view schematically showing an example of an organic electrolyte battery according to the present invention.

【図2】図1に示す電池の正極集電体の応力をかけた部
分を拡大して示す図である。
FIG. 2 is an enlarged view showing a stressed portion of a positive electrode current collector of the battery shown in FIG.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解液 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 園田 高明 福岡県福岡市博多区光町2−1−23 (72)発明者 小林 宏 福岡県福岡市博多区光町2−1−23 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takaaki Sonoda 2-1-23 Hikarimachi, Hakata-ku, Fukuoka-shi, Fukuoka (72) Inventor Hiroshi Kobayashi 2-1-23 Hikari-cho, Hakata-ku, Fukuoka-shi, Fukuoka

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの電子求引性基が、中間
骨格を介して、周期律表IIIb〜VIb族から選択さ
れる何れか一種の元素でなるアニオンの電荷中心原子と
結合してなり、このアニオンにおいて電荷中心原子と他
の原子の中心間の最大距離が4Å以上である有機アニオ
ンを含む金属塩を有機溶媒に溶解した有機電解液。
1. At least one electron-withdrawing group is bonded via an intermediate skeleton to a charge center atom of an anion consisting of any one element selected from groups IIIb to VIb of the periodic table, In this anion, an organic electrolyte solution is prepared by dissolving a metal salt containing an organic anion in which the maximum distance between the charge center atom and the center of another atom is 4Å or more in an organic solvent.
【請求項2】 請求項1のアニオンにおいて、電荷中心
原子と他の原子の中心間の最大距離が5Å以上である有
機アニオンを含む金属塩を有機溶媒に溶解した有機電解
液。
2. The organic electrolyte solution of the anion according to claim 1, wherein a metal salt containing an organic anion having a maximum distance between the charge center atom and the centers of other atoms is 5Å or more is dissolved in an organic solvent.
【請求項3】 有機アニオンを含む金属塩が(CF3
2 2 N・ME、(CF3 SO2 3 C・ME、〔C
6 4 (F)〕4 B・ME、〔C6 4 (Cl)〕4
・ME(ここでMEはLi、Na、Kなどの金属であ
る)またはCn2n+1SO3 Li(ここでnは2以上の
整数)またはLiB〔C6 4 (CF3)〕4 、LiB
〔C6 3 (CF3 2 4 (リチウムテトラキス
〔3,5−ビス(トリフルオロメチル)フェニル〕ボレ
ート)(以下、LiTFPBで示す)、LiB(C6
3 2 4 〔ここで、Aは−C(CF3 2 OCH3
のいづれかである請求項1記載の有機電解液。
3. A metal salt containing an organic anion is (CF 3 S
O 2) 2 N · ME, (CF 3 SO 2) 3 C · ME, [C
6 H 4 (F)] 4 B · ME, [C 6 H 4 (Cl)] 4 B
ME (where ME is a metal such as Li, Na, K) or C n F 2n + 1 SO 3 Li (where n is an integer of 2 or more) or LiB [C 6 H 4 (CF 3 )] 4 , LiB
[C 6 H 3 (CF 3 ) 2 ] 4 (lithium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate) (hereinafter referred to as LiTFPB), LiB (C 6 H
3 A 2 ] 4 [where A is -C (CF 3 ) 2 OCH 3 ].
The organic electrolytic solution according to claim 1, which is one of the following:
【請求項4】 請求項1において、上記電解質としてハ
ロゲン化アルキル基を4つ以上含む金属塩またはハロゲ
ン原子を含む有機ホウ素系金属塩を用いたことを特徴と
する有機電解液。
4. The organic electrolyte solution according to claim 1, wherein a metal salt containing four or more halogenated alkyl groups or an organic boron metal salt containing a halogen atom is used as the electrolyte.
【請求項5】 電解質がハロゲン化アルキル基を5つ以
上含む金属塩であることを特徴とする請求項4記載の有
機電解液。
5. The organic electrolytic solution according to claim 4, wherein the electrolyte is a metal salt containing five or more halogenated alkyl groups.
【請求項6】 電解質がベンゼン環を4つ有し少なくと
も1個のベンゼン環に2個以上のフルオロアルキル基を
有する金属塩であることを特徴とする請求項5記載の有
機電解液。
6. The organic electrolytic solution according to claim 5, wherein the electrolyte is a metal salt having four benzene rings and at least two fluoroalkyl groups in at least one benzene ring.
【請求項7】 電解質がハロゲン原子を含む有機ホウ素
系リチウム塩であり、有機溶媒がエステル類、カーボネ
ート類の少なくとも1種を含むことを特徴とする請求項
1記載の有機電解液。
7. The organic electrolytic solution according to claim 1, wherein the electrolyte is an organic boron-based lithium salt containing a halogen atom, and the organic solvent contains at least one of esters and carbonates.
【請求項8】 少なくとも一つの電子求引性基が、中間
骨格を介して、周期律表IIIb〜VIb族から選択さ
れる何れか一種の元素でなるアニオンの電荷中心原子と
結合してなり、このアニオンにおいて電荷中心原子と他
の原子の中心間の最大距離が4Å以上である有機アニオ
ンを含む金属塩を有機溶媒に溶解した有機電解液を用い
た電池。
8. At least one electron-withdrawing group is bonded via an intermediate skeleton to a charge center atom of an anion consisting of any one element selected from groups IIIb to VIb of the periodic table, In this anion, a battery using an organic electrolyte solution in which a metal salt containing an organic anion having a maximum distance between the charge center atom and the centers of other atoms is 4Å or more is dissolved in an organic solvent.
【請求項9】 正極集電体として、アルミニウムまたは
チタンを含有する金属を用いる電池において、請求項1
記載の電解液を用いることを特徴とする電池。
9. A battery using a metal containing aluminum or titanium as the positive electrode current collector.
A battery using the described electrolytic solution.
【請求項10】 板状の正極の一辺に接続されて、電解
液と接触し得る状態にあるアルミニウムまたはチタンを
含有する金属でできた正極集電部材が、引張応力を受け
る状態で配置されている電池において、請求項1記載の
電解液を用いることを特徴とする電池。
10. A positive electrode current collecting member made of a metal containing aluminum or titanium, which is connected to one side of a plate-shaped positive electrode and is in a state capable of contacting an electrolytic solution, is arranged in a state of being subjected to tensile stress. A battery comprising the electrolytic solution according to claim 1 in the battery.
JP22523693A 1992-08-27 1993-08-18 Organic electrolyte battery Expired - Lifetime JP3537165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22523693A JP3537165B2 (en) 1992-08-27 1993-08-18 Organic electrolyte battery

