JP2004220898A - Positive active material for lithium secondary battery, its manufacturing method, and lithium secondary battery - Google Patents

Positive active material for lithium secondary battery, its manufacturing method, and lithium secondary battery Download PDF

Info

Publication number
JP2004220898A
JP2004220898A JP2003006197A JP2003006197A JP2004220898A JP 2004220898 A JP2004220898 A JP 2004220898A JP 2003006197 A JP2003006197 A JP 2003006197A JP 2003006197 A JP2003006197 A JP 2003006197A JP 2004220898 A JP2004220898 A JP 2004220898A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
active material
positive electrode
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003006197A
Other languages
Japanese (ja)
Other versions
JP4296342B2 (en
Inventor
Hideyuki Nakano
秀之 中野
Naruaki Okuda
匠昭 奥田
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003006197A priority Critical patent/JP4296342B2/en
Publication of JP2004220898A publication Critical patent/JP2004220898A/en
Application granted granted Critical
Publication of JP4296342B2 publication Critical patent/JP4296342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive active material for a lithium secondary battery with high discharge capacity, high charge-discharge cycle characteristics, to provide its manufacturing method, and to provide the lithium secondary battery containing the positive active material. <P>SOLUTION: The positive active material for the lithium secondary battery contains a lithium-manganese composite oxide represented by composition formula Li<SB>1-x</SB>MnO<SB>2+y</SB>(0≤x<1, 0<y<1), and having O2 type layer structure. The manufacturing method of the positive active material for the lithium secondary battery has an ion exchange process in which a sodium-manganese composite oxide having P2 type layer structure is ion-exchanged in a solution containing lithium chloride. The lithium secondary battery contains the positive active material for the lithium secondary battery in a positive electrode. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は,リチウム二次電池用正極活物質及びその製造方法,並びにリチウム二次電池に関する。
【0002】
【従来技術】
従来より,層状構造のLiMnOは,その理論放電容量が286Ah/gでありスピネル構造のLiMnと比較して大きいため,リチウム二次電池の有効な正極活物質となりうると考えられていた。
上記層状構造のLiMnOとしては,斜方晶系のジグザグ層状構造(Pmmn)や,LiCoO及びLiNiOと同じ結晶構造である層状岩塩構造のものが知られている。
【0003】
これらうち,上記ジグザグ層状構造のLiMnOは,例えばLiOHとMnをLi/Mn1/1.05の原子比で混合したものを真空中で600〜800℃で12時間焼成して得ることができる(特許文献1参照)。ところが,このジグザグ層状構造のLiMnOは,容量200mAh/gでの充放電サイクル維持率が30サイクル程度と短いため,リチウム二次電池の正極活物質としては,その実用化が困難であった。
【0004】
一方,上記層状岩塩構造のLiMnOは,上記のように良好なリチウム二次電池用正極活物質となり得ると考えられていたが,その合成が困難であるという問題があった。近年になってようやく,例えば下記の3つの方法により,上記層状岩塩構造のうち,特にO3型層状構造のLiMnOの合成が可能になった。
【0005】
第一の方法としては,マンガン源としてMnO,Mn,MnOOH,MnCO等の無機塩或いは,酢酸マンガン,酪酸マンガン,蓚酸マンガン,クエン酸マンガン等の有機酸塩を,リチウム源としてLiOH,LiNO,LiCO等を用い,水あるいはアルコール等の有機溶媒を用いて,100〜300℃の飽和蒸気圧下で合成する方法がある(特許文献2参照)。
【0006】
また,第二の方法としては,KMnOを出発原料とし,イオン交換反応を経て,LiMnOを調整し,これを硝酸酸性雰囲気下で160℃,3.5日水熱処理を行い,次いで脱水する方法がある(非特許文献1参照)。
また,第三の方法としては,MnOとNaOHとをアルゴン雰囲気中で700℃で反応させて得られたNaMnOを,非水溶媒中でLiClにてイオン交換して合成する方法がある(非特許文献2参照)。
【0007】
【特許文献1】
特開平8−37027号公報
【特許文献2】
特開平10−3921号公報
【非特許文献1】
“Journal of The Electrochemical Society”,米国,1997,144,p.L64−L67
【非特許文献2】
“Nature”,英国,1996,381,p.499−500
【0008】
【解決しようとする課題】
【0009】
しかしながら,上記特許文献2に示す方法によって合成されたLiMnOを正極活物質として用いた二次電池においては,その理論放電容量が286mAh/gであるのに対して,僅か80mAh/gという非常に低い放電容量しか得ることができないという問題があった。
【0010】
また,上記非特許文献1に示す方法は,多段反応であり,各工程での溶液の調整に精度が要求されるという製法上の欠点に加え,合成されたLiMnOを正極活物質として用いた二次電池は,10サイクル後に初期容量の50%以下の放電容量しか得られず,充放電サイクル特性が極めて劣悪であった。
【0011】
また,上記非特許文献2に示す方法においては,前駆体であるNaMnOの合成が必要となると共に,非水系でのイオン交換反応が要求されるため,コスト増加につながる。さらに,合成されたLiMnOを正極活物質として用いた二次電池は,270mAh/gという比較的高い放電容量を示すものの,充放電サイクル特性は劣悪であり,僅か10サイクルで初期容量の50%以下に低減してしまう等の問題があった。
【0012】
本発明は,かかる従来の問題点に鑑みてなされたもので,放電容量が高く,かつ充放電サイクル特性に優れたリチウム二次電池用正極活物質及びその製造方法,並びに該正極活物質を含有するリチウム二次電池を提供しようとするものである。
【0013】
【課題の解決手段】
第1の発明は,組成式Li1−xMnO2+y(0≦x<1,0<y<1)で表され,かつO2型層状構造を有するリチウム−マンガン複合酸化物を含有してなることを特徴とするリチウム二次電池用正極活物質にある(請求項1)。
【0014】
上記第1の発明のリチウム二次電池用正極活物質は,組成式Li1−xMnO2+y(0≦x<1,0<y<1)で表され,かつO2型層状構造を有するリチウム−マンガン複合酸化物を含有してなる。
このO2型層状構造のリチウム−マンガン複合酸化物は,充放電時の結晶構造の変化がほとんどない。そのため,上記リチウム二次電池用正極活物質は,放電容量が高く,充放電サイクル特性に優れたものとなる。
【0015】
以下,上記O2型層状構造につき,図1を用いて説明する。
なお,図1,及び後述する図8においては,結晶内で同一面上にある3つの酸素原子を線で結び,該3つの酸素原子が存在する面を模様を付して表した。即ち,同一の模様が付された面は,同一の面又は互いに平行な面を示すものである。
【0016】
図1は,本発明のリチウム二次電池用正極活物質における,上記リチウム−マンガン複合酸化物の結晶構造を示すものである。
同図より知られるごとく,上記リチウム−マンガン複合酸化物は,その基本結晶構造が六方晶であり,リチウム原子,マンガン原子,及び酸素原子が規則的に配列している。そして,各原子は,それぞれリチウム層,マンガン層,酸素層を形成しており,リチウム層とマンガン層は,酸素によって隔てられている。
【0017】
図1に示すごとく,上記リチウム−マンガン複合酸化物は,その結晶内における酸素のパッキングがABCBAB・・・であり,所謂O2型層状構造を有している。このO2型層状構造は,非常に安定であり,充放電を繰り返しても結晶内の構造変化がほとんどない。したがって,このO2型層状構造のリチウム−マンガン複合酸化物を含有してなる上記リチウム二次電池用正極活物質は,充放電を繰り返し行っても,リチウム−マンガン複合酸化物が有する高い放電容量を長い間維持することができ,充放電サイクル特性に優れたものとなる。
【0018】
一方,図8に示すごとく,上記従来の正極活物質としてのリチウム−マンガン複合酸化物の結晶構造においては,その酸素のパッキングは,ABCABC・・・である。即ち,その重なりはスピネル型と同じであり,結晶構造は所謂O3型層状構造となっている。
【0019】
このO3型層状構造のリチウム−マンガン複合酸化物に充放電を行うと,リチウムがマンガン層へ混入,またはマンガンがリチウム層へ混入してしまう。その結果,上記O3型層状構造のリチウム−マンガン複合酸化物は,より安定なスピネル構造に転移してしまう。そして,この安定なスピネル構造への転移が,放電容量の極端な減少を引き起こすと考えられる。
【0020】
このように,上記第一の発明によれば,放電容量が高く,かつ充放電サイクル特性に優れたリチウム二次電池用正極活物質を提供することができる。
【0021】
第2の発明は,組成式Li1−xMnO2+y(0≦x<1,0<y<1)で表され,かつO2型層状構造を有するリチウム−マンガン複合酸化物を含有してなるリチウム二次電池用正極活物質の製造方法であって,
