KR101297385B1 - Preparation method of cathode active materials for lithium secondary battery - Google Patents

Preparation method of cathode active materials for lithium secondary battery Download PDF

Info

Publication number
KR101297385B1
KR101297385B1 KR1020120074431A KR20120074431A KR101297385B1 KR 101297385 B1 KR101297385 B1 KR 101297385B1 KR 1020120074431 A KR1020120074431 A KR 1020120074431A KR 20120074431 A KR20120074431 A KR 20120074431A KR 101297385 B1 KR101297385 B1 KR 101297385B1
Authority
KR
South Korea
Prior art keywords
mno
layered
active material
distilled water
lithium secondary
Prior art date
Application number
KR1020120074431A
Other languages
Korean (ko)
Inventor
이철우
서효리
김건
이은아
Original Assignee
성신여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성신여자대학교 산학협력단 filed Critical 성신여자대학교 산학협력단
Priority to KR1020120074431A priority Critical patent/KR101297385B1/en
Application granted granted Critical
Publication of KR101297385B1 publication Critical patent/KR101297385B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A manufacturing method of a positive electrode active material is provided to provide a positive electrode active material with improved electrochemical properties. CONSTITUTION: A manufacturing method of a positive electrode active material for lithium secondary batteries comprises a step of manufacturing a solution mixed of KMnO4 and ethanol with distilled water; a step of putting the mixed solution into an autoclave container, stirring the solution, and conducting a hydrothermal synthesis reaction; a step of washing the reaction products with distilled water and ethanol several times and drying the washed reaction products; a step of carrying out a mixing reaction by mixing MnO(OH) with LiOH·H2O; and a step of heat-treating the lamellar Li2MnO3, which is the reaction product of the mixing step, in the atmosphere.

Description

리튬 이차 전지용 양극 활물질 제조방법 {Preparation method of cathode active materials for lithium secondary battery}Preparation method of cathode active material for lithium secondary battery {Preparation method of cathode active materials for lithium secondary battery}

본 발명은 리튬 이차 전지의 양극 활물질 및 그 제조방법에 관한 것으로, MnO(OH)와 LiOH를 반응시켜 제조한 층상 Li2MnO3 또는 MnO(OH)를 버퍼 재료로 사용한 층상 Li2MnO3-MnO(OH) 복합체와 그 제조방법에 관한 것이다.The present invention relates to a positive electrode active material of a lithium secondary battery and a method for manufacturing the same. The present invention relates to a layered Li 2 MnO 3 -MnO (OH) using layered Li 2 MnO 3 or MnO (OH) prepared by reacting MnO (OH) with LiOH as a buffer material. It relates to a composite and a method of manufacturing the same.

리튬과 전이 금속이 포함된 산화물 재료는 주로 리튬 이차 전지의 양극 활물질로 사용되는데, 전기화학적 특성은 활물질 내의 전이 금속의 산화 수 변화에 기인한다. Oxide materials containing lithium and transition metals are mainly used as positive electrode active materials of lithium secondary batteries, and the electrochemical properties are due to a change in the oxidation number of the transition metal in the active material.

전이 금속 이온의 산화수는 리튬이온이 삽입되거나 추출될 때(intercalation/deintercalation) 변화하고, 평균 전압은 각 원소의 산화/환원에 의존한다. 층상 구조의 Li2MnO3는 방전상태일 때(리튬 이온이 인터칼레이션시) 망간의 산화수가 +4이고, 충전상태시(리튬 이온이 추출시) +5이어서, 전기적으로 비활성이다(비특허문헌 1,2참조). The oxidation number of transition metal ions changes when lithium ions are inserted or extracted (intercalation / deintercalation), and the average voltage depends on the oxidation / reduction of each element. The layered Li 2 MnO 3 has an oxidation number of manganese of +4 when discharged (when lithium ions are intercalated) and +5 when charged (when lithium ions are extracted), thereby being electrically inactive (nonpatent See literature 1,2).

그러나 최근의 연구들은 산 처리를 행하여 재료의 부족(deficiency)을 만들어서 자연적인 산화/환원 반응을 유도하거나 Li2MnO3로부터 Li2O를 제거함으로서 양극 재료가 높은 용량을 나타낸다고 보고하였다. [Li1/3Mn2 /3]층 사이에 존재하는 Li이온이 전기화학적 반응에 참여하게 된다(비특허문헌3-5참조). However, recent studies have reported represents the acid treatment with high dose induced by the natural oxidation / reduction reaction, or removing the Li 2 O from Li 2 MnO 3 the cathode material making a lack (deficiency) of the material is performed. Li ions present between the [Li 1 / 3Mn 2/3 ] layer is involved in the electrochemical reaction (see Non-Patent Literature 3-5).

Li2MnO3-LiMO2(M=Mn,Co,Ni,Cr, etc.) 복합체 전극은 상이한 다형체(polymorphs)를 갖고 충전/방전 사이클 동안 구조 변화를 감소시킨다고 알려져 있다(비특허문헌 6,7참조). Li2MnO3는 전기적으로 비활성 재료로 알려졌으나, 층상 구조의 Li2MnO3는 충전/방전 사이클 후 부분적으로 스피넬구조로 바뀌어 망간 산화환원반응을 가능하게 하여 전기적으로 활성 재료가 되어, 리튬 이차 전지의 양극 활물질로 사용된다. Li 2 MnO 3 -LiMO 2 (M = Mn, Co, Ni, Cr, etc.) composite electrodes have different polymorphs and are known to reduce structural changes during charge / discharge cycles (Non-Patent Document 6, 7). Li 2 MnO 3 is known as an electrically inert material, but Li 2 MnO 3 in a layered structure is partially converted to a spinel structure after a charge / discharge cycle, thereby enabling manganese redox reaction to become an electrically active material, thereby making it a lithium secondary battery. It is used as the positive electrode active material of.