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP25417292 1992-08-27
JP27549492 1992-09-17
JP4-275494 1992-09-17
JP4-275495 1992-09-17
JP27549592 1992-09-17
JP4-254172 1992-09-17
JP22523693A JP3537165B2 (en) 1992-08-27 1993-08-18 Organic electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003304074A Division JP3518687B2 (en) 1992-08-27 2003-08-28 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06215775A true JPH06215775A (en) 1994-08-05
JP3537165B2 JP3537165B2 (en) 2004-06-14

Family

ID=27477167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22523693A Expired - Lifetime JP3537165B2 (en) 1992-08-27 1993-08-18 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3537165B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312828A (en) * 1997-03-07 1998-11-24 Hydro Quebec Polymer electrolyte lithium battery containing potassium salt
JP2000188128A (en) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2001143750A (en) * 1999-11-15 2001-05-25 Central Glass Co Ltd Electorlyte for electrochemical device
US6248474B1 (en) * 1997-11-04 2001-06-19 Nec Corporation Composite electrode for secondary battery and production method thereof
JP2002100403A (en) * 2000-09-26 2002-04-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte and nonaqueous electrochemical device containing the same
US6824928B2 (en) 2000-09-21 2004-11-30 Hitachi, Ltd. Organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds
JP2008066004A (en) * 2006-09-05 2008-03-21 Sony Corp Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
JP2016521914A (en) * 2013-06-21 2016-07-25 ハイドロ−ケベック Anode for high energy battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312828A (en) * 1997-03-07 1998-11-24 Hydro Quebec Polymer electrolyte lithium battery containing potassium salt
US6248474B1 (en) * 1997-11-04 2001-06-19 Nec Corporation Composite electrode for secondary battery and production method thereof
JP2000188128A (en) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2001143750A (en) * 1999-11-15 2001-05-25 Central Glass Co Ltd Electorlyte for electrochemical device
US6824928B2 (en) 2000-09-21 2004-11-30 Hitachi, Ltd. Organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds
US7022878B2 (en) 2000-09-21 2006-04-04 Hitachi, Ltd. Organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds
JP2002100403A (en) * 2000-09-26 2002-04-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte and nonaqueous electrochemical device containing the same
JP2008066004A (en) * 2006-09-05 2008-03-21 Sony Corp Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
JP2016521914A (en) * 2013-06-21 2016-07-25 ハイドロ−ケベック Anode for high energy battery
US10381642B2 (en) 2013-06-21 2019-08-13 HYDRO-QUéBEC Anode for high-energy batteries

Also Published As

Publication number Publication date
JP3537165B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
US5753389A (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US5534370A (en) Organic electrolytic solution cell
EP1022797B1 (en) Polymer electrolyte battery and polymer electrolyte
EP0589229B1 (en) Organic electrolytic solution and organic electrolytic solution cell
JP4679064B2 (en) Non-aqueous electrolyte secondary battery
JPH038270A (en) Nonaqueous electrolyte secondary battery
JPH06215775A (en) Organic electrolytic liquid and organic electrolytic battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JP6963679B2 (en) Electrolytes for lithium metal batteries and lithium metal batteries containing them
JP4907996B2 (en) Non-aqueous electrolyte secondary battery
JPH09213348A (en) Non-aqueous electrolyte battery
JP3396990B2 (en) Organic electrolyte secondary battery
US20010053474A1 (en) Non-aqueous electrolyte secondary battery and method for producing the same
JP3439083B2 (en) Non-aqueous electrolyte battery
JP3518687B2 (en) Organic electrolyte battery
JPH0765843A (en) Organic electrolyte battery
JP3431641B2 (en) Organic electrolyte and organic electrolyte battery using the same
JP4233206B2 (en) Non-aqueous electrolyte battery
JP2000285928A (en) Nonaqueous electrolyte battery
JP3169248B2 (en) Organic electrolyte battery
JP2994705B2 (en) Non-aqueous electrolyte battery
JP3722824B2 (en) Stacked organic electrolyte battery
JP3722823B2 (en) Stacked organic electrolyte battery
JP3236122B2 (en) Organic electrolyte battery
JP3236121B2 (en) Electrochemical equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

EXPY Cancellation because of completion of term