P2型層状構造を有するナトリウム−マンガン複合酸化物を,塩化リチウムを含む溶液中でイオン交換して,ナトリウムをリチウムに置き換えると共にO3型層状構造に変えるイオン交換工程を有することを特徴とするリチウム二次電池用正極活物質の製造方法にある(請求項6)。
【0022】
上記第2の発明のリチウム二次電池用正極活物質の製造方法は,上記イオン交換工程を有する。そして,このイオン交換工程によって,ナトリウム−マンガン複合酸化物中のナトリウムと塩化リチウム中のリチウムとが交換され,リチウム−マンガン複合酸化物が生成する。さらにこのとき,その結晶構造は,P2型層状構造からO2型層状構造に変化する。
【0023】
このようにして,組成式Li1−xMnO2+y(0≦x<1,0<y<1)で表され,かつO2型層状構造を有するリチウム−マンガン複合酸化物を簡単に合成することができる。そして,このリチウム−マンガン複合酸化物を含有してなるリチウム二次電池用正極活物質は,上記第一の発明と同様のものであり,放電容量が高く,かつ充放電サイクル特性に優れたものとなる。
【0024】
第3の発明は,上記第1の発明のリチウム二次電池用正極活物質を正極に含有してなることを特徴とするリチウム二次電池にある(請求項11)。
【0025】
上記第3の発明のリチウム二次電池は,上記第1の発明(請求項1)のリチウム二次電池用正極活物質を正極に含有してなる。
そのため,上記リチウム二次電池は,上記第1の発明のリチウム二次電池用正極活物質が有する優れた特徴を生かして,放電容量が高く,サイクル特性に優れたものとなる。
【0026】
【発明の実施の形態】
上記第1の発明(請求項1)において,上記リチウム−マンガン複合酸化物は,鱗片状の粒子よりなることが好ましい(請求項2)。
この場合には,上記リチウム二次電池用正極活物質の初期放電容量を大きくすることができる。
【0027】
また,上記鱗片状の粒子は,厚みが0.05〜5μmであり,かつ,厚み方向に対して略垂直な面の最大径が0.2〜5μmであることが好ましい(請求項3)。
【0028】
上記鱗片状の粒子の厚み,及びその厚み方向に対して略垂直な面の最大径は,例えば走査型電子顕微鏡等により,上記鱗片状の粒子を画像化して測定することができる。上記鱗片状の粒子の厚みは,例えば上記鱗片状の粒子における略扁平な面に挟まれる部分の幅をいう。また,上記最大径は,例えば上記鱗片状の粒子を,その厚み方向と略垂直な面で切断したときの断面形状の外縁における2点間の最大距離をいう。
【0029】
上記鱗片状の粒子の厚み及び最大径が上記の範囲を外れる場合には,上記正極活物質を用いてリチウム二次電池の正極を作製することが困難になるおそれがある。
【0030】
また,上記リチウム−マンガン複合酸化物は,表面に複数の突起状部を有する略球状の粒子よりなることが好ましい(請求項4)。
この場合には,上記リチウム二次電池用正極活物質は,その放電電流密度に対する放電容量の変化率が小さく,安定性にすぐれたものなる。
【0031】
また,上記上記突起状部を有する略球状の粒子は,直径が1〜5μmであることが好ましい(請求項5)。
上記突起状部を有する略球状の粒子の直径は,例えば走査型電子顕微鏡等により,上記粒子を画像化して測定することができる。ここで,上記粒子の直径は,上記突起状部を含めた,略球状の粒子全体の直径である。
上記粒子の直径が上記の範囲を外れる場合には,上記正極活物質を用いてリチウム二次電池の正極を作製することが困難になるおそれがある。
【0032】
次に,上記第2の発明(請求項6)においては,上記P2型層状構造を有するナトリウム−マンガン複合酸化物を塩化リチウムを含む溶液中でイオン交換する。
ここで,上記P2構造を有するナトリウム−マンガン複合酸化物の結晶構造の様子を図2に示す。
図2に示すごとく,上記ナトリウム−マンガン複合酸化物においては,その基本結晶構造が六方晶であり,ナトリウム原子,マンガン原子,及び酸素原子が規則的に配列している。そして,結晶内で,各原子は,それぞれナトリウム層,マンガン層,酸素層を形成しており,リチウム層とマンガン層は,酸素によって隔てられている。
【0033】
図2に示すごとく,この結晶構造における酸素のパッキングは,ABBAAB・・・であり,その結晶構造は,所謂P2型層状構造となっている。
なお,図2においては,結晶内で同一面上にある3つの酸素原子を線で結び,該3つの酸素原子が存在する面を模様を付して表した。即ち,同一の模様が付された面は,同一の面又は互いに平行な面を示すものである。
【0034】
また,上記第2の発明においては,上記イオン交換工程の前に,KMnOを含む第一溶液を加熱してO3型層状構造のカリウム−マンガン複合酸化物を生成する第一水熱工程と,
上記第一水熱工程によって得られたカリウム−マンガン複合酸化物と水酸化ナトリウムとを含む第二溶液を加熱し,上記P2型層状構造のナトリウム−マンガン複合酸化物を生成する第二水熱工程とを行うことが好ましい(請求項7)。
【0035】
この場合には,上記第一水熱工程及び第二水熱工程により,上記イオン交換工程に用いる上記P2型層状構造のナトリウムーマンガン複合酸化物を容易に作製することができる。
さらに,この場合には,上記の一連の工程によって得られる上記リチウム−マンガン複合酸化物は,表面に複数の突起状部を有する略球状の粒子よりなる。そして,この場合には,上記のごとく,上記リチウム二次電池用正極活物質は,その放電電流密度に対する放電容量の変化率が小さく,安定性にすぐれたものなる。
また,上記第一溶液及び上記第二溶液に用いる溶媒としては,例えば,水,グリコール類,又はこれらの混合物等がある。
【0036】
また,上記第一水熱工程においては,上記第一溶液にさらにKOHを添加することが好ましい(請求項8)。
この場合には,上記の一連の工程によって得られるリチウム−マンガン複合酸化物の粒子の形状を鱗片状にすることができる。そして,この場合には,上記のごとく,上記リチウム二次電池用正極活物質の初期放電容量を大きくすることができる。
【0037】
また,上記第一水熱工程及び上記第二水熱工程における加熱は,略飽和水蒸気圧下で温度120℃〜250℃にておこなうことが好ましい(請求項9)。
【0038】
温度120℃未満の場合には,反応が充分に進行せず,未反応物が残存するおそれがある。一方,温度250を越える場合には,生成物には差異が認められないが,飽和水蒸気圧が40kg/cmを越え,特別な圧力容器を必要とするため,工業的に不適である。
【0039】
また,上記イオン交換工程は,アルコール類,非水系有機溶媒,又は水溶液中で,反応温度50℃〜150℃にておこなうことが好ましい(請求項10)。
この場合には,反応温度がマイルドであるため,形態を保持したままイオン交換ができるという効果を得ることができる。
反応温度が50℃未満の場合には,イオン交換が充分に進行せず,所望のリチウム−マンガン複合酸化物が得られないおそれがある。一方,150℃を越える場合には,LiMnO等の別のLi化合物へ変化するおそれがある。
【0040】
次に,上記第3の発明(請求項11)において,上記リチウム二次電池は,上記第1の発明のリチウム二次電池用正極活物質を正極に含有してなるリチウム二次電池でる。
上記第1のリチウム二次電池用正極活物質は,上記リチウム−マンガン複合酸化物の組成により種々のものが存在する。第3の発明のリチウム二次電池においては,それら1種類を正極に用いるものであってもよく,また2種以上を混合して用いるものであってもよい。さらに,第1の発明のリチウム二次電池用正極活物質と公知の正極活物質とを混合したものを用いることもできる。
【0041】
上記リチウム二次電池は,例えばリチウムを吸蔵・放出する正極及び負極と,この正極と負極との間に狭装されるセパレータと,正極と負極との間でリチウムを移動させる非水電解液などを主要構成要素として構成することができる。
【0042】
正極は,例えば上記リチウム二次電池用正極活物質に導電時及び結着剤を混合し,適当な溶剤を加えてペースト状の正極合材としたものを,アルミニウム,ステンレスなどの金属箔性の集電体の表面に塗布乾燥し,必要に応じて電極密度を高めるべく圧縮して形成することができる。
導電材は,正極の電気伝導性を確保するためのものであり,例えばカーボンブラック,アセチレンブラック,黒鉛等の炭素物質粉末状体の1種又は2種以上を混合したものを用いることができる。
【0043】
結着剤は,活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり,例えばポリテトラフルオロエチレン,ポリフッ化ビニリデン,フッ素ゴム等の含フッ素樹脂,或いはポリプロピレン,ポリエチレン等の熱可塑性樹脂等を用いることができる。
これら活物質,導電材,結着剤を分散させる溶剤としては,例えばN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0044】
負極は,例えば負極活物質である金属リチウムをシート状にして形成するか,あるいはシート状にしたものをニッケル,ステンレス等の集電体網に圧着して形成することができる。負極活物質としては,金属リチウムの代わりに,リチウム合金又はLiTi12等のリチウム化合物等を用いることができる。
【0045】
また,負極のもう一つの形態としては,例えば負極活物質にリチウムイオンを吸蔵・脱離できる炭素物質を用いて負極を構成させることもできる。使用できる炭素物質としては,例えば天然或いは人造の黒鉛,メソカーボンマイクロビーンズ(MCMB),フェノール樹脂等の有機化合物焼成体,コークス等の粉状体等が挙げられる。
【0046】
この場合には,例えば上記負極活物質に結着剤を混合し,適当な溶媒を加えてペースト状にした負極合材を,銅等の金属箔集電体の表面に塗布,乾燥し,その後にプレスにて形成することができる。炭素物質を負極活物質とした場合には,正極同様,負極結着剤としてはポリフッ化ビニリデン等の含フッ素樹脂等を,溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0047】
正極及び負極に狭装させるセパレータは,正極と負極とを分離し電解液を保持するものであり,例えばポリエチレン,ポリプロピレン等の薄い微多孔膜を用いることができる。
【0048】
非水電解液としては,例えば電解質としてのリチウム塩を有機溶媒に溶解させたものを用いることができる。この場合には,リチウム塩は有機溶媒に溶解することによって解離し,リチウムイオンとなって電解液中に存在する。使用できるリチウム塩としては,例えばLiBF,LiPF,LiClO,LiCFSO,LiAsF,LiN(CFSO,LiN(CSO等が挙げられる。これらのリチウム塩は,それぞれ単独でもよく,又はこれらのうちから2種以上を併用することもできる。
【0049】
リチウム塩を溶解させる有機溶媒としては,非プロトン性の有機溶媒を用いることができる。このような有機溶媒としては,例えば環状カーボネート,鎖状カーボネート,環状エステル,環状エーテル,鎖状エーテル等から選ばれる1種又は2種以上からなる混合溶媒を用いることができる。
【0050】
ここで,上記環状カーボネートとしては,例えばエチレンカーボネート,プロピレンカーボネート,ブチレンカーボネート,ビニレンカーボネート等がある。上記鎖状カーボネートとしては,例えばジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネート等がある。上位環状エステルカーボネートとしては,例えばガンマブチロラクトン,ガンマバレロラクトン等がある。上記環状エーテルとしては,例えばテトラヒドロフラン,2−メチルテトラヒドロフラン等がある。上記鎖状エーテルとしては,例えばジメトキシエタン,エチレングリコールジメチルエーテル等がある。上記有機溶媒としては,これらのもののうちいずれか1種を単独で用いることもできるし,2種以上を混合させて用いることもできる。
【0051】