1. S.H. Park, Y. Sato, J.K. Kim and Y.S. Lee, Mater. Chem. Phys., 102, 225 (2007). 1. S.H. Park, Y. Sato, J.K. Kim and Y.S. Lee, Mater. Chem. Phys., 102, 225 (2007). 2. M. Tabuchi, K. Tatsumi, S. Morimoto, S. Nasu, T. Saito and Y. Ikeda, J. Appl. Phys., 104, 043909 (2008). 2.M. Tabuchi, K. Tatsumi, S. Morimoto, S. Nasu, T. Saito and Y. Ikeda, J. Appl. Phys., 104, 043909 (2008). 3. J.K. Ngala, S. Alia, A. Dobley, V.M.B. Crisostomo and S.L. Suib, Chem. Mater., 19, 229 (2006). 3. J.K. Ngala, S. Alia, A. Dobley, V.M.B. Crisostomo and S.L. Suib, Chem. Mater., 19, 229 (2006). 4. A.D. Robertson and P.G. Bruce, Chem. Mater., 15, 1984 (2003). 4. A.D. Robertson and P.G. Bruce, Chem. Mater., 15, 1984 (2003). 5. P.G. Bruce, A.R. Armstrong and R.L. Gitzendanner, J.Mater. Chem., 9, 193 (1999). 5. P.G. Bruce, A.R. Armstrong and R.L. Gitzendanner, J. Mater. Chem., 9, 193 (1999). 6. X.K. Huang, Q.S. Zhang, H.T. Chang, J.L. Gan, H.J. Yue and Y. Yang, J. Electrochem. Soc., 156, A162 (2009). 6. X.K. Huang, Q.S. Zhang, H.T. Chang, J.L. Gan, H.J. Yue and Y. Yang, J. Electrochem. Soc., 156, A162 (2009). 7. S.S. Shin, Y.K. Sun and K. Amine, J. Power Sources, 112, 634 (2002). 7. S.S. Shin, Y.K. Sun and K. Amine, J. Power Sources, 112, 634 (2002). 8. W.X. Zhang, Y. Liu, Z.H. Yang, S.P. Tang and M. Chen, Solid State Commun., 131, 441 (2004). 8. W.X. Zhang, Y. Liu, Z.H. Yang, S.P. Tang and M. Chen, Solid State Commun., 131, 441 (2004). 9. T. Gao, F. Krumeich, R. Nesper, H. Fjellvag and P. Norby, Inorg. Chem., 48, 6242 (2009). 9. T. Gao, F. Krumeich, R. Nesper, H. Fjellvag and P. Norby, Inorg. Chem., 48, 6242 (2009). 10. F. Capitaine, P. Gravereau and C. Delmas, Solid State Ionics, 89, 197 (1996). 10. F. Capitaine, P. Gravereau and C. Delmas, Solid State Ionics, 89, 197 (1996). 11. S.L.S. Doron Levin, and Jakie Y. Ying, American Chemical Society, 622, 237 (1996). 11.S.L.S. Doron Levin, and Jakie Y. Ying, American Chemical Society, 622, 237 (1996). 12. A. Boulineau, L. Croguennec, C. Delmas and F. Weill, Solid State Ionics, 180, 1652 (2010). 12. A. Boulineau, L. Croguennec, C. Delmas and F. Weill, Solid State Ionics, 180, 1652 (2010). 13. P. Kalyani, S. Chitra, T. Mohan and S. Gopukumar, J. Power Sources, 80, 103 (1999). 13. P. Kalyani, S. Chitra, T. Mohan and S. Gopukumar, J. Power Sources, 80, 103 (1999). 14. Y. Sun, Y. Shiosaki, Y. Xia and H. Noguchi, J. Power Sources, 159, 1353 (2006). 14. Y. Sun, Y. Shiosaki, Y. Xia and H. Noguchi, J. Power Sources, 159, 1353 (2006). 15. M.H. Rossouw and M.M. Thackeray, Mater. Res. Bull., 26, 463 (1991). 15. M.H. Rossouw and M.M. Thackeray, Mater. Res. Bull., 26, 463 (1991). 16. L. Croguennec, P. Deniard and R. Brec, J. Electrochem. Soc., 144, 3323 (1997). 16. L. Croguennec, P. Deniard and R. Brec, J. Electrochem. Soc., 144, 3323 (1997).

본 발명은 방전 용량 및 수명특성(cycleability) 등의 전기화학적 특성이 향상된 리튬 이차 전지의 양극 활물질로서 조직과 구조를 제어한 층상 Li2MnO3 또는 층상 Li2MnO3-MnO(OH) 복합체 및 그 제조방법을 제공하는 것이다.The present invention relates to a layered Li 2 MnO 3 or a layered Li 2 MnO 3 -MnO (OH) composite having a structure and structure as a cathode active material of a lithium secondary battery having improved electrochemical characteristics such as discharge capacity and cycleability. It is to provide a manufacturing method.

Li2MnO3(Lithium Manganese Oxide)는 전기적으로 비활성 물질로 알려져 있지만, 층상 구조는 충전/방전 사이클 후 스피넬 구조로 부분적으로 변화하여, 망간의 산화/환원 반응이 가능하게 되어 전기화학적으로 활성화된다.Li 2 MnO 3 (Lithium Manganese Oxide) is known as an electrically inert material, but the layered structure is partially changed into the spinel structure after the charge / discharge cycle, thereby enabling the oxidation / reduction reaction of manganese to be electrochemically activated.

본 발명에서는 리튬 이차 전지의 양극 재료의 방전 용량 및 수명특성을 향상시키기 위해, 열처리 온도를 제어하여 조직 및 구조를 변화시킨, 양극 활물질인 층상 Li2MnO3의 제조 방법을 제공한다. 층상 Li2MnO3의 제조 방법은 다음의 a)~e)단계를 포함한다.The present invention provides a method for producing layered Li 2 MnO 3 , which is a positive electrode active material, in which a structure and a structure are changed by controlling a heat treatment temperature in order to improve discharge capacity and life characteristics of a positive electrode material of a lithium secondary battery. The method for producing a layered Li 2 MnO 3 includes the following steps a) to e).

a) KMnO4와 에탄올을 증류수와 혼합한 용액을 제조하는 단계a) preparing a solution of KMnO 4 and ethanol mixed with distilled water

b) 상기 혼합한 용액을 오토클레이브 용기에 투입하고 교반하여 수열합성 반응시키는 단계b) adding the mixed solution to an autoclave vessel and stirring to hydrothermally react;

c) 반응 생성물을 증류수와 에탄올로 수회 세척 후 건조시키는 단계c) washing the reaction product with distilled water and ethanol several times and drying

d) 건조 단계 후 수득한 MnO(OH)를 LiOH·H2O와 혼합하여 고상 반응시키는 단계d) mixing MnO (OH) obtained after the drying step with LiOH.H 2 O to perform a solid phase reaction.

e) 고상 반응 단계 후 반응 생성물인 층상 Li2MnO3를 대기 중 열처리하는 단계e) heat-treating the layered Li 2 MnO 3 in the air after the solid phase reaction step

또한 본 발명에서는 버퍼 재료로서 비정질 분말 형태의 MnO(OH)를 층상 Li2MnO3에 혼합하여 방전 용량 및 수명특성을 향상시킨 양극 활물질인 층상 Li2MnO3-MnO(OH)복합체의 제조방법을 제공한다. 층상 Li2MnO3-MnO(OH)복합체의 제조방법은 다음의 a)~d)단계를 포함한다.In addition, the present invention provides a method for producing a layered Li 2 MnO 3 -MnO (OH) composite, a positive electrode active material that improves the discharge capacity and life characteristics by mixing MnO (OH) in the form of amorphous powder as a buffer material to the layered Li 2 MnO 3 to provide. The method for preparing a layered Li 2 MnO 3 -MnO (OH) complex includes the following steps a) to d).