また,上記セパレータ及び非水電解液という構成の代わりに,ポリエチレンオシド等の高分子量ポリマーとLiClOやLiN(CFSO等のリチウム塩を使用した高分子固体電解質を用いることもできる。また,上記非水電解液をポリアクリロニトリル等の固体高分子マトリクスにトラップさせたゲル電解質を用いることもできる。
【0052】
【実施例】
(実施例1)
次に,本発明の実施例につき,図1〜図5を用いて説明する。
本例では,本発明の実施例としてのリチウム二次電池用正極活物質及び該リチウム二次電池用正極活物質を正極に含有してなるリチウム二次電池を作製する。
【0053】
本例のリチウム二次電池用正極活物質は,組成式Li1−xMnO2+y(0≦x<1,0<y<1)で表され,かつ図1に示すごとくO2型層状構造を有するリチウム−マンガン複合酸化物を含有してなる。
【0054】
また,本例のリチウム二次電池用正極活物質の製造方法は,図2に示すP2型層状構造を有するナトリウム−マンガン複合酸化物を,塩化リチウムを含む溶液中でイオン交換するイオン交換工程を有する。
また,本例では,上記イオン交換工程の前に,KMnOを含む第一溶液を加熱してO3型層状構造のカリウム−マンガン複合酸化物を生成する第一水熱工程と,上記第一水熱工程によって得られたカリウム−マンガン複合酸化物と水酸化ナトリウムとを含む第二溶液を加熱し,上記P2型層状構造のナトリウム−マンガン複合酸化物を生成する第二水熱工程とを行う。
【0055】
以下,本例のリチウム二次電池用正極活物質の製造方法につき詳細に説明する。
まず,KMnO(1.2g)とKOH(28.1g)とを混合し,蒸留水25gを加えてスラリーを作製する。このスラリーをテフロン(登録商標)で内張されたオートクレーブ内で,飽和水蒸気下,温度200℃で1日間反応させた(第一水熱工程)。その後,容器内の沈殿物を濾過,水洗し,K0.4MnO・0.5HOを得た。
【0056】
このK0.4MnO・0.5HO(0.6g)とNaOH(20g)と水(25g)とを再びテフロン(登録商標)で内張されたオートクレーブ内で,飽和水蒸気下,温度200℃で一日間反応させた(第二水熱工程)。その後,容器内の沈殿物を濾過,水洗し,Na0.75MnO2.6(ナトリウム−マンガン複合酸化物)を得た。
【0057】
ここで,このナトリウム−マンガン複合酸化物の結晶構造をX線回折装置により調べた。その結果,その結晶構造はP2型層状構造であった。図2に示すごとく,P2型層状構造においては,Na原子,Mn原子,酸素原子が規則的に配列し,それぞれリチウム層,マンガン層,酸素層を形成している。そして,ナトリウム層とマンガン層は,酸素によって隔てられており,結晶内における,酸素のパッキングは,ABBAAB・・・となっている。
【0058】
次に,このNa0.75MnO2.61gを1MLiClのエタノール溶液に分散させ,80℃で一日間反応させた(イオン交換工程)。その後,容器内の沈殿物を濾過し,エタノールで洗浄し,Li0.6MnO2.2(リチウム−マンガン複合酸化物)よりなるリチウム二次電池用正極活物質を得た。これを試料E1とする。
【0059】
続いて,上記試料E1の形状を走査型電子顕微鏡(SEM)で観察した。その結果を図3に示す。
SEM観察によれば,試料E1のリチウム−マンガン複合酸化物は,鱗片状の粒子よりなり,その厚みは0.05μm程度であり,かつ,厚み方向に対して略垂直な面の最大径は1μm程度であった。
【0060】
次に,試料E1のX線回折パターンを調べた。その結果を図4に示す。
X線回折測定によれば,上記試料E1のX線回折パターンのすべてのピークは,a軸の長さが2.85Å,c軸の長さが9.6Åで,O2型層状構造のLiMnOの単位胞で,指数付けすることができた。
【0061】
次に,上記試料E1のリチウム−マンガン複合酸化物を正極活物質として用いて,コイン型のリチウム二次電池を作製した。
上記リチウム二次電池1は,図5に示すごとく,正極活物質を含有してなる正極2と負極活物質を含有してなる負極3と,正極2及び負極3の間に狭装されたセパレータ4とを,コイン型の電池ケース11内に有している。電池ケース11内の端部には,ガスケット5が配置されており,電池ケースは封口板12により密封されている。
【0062】
次に,上記リチウム二次電池1の製造方法につき説明する。
まず,以下のようにして正極2を準備した。
即ち,まず上記試料E1の正極活物質70重量と,導電材としてのカーボンブラック25重量部と,結着剤としてのテフロン(登録商標)F104(ダイキン工業株式会社製)5重量部とを混合して,正極合材とした。この正極合材を加圧成形して13mmφのペレットを作製し,続いて,このペレットをステンレスメッシュ製の正極集電体に圧着して正極2とした。
【0063】
次に,負極3は,金属リチウムの圧延板を15mmφに打ち抜き,これをステンレスメッシュ製の負極集電体に圧着して作製した。
セパレータ4にはポリプロピレン製の微多孔膜を用い,そしてセパレータ4に含浸させる非水電解液には,エチレンカーボネートとジエチルカーボネートとを体積比1:1にて混合した混合溶媒に,LiPFを溶解させて濃度1Mとした溶液を用いた。
【0064】
次に,図5に示すごとく,正極2と負極3とをセパレータ4により隔てる形で電池ケース11内に配置した。
そして,電池ケース11内の端部にガスケット5を配置し,さらに電池ケース11内に非水系電解液を適量注入して含浸させた。続いて,封口板12を配置し,電池ケース11の端部をかしめ加工することにより,電池ケース11を密封して,リチウム二次電池1(電池E1)を作製した。
【0065】
(実施例2)
次に,本例では,表面に複数の突起状部を有する略球状の粒子よりなるリチウム−マンガン複合酸化物を含有してなるリチウム二次電池用正極活物質を作製し,さらに該リチウム二次電池用正極活物質を正極に用いてリチウム二次電池を作製した。
具体的には,まず,0.3MのKMnO水溶液をテフロン(登録商標)で内張されたオートクレーブ内で,飽和水蒸気下,200℃で1日間反応させた。その後,容器内の沈殿物を濾過,水洗し,K0.33MnO・0.45HOを得た。
【0066】
次に,このK0.33MnO・0.45HO(0.6g)とNaOH(20g)と水25gを再びテフロン(登録商標)で内張されたオートクレーブ内で,飽和水蒸気下,温度200℃で一日間反応させた(第二水熱工程)。その後,容器内の沈殿物を濾過,水洗し,実施例1と同様のP2型層状構造のNa0.75MnO2.6(ナトリウム−マンガン複合酸化物)を得た。
【0067】
次に,このNa0.75MnO2.6(1g)を用いて,実施例1と同様にイオン交換工程を行い,沈殿物を濾過し,洗浄して,実施例1と同様のLi0.6MnO2.2(リチウム−マンガン複合酸化物)よりなるリチウム二次電池用正極活物質(試料E2)を得た。
【0068】
続いて,実施例1と同様に,上記試料E2について,SEM観察及びX線回折測定を行った。SEM観察の結果を図6に示し,またX線回折測定の結果を図
7に示す。
図6より知られるごとく,上記試料E2は,表面に複数の突起状部を有する略球状の粒子よりなっていた。この粒子は,幅0.1μm,長さ0.5μm程度の短冊粒子が集合し,直径2〜3μmの二次粒子を構成してなっていた。
【0069】
また,図7より知られるごとく,上記X線回折測定より得られた上記試料E2のX線回折パターンのすべてのピークは,上記試料E1と同様に,a軸の長さが2.85Å,c軸の長さが9.6Åで,O2型層状構造のLiMnOの単位胞で,指数付けすることができた。
【0070】
次に,上記試料E2を正極に用いてリチウム二次電池を作製した。その作製方法は,実施例1の電池E1と同様である。
以下,本例で得られたリチウム二次電池を電池E2とする。
【0071】
(比較例)
次に,本例では,上記試料E1及び試料E2の優れた特性を明らかにするため,比較例として,図8に示すO3型層状構造のリチウム−マンガン複合酸化物を含有してなるリチウム二次電池用正極活物質を作製し,さらに該リチウム二次電池用正極活物質を正極に用いてリチウム二次電池を作製した。
【0072】
まず,以下のようにしてO3型層状構造のリチウム−マンガン複合酸化物よりなるリチウム二次電池用正極活物質を作製した。作製方法は,“Nature”,英国,1996,381,p.499−500に記載の方法と同様の方法にて行った。
【0073】
即ち,まず,MnO(1g)とNaOH(0.46g)とをアルゴン雰囲気中で,700℃で12時間反応させNaMnOを作製した。
次に,上記で得られたNaMnOを,1MLiClのエタノール溶液中で,80℃で24時間反応させるイオン交換反応を行った。
このようにして,O3型層状構造のリチウム−マンガン複合酸化物(LiMnO)よりなるリチウム二次電池用正極活物質を得た。これを試料C1とする。
【0074】
次に,この試料C1を正極に用いてリチウム二次電池を作製した。その作製方法は,実施例1の電池E1と同様である。
以下,本例で得られたリチウム二次電池を電池C1とする。
【0075】
(実験例)
本例では,上記実施例1,実施例2,及び比較例1にてそれぞれ作製した電池E1,E2及びC1について,充放電サイクル試験を行った。
即ち,上記電池E1,E2,及びC1を用いて,定電流密度0.5mA/cmで電圧4.2Vまで充電し10分間放置後,定電流密度0.5〜4.0mA/cmで電圧2.5Vまで放電を行い10分間放置し,.0再充電を行うことを1サイクルとし,20℃の温度条件下で20サイクルまでの充放電を繰り返し,各サイクル時の放電容量を測定した。
その結果を図9に示す。同図において,横軸はサイクル数(回),縦軸は放電容量(mAh/g)を示すものである。
【0076】
図9より知られるごとく,電池C1においては,サイクル数10回で放電容量が50mAh/g程度まで低下している。
これに対し,電池E1及び電池E2は,10サイクル目では150mAh/gという非常に高い放電容量を維持しており,さらに20サイクル目においても60mAh/g以上という高い放電容量を維持していた。
また,電池E1及び電池E2は,160mAh/gを越える高い初期放電容量を有していた。
このように,電池E1及び電池E2は,放電容量が高く,かつ充放電サイクル特性に優れたものであった。
【0077】
また,上記電池E1と電池E2とを比較すると,鱗片状の粒子よりなる正極活物質を含有してなる電池E1は,電池E2よりも高い放電容量を示した。一方,突状部を有する略球状の粒子よりなる正極活物質を含有してなる電池E2は,電池E1よりも電流密度に対する容量変化率が小さく安定性に優れたものであった。
【0078】
(実施例3)
本例は,実施例1よりも簡単な方法で,上記試料E1と同様のリチウム二次電池用正極活物質を作製する例である。即ち,本例では,上記実施例1において上記第一水熱工程及び上記第二水熱工程という二回の工程によって作製したP2型層状構造のナトリウム−マンガン複合酸化物を一回の工程で作製し,該ナトリウムーマンガン複合酸化物を用いて,O2型層状構造を有するリチウム−マンガン複合酸化物を作製した。
【0079】
具体的には,まず,KMnO(1.2g)とNaOH(28.1g)とを混合し,蒸留水25gを加えてスラリーを作製する。このスラリーをテフロン(登録商標)で内張されたオートクレーブ内で,飽和水蒸気下,温度200℃で1日間反応させた。その後,容器内の沈殿物を濾過,水洗し,Na0.75MnO2.05を得た。
【0080】
次に,このNa0.75MnO2.05(1g)を1MLiClのエタノール溶液に分散させ,80℃で一日間反応させた(イオン交換工程)。その後,容器内の沈殿物を濾過し,エタノールで洗浄し,上記リチウム二次電池用正極活物質としてのLi0.6MnO2.2(リチウム−マンガン複合酸化物)を得た。
【0081】
本例のリチウム−マンガン複合酸化物のX線回折パターンのすべてのピークは,a軸の長さが2.85Å,c軸の長さが9.6ÅでO2型層状構造のLiMnOの単位胞で,指数付けすることができた。
このように本例によれば,簡単な方法で,組成式Li1−xMnO2+y(0≦x<1,0<y<1)で表され,かつO2型層状構造を有するリチウム−マンガン複合酸化物を含有してなるリチウム二次電池用正極活物質を製造することができる。
【図面の簡単な説明】
【図1】実施例1にかかる,O2型層状構造を有するリチウム−マンガン複合酸化物の結晶構造を表す説明図。
【図2】実施例1にかかる,P2型層状構造を有するナトリウム−マンガン複合酸化物の結晶構造を表す説明図。
【図3】実施例1にかかる,上記試料E1の形状を走査型電子顕微鏡(SEM)で観察した結果を示す図。
【図4】実施例1にかかる,上記試料E1のX線回折パターンを示す図。
【図5】実施例1にかかる,リチウム二次電池の断面説明図。
【図6】実施例2にかかる,上記試料E2の形状を走査型電子顕微鏡(SEM)で観察した結果を示す図。
【図7】実施例2にかかる,上記試料E2のX線回折パターンを示す図。
【図8】比較例にかかる,O3型層状構造を有するリチウム−マンガン複合酸化物の結晶構造を表す説明図。
【図9】実験例にかかる,充放電サイクル試験の結果を示す説明図。
【符号の説明】
1...リチウム二次電池,
11...電池ケース,
12...封口板,
2...正極,
3...負極,
4...セパレータ,
5...ガスケット,
[0001]
【Technical field】
The present invention relates to a positive electrode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery.
[0002]
[Prior art]
Conventionally, layered LiMnO 2 Is LiMn having a spinel structure with a theoretical discharge capacity of 286 Ah / g. 2 O 4 Was considered to be an effective positive electrode active material for lithium secondary batteries.
LiMnO having the above layer structure 2 Examples include the orthorhombic zigzag layered structure (Pmmn) and LiCoO 2 And LiNiO 2 A layered rock salt structure having the same crystal structure as that described above is known.
[0003]
Of these, LiMnO having a zigzag layered structure is used. 2 Is, for example, LiOH and Mn 2 O 3 Are mixed at an atomic ratio of Li / Mn1 / 1.05 and fired in a vacuum at 600 to 800 ° C. for 12 hours (see Patent Document 1). However, this zigzag layered LiMnO 2 Since the charge / discharge cycle maintenance rate at a capacity of 200 mAh / g was as short as about 30 cycles, it was difficult to put it into practical use as a positive electrode active material for a lithium secondary battery.
[0004]
On the other hand, LiMnO with the above-mentioned layered rock salt structure 2 Although it has been considered that the above can be a good positive electrode active material for a lithium secondary battery as described above, there is a problem that its synthesis is difficult. Only recently, for example, among the above layered rock salt structures, LiMnO having an O3 type layered structure is obtained by the following three methods. 2 Can be synthesized.
[0005]
The first method uses MnO as a manganese source. 2 , Mn 2 O 3 , MnOOH, MnCO 3 Inorganic salts such as manganese acetate, manganese butyrate, manganese oxalate, manganese citrate, etc .; 3 , Li 2 CO 3 There is a method of synthesizing under a saturated vapor pressure of 100 to 300 ° C. using water or an organic solvent such as alcohol (see Patent Document 2).
[0006]
As a second method, KMnO 4 Is used as a starting material, and through an ion exchange reaction, LiMnO 4 There is a method of performing hydrothermal treatment at 160 ° C. for 3.5 days in a nitric acid acid atmosphere and then dehydrating (see Non-Patent Document 1).
As a third method, MnO 2 And NaOH are reacted at 700 ° C. in an argon atmosphere to obtain NaMnO. 2 Is synthesized by ion exchange with LiCl in a non-aqueous solvent (see Non-Patent Document 2).
[0007]
[Patent Document 1]
JP-A-8-37027
[Patent Document 2]
JP-A-10-3921
[Non-patent document 1]
"Journal of The Electrochemical Society", USA, 1997, 144, p. L64-L67
[Non-patent document 2]
"Nature", UK, 1996, 381, p. 499-500
[0008]
[Problem to be solved]
[0009]
However, LiMnO synthesized by the method disclosed in Patent Document 2 2 A secondary battery using as a positive electrode active material has a problem that, while the theoretical discharge capacity is 286 mAh / g, a very low discharge capacity of only 80 mAh / g can be obtained.
[0010]
The method disclosed in Non-Patent Document 1 is a multi-stage reaction, and in addition to the disadvantage in the production method that the precision of the solution adjustment in each step is required, the synthesized LiMnO 2 A secondary battery using as a positive electrode active material obtained only a discharge capacity of 50% or less of the initial capacity after 10 cycles, and had extremely poor charge / discharge cycle characteristics.
[0011]
In the method disclosed in Non-Patent Document 2, the precursor NaMnO 2 In addition to the necessity of synthesizing, a non-aqueous ion exchange reaction is required, which leads to an increase in cost. Furthermore, the synthesized LiMnO 2 A secondary battery using as a positive electrode active material has a relatively high discharge capacity of 270 mAh / g, but has poor charge / discharge cycle characteristics, and can be reduced to 50% or less of the initial capacity in only 10 cycles. There was a problem.
[0012]
The present invention has been made in view of such conventional problems, and has a high discharge capacity and a positive electrode active material for a lithium secondary battery having excellent charge / discharge cycle characteristics, a method for producing the same, and a method for producing the same. To provide a rechargeable lithium secondary battery.
[0013]
[Means for solving the problem]
The first invention uses a composition formula Li 1-x MnO 2 + y (0 ≦ x <1, 0 <y <1) and comprising a lithium-manganese composite oxide having an O 2 -type layered structure, the positive electrode active material for a lithium secondary battery. (Claim 1).