a) KMnO4와 에탄올을 증류수와 혼합한 용액을 제조하는 단계a) preparing a solution of KMnO 4 and ethanol mixed with distilled water

b) 상기 혼합한 용액을 오토클레이브 용기에 투입하고 교반하여 수열합성 반응시키는 단계b) adding the mixed solution to an autoclave vessel and stirring to hydrothermally react;

c) 반응 생성물을 증류수와 에탄올로 수회 세척 후 건조시키는 단계c) washing the reaction product with distilled water and ethanol several times and drying

d) 건조 단계 후 수득한 MnO(OH)를 층상 Li2MnO3와 혼합하여 층상 Li2MnO3-MnO(OH) 복합체를 제조하는 단계d) after the drying step by mixing the MnO (OH) and the resultant layered Li 2 MnO 3 to prepare a layered Li 2 MnO 3 -MnO (OH) complex

본 발명에 따라 수열합성법으로 MnO(OH)를 제조 후 LiOH와 고상 반응시킨 후 열처리 온도를 제어하여 층상 Li2MnO3를 제조시 리튬 이차 전지 양극 활물질에 적합한 높은 결정도와 높은 방전 용량을 동시에 갖는 층상 Li2MnO3를 얻을 수 있고, 버퍼 재료로 MnO(OH)를 사용하여 층상 Li2MnO3-MnO(OH)복합체를 제조하여 양극 활물질로 사용시 층상 Li2MnO3의 조직 및 구조 변화를 감소시키고, 양극 활물질의 방전 용량과 수명특성을 향상시킬 수 있다.According to the present invention, after preparing MnO (OH) by hydrothermal synthesis, reacting with LiOH in a solid phase, and controlling the heat treatment temperature to produce layered Li 2 MnO 3 , the layered phase having both high crystallinity and high discharge capacity suitable for a lithium secondary battery cathode active material. Li 2 MnO 3 can be obtained, and layered Li 2 MnO 3 -MnO (OH) composites are prepared using MnO (OH) as the buffer material to reduce the structure and structure change of the layered Li 2 MnO 3 when used as a cathode active material. The discharge capacity and lifespan characteristics of the positive electrode active material can be improved.

도 1은 합성 온도별 MnO(OH)의 SEM 이미지
(a) 100 (b) 110 (c) 120 (d) 130 (e) 140 (f) 150
도 2는 110℃-150℃에서 합성한 MnO(OH)의 XRD 패턴들
도 3은 합성 온도별 층상 Li2MnO3의 SEM 이미지
(a) 600℃ (b) 700℃ (c) 800℃ (d) 900℃
도 4는 600℃-900℃에서 열처리한 층상 Li2MnO3의 XRD 패턴들
도 5a는 600℃-900℃에서 열처리한 층상 Li2MnO3의 셀의 15 사이클 후 방전 용량
도 5b는 800℃-900℃에서 열처리한 층상 Li2MnO3의 셀의 54 사이클 후 방전 용량
도 6은 열처리 온도별 층상 Li2MnO3의 사이클 테스트 후 구조 변화 측정용 XRD 데이터 (a) 600℃ (b) 700℃ (c) 800℃ (d) 900℃
도 7은 1번째, 3번째, 5번째, 8번째, 12번째 사이클 테스트에서의
층상 Li2MnO3-700℃ 열처리의 방전 용량
도 8은 층상 Li2MnO3-MnO(OH)복합체의 충전/방전 성능
1 is an SEM image of MnO (OH) according to synthesis temperature
(a) 100 (b) 110 (c) 120 (d) 130 (e) 140 (f) 150
2 is XRD patterns of MnO (OH) synthesized at 110 ℃ -150 ℃
3 is a SEM image of the layered Li 2 MnO 3 by synthesis temperature
(a) 600 ° C (b) 700 ° C (c) 800 ° C (d) 900 ° C
4 is XRD patterns of layered Li 2 MnO 3 heat-treated at 600 ℃-900 ℃
5A shows the discharge capacity after 15 cycles of a layered Li 2 MnO 3 cell heat treated at 600 ° C.-900 ° C.
5B shows the discharge capacity after 54 cycles of a layered Li 2 MnO 3 cell heat-treated at 800 ° C.-900 ° C.
6 is XRD data for measuring the structural change after the cycle test of layered Li 2 MnO 3 by heat treatment temperature (a) 600 ℃ (b) 700 ℃ (c) 800 ℃ (d) 900 ℃
7 shows the 1st, 3rd, 5th, 8th, 12th cycle test.
Discharge Capacity of Layered Li 2 MnO 3 -700 ℃ Heat Treatment
8 is a charge / discharge performance of the layered Li 2 MnO 3 -MnO (OH) composite

(시험 평가 조건)(Test evaluation condition)

양극 샘플의 물리-화학적 특성은 엑스선 회절(XRD, Rkgaku DMAX-III diffractometer), 주사전자현미경(SEM, Hitachi S-4300, Japan), Fourier transform infrared spectroscopy(FT-IR, Nicolet 380)으로 측정하였다. Physical-chemical properties of the positive electrode samples were measured by X-ray diffraction (XRD, Rkgaku DMAX-III diffractometer), scanning electron microscope (SEM, Hitachi S-4300, Japan), Fourier transform infrared spectroscopy (FT-IR, Nicolet 380).

코인 셀용 전극은 10mg의 양극 재료와 4mg의 TAB(Welcos)와 이소프로필 알콜로 제조하였다. 코인 셀(CR2032 type)은 아르곤이 채워진 글로브 박스에서 조립되었고, 셀은 Li2MnO3, 리튬 금속, 세퍼레이터(폴리프로필렌, Welcos), 전해질(1M LiPF6 가 포함된 1:1 부피비의 디메틸카보네이트(DMC)와 에틸렌 카보네이트(EC) 혼합용액, TECHNO Semichem Co.)로 구성되었다. The coin cell electrode was made of 10 mg of positive electrode material and 4 mg of TAB (Welcos) and isopropyl alcohol. Coin cell (CR2032 type) was assembled in an argon-filled glove box, and the cell was composed of Li 2 MnO 3 , lithium metal, separator (polypropylene, Welcos) and electrolyte (1M LiPF6 in 1: 1 volume ratio of dimethyl carbonate (DMC). ) And ethylene carbonate (EC) solution, TECHNO Semichem Co.).

충전/방전 테스트는 WBCS3000(WonA Tech, Korea)로 12 시간 동안 코인 셀을 에이징한 후 수행되었다. 충전/방전 테스트 후 양극 재료의 구조 변화 관찰을 위해 테스트된 코인 셀은 아르곤이 채워진 글로브 박스에서 분해하고, LiPF6 전해질 제거를 위해 DMC로 세척 후 상온에서 건조시킨 후 엑스선 회절(XRD)을 측정하였다.
The charge / discharge test was performed after aging the coin cell for 12 hours with WBCS3000 (WonA Tech, Korea). Coin cells tested to observe the structural change of the anode material after the charge / discharge test were decomposed in an argon-filled glove box, washed with DMC to remove LiPF 6 electrolyte, dried at room temperature, and then measured by X-ray diffraction (XRD). .

a) KMnO4와 에탄올을 증류수와 혼합한 용액을 제조하되, KMnO4 1g 당 에탄올과 증류수의 양은 1 내지 2mL, 증류수의 양의 40 내지 160 mL가 사용된다. 더욱 바람직하게는 KMnO4 1g 당 에탄올 1mL, 증류수 80mL 가 혼합된다. a) A solution of KMnO 4 and ethanol mixed with distilled water is prepared. The amount of ethanol and distilled water per 1 g of KMnO 4 is 1 to 2 mL, and 40 to 160 mL of distilled water is used. More preferably, 1 mL of ethanol and 80 mL of distilled water are mixed per 1 g of KMnO 4 .

b) 상기 혼합한 용액 30mL를 오토클레이브에 투입하여 100~150℃의 온도에서 24시간동안 교반하여 수열합성 반응시킨다. 반응 시간은 필요에 따라 다르게 선택될 수 있으며 예를 들어 10~40 시간의 범위를 가질 수 있다.b) 30 mL of the mixed solution was added to an autoclave and stirred at a temperature of 100 to 150 ° C. for 24 hours for hydrothermal synthesis. The reaction time may be selected differently as needed and may have a range of 10 to 40 hours, for example.

c) 반응 생성물을 증류수와 에탄올로 수회 세척 후 80-100℃의 온도에서 60 시간 건조시켰다. 건조 시간은 필요에 따라 다르게 선택될 수 있으며 예를 들어 60~100 시간의 범위를 가질 수 있다.c) The reaction product was washed several times with distilled water and ethanol and dried for 60 hours at a temperature of 80-100 ℃. The drying time may be selected differently as needed and may have a range of 60 to 100 hours, for example.

d) 건조 단계 후 수득한 MnO(OH)를 LiOH·H2O(Aldrich)와 혼합하되, MnO(OH) 대 LiOH·H2O의 혼합비는 Li:Mn이 몰비로 2.1:1이 되도록 하여 혼합반응시킨다.d) MnO (OH) obtained after the drying step is mixed with LiOH.H 2 O (Aldrich), but the mixing ratio of MnO (OH) to LiOH.H 2 O is mixed so that Li: Mn is 2.1: 1 in molar ratio. React.

e) 혼합반응 단계 후 반응 생성물인 층상 Li2MnO3을 대기중 600-900℃의 온도에서 4시간 열처리하였다. 열처리 시간은 필요에 따라 다르게 선택될 수 있으며 예를 들어 1~10 시간의 범위를 가질 수 있다.e) After the reaction mixture step, the layered Li 2 MnO 3 reaction product was heat-treated for 4 hours at a temperature of 600-900 ℃ in the air. The heat treatment time may be differently selected as necessary and may have a range of 1 to 10 hours, for example.

상기와 같은 제조 방법에 의해 리튬 이차 전지 양극 활물질용 층상 Li2MnO3을 제조하였다.
The layered Li 2 MnO 3 for a lithium secondary battery positive electrode active material was manufactured by the above manufacturing method.

a) KMnO4와 에탄올을 증류수와 혼합한 용액을 제조하되, KMnO4 1g 당 에탄올과 증류수의 양은 1 내지 2mL, 증류수의 양의 40 내지 160 mL가 사용된다. 더욱 바람직하게는 KMnO4 1g 당 에탄올 1mL, 증류수 80mL 가 혼합된다. a) A solution of KMnO 4 and ethanol mixed with distilled water is prepared. The amount of ethanol and distilled water per 1 g of KMnO 4 is 1 to 2 mL, and 40 to 160 mL of distilled water is used. More preferably, 1 mL of ethanol and 80 mL of distilled water are mixed per 1 g of KMnO 4 .

b) 상기 혼합한 용액을 오토클레이브 용기에 투입하여 100~150℃의 온도에서 24시간동안 교반하여 수열합성 반응시킨다. 반응 시간은 필요에 따라 다르게 선택될 수 있으며 예를 들어 10~40 시간의 범위를 가질 수 있다.b) The mixed solution is added to an autoclave vessel and stirred at a temperature of 100 to 150 ° C. for 24 hours for hydrothermal synthesis. The reaction time may be selected differently as needed and may have a range of 10 to 40 hours, for example.

c) 반응 생성물을 증류수와 에탄올로 수회 세척 후 80-100℃의 온도에서 60시간 건조시켰다. 건조 시간은 필요에 따라 다르게 선택될 수 있으며 예를 들어 60~100 시간의 범위를 가질 수 있다.c) The reaction product was washed several times with distilled water and ethanol and dried for 60 hours at a temperature of 80-100 ℃. The drying time may be selected differently as needed and may have a range of 60 to 100 hours, for example.

d) 건조 단계 후 수득한 MnO(OH)를 층상 Li2MnO3와 몰비 1:1로 혼합하여 층상 Li2MnO3-MnO(OH)복합체를 제조하였다. d) the MnO (OH) obtained after the drying step, the layer Li 2 MnO 3 with a molar ratio of 1: 1 was prepared by mixing a layered Li 2 MnO 3 -MnO (OH) complex.

상기와 같은 제조 방법에 의해 리튬 이차 전지 양극 활물질용 층상 Li2MnO3-MnO(OH) 복합체를 제조하였다.A layered Li 2 MnO 3 -MnO (OH) composite for a lithium secondary battery positive electrode active material was manufactured by the same method as described above.

실시예 1에서, d)단계의 수득한 MnO(OH)는 단축이 50-200nm이고 장축이 0.5μm 이상인 나노 막대 구조로 형성되는 것이 바람직하며, 더욱 바람직하게는 단축이 100-150nm이고 장축이 1μm 이상인 나노 막대 구조로 형성되는 것이다.In Example 1, the MnO (OH) obtained in step d) is preferably formed into a nano-rod structure with a short axis of 50-200 nm and a long axis of 0.5 μm or more, more preferably of 100-150 nm and a long axis of 1 μm. It is formed of the nano-rod structure as described above.

실시예 2에서는 d)단계의 수득한 MnO(OH)는 직경이 50-200nm인 비정질 분말로 형성되는 것이 바람직하며, 더욱 바람직하게는 직경이 70-80nm인 비정질 분말로 형성되는 것이다.In Example 2, the MnO (OH) obtained in step d) is preferably formed of an amorphous powder having a diameter of 50-200 nm, and more preferably formed of an amorphous powder having a diameter of 70-80 nm.

실시예 1의 e)단계의 층상 Li2MnO3 및 실시예2의 d) 단계에서 사용한 층상 Li2MnO3는 단사정(monoclinic) 구조이고, 단축이 50-200nm이고 장축이 0.5μm 이상인 나노 막대로 각 층이 구성되는 것이 바람직하고, 더욱 바람직하게는 단축이 100-150nm이고 장축이 1μm 이상인 나노 막대로 각 층이 구성된 것이다.Example 1 e) and layered Li 2 MnO 3 and carrying out the steps of Example 2 d) layered Li 2 MnO 3 used in step a structure monoclinic (monoclinic), shorter than the long axis is 50-200nm and nano rod 0.5μm It is preferable that each layer is constituted, and more preferably, each layer is composed of nanorods having a short axis of 100-150 nm and a major axis of 1 μm or more.