[0014]
The positive electrode active material for a lithium secondary battery according to the first invention has a composition formula of Li 1-x MnO 2 + y (0 ≦ x <1, 0 <y <1) and contains a lithium-manganese composite oxide having an O2-type layered structure.
The O2-type layered lithium-manganese composite oxide has almost no change in crystal structure during charge and discharge. Therefore, the positive electrode active material for a lithium secondary battery has a high discharge capacity and excellent charge-discharge cycle characteristics.
[0015]
Hereinafter, the O2-type layered structure will be described with reference to FIG.
In FIG. 1 and FIG. 8, which will be described later, three oxygen atoms on the same plane in the crystal are connected by a line, and the plane on which the three oxygen atoms are present is indicated by a pattern. That is, the surfaces with the same pattern indicate the same surface or surfaces parallel to each other.
[0016]
FIG. 1 shows the crystal structure of the lithium-manganese composite oxide in the positive electrode active material for a lithium secondary battery of the present invention.
As can be seen from the figure, the lithium-manganese composite oxide has a hexagonal basic crystal structure, in which lithium atoms, manganese atoms, and oxygen atoms are regularly arranged. Each atom forms a lithium layer, a manganese layer, and an oxygen layer, and the lithium layer and the manganese layer are separated by oxygen.
[0017]
As shown in FIG. 1, the lithium-manganese composite oxide has a packing of ABCBAB... In the crystal thereof, and has a so-called O2-type layered structure. This O2 type layered structure is very stable, and there is almost no structural change in the crystal even after repeated charging and discharging. Therefore, the positive electrode active material for a lithium secondary battery containing the lithium-manganese composite oxide having the O2-type layered structure can maintain the high discharge capacity of the lithium-manganese composite oxide even after repeated charging and discharging. It can be maintained for a long time and has excellent charge-discharge cycle characteristics.
[0018]
On the other hand, as shown in FIG. 8, in the crystal structure of the above-mentioned conventional lithium-manganese composite oxide as the positive electrode active material, the packing of oxygen is ABCABC. That is, the overlap is the same as that of the spinel type, and the crystal structure is a so-called O3 type layered structure.
[0019]
When charging and discharging the lithium-manganese composite oxide having the O3 type layered structure, lithium is mixed into the manganese layer or manganese is mixed into the lithium layer. As a result, the O3-type layered structure lithium-manganese composite oxide is transformed into a more stable spinel structure. And, it is considered that the transition to the stable spinel structure causes an extreme decrease in the discharge capacity.
[0020]
As described above, according to the first aspect, a positive electrode active material for a lithium secondary battery having a high discharge capacity and excellent charge / discharge cycle characteristics can be provided.
[0021]
The second invention is based on the composition formula Li 1-x MnO 2 + y (0 ≦ x <1, 0 <y <1) and a method for producing a positive electrode active material for a lithium secondary battery, comprising a lithium-manganese composite oxide having an O 2 -type layered structure,
A lithium-manganese composite oxide having a P2-type layered structure in which a sodium-manganese composite oxide is ion-exchanged in a solution containing lithium chloride to replace sodium with lithium and convert it to an O3-type layered structure. There is provided a method for producing a positive electrode active material for a secondary battery (claim 6).
[0022]
The method for producing a positive electrode active material for a lithium secondary battery according to the second invention includes the above-described ion exchange step. Then, in this ion exchange step, sodium in the sodium-manganese composite oxide is exchanged for lithium in lithium chloride, and a lithium-manganese composite oxide is generated. Further, at this time, the crystal structure changes from the P2 type layered structure to the O2 type layered structure.
[0023]
Thus, the composition formula Li 1-x MnO 2 + y (0 ≦ x <1, 0 <y <1) and a lithium-manganese composite oxide having an O 2 -type layered structure can be easily synthesized. The positive electrode active material for a lithium secondary battery containing the lithium-manganese composite oxide is the same as that of the first invention, and has a high discharge capacity and excellent charge / discharge cycle characteristics. It becomes.
[0024]
A third invention is a lithium secondary battery comprising the positive electrode active material for a lithium secondary battery according to the first invention in a positive electrode (claim 11).
[0025]
The lithium secondary battery according to the third aspect of the present invention includes the positive electrode active material for a lithium secondary battery according to the first aspect of the present invention (claim 1) in a positive electrode.
Therefore, the lithium secondary battery has a high discharge capacity and excellent cycle characteristics by utilizing the excellent features of the positive electrode active material for a lithium secondary battery of the first invention.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
In the first invention (Invention 1), it is preferable that the lithium-manganese composite oxide is composed of flaky particles (Invention 2).
In this case, the initial discharge capacity of the positive electrode active material for a lithium secondary battery can be increased.
[0027]
It is preferable that the scale-like particles have a thickness of 0.05 to 5 μm and a maximum diameter of a surface substantially perpendicular to the thickness direction is 0.2 to 5 μm.
[0028]
The thickness of the scaly particles and the maximum diameter of a surface substantially perpendicular to the thickness direction can be measured by imaging the scaly particles using, for example, a scanning electron microscope. The thickness of the scaly particles refers to, for example, the width of a portion of the scaly particles sandwiched between substantially flat surfaces. The maximum diameter refers to, for example, the maximum distance between two points at the outer edge of the cross-sectional shape when the scale-like particles are cut along a plane substantially perpendicular to the thickness direction.
[0029]
If the thickness and the maximum diameter of the flake-shaped particles are outside the above ranges, it may be difficult to produce a positive electrode of a lithium secondary battery using the positive electrode active material.
[0030]
Further, it is preferable that the lithium-manganese composite oxide is composed of substantially spherical particles having a plurality of protrusions on the surface.
In this case, the positive electrode active material for a lithium secondary battery has a small change rate of the discharge capacity with respect to the discharge current density and has excellent stability.
[0031]
Preferably, the substantially spherical particles having the protruding portions have a diameter of 1 to 5 μm.
The diameter of the substantially spherical particles having the protruding portions can be measured by imaging the particles with, for example, a scanning electron microscope. Here, the diameter of the particle is the diameter of the entire substantially spherical particle including the protrusion.
If the diameter of the particles is outside the above range, it may be difficult to produce a positive electrode of a lithium secondary battery using the positive electrode active material.
[0032]
Next, in the second invention (claim 6), the sodium-manganese composite oxide having the P2-type layered structure is ion-exchanged in a solution containing lithium chloride.
Here, the state of the crystal structure of the sodium-manganese composite oxide having the P2 structure is shown in FIG.
As shown in FIG. 2, the basic crystal structure of the sodium-manganese composite oxide is hexagonal, and sodium atoms, manganese atoms, and oxygen atoms are regularly arranged. In the crystal, each atom forms a sodium layer, a manganese layer, and an oxygen layer, respectively, and the lithium layer and the manganese layer are separated by oxygen.
[0033]
As shown in FIG. 2, the packing of oxygen in this crystal structure is ABBAAB..., And the crystal structure is a so-called P2 type layered structure.
In FIG. 2, three oxygen atoms on the same plane in the crystal are connected by a line, and the plane on which the three oxygen atoms are present is indicated by a pattern. That is, the surfaces with the same pattern indicate the same surface or surfaces parallel to each other.
[0034]
Further, in the second invention, before the ion exchange step, KMnO 4 A first hydrothermal step of heating the first solution containing to produce a potassium-manganese composite oxide having an O3-type layered structure;
A second hydrothermal step of heating the second solution containing the potassium-manganese composite oxide and sodium hydroxide obtained in the first hydrothermal step to produce the P2-type layered sodium-manganese composite oxide (Claim 7).
[0035]
In this case, the P2-type layered sodium-manganese composite oxide used in the ion exchange step can be easily produced by the first hydrothermal step and the second hydrothermal step.
Further, in this case, the lithium-manganese composite oxide obtained by the above-described series of steps is composed of substantially spherical particles having a plurality of protrusions on the surface. In this case, as described above, the rate of change of the discharge capacity with respect to the discharge current density of the positive electrode active material for a lithium secondary battery is small, and the stability is excellent.
Examples of the solvent used for the first solution and the second solution include water, glycols, and mixtures thereof.
[0036]
In the first hydrothermal step, it is preferable to further add KOH to the first solution.
In this case, the shape of the lithium-manganese composite oxide particles obtained by the above-described series of steps can be made scaly. In this case, as described above, the initial discharge capacity of the positive electrode active material for a lithium secondary battery can be increased.
[0037]
The heating in the first hydrothermal step and the second hydrothermal step is preferably performed at a temperature of 120 to 250 ° C. under substantially saturated steam pressure.
[0038]
If the temperature is lower than 120 ° C., the reaction does not proceed sufficiently and unreacted substances may remain. On the other hand, when the temperature exceeds 250, there is no difference in the product, but the saturated steam pressure is 40 kg / cm. 3 And it requires a special pressure vessel, which is not industrially suitable.
[0039]
The ion exchange step is preferably carried out in an alcohol, a non-aqueous organic solvent, or an aqueous solution at a reaction temperature of 50 ° C. to 150 ° C. (Claim 10).
In this case, since the reaction temperature is mild, an effect that ion exchange can be performed while maintaining the form can be obtained.
If the reaction temperature is lower than 50 ° C., ion exchange may not proceed sufficiently, and a desired lithium-manganese composite oxide may not be obtained. On the other hand, when the temperature exceeds 150 ° C., Li 2 MnO 3 To another Li compound.
[0040]
Next, in the third invention (claim 11), the lithium secondary battery is a lithium secondary battery including the positive electrode active material for a lithium secondary battery of the first invention in a positive electrode.
There are various types of the first positive electrode active material for a lithium secondary battery depending on the composition of the lithium-manganese composite oxide. In the lithium secondary battery of the third invention, one of these may be used for the positive electrode, or a mixture of two or more may be used. Further, a mixture of the positive electrode active material for a lithium secondary battery of the first invention and a known positive electrode active material can be used.