망간 전구체로서 MnO(OH)를 수열합성법으로 제조한다(비특허문헌 8참조). 도 1은 다양한 온도에서 합성된 MnO(OH)의 조직을 도시한다. 100-120℃ 반응시에는 구형의 나노 입자가 형성되고, MnO(OH)의 입자 크기는 약 70~80nm이다. 합성반응온도가 130-150℃로 높아지면 MnO(OH)의 조직이 도 1(d)-(f)와 같이 변화하는데, MnO(OH)는 단축이 100-150nm이고 장축이 1μm 이상인 나노 막대 형태가 된다. 입자 크기와 응집도는 반응 온도 증가에 따라 증가한다. MnO (OH) is manufactured by a hydrothermal synthesis method as a manganese precursor (refer nonpatent literature 8). 1 shows the structure of MnO (OH) synthesized at various temperatures. At 100-120 ° C. reaction, spherical nanoparticles are formed, and the particle size of MnO (OH) is about 70-80 nm. When the synthesis reaction temperature rises to 130-150 ° C, the structure of MnO (OH) changes as shown in Fig. 1 (d)-(f). MnO (OH) has a short axis of 100-150nm and a long axis of 1μm or more. Becomes Particle size and cohesion increase with increasing reaction temperature.

도 2는 다양한 온도에서 합성한 망간 전구체의 결정도를 나타내는 엑스선 회절(XRD) 패턴들이다. 100℃에서 합성한 MnO(OH)의 패턴은 나노크기 비정질 입자 형성으로 회절 피크가 없이 회절 분포가 매우 넓다. 그러나 반응 온도 증가에 따라 회절 강도는 높아지고 회절 피크는 뾰족해지므로, MnO(OH)의 결정도가 향상됨을 나타낸다. 도 1의 SEM 이미지에서와 같이 반응 온도 증가에 따라 MnO(OH)의 조직이 막대 형태 모양의 큰 도메인을 갖고, 엑스선 회절(XRD) 패턴은 더욱 회절 피크가 강해지는 것은 이전 보고와 일치하는 경향이다(비특허문헌 8,9 참조). 비록 소수 불순물인 Mn3O4가 약 28도와 약 60도에서 나타나지만, MnO(OH) 샘플들이 잘 결정화된 것은 명확하다.FIG. 2 is X-ray diffraction (XRD) patterns showing crystallinity of manganese precursors synthesized at various temperatures. The pattern of MnO (OH) synthesized at 100 ° C. has a wide diffraction distribution without diffraction peaks due to the formation of nanoscale amorphous particles. However, as the reaction temperature increases, the diffraction intensity increases and the diffraction peaks become sharp, indicating that the crystallinity of MnO (OH) is improved. As the SEM image of FIG. 1 shows, the structure of MnO (OH) has a large rod-shaped domain as the reaction temperature increases, and the X-ray diffraction (XRD) pattern has a tendency to be consistent with previous reports. (See Non-Patent Documents 8 and 9). Although the minor impurity Mn 3 O 4 appears at about 28 degrees and about 60 degrees, it is clear that the MnO (OH) samples are well crystallized.

도 3은 열처리 온도 변화에 따른 Li2MnO3의 SEM 이미지들이다. MnO(OH) 전구체는 140℃에서 합성한 나노 막대 형태의 것을 사용하였다. Li2MnO3의 조직은 전구체인 MnO(OH)와 동일하게 나노 막대 형태인데, 이러한 현상을 ‘chimie-douce 효과’라 한다(비특허문헌 10,11참조). Chimie-douce 반응은 topotactic 반응으로서, 반응물과 생성물이 equivalent한 구조를 가지는, 화합물의 형태를 제어하는 방법 중 하나이다. 합성된 Li2MnO3의 직경은 약 100-150nm를 갖고 길이는 조직은 전구체인 MnO(OH)와 유사한 나노 막대 형태이다.Figure 3 shows the SEM image of Li 2 MnO 3 in accordance with the heat treatment temperature. MnO (OH) precursor was used in the form of nano bars synthesized at 140 ℃. The structure of Li 2 MnO 3 is in the form of nanorods in the same manner as MnO (OH), which is called a 'chimie-douce effect' (see Non-Patent Documents 10 and 11). The chimie-douce reaction is a topotactic reaction and is one of the methods of controlling the form of the compound in which the reactants and the product have an equivalent structure. The synthesized Li 2 MnO 3 has a diameter of about 100-150 nm and its length is in the form of nanorods similar to the precursor MnO (OH).

도 4는 600-900℃에서 합성한 Li2MnO3의 결정도를 나타내는 엑스선 회절(XRD) 데이터로, 모든 Li2MnO3의 결정구조는 단사정(monoclinic) 구조이다. 이러한 단사정 구조 피크는 Li2MnO3의 전이 금속 층 내에 존재하는 Li+와 Mn4+ 이온의 양이온 정렬에 기인한다. 전하 차이는 Li2MnO3의 양이온 분포 차이를 유도하고, 동시에 대칭구조를 육방정구조 R3m에서 단사정구조 C2 /m으로 낮춘다(비특허문헌 1-3참조). 4 is X-ray diffraction (XRD) data showing the crystallinity of Li 2 MnO 3 synthesized at 600-900 ° C., and all of the crystal structures of Li 2 MnO 3 are monoclinic. This monoclinic structure peak is due to the cation alignment of Li + and Mn 4 + ions present in the transition metal layer of Li 2 MnO 3 . The charge difference induces a difference in cation distribution of Li 2 MnO 3 , and simultaneously lowers the symmetrical structure from the hexagonal structure R3m to the monoclinic structure C2 / m (see Non-Patent Documents 1-3).

600℃에서 합성한 Li2MnO3의 약 21도에서의 초격자 특징은 낮은 결정도에 따른 적층 무질서에 따라 완전히 사라진다(비특허문헌 12참조). 그러나 600℃에서 합성한 Li2MnO3에서도 단사정 구조의 특징적 회절 피크인 64.5도 및 65.5도의 피크는 각각 (135) 및 (060) 반사면으로서 명확히 나타난다. 열처리 온도 증가시 21도, 64.5도, 65.5도의 피크는 더욱 강해지고 뾰족해지는데, 이는 열처리 온도 증가에 따라 Li2MnO3의 결정도가 향상되기 때문이다.The superlattice characteristics at about 21 degrees of Li 2 MnO 3 synthesized at 600 ° C. disappear completely due to lamination disorder due to low crystallinity (see Non-Patent Document 12). However, in Li 2 MnO 3 synthesized at 600 ° C., the peaks of 64.5 degrees and 65.5 degrees, which are characteristic diffraction peaks of the monoclinic structure, are clearly shown as (135) and (060) reflecting surfaces, respectively. As the heat treatment temperature increases, the peaks of 21 degrees, 64.5 degrees, and 65.5 degrees become stronger and sharper, because the crystallinity of Li 2 MnO 3 is improved as the heat treatment temperature is increased.

제조한 Li2MnO3의 전기화학적 특성을 측정하기 위해, 충전/방전 테스트를 2.5-4.5V 컷-오프 조건에서 0.2C-rate로 수행하였고, 결과를 도 5에 나타내었다. 방전 용량은 사이클 수가 증가함에 따라 비례하여 증가하다가, 특정 최대치에서 감소함을 알 수 있다. 이러한 빠른 변화는 비가역적 상전이에 기인한다고 알려져있다(비특허문헌 13,14참조). 600℃에서 열처리한 Li2MnO3의 셀은 상대적으로 안정한 용량을 나타내고, 최소 최대 방전 용량의 차이 또한 샘플중 가장 작다. 700℃에서 열처리한 Li2MnO3의 셀은 가장 좋은 최대 방전 용량을 나타내지만, 초기 용량은 600℃에서 열처리한 Li2MnO3의 셀보다 작다. 반면, 800℃ 및 900℃에서 열처리한 Li2MnO3의 셀들은 대단히 낮은 초기 방전 용량을 나타내나, 수명특성(cycleability)은 600℃ 및 700℃에서 열처리 된 경우의 셀들에 비해 향상되었다. In order to measure the electrochemical properties of the prepared Li 2 MnO 3 , the charge / discharge test was performed at 0.2C-rate under 2.5-4.5V cut-off conditions, the results are shown in FIG. It can be seen that the discharge capacity increases proportionally as the number of cycles increases and then decreases at a certain maximum. This rapid change is known to be due to an irreversible phase transition (see Non-Patent Documents 13 and 14). The cells of Li 2 MnO 3 heat-treated at 600 ° C. exhibit relatively stable capacities, and the difference in minimum maximum discharge capacity is also the smallest of the samples. The cells of Li 2 MnO 3 heat treated at 700 ° C. show the best maximum discharge capacity, but the initial capacity is smaller than the cells of Li 2 MnO 3 heat treated at 600 ° C. On the other hand, Li 2 MnO 3 cells heat-treated at 800 ° C. and 900 ° C. showed very low initial discharge capacities, but the cycleability was improved compared to cells at 600 ° C. and 700 ° C. heat treatment.

실제로 화학양론적인 Li2MnO3는 리튬 이온이 Mn 층으로 확산하기 어려워 전기화학적 반응이 없다. 따라서 리튬 이온의 확산은 덜 결정화된 입자에서 증가될 것이다. 비록 여러 열처리 온도의 샘플들의 최대 방전 용량이 다르더라도, 전체적인 방전 용량의 경향은 동일하다. 이는 열처리 온도가 다르더라도 활성화 재료의 구조적 변화는 리튬이온의 반복되는 intercalation/deintercalation 과정 중에 동일한 기작(mechanism)을 따른다는 것을 의미한다.In fact, the stoichiometric Li 2 MnO 3 is difficult to diffuse lithium ions into the Mn layer, there is no electrochemical reaction. Thus, the diffusion of lithium ions will be increased in less crystallized particles. Although the maximum discharge capacities of the samples at various heat treatment temperatures are different, the trend of the overall discharge capacity is the same. This means that even though the heat treatment temperature is different, the structural change of the activating material follows the same mechanism during the repeated intercalation / deintercalation process of lithium ions.

셀테스트 후 구조 변화를 관찰하기 위해 테스트한 셀의 양극 재료를 DMC로 세척, 건조 한 후 XRD 분석을 실시한 것을 도 6에 나타내었다. 약 21도에서 층상 구조의 Li2MnO3의 초격자 회절 피크는 완전히 사라졌고, 약 65.5도의 단사정 특징 회절 피크 또한 급격히 감소하였다. 이는 암염(Rock-salt)의 층상 구조인 Li2MnO3가 부분적으로 붕괴하였음을 의미한다(비특허문헌 3참조). In order to observe the structural change after the cell test, the anode material of the tested cell was washed with DMC, dried and XRD analysis was performed. At about 21 degrees, the superlattice diffraction peak of the layered Li 2 MnO 3 disappeared completely, and the monoclinic characteristic diffraction peak of about 65.5 degrees was also drastically reduced. This means that Li 2 MnO 3, which is a layer structure of rock salt, partially collapsed (see Non-Patent Document 3).

셀 테스트 이후 약 40도와 약 58도에서 주 피크가 아닌 부 피크들이 나타나는데, 이들은 스피넬 LiMn2O4이다. 본 발명의 암염구조의 Li2MnO3는 스피넬 LiMn2O4으로 점진적으로 변화하는 XRD 결과는 이전 보고들과 일치한다(비특허문헌 15). LiMn2O4의 Mn3+의 영향 때문에 망간 이온들이 +3/+4 산화수간 전이가 가능하게 되어, 전기화학적으로 비활성인 Li2MnO3이 방전 용량 증가와 함께 전기화학적으로 활성화된다. 그러므로 낮은 결정도의 Li2MnO3이 낮은 온도에서 열처리 되면, 높은 적층 결함율을 가져(비특허문헌 16참조), 높은 온도에서 열처리된 높은 결정도를 갖는 Li2MnO3에 비해 구조 변화가 용이함에 기인하여, 상대적으로 높은 방전 용량을 나타낸다. 게다가 800℃ 및 900℃에서 열처리한 결정성이 우수한 Li2MnO3는 구조 변화가 천천히 일어나기 때문에, 망간이 활성화되며 산화/환원 반응(redox reaction)이 일어나는 상태까지 도달하는데 시간이 더 많이 소요된다. After the cell test, minor peaks other than the main peak appear at about 40 degrees and about 58 degrees, which are spinel LiMn 2 O 4 . XRD results of gradually changing Li 2 MnO 3 of the rock salt structure of the present invention to spinel LiMn 2 O 4 are consistent with previous reports (Non-Patent Document 15). Due to the influence of the LiMn 2 O 4 of the Mn + 3 Mn + 3 ions / + 4 is capable of the transition between the oxidation number, by electrochemically inactive Li 2 MnO 3 is activated electrochemically with increased discharge capacity. Therefore, when Li 2 MnO 3 of low crystallinity is heat-treated at a low temperature, it has a high stacking defect rate (see Non-Patent Document 16), and it is due to easier structural change compared to Li 2 MnO 3 having high crystallinity which is heat-treated at high temperature. This results in a relatively high discharge capacity. In addition, Li 2 MnO 3 having excellent crystallinity heat-treated at 800 ° C. and 900 ° C. has a slow structural change, and thus, it takes longer to reach the state where manganese is activated and a redox reaction occurs.