[0041]
The lithium secondary battery includes, for example, a positive electrode and a negative electrode that occlude and release lithium, a separator that is narrowly provided between the positive electrode and the negative electrode, and a nonaqueous electrolyte that transfers lithium between the positive electrode and the negative electrode. Can be configured as a main component.
[0042]
For the positive electrode, for example, a paste obtained by mixing a conductive material and a binder with the above-described positive electrode active material for a lithium secondary battery and adding an appropriate solvent to form a paste-like positive electrode mixture is made of a metal foil such as aluminum or stainless steel. It can be formed by coating and drying on the surface of the current collector and, if necessary, compressing it to increase the electrode density.
The conductive material is for ensuring the electrical conductivity of the positive electrode, and for example, one or a mixture of two or more of carbon material powders such as carbon black, acetylene black, and graphite can be used.
[0043]
The binder plays a role of binding the active material particles and the conductive material particles, and for example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluoro rubber, or a thermoplastic resin such as polypropylene or polyethylene. Can be used.
An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing the active material, the conductive material, and the binder.
[0044]
The negative electrode can be formed, for example, by forming metal lithium as a negative electrode active material into a sheet, or by pressing the sheet into a current collector net made of nickel, stainless steel, or the like. As the negative electrode active material, a lithium alloy or Li instead of metallic lithium is used. 4 Ti 5 O 12 And the like.
[0045]
As another form of the negative electrode, for example, the negative electrode can be formed by using a carbon material capable of inserting and extracting lithium ions as the negative electrode active material. Examples of the carbon substance that can be used include natural or artificial graphite, mesocarbon microbeans (MCMB), fired organic compounds such as phenolic resins, and powdered materials such as coke.
[0046]
In this case, for example, a binder is mixed with the above-mentioned negative electrode active material, an appropriate solvent is added thereto, and a paste-like negative electrode mixture is applied to the surface of a metal foil current collector such as copper, and dried. Can be formed by pressing. When a carbon material is used as the negative electrode active material, a fluorinated resin such as polyvinylidene fluoride or the like is used as the negative electrode binder and an organic solvent such as N-methyl-2-pyrrolidone is used as the solvent, similarly to the positive electrode. it can.
[0047]
The separator narrowed between the positive electrode and the negative electrode separates the positive electrode from the negative electrode and holds the electrolytic solution. For example, a thin microporous film such as polyethylene or polypropylene can be used.
[0048]
As the non-aqueous electrolyte, for example, a solution in which a lithium salt as an electrolyte is dissolved in an organic solvent can be used. In this case, the lithium salt is dissociated by dissolving in the organic solvent, and is present in the electrolyte as lithium ions. Examples of usable lithium salts include, for example, LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 And the like. Each of these lithium salts may be used alone, or two or more thereof may be used in combination.
[0049]
As the organic solvent for dissolving the lithium salt, an aprotic organic solvent can be used. As such an organic solvent, for example, one or a mixture of two or more selected from cyclic carbonate, chain carbonate, cyclic ester, cyclic ether, chain ether and the like can be used.
[0050]
Here, examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and the like. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. Examples of the higher cyclic ester carbonate include gamma butyrolactone, gamma valerolactone, and the like. Examples of the cyclic ether include tetrahydrofuran and 2-methyltetrahydrofuran. Examples of the chain ether include dimethoxyethane and ethylene glycol dimethyl ether. Any one of these organic solvents can be used alone, or two or more of them can be used as a mixture.
[0051]
Also, instead of the above-described structure of the separator and the non-aqueous electrolyte, a high molecular weight polymer such as 4 And LiN (CF 3 SO 2 ) 2 A solid polymer electrolyte using a lithium salt such as described above can also be used. Further, a gel electrolyte in which the above non-aqueous electrolyte is trapped in a solid polymer matrix such as polyacrylonitrile can also be used.
[0052]
【Example】
(Example 1)
Next, an embodiment of the present invention will be described with reference to FIGS.
In this example, a positive electrode active material for a lithium secondary battery as an example of the present invention and a lithium secondary battery including the positive electrode active material for a lithium secondary battery in a positive electrode are manufactured.
[0053]
The positive electrode active material for a lithium secondary battery of the present example has a composition formula Li 1-x MnO 2 + y (0 ≦ x <1, 0 <y <1) and contains a lithium-manganese composite oxide having an O 2 -type layered structure as shown in FIG.
[0054]
The method for producing a positive electrode active material for a lithium secondary battery according to the present embodiment includes an ion exchange step of ion-exchanging a sodium-manganese composite oxide having a P2-type layered structure in a solution containing lithium chloride as shown in FIG. Have.
In this example, before the ion exchange step, KMnO was used. 4 A first solution containing O.sub.3 to form a potassium-manganese composite oxide having an O3-type layered structure, and a potassium-manganese composite oxide obtained by the first hydrothermal process and sodium hydroxide And a second hydrothermal step of producing the sodium-manganese composite oxide having the P2-type layered structure.
[0055]
Hereinafter, a method for manufacturing the positive electrode active material for a lithium secondary battery of the present example will be described in detail.
First, KMnO 4 (1.2 g) and KOH (28.1 g) are mixed, and 25 g of distilled water is added to prepare a slurry. This slurry was reacted at 200 ° C. for one day under saturated steam in an autoclave lined with Teflon (registered trademark) (first hydrothermal step). Then, the precipitate in the container is filtered, washed with water, and K 0.4 MnO 2 ・ 0.5H 2 O was obtained.
[0056]
This K 0.4 MnO 2 ・ 0.5H 2 O (0.6 g), NaOH (20 g) and water (25 g) were reacted again in a Teflon-lined autoclave under saturated steam at a temperature of 200 ° C. for one day (second water). Thermal process). Then, the precipitate in the container is filtered, washed with water, 0.75 MnO 2.6 (Sodium-manganese composite oxide) was obtained.
[0057]
Here, the crystal structure of the sodium-manganese composite oxide was examined with an X-ray diffractometer. As a result, the crystal structure was a P2 type layered structure. As shown in FIG. 2, in the P2-type layered structure, Na atoms, Mn atoms, and oxygen atoms are regularly arranged to form a lithium layer, a manganese layer, and an oxygen layer, respectively. The sodium layer and the manganese layer are separated by oxygen, and the packing of oxygen in the crystal is ABBAAB.
[0058]
Next, this Na 0.75 MnO 2.6 1 g was dispersed in a 1 M LiCl ethanol solution and reacted at 80 ° C. for one day (ion exchange step). Then, the precipitate in the container is filtered, washed with ethanol, 0.6 MnO 2.2 A positive electrode active material for a lithium secondary battery comprising (lithium-manganese composite oxide) was obtained. This is designated as Sample E1.
[0059]
Subsequently, the shape of the sample E1 was observed with a scanning electron microscope (SEM). The result is shown in FIG.
According to the SEM observation, the lithium-manganese composite oxide of sample E1 was composed of scale-like particles, the thickness of which was about 0.05 μm, and the maximum diameter of a plane substantially perpendicular to the thickness direction was 1 μm. It was about.
[0060]
Next, the X-ray diffraction pattern of the sample E1 was examined. The result is shown in FIG.
According to the X-ray diffraction measurement, all the peaks in the X-ray diffraction pattern of the sample E1 had an a-axis length of 2.85 ° and a c-axis length of 9.6 °, and had an O2 type layered LiMnO 2 layer structure. 2 The unit cell of was able to index.
[0061]
Next, a coin-type lithium secondary battery was manufactured using the lithium-manganese composite oxide of Sample E1 as a positive electrode active material.
As shown in FIG. 5, the lithium secondary battery 1 includes a positive electrode 2 containing a positive electrode active material, a negative electrode 3 containing a negative electrode active material, and a separator narrowly disposed between the positive electrode 2 and the negative electrode 3. 4 in a coin-shaped battery case 11. A gasket 5 is disposed at an end in the battery case 11, and the battery case is sealed by a sealing plate 12.
[0062]
Next, a method of manufacturing the lithium secondary battery 1 will be described.
First, the positive electrode 2 was prepared as follows.
That is, first, 70 parts by weight of the positive electrode active material of Sample E1, 25 parts by weight of carbon black as a conductive material, and 5 parts by weight of Teflon (registered trademark) F104 (manufactured by Daikin Industries, Ltd.) as a binder were mixed. Thus, a positive electrode mixture was obtained. This positive electrode mixture was pressure-formed to produce a 13 mmφ pellet, and then the pellet was pressed onto a positive electrode current collector made of stainless steel mesh to obtain a positive electrode 2.
[0063]
Next, the negative electrode 3 was produced by punching a rolled sheet of metallic lithium into 15 mmφ and pressing the rolled sheet to a negative electrode current collector made of stainless steel mesh.
A microporous film made of polypropylene is used for the separator 4, and the nonaqueous electrolytic solution impregnated in the separator 4 is a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1. 6 Was dissolved to obtain a concentration of 1M.
[0064]
Next, as shown in FIG. 5, the positive electrode 2 and the negative electrode 3 were arranged in the battery case 11 so as to be separated by the separator 4.
Then, the gasket 5 was disposed at an end in the battery case 11, and a suitable amount of a non-aqueous electrolyte was injected into the battery case 11 to be impregnated. Subsequently, the sealing plate 12 was arranged, and the end of the battery case 11 was caulked to seal the battery case 11 to produce a lithium secondary battery 1 (battery E1).