망간 이온간 +3/+4 산화수 전이를 명확히 하기 위해 700℃에서 열처리한 Li2MnO3의 방전 용량-전압 곡선을 도7에 나타내었다. 초기 몇회 사이클에서의 망간 +3/+4 산화/환원반응에 기인한 약 4.0V에서의 평평한 구간(plateau)은 매우 짧다. 그러나 사이클 수가 증가함에 따라 4.0V근처의 평평한 구간은 점진적으로 증가하고, 전체 방전 용량이 증가한다.The discharge capacity-voltage curve of Li 2 MnO 3 heat treated at 700 ° C. to clarify the transition of manganese ions between + 3 / + 4 oxides is shown in FIG. 7. The flat plateau at about 4.0V due to manganese + 3 / + 4 oxidation / reduction reactions in the first few cycles is very short. However, as the number of cycles increases, the flat section near 4.0V gradually increases and the total discharge capacity increases.

층상 구조의 Li2MnO3는 충전/방전 사이클이 진행됨에 따라 구조가 변화한다. 이러한 조직 및 구조의 변화를 감소시키기 위해 MnO(OH)가 망간 전구체로서 층상 Li2MnO3에 혼합된다. 100℃에서 합성한 구형의 MnO(OH) 나노 입자는 층상 Li2MnO3보다 입자 크기가 작아 층상 Li2MnO3의 조직 및 구조 변화를 저지하는 버퍼로 작용하고, 리튬 이온이 MnO(OH)에 intercalation한 후 활성화 재료로 변환시키는 역할을 한다. The layered Li 2 MnO 3 changes in structure as the charge / discharge cycle proceeds. MnO (OH) is mixed in layered Li 2 MnO 3 as a manganese precursor to reduce this change in structure and structure. MnO (OH) nanoparticles of spherical synthesized at 100 ℃ is on the layer Li 2 having a particle size than MnO 3 small to act as a buffer for preventing the Organization and Structure of the layered Li 2 MnO 3, and lithium ion is MnO (OH) After intercalation, it converts into an active material.

양극 활물질 제조를 위해 MnO(OH)는 100℃에서 합성하고, Li2MnO3와 1:1의 몰비로 혼합한다. 층상 Li2MnO3-MnO(OH) 복합체의 충전/방전 테스트를 수행한 결과를 도 8에 나타내었다. MnO (OH) was synthesized at 100 ° C. and mixed with Li 2 MnO 3 in a molar ratio of 1: 1 to prepare a positive electrode active material. The charge / discharge test of the layered Li 2 MnO 3 -MnO (OH) composite is performed in FIG. 8.

전체적 사이클 수행 결과는 방전 용량의 최대치에 대해 화산형(volcano shape)을 나타내었고, 초기 용량은 점진적으로 증가하였다. 그러나 Li2MnO3 단독시 보다 최대 방전 용량이 증가되었고, 약 40번째 사이클에서 나타났다. 이는 MnO(OH)를 버퍼 재료로 첨가하여 층상 구조에서 스피넬 구조로의 구조 변화가 천천히 진행되었음을 의미하고, 또한 리튬 이온의 intercalation/deintercalation 동안 느린 구조 변화가 일어날 수 있고, 방전 용량을 증가시킬 수 있음을 의미한다.The overall cycle performance results showed a volcano shape with respect to the maximum discharge capacity and the initial capacity gradually increased. However, the maximum discharge capacity was increased than that of Li 2 MnO 3 alone and appeared at about 40th cycle. This means that the structural change from the layered structure to the spinel structure proceeded slowly by adding MnO (OH) as a buffer material, and also a slow structure change may occur during the intercalation / deintercalation of lithium ions and increase the discharge capacity. Means.

Claims (5)

a) KMnO4와 에탄올을 증류수와 혼합한 용액을 제조하는 단계;
b) 상기 혼합한 용액을 오토클레이브 용기에 투입하고 교반하여 수열합성 반응시키는 단계;
c) 반응 생성물을 증류수와 에탄올로 수회 세척 후 건조시키는 단계;
d) 건조 단계 후 수득한 MnO(OH)를 LiOH·H2O와 혼합하여 혼합반응시키는 단계;
e) 혼합반응 단계 후 반응 생성물인 층상 Li2MnO3를 대기중 열처리하는 단계;
를 포함하는 리튬 이차 전지용 양극 활물질의 제조방법
a) preparing a solution of KMnO 4 and ethanol mixed with distilled water;
b) adding the mixed solution to an autoclave vessel and stirring to hydrothermally react;
c) washing the reaction product with distilled water and ethanol several times and drying;
d) mixing MnO (OH) obtained after the drying step with LiOH.H 2 O and mixing the mixture;
e) heat treating the layered Li 2 MnO 3 , which is a reaction product, in the air after the mixing reaction step;
Method for manufacturing a cathode active material for a lithium secondary battery comprising a
a) KMnO4와 에탄올을 증류수와 혼합한 용액을 제조하는 단계;
b) 상기 혼합한 용액을 오토클레이브 용기에 투입하고 교반하여 수열합성 반응시키는 단계;
c) 반응 생성물을 증류수와 에탄올로 수회 세척 후 건조시키는 단계;
d) 건조 단계 후 수득한 MnO(OH)를 층상 Li2MnO3와 혼합하여 층상 Li2MnO3-MnO(OH) 복합체를 제조하는 단계;
를 포함하는, 리튬 이차 전지용 양극 활물질의 제조방법
a) preparing a solution of KMnO 4 and ethanol mixed with distilled water;
b) adding the mixed solution to an autoclave vessel and stirring to hydrothermally react;
c) washing the reaction product with distilled water and ethanol several times and drying;
d) after the drying step by mixing the MnO (OH) and the resultant layered Li 2 MnO 3 to prepare a layered Li 2 MnO 3 -MnO (OH) complex;
Method of manufacturing a positive electrode active material for lithium secondary batteries, including
제1항 또는 제2항에 있어서,
KMnO4 1g 당 에탄올은 1~2mL, 증류수는 40~160 mL의 혼합비를 갖는 리튬 이차 전지용 양극 활물질의 제조방법
The method according to claim 1 or 2,
KMnO 4 Method for producing a positive electrode active material for lithium secondary batteries having a mixing ratio of 1 ~ 2mL ethanol per 1g, 40 ~ 160mL distilled water
제1항에 있어서,
d)단계의 수득한 MnO(OH)는 단축이 50-200nm이고 장축이 0.5m 이상인 나노 막대이고,
e)단계 후 층상 Li2MnO3는 단사정 구조이고, 단축이 50-200nm이고 장축이 0.5m 이상인 나노 막대로 각 층이 구성되는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질의 제조방법
The method of claim 1,
The MnO (OH) obtained in step d) is a nanorod having a short axis of 50-200 nm and a major axis of at least 0.5 m,
After the step e), the layered Li 2 MnO 3 has a monoclinic structure and has a short axis of 50-200 nm and a long axis of 0.5 m or more, each layer is composed of a cathode active material for a lithium secondary battery, characterized in that
제2항에 있어서,
d)단계의 수득한 MnO(OH)는 직경이 50-200nm인 비정질 분말이고,
d)단계의 층상 Li2MnO3는 단사정 구조이고, 단축이 50-200nm이고 장축이 0.5m 이상인 나노 막대로 각 층이 구성되는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질의 제조방법
The method of claim 2,
The MnO (OH) obtained in step d) is an amorphous powder with a diameter of 50-200 nm,
The layered Li 2 MnO 3 of step d) has a monoclinic structure, and each layer is composed of nanorods having a short axis of 50-200 nm and a major axis of 0.5 m or more.
KR1020120074431A 2012-07-09 2012-07-09 Preparation method of cathode active materials for lithium secondary battery KR101297385B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120074431A KR101297385B1 (en) 2012-07-09 2012-07-09 Preparation method of cathode active materials for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120074431A KR101297385B1 (en) 2012-07-09 2012-07-09 Preparation method of cathode active materials for lithium secondary battery

Publications (1)

Publication Number Publication Date
KR101297385B1 true KR101297385B1 (en) 2013-08-19

Family

ID=49220709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120074431A KR101297385B1 (en) 2012-07-09 2012-07-09 Preparation method of cathode active materials for lithium secondary battery

Country Status (1)

Country Link
KR (1) KR101297385B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111569A1 (en) * 2015-01-08 2016-07-14 (주)일신오토클레이브 Method for manufacturing manganese oxide nanoparticles at high rate using super-high pressure homogenizer
KR101737207B1 (en) * 2014-07-11 2017-05-29 주식회사 엘지화학 Positive polar meterials and its maufacturing method of secondary battery
CN108273496A (en) * 2018-03-16 2018-07-13 西南大学 A kind of preparation method and applications of the bionic enzyme based on bacteria cellulose
KR20180096313A (en) * 2017-02-21 2018-08-29 동아대학교 산학협력단 Control method of residual lithium compounds in cathode active materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103921A (en) * 1996-06-13 1998-01-06 Japan Storage Battery Co Ltd Positive electrode active material for lithium battery, its manufacture, and battery with the active material
JP2004220898A (en) * 2003-01-14 2004-08-05 Toyota Central Res & Dev Lab Inc Positive active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP3670895B2 (en) * 1999-08-04 2005-07-13 三洋電機株式会社 Lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103921A (en) * 1996-06-13 1998-01-06 Japan Storage Battery Co Ltd Positive electrode active material for lithium battery, its manufacture, and battery with the active material
JP3670895B2 (en) * 1999-08-04 2005-07-13 三洋電機株式会社 Lithium secondary battery
JP2004220898A (en) * 2003-01-14 2004-08-05 Toyota Central Res & Dev Lab Inc Positive active material for lithium secondary battery, its manufacturing method, and lithium secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737207B1 (en) * 2014-07-11 2017-05-29 주식회사 엘지화학 Positive polar meterials and its maufacturing method of secondary battery
US10490806B2 (en) 2014-07-11 2019-11-26 Lg Chem, Ltd. Positive electrode material of secondary battery and preparation method thereof
WO2016111569A1 (en) * 2015-01-08 2016-07-14 (주)일신오토클레이브 Method for manufacturing manganese oxide nanoparticles at high rate using super-high pressure homogenizer
KR20180096313A (en) * 2017-02-21 2018-08-29 동아대학교 산학협력단 Control method of residual lithium compounds in cathode active materials
KR101941869B1 (en) 2017-02-21 2019-01-24 동아대학교 산학협력단 Control method of residual lithium compounds in cathode active materials
CN108273496A (en) * 2018-03-16 2018-07-13 西南大学 A kind of preparation method and applications of the bionic enzyme based on bacteria cellulose

Similar Documents

Publication Publication Date Title
Chen et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for Li-ion batteries
Yang et al. Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries
Zhong et al. Synthesis and electrochemical properties of LiNi0. 8CoxMn0. 2-xO2 positive-electrode material for lithium-ion batteries
Zhang et al. Hierarchically porous micro-rod lithium-rich cathode material Li1. 2Ni0. 13Mn0. 54Co0. 13O2 for high performance lithium-ion batteries
Chen et al. High capacity 0.5 Li2MnO3· 0.5 LiNi0. 33Co0. 33Mn0. 33O2 cathode material via a fast co-precipitation method
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
KR101781764B1 (en) Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device
Liu et al. Facile synthesis of aluminum-doped LiNi0. 5Mn1. 5O4 hollow microspheres and their electrochemical performance for high-voltage Li-ion batteries
Liu et al. Synthesis of nanoarchitectured LiNi 0.5 Mn 0.5 O 2 spheres for high-performance rechargeable lithium-ion batteries via an in situ conversion route
Cong et al. (PO4) 3− polyanions doped LiNi1/3Co1/3Mn1/3O2: an ultrafast-rate, long-life and high-voltage cathode material for Li-ion rechargeable batteries
Chen et al. Controlled synthesis of spherical hierarchical LiNi1− x− yCoxAlyO2 (0< x, y< 0.2) via a novel cation exchange process as cathode materials for High-Performance Lithium Batteries
Yan et al. Effect of precipitators on the morphologies and electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 via rapid nucleation and post-solvothermal method
Remith et al. Li 1.2 Mn 0.6 Ni 0.1 Co 0.1 O 2 microspheres constructed by hierarchically arranged nanoparticles as lithium battery cathode with enhanced electrochemical performance
Xiao et al. Hydrothermal synthesis of orthorhombic LiMnO 2 nano-particles and LiMnO 2 nanorods and comparison of their electrochemical performances
Xu et al. Hydrothermal synthesis of Li4Ti5O12/TiO2 nano-composite as high performance anode material for Li-ion batteries
Xiong et al. High-performance hierarchical LiNi1/3Mn1/3Co1/3O2 microspheres synthesized via a facile template-sacrificial route
Ghiyasiyan-Arani et al. Synergic and coupling effect between SnO 2 nanoparticles and hierarchical AlV 3 O 9 microspheres toward emerging electrode materials for lithium-ion battery devices
Sivakumar et al. Sonochemical synthesis of LiNi0. 5Mn1. 5O4 and its electrochemical performance as a cathode material for 5 V Li-ion batteries
ZhenYao et al. The enhanced electrochemical performance of nanocrystalline Li [Li0. 26Ni0. 11Mn0. 63] O2 synthesized by the molten-salt method for Li-ion batteries
Meng et al. Preparation and characterization of LiNi0. 8Co0. 15Al0. 05O2 with high cycling stability by using AlO2-as Al source
Meng et al. Synthesis, structure and electrochemical properties of lithium-rich cathode material Li 1.2 Mn 0.6 Ni 0.2 O 2 microspheres
Liu et al. F doped Li3VO4: An advanced anode material with optimized rate capability and durable lifetime
Hou et al. Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process
KR101297385B1 (en) Preparation method of cathode active materials for lithium secondary battery
Zhang Synthesis and Characterization of LiNi0. 7-x Mgx Co0. 3 O2 (0... 4; x... 4; 0.1) Cathode Materials for Lithium-Ion Batteries Prepared by a Sol-Gel Method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160708

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170623

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180921

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190903

Year of fee payment: 7