[0065]
(Example 2)
Next, in this example, a positive electrode active material for a lithium secondary battery containing a lithium-manganese composite oxide composed of substantially spherical particles having a plurality of projecting portions on the surface was prepared, and further, the lithium secondary battery was manufactured. A lithium secondary battery was manufactured using the positive electrode active material for a battery as a positive electrode.
Specifically, first, 0.3M KMnO 4 The aqueous solution was reacted at 200 ° C. for one day under saturated steam in an autoclave lined with Teflon (registered trademark). Then, the precipitate in the container is filtered, washed with water, and K 0.33 MnO 2 ・ 0.45H 2 O was obtained.
[0066]
Next, this K 0.33 MnO 2 ・ 0.45H 2 O (0.6 g), NaOH (20 g), and 25 g of water were reacted again for one day at a temperature of 200 ° C. under saturated steam in an autoclave lined with Teflon (registered trademark) (second hydrothermal step). . Thereafter, the precipitate in the container was filtered and washed with water, and the same P2-type layered Na solution as in Example 1 was used. 0.75 MnO 2.6 (Sodium-manganese composite oxide) was obtained.
[0067]
Next, this Na 0.75 MnO 2.6 (1 g), an ion exchange step was performed in the same manner as in Example 1, the precipitate was filtered, washed, and Li 0.6 MnO 2.2 A positive electrode active material for lithium secondary batteries (sample E2) composed of (lithium-manganese composite oxide) was obtained.
[0068]
Subsequently, SEM observation and X-ray diffraction measurement were performed on the sample E2 in the same manner as in Example 1. Fig. 6 shows the result of SEM observation, and Fig. 6 shows the result of X-ray diffraction measurement.
FIG.
As is known from FIG. 6, the sample E2 was composed of substantially spherical particles having a plurality of protrusions on the surface. These particles consisted of strip particles having a width of about 0.1 μm and a length of about 0.5 μm, and constituted secondary particles having a diameter of 2 to 3 μm.
[0069]
As can be seen from FIG. 7, all the peaks of the X-ray diffraction pattern of the sample E2 obtained from the X-ray diffraction measurement have the a-axis length of 2.85 ° and c as in the case of the sample E1. LiMnO with O2 type layered structure with axis length of 9.69 2 The unit cell of was able to index.
[0070]
Next, a lithium secondary battery was fabricated using the sample E2 as a positive electrode. The manufacturing method is the same as that of the battery E1 of the first embodiment.
Hereinafter, the lithium secondary battery obtained in this example is referred to as a battery E2.
[0071]
(Comparative example)
Next, in this example, in order to clarify the excellent characteristics of the samples E1 and E2, as a comparative example, a lithium secondary material containing an O3-type layered structure lithium-manganese composite oxide shown in FIG. A positive electrode active material for a battery was prepared, and a lithium secondary battery was prepared using the positive electrode active material for a lithium secondary battery as a positive electrode.
[0072]
First, a cathode active material for a lithium secondary battery comprising a lithium-manganese composite oxide having an O3-type layered structure was prepared as follows. The preparation method is described in “Nature”, UK, 1996, 381, p. This was performed in the same manner as described in 499-500.
[0073]
That is, first, MnO 2 (1 g) and NaOH (0.46 g) in an argon atmosphere at 700 ° C. for 12 hours to react with NaMnO. 2 Was prepared.
Next, the NaMnO obtained above was used. 2 Was subjected to an ion exchange reaction in a 1 M LiCl ethanol solution at 80 ° C. for 24 hours.
In this way, the O3-type layered structure lithium-manganese composite oxide (LiMnO) 2 ) Was obtained. This is designated as Sample C1.
[0074]
Next, a lithium secondary battery was manufactured using this sample C1 as a positive electrode. The manufacturing method is the same as that of the battery E1 of the first embodiment.
Hereinafter, the lithium secondary battery obtained in this example is referred to as a battery C1.
[0075]
(Experimental example)
In this example, a charge / discharge cycle test was performed on the batteries E1, E2, and C1 produced in Example 1, Example 2, and Comparative Example 1, respectively.
That is, using the batteries E1, E2 and C1, a constant current density of 0.5 mA / cm 2 And left for 10 minutes at a constant current density of 0.5 to 4.0 mA / cm. 2 , Discharge to 2.5 V and leave for 10 minutes. A cycle of 0 recharges was defined as one cycle, and charge and discharge were repeated up to 20 cycles at a temperature of 20 ° C., and the discharge capacity at each cycle was measured.
The result is shown in FIG. In the figure, the horizontal axis represents the number of cycles (times), and the vertical axis represents the discharge capacity (mAh / g).
[0076]
As is known from FIG. 9, in the battery C1, the discharge capacity is reduced to about 50 mAh / g after 10 cycles.
On the other hand, the batteries E1 and E2 maintained a very high discharge capacity of 150 mAh / g at the 10th cycle, and maintained a high discharge capacity of 60 mAh / g or more at the 20th cycle.
Further, the batteries E1 and E2 had a high initial discharge capacity exceeding 160 mAh / g.
As described above, the batteries E1 and E2 had a high discharge capacity and excellent charge / discharge cycle characteristics.
[0077]
In addition, comparing the battery E1 with the battery E2, the battery E1 containing the positive electrode active material composed of the flaky particles showed a higher discharge capacity than the battery E2. On the other hand, the battery E2 containing the positive electrode active material composed of the substantially spherical particles having the protruding portions had a smaller capacity change ratio with respect to the current density than the battery E1, and was excellent in stability.
[0078]
(Example 3)
This example is an example in which the same positive electrode active material for a lithium secondary battery as that of the above-mentioned sample E1 is manufactured by a simpler method than that of the first example. That is, in this example, the P2-type layered sodium-manganese composite oxide produced by the two steps of the first hydrothermal step and the second hydrothermal step in Example 1 was produced in one step. Then, using the sodium-manganese composite oxide, a lithium-manganese composite oxide having an O2-type layered structure was produced.
[0079]
Specifically, first, KMnO 4 (1.2 g) and NaOH (28.1 g) are mixed, and 25 g of distilled water is added to prepare a slurry. This slurry was reacted for 1 day at a temperature of 200 ° C. under saturated steam in an autoclave lined with Teflon (registered trademark). Then, the precipitate in the container is filtered, washed with water, 0.75 MnO 2.05 Got.
[0080]
Next, this Na 0.75 MnO 2.05 (1 g) was dispersed in a 1 M LiCl ethanol solution and reacted at 80 ° C. for one day (ion exchange step). Then, the precipitate in the container is filtered, washed with ethanol, and the Li is used as the positive electrode active material for the lithium secondary battery. 0.6 MnO 2.2 (Lithium-manganese composite oxide) was obtained.
[0081]
All the peaks in the X-ray diffraction pattern of the lithium-manganese composite oxide of this example were LiMnO having an O2-type layered structure with an a-axis length of 2.85 ° and a c-axis length of 9.6 °. 2 The unit cell of was able to index.
Thus, according to this example, the composition formula Li 1-x MnO 2 + y A positive electrode active material for a lithium secondary battery represented by (0 ≦ x <1, 0 <y <1) and containing a lithium-manganese composite oxide having an O2-type layered structure can be produced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a crystal structure of a lithium-manganese composite oxide having an O2-type layered structure according to Example 1.
FIG. 2 is an explanatory view showing a crystal structure of a sodium-manganese composite oxide having a P2-type layered structure according to Example 1.
FIG. 3 is a view showing the result of observing the shape of the sample E1 according to Example 1 with a scanning electron microscope (SEM).
FIG. 4 is a view showing an X-ray diffraction pattern of the sample E1 according to Example 1.
FIG. 5 is an explanatory cross-sectional view of the lithium secondary battery according to the first embodiment.
FIG. 6 is a view showing the result of observing the shape of the sample E2 according to Example 2 with a scanning electron microscope (SEM).
FIG. 7 is a view showing an X-ray diffraction pattern of the sample E2 according to Example 2.
FIG. 8 is an explanatory diagram showing a crystal structure of a lithium-manganese composite oxide having an O3-type layered structure according to a comparative example.
FIG. 9 is an explanatory diagram showing a result of a charge / discharge cycle test according to an experimental example.
[Explanation of symbols]
1. . . Lithium secondary battery,
11. . . Battery case,
12. . . Sealing plate,
2. . . Positive electrode,
3. . . Negative electrode,
4. . . Separator,
5. . . gasket,

Claims (11)

組成式Li1−xMnO2+y(0≦x<1,0<y<1)で表され,かつO2型層状構造を有するリチウム−マンガン複合酸化物を含有してなることを特徴とするリチウム二次電池用正極活物質。A lithium-manganese composite oxide represented by a composition formula Li1 - xMnO2 + y (0≤x <1,0 <y <1) and having an O2-type layered structure; Positive electrode active material for secondary batteries. 請求項1において,上記リチウム−マンガン複合酸化物は,鱗片状の粒子よりなることを特徴とするリチウム二次電池用正極活物質。2. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the lithium-manganese composite oxide is formed of scale-like particles. 請求項2において,上記鱗片状の粒子は,厚みが0.05〜5μmであり,かつ,厚み方向に対して略垂直な面の最大径が0.2〜5μmであることを特徴とするリチウム二次電池用正極活物質。3. The lithium battery according to claim 2, wherein the scale-like particles have a thickness of 0.05 to 5 μm, and a maximum diameter of a surface substantially perpendicular to the thickness direction is 0.2 to 5 μm. Positive electrode active material for secondary batteries. 請求項1において,上記リチウム−マンガン複合酸化物は,表面に複数の突起状部を有する略球状の粒子よりなることを特徴とするリチウム二次電池用正極活物質。2. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the lithium-manganese composite oxide comprises substantially spherical particles having a plurality of protrusions on the surface. 請求項4において,上記突起状部を有する略球状の粒子は,直径が1〜5μmであることを特徴とするリチウム二次電池用正極活物質。5. The positive electrode active material for a lithium secondary battery according to claim 4, wherein the substantially spherical particles having the protruding portions have a diameter of 1 to 5 [mu] m. 組成式Li1−xMnO2+y(0≦x<1,0<y<1)で表され,かつO2型層状構造を有するリチウム−マンガン複合酸化物を含有してなるリチウム二次電池用正極活物質の製造方法であって,
P2型層状構造を有するナトリウム−マンガン複合酸化物を,塩化リチウムを含む溶液中でイオン交換して,ナトリウムをリチウムに置き換えると共にO3型層状構造に変えるイオン交換工程を有することを特徴とするリチウム二次電池用正極活物質の製造方法。
Positive electrode active material for a lithium secondary battery represented by a composition formula Li 1-x MnO 2 + y (0 ≦ x <1,0 <y <1) and containing a lithium-manganese composite oxide having an O2-type layered structure A method for producing a substance,
A lithium-manganese composite oxide having a P2-type layered structure, wherein the sodium-manganese composite oxide is ion-exchanged in a solution containing lithium chloride to replace sodium with lithium and convert it to an O3-type layered structure. Method for producing positive electrode active material for secondary battery.
請求項6において,上記イオン交換工程の前に,KMnOを含む第一溶液を加熱してO3型層状構造のカリウム−マンガン複合酸化物を生成する第一水熱工程と,
上記第一水熱工程によって得られたカリウム−マンガン複合酸化物と水酸化ナトリウムとを含む第二溶液を加熱し,上記P2型層状構造のナトリウム−マンガン複合酸化物を生成する第二水熱工程とを行うことを特徴とするリチウム二次電池用正極活物質の製造方法。
According to claim 6, prior to the ion exchange step, potassium first solution is heated to O3 type layered structure including KMnO 4 - a first hydrothermal process to produce manganese composite oxide,
A second hydrothermal step of heating the second solution containing the potassium-manganese composite oxide and sodium hydroxide obtained in the first hydrothermal step to produce the P2-type layered sodium-manganese composite oxide And a method for producing a positive electrode active material for a lithium secondary battery.
請求項7において,上記第一水熱工程においては,上記第一溶液にさらにKOHを添加することを特徴とするリチウム二次電池用正極活物質の製造方法。8. The method according to claim 7, wherein in the first hydrothermal step, KOH is further added to the first solution. 請求項7又は8において,上記第一水熱工程及び上記第二水熱工程における加熱は,略飽和水蒸気圧下で温度120℃〜250℃にておこなうことを特徴とするリチウム二次電池用正極活物質の製造方法。The positive electrode active material for a lithium secondary battery according to claim 7 or 8, wherein the heating in the first hydrothermal step and the second hydrothermal step is performed at a temperature of about 120 to 250 ° C under substantially saturated steam pressure. The method of manufacturing the substance. 請求項6〜9のいずれか一項において,上記イオン交換工程は,アルコール類,非水系有機溶媒,又は水溶液中で,反応温度50℃〜150℃にておこなうことを特徴とするリチウム二次電池用正極活物質の製造方法。The lithium secondary battery according to any one of claims 6 to 9, wherein the ion exchange step is performed in an alcohol, a non-aqueous organic solvent, or an aqueous solution at a reaction temperature of 50C to 150C. Production method of positive electrode active material for use. 請求項1〜5のいずれか一項に記載のリチウム二次電池用正極活物質を正極に含有してなることを特徴とするリチウム二次電池。A lithium secondary battery comprising the positive electrode active material for a lithium secondary battery according to claim 1 in a positive electrode.
JP2003006197A 2003-01-14 2003-01-14 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery Expired - Fee Related JP4296342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006197A JP4296342B2 (en) 2003-01-14 2003-01-14 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006197A JP4296342B2 (en) 2003-01-14 2003-01-14 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004220898A true JP2004220898A (en) 2004-08-05
JP4296342B2 JP4296342B2 (en) 2009-07-15

Family

ID=32896648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006197A Expired - Fee Related JP4296342B2 (en) 2003-01-14 2003-01-14 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4296342B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204281A (en) * 2011-03-28 2012-10-22 Tokyo Univ Of Science Composite metal oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2012209242A (en) * 2011-03-14 2012-10-25 National Institute Of Advanced Industrial & Technology Lithium manganese titanium nickel composite oxide and production method therefor, and lithium secondary battery using the same as member
KR101297385B1 (en) * 2012-07-09 2013-08-19 성신여자대학교 산학협력단 Preparation method of cathode active materials for lithium secondary battery
WO2014091687A1 (en) * 2012-12-14 2014-06-19 パナソニック株式会社 Composite metal oxide, method for producing composite metal oxide, and sodium secondary battery
WO2015136604A1 (en) * 2014-03-10 2015-09-17 株式会社日立製作所 Positive electrode active material for secondary batteries and lithium ion secondary battery using same
JP2019091528A (en) * 2017-11-10 2019-06-13 住友電気工業株式会社 Electrode active material for sodium ion secondary battery and method of producing the same
CN111180722A (en) * 2020-01-08 2020-05-19 太原理工大学 Preparation method of lithium ion battery anode material nickel cobalt lithium aluminate
CN114180633A (en) * 2020-09-15 2022-03-15 中国科学院大连化学物理研究所 Preparation method and application of sodium manganate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313337A (en) * 2001-04-13 2002-10-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313337A (en) * 2001-04-13 2002-10-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209242A (en) * 2011-03-14 2012-10-25 National Institute Of Advanced Industrial & Technology Lithium manganese titanium nickel composite oxide and production method therefor, and lithium secondary battery using the same as member
JP2012204281A (en) * 2011-03-28 2012-10-22 Tokyo Univ Of Science Composite metal oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR101297385B1 (en) * 2012-07-09 2013-08-19 성신여자대학교 산학협력단 Preparation method of cathode active materials for lithium secondary battery
WO2014091687A1 (en) * 2012-12-14 2014-06-19 パナソニック株式会社 Composite metal oxide, method for producing composite metal oxide, and sodium secondary battery
US9786949B2 (en) 2012-12-14 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Composite metal oxide, method for producing composite metal oxide, and sodium secondary battery
JPWO2014091687A1 (en) * 2012-12-14 2017-01-05 パナソニックIpマネジメント株式会社 Composite metal oxide, method for producing composite metal oxide, and sodium secondary battery
JPWO2015136604A1 (en) * 2014-03-10 2017-04-06 株式会社日立製作所 Positive electrode active material for secondary battery and lithium ion secondary battery using the same
US9711792B2 (en) 2014-03-10 2017-07-18 Hitachi, Ltd. Positive electrode active material for secondary batteries and lithium ion secondary battery using the same
WO2015136604A1 (en) * 2014-03-10 2015-09-17 株式会社日立製作所 Positive electrode active material for secondary batteries and lithium ion secondary battery using same
JP2019091528A (en) * 2017-11-10 2019-06-13 住友電気工業株式会社 Electrode active material for sodium ion secondary battery and method of producing the same
CN111180722A (en) * 2020-01-08 2020-05-19 太原理工大学 Preparation method of lithium ion battery anode material nickel cobalt lithium aluminate
CN111180722B (en) * 2020-01-08 2022-09-27 太原理工大学 Preparation method of lithium ion battery anode material nickel cobalt lithium aluminate
CN114180633A (en) * 2020-09-15 2022-03-15 中国科学院大连化学物理研究所 Preparation method and application of sodium manganate
CN114180633B (en) * 2020-09-15 2022-09-23 中国科学院大连化学物理研究所 Preparation method and application of sodium manganate

Also Published As

Publication number Publication date
JP4296342B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4641375B2 (en) Method for producing composite of olivine type lithium phosphate and carbon material
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5133020B2 (en) Method for producing positive electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode plate
US6306542B1 (en) Lithium manganese composite oxide for lithium secondary battery cathode active material, manufacturing method thereof, and lithium secondary battery using the composite oxide as cathode active material
JPH08124559A (en) Manufacture of lithium secondary battery and of negative electrode active material
JP5312099B2 (en) Method for producing positive electrode active material and positive electrode active material
CN107834102B (en) Lithium ion secondary battery and method for manufacturing same
JP2000203844A (en) Lithium-manganese compound oxide as anodic active material for lithium secondary battery, production of the compound oxide, and lithium secondary battery using the same as anodic active material
JP4995444B2 (en) Lithium ion secondary battery
JP7225663B2 (en) Manufacturing method of active material, active material and battery
CN112758989A (en) Method for producing positive electrode active material and method for producing lithium ion battery
WO2011061999A1 (en) Method for manufacturing lithium ion secondary battery
JP5364865B2 (en) Method for producing positive electrode active material for lithium secondary battery
WO2019235469A1 (en) Reduced graphene-based material
KR101632358B1 (en) ZnO-MnO-C COMPOSITE, MANUFACTURING METHOD OF COMPOSITE CONTAINING ZINC OXIDE AND MANGANESE OXIDE AND ANODE ACTIVE MATERIAL CONTAINING THE SAME
JP4296342B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
KR20200121777A (en) Cathode material with stable surface for secondary batteries and method for producing the same
KR101100029B1 (en) Method of preparing positive active material for lithium secondary battery and rechargeable lithium battery
KR101676687B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR20200033764A (en) positive material having surface coated positive active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising the same
KR101224618B1 (en) Positive active material for rechargeable lithium battery, cathod for rechargeable lithium battery, rechargeable lithium battery and method for manufacturing thereof
JP5189466B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees