JP2007230800A - Method for producing rare earth oxide - Google Patents

Method for producing rare earth oxide Download PDF

Info

Publication number
JP2007230800A
JP2007230800A JP2006052032A JP2006052032A JP2007230800A JP 2007230800 A JP2007230800 A JP 2007230800A JP 2006052032 A JP2006052032 A JP 2006052032A JP 2006052032 A JP2006052032 A JP 2006052032A JP 2007230800 A JP2007230800 A JP 2007230800A
Authority
JP
Japan
Prior art keywords
rare earth
substance
earth oxide
precipitate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052032A
Other languages
Japanese (ja)
Other versions
JP5305496B2 (en
Inventor
Masaharu Hatano
正治 秦野
Yasushi Murakami
泰 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Shinshu University NUC
Original Assignee
Nissan Motor Co Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Shinshu University NUC filed Critical Nissan Motor Co Ltd
Priority to JP2006052032A priority Critical patent/JP5305496B2/en
Publication of JP2007230800A publication Critical patent/JP2007230800A/en
Application granted granted Critical
Publication of JP5305496B2 publication Critical patent/JP5305496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing rare earth oxide having a reduced particle diameter. <P>SOLUTION: In this production method, in a solution containing a condensation inhibitor for suppressing the condensation of precipitates produced by the reaction between a rare earth-containing salt and an alkaline substance, the salt and the alkaline substance are reacted, and the obtained precipitates are heat-treated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は希土類酸化物の製造方法に関するものであり、特に製造プロセスがシンプルな水溶系均一沈殿法を用いても比表面積の高い粉末を得られる製造方法に関する。   The present invention relates to a method for producing a rare earth oxide, and more particularly to a method for producing a powder having a high specific surface area even by using an aqueous homogeneous precipitation method with a simple production process.

希土類酸化物は研磨剤、化粧品、固体酸化物燃料電池の電解質材料、あるいは電極材料の原料として工業的に有用な材料である。特に触媒材料、電極材料として用いた場合は、大きな比表面積を持つほどその反応場が広くなり活性が高くなる。   Rare earth oxides are industrially useful materials as raw materials for abrasives, cosmetics, electrolyte materials for solid oxide fuel cells, or electrode materials. In particular, when used as a catalyst material or an electrode material, the larger the specific surface area, the wider the reaction field and the higher the activity.

通常、希土類酸化物は炭酸塩、水酸化物などの無機化合物を焼成して製造することができるが、原料が祖粒である、熱処理時にシンタリングするなどの理由から比表面積の大きな粉体を製造することが困難である、という問題がある。   Usually, rare earth oxides can be manufactured by firing inorganic compounds such as carbonates and hydroxides, but powders with a large specific surface area are used because the raw materials are grains and sintering during heat treatment. There is a problem that it is difficult to manufacture.

また、一般的に高比表面積酸化物微粒子の製造方法として、ゾルゲル法、噴霧法が精力的に研究されているが、原料が高価であったり、プロセスが複雑で大量生産が困難である、といった問題がある。   In general, as a method for producing high specific surface area oxide fine particles, the sol-gel method and the spray method have been energetically studied, but the raw materials are expensive, the process is complicated, and mass production is difficult. There's a problem.

従来このような問題を解決するために、例えば特許文献1においては、希土類酸化物の前駆体となる塩の水溶液と固体状シュウ酸または固体状シュウ酸アンモニウムを反応させて希土類元素のシュウ酸塩を得た後に、得られたシュウ酸塩を水蒸気の存在下で200℃以上、650℃以下の温度熱分解によって希土類酸化物を製造する方法が開示されている。
特公昭63−63487号公報
Conventionally, in order to solve such a problem, for example, in Patent Document 1, an aqueous solution of a salt which is a precursor of a rare earth oxide is reacted with solid oxalic acid or solid ammonium oxalate to oxalate a rare earth element. A method for producing a rare earth oxide by thermal pyrolysis of the obtained oxalate in the presence of water vapor at 200 ° C. or higher and 650 ° C. or lower is disclosed.
Japanese Patent Publication No. 63-63487

しかしながら水蒸気処理をする工程が含まれているために、加湿のための設備が必要となり、プロセス管理も複雑化するため、水蒸気処理の不要な空気中での熱処理だけで高比表面積を持つ微粒子を得られる製造方法が望まれる。   However, because it includes a steam treatment process, it requires equipment for humidification and complicates process management. Therefore, fine particles with a high specific surface area can be obtained only by heat treatment in air that does not require steam treatment. The resulting manufacturing method is desired.

そこで、安価でシンプルな酸化物粉末製造方法としては、酸化物前駆体となる水溶性の塩とアルカリ性の中和剤を用いた均一沈殿方法が考えられるが、金属塩の水溶液から水酸化物の沈殿を得る際に、沈殿が容易に凝縮するために祖粒となり、空気中の熱処理をしても希土類酸化物の微粒子を得ることが困難であるといった問題点がある。   Therefore, as an inexpensive and simple method for producing an oxide powder, a uniform precipitation method using a water-soluble salt as an oxide precursor and an alkaline neutralizer can be considered. When the precipitate is obtained, the precipitate easily condenses and becomes a granule, and there is a problem that it is difficult to obtain rare-earth oxide fine particles even after heat treatment in air.

本発明ではこのような問題点を解決するために発明されたもので、水蒸気処理の不要な空気中の熱処理だけで高比表面積を持つ希土類酸化物の微粒子を得ることを目的とする。   The present invention was invented to solve such problems, and an object thereof is to obtain rare earth oxide fine particles having a high specific surface area only by heat treatment in air that does not require steam treatment.

本発明では、1種類の希土類元素あるいは2種類の希土類元素からなる希土類酸化物の製造方法であって、希土類元素を有する原料は、水溶性の塩であり、塩とアルカリ性物質との反応により生成する沈殿物の凝縮を抑制する物質を有する溶液中で、塩とアルカリ性物質とを反応させ、沈殿物を熱処理する。   In the present invention, a method for producing a rare earth oxide composed of one kind of rare earth element or two kinds of rare earth elements, wherein the raw material having the rare earth element is a water-soluble salt, which is produced by a reaction between the salt and an alkaline substance. In a solution having a substance that suppresses condensation of the precipitate, the salt is reacted with an alkaline substance, and the precipitate is heat-treated.

また、1種類の希土類元素あるいは2種類の希土類元素を有する希土類酸化物であって、希土類元素を有する水溶性の塩とアルカリ性物質との反応により生成する沈殿物の凝縮を抑制する物質を有する溶液中で、塩とアルカリ性物質とを反応させた沈殿物を熱処理する。   A solution comprising a rare earth oxide having one kind of rare earth element or two kinds of rare earth elements, the substance suppressing the condensation of precipitates formed by the reaction between a water-soluble salt containing the rare earth element and an alkaline substance. Inside, the precipitate obtained by reacting the salt with the alkaline substance is heat-treated.

本発明によれば、水溶液中での沈殿生成の初期段階において、沈殿の凝集を阻害する物質が、沈殿初期の小さな沈殿物に強く吸着し、その沈殿物が凝集しようとする際に、微粒子が細密充填して粗大化することを物理的に阻害する。したがって凝集阻害物質が存在しない場合に比較して沈殿物の粒径を小さくし、空気中の熱処理だけで高比表面積を持つ微粒子得ることができる。   According to the present invention, in the initial stage of precipitation generation in an aqueous solution, a substance that inhibits aggregation of precipitates is strongly adsorbed to a small precipitate in the initial stage of precipitation, and when the precipitate is about to aggregate, Physically hinders coarsening by close packing. Accordingly, it is possible to obtain fine particles having a high specific surface area only by heat treatment in the air by reducing the particle size of the precipitate as compared with the case where no aggregation inhibitor is present.

本発明の希土類酸化物の製造方法は、1種類の希土類元素あるいは2種類の希土類元素からなる希土類酸化物の製造方法であって、希土類元素を有する原料は、水溶性の塩であり、塩とアルカリ性物質との反応により生成する沈殿物の凝縮を抑制する物質を有する溶液中で、塩とアルカリ性物質とを反応させ、沈殿物を熱処理することを特徴とする。   The method for producing a rare earth oxide of the present invention is a method for producing a rare earth oxide comprising one kind of rare earth element or two kinds of rare earth elements, wherein the raw material having the rare earth element is a water-soluble salt, It is characterized by reacting a salt with an alkaline substance and heat-treating the precipitate in a solution having a substance that suppresses condensation of the precipitate generated by the reaction with the alkaline substance.

本発明によれば、通常の均一沈殿法にはない沈殿物の凝集を抑制する物質(以下、凝縮阻害物質とする)を水溶液中に含むために、沈殿物は凝縮が抑制されて粒径が小さい微粒子となり、その後の熱処理により得られる酸化物粉末もまた粒径が小さい微粒子となり、酸化物粉末は高い比表面積を有する。以上のように非常にシンプルな製造方法でありながら、高比表面積を有する希土類酸化物を製造することができる。   According to the present invention, a substance that suppresses the aggregation of precipitates (hereinafter referred to as a condensation inhibitor) that is not in the normal homogeneous precipitation method is contained in the aqueous solution, so that the precipitate is prevented from condensing and the particle size is reduced. The oxide powder obtained by the subsequent heat treatment also becomes a fine particle having a small particle diameter, and the oxide powder has a high specific surface area. As described above, a rare earth oxide having a high specific surface area can be produced with a very simple production method.

本発明では酸化物の前駆体として、希土類の塩化物を用いる。使用可能な前駆体は水溶性の塩であれば特に塩化物には限定されず、塩化物以外に例えば硝酸塩、硫酸塩、酢酸塩などを用いることができる。   In the present invention, rare earth chloride is used as the precursor of the oxide. The precursor that can be used is not particularly limited to a chloride as long as it is a water-soluble salt. In addition to the chloride, for example, nitrate, sulfate, acetate, and the like can be used.

中和剤であるアルカリ性物質としては、酸化物の前駆体と穏和に中和反応が進行する炭酸水素アンモニウムを用いるが、水溶液中で塩基性であれば特に限定はされない。なお、沈殿物を生成するアルカリ性物質の塩基性が強すぎると、凝縮阻害物質が沈殿物に吸着するよりも早く沈殿物の凝縮が進行するので、より穏和な中和反応が進行するために弱い塩基性を持つアルカリ物質を用いることが望ましい。   As the alkaline substance that is a neutralizing agent, ammonium hydrogen carbonate that undergoes a mild neutralization reaction with an oxide precursor is used, but is not particularly limited as long as it is basic in an aqueous solution. It should be noted that if the basic substance of the alkaline substance that forms the precipitate is too strong, the condensation proceeds faster than the condensation inhibitor adsorbs to the precipitate, so that the milder neutralization reaction proceeds and is weak. It is desirable to use a basic alkaline material.

凝縮阻害物質としては、分子内に炭素原子よりも電気陰性度の強い原子(ドナー原子)、例えば酸素原子、窒素原子を含む水溶性有機化合物を用いるが、水溶性であり、沈殿物に強く吸着し、その後の製造過程において完全に除去可能な物質であれば特に限定はされない。   As a condensation inhibitor, water-soluble organic compounds containing atoms (donor atoms) that have stronger electronegativity than carbon atoms, such as oxygen and nitrogen atoms, are used in the molecule, but they are water-soluble and strongly adsorbed to precipitates. However, there is no particular limitation as long as the substance can be completely removed in the subsequent manufacturing process.

酸化物の前駆体である水溶性の塩化物と、アルカリ性物質と、凝集阻害物質と、の混合水溶液をよく撹拝して静置した後、ろ過、洗浄して沈殿物を得る。さらに得られた沈殿物を乾燥した後、空気中で高温処理することによって酸化物粉末を得る。本発明の酸化物粉末の製造方法の実施形態について、上述の通り記載したが、これらは一実施形態に過ぎず、これらに限定されるものではない。   A mixed aqueous solution of a water-soluble chloride that is an oxide precursor, an alkaline substance, and an aggregation-inhibiting substance is thoroughly stirred and allowed to stand, followed by filtration and washing to obtain a precipitate. Furthermore, after drying the obtained precipitate, the oxide powder is obtained by high-temperature treatment in air. Although the embodiment of the method for producing an oxide powder of the present invention has been described as described above, these are merely embodiments and are not limited thereto.

以下、実施例により本発明を説明するが、下記実施例により本発明が限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by the following Example.

(実施例1)
(1)溶液Aの作成
125mmolの炭酸水素アンモニウム(NH4HCO3)を100m1のイオン交換水に溶解し、溶液Aを作成した。
(2)溶液Bの作成
20mmo1の塩化セリウム(CeC13・7H2O)と5mmolの塩化サマリウム(SmC13・6H2O)と50mmolのジエチレングリコールを100mlのイオン交換水に溶解し、溶液Bを作成した。
(3)酸化物粉末の作成
溶液温度を25℃に保ったまま、溶液Aを撹拝しながら、溶液Aに溶液Bを加えて24時間撹拝する。その後撹拝を止め、溶液Aと溶液Bとの混合溶液を25℃に保ったまま24時間静置する。その後混合溶液中の沈殿物をろ過し、水で十分に洗浄をする。その後得られた沈殿物を60℃で24時間乾燥した後、空気中600℃で2時間熱処理をして酸化物粉末を得た。得られた粉末をXRDで解析した結果サマリウムドープトセリア(以下SDC)が形成されていることを確認した。
Example 1
(1) Preparation of Solution A 125 mmol of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 100 ml of ion-exchanged water to prepare Solution A.
(2) Preparation of solution B Solution B was prepared by dissolving 20 mmol of cerium chloride (CeCl 3 · 7H 2 O), 5 mmol of samarium chloride (SmCl 3 · 6H 2 O) and 50 mmol of diethylene glycol in 100 ml of ion-exchanged water. did.
(3) Preparation of oxide powder While maintaining the solution temperature at 25 ° C., stirring the solution A, the solution B is added to the solution A and stirred for 24 hours. Thereafter, the stirring is stopped, and the mixed solution of the solution A and the solution B is allowed to stand for 24 hours while being kept at 25 ° C. Thereafter, the precipitate in the mixed solution is filtered and washed thoroughly with water. Thereafter, the obtained precipitate was dried at 60 ° C. for 24 hours and then heat-treated in air at 600 ° C. for 2 hours to obtain an oxide powder. As a result of analyzing the obtained powder by XRD, it was confirmed that samarium-doped ceria (hereinafter referred to as SDC) was formed.

(実施例2)
実施例1の(3)において熱処理温度を600℃から450℃に変更した以外は実施例1と同様にして酸化物粉末を得た。得られた粉末をXRDで解析した結果、SDCが形成されていることを確認した。
(Example 2)
An oxide powder was obtained in the same manner as in Example 1 except that the heat treatment temperature was changed from 600 ° C. to 450 ° C. in Example 1 (3). As a result of analyzing the obtained powder by XRD, it was confirmed that SDC was formed.

(実施例3)
実施例1の(2)において塩化セリウムの量を25mmolとして、塩化サマリウムを添加しない以外は実施例1と同様にして酸化物粉末を得た。得られた粉末をXRDで解析した結果、酸化セリウム(CeO2)が形成されていることを確認した。
(Example 3)
An oxide powder was obtained in the same manner as in Example 1 except that the amount of cerium chloride in Example 1 (2) was 25 mmol and samarium chloride was not added. As a result of analyzing the obtained powder by XRD, it was confirmed that cerium oxide (CeO 2 ) was formed.

(実施例4)
実施例1の(2)においてジエチレングリコールのかわりに50mmolのトリエチレングリコールを用いた以外は実施例1と同様にして酸化物粉末を得た。得られた粉末をXRDで解析した結果、SDCが形成されていることを確認した。
Example 4
An oxide powder was obtained in the same manner as in Example 1 except that 50 mmol of triethylene glycol was used instead of diethylene glycol in Example 1 (2). As a result of analyzing the obtained powder by XRD, it was confirmed that SDC was formed.

(実施例5)
実施例1の(1)においてさらに10mmolのジエタノールアミンを添加し、実施例1の(2)においてジエチレングリコールを添加しない以外は実施例1と同様にして酸化物粉末を得た。得られた粉末をXRDで解析した結果、SDCが形成されていることを確認した。
(Example 5)
An oxide powder was obtained in the same manner as in Example 1, except that 10 mmol of diethanolamine was further added in Example 1 (1), and diethylene glycol was not added in Example 1 (2). As a result of analyzing the obtained powder by XRD, it was confirmed that SDC was formed.

(実施例6)
実施例5の(1)においてジエタノールアミンのかわりにトリエタノールアミンを用いた以外は実施例1と同様にして酸化物粉末を得た。得られた粉末をXRDで解析した結果、SDCが形成されていることを確認した。
(Example 6)
An oxide powder was obtained in the same manner as in Example 1 except that triethanolamine was used instead of diethanolamine in Example 1 (1). As a result of analyzing the obtained powder by XRD, it was confirmed that SDC was formed.

(実施例7)
実施例5の(1)においてジエタノールアミンのかわりにモノエタノールアミンを用いた以外は実施例1と同様にして酸化物粉末を得た。得られた粉末をXRDで解析した結果、SDCが形成されていることを確認した。
(Example 7)
An oxide powder was obtained in the same manner as in Example 1 except that monoethanolamine was used instead of diethanolamine in Example 5 (1). As a result of analyzing the obtained powder by XRD, it was confirmed that SDC was formed.

(比較例1)
実施例1の(2)においてジエチレングリコールを添加しない以外は実施例1と同様にして酸化物粉末を得た。得られた粉末をXRDで解析した結果、SDCが形成されていることを確認した。
(Comparative Example 1)
An oxide powder was obtained in the same manner as in Example 1 except that diethylene glycol was not added in Example 2 (2). As a result of analyzing the obtained powder by XRD, it was confirmed that SDC was formed.

(比較例2)
実施例2の(2)においてジエチレングリコールを添加しない以外は実施例1と同様にして酸化物粉末を得た。得られた粉末をXRDで解析した結果、SDCが形成されていることを確認した。
(Comparative Example 2)
An oxide powder was obtained in the same manner as in Example 1 except that diethylene glycol was not added in Example 2 (2). As a result of analyzing the obtained powder by XRD, it was confirmed that SDC was formed.

(比較例3)
実施例3の(2)においてジエチレングリコールを添加しない以外は実施例1と同様にして酸化物粉末を得た。得られた粉末をXRDで解析した結果、酸化セリウム(CeO2)が形成されていることを確認した。
(Comparative Example 3)
An oxide powder was obtained in the same manner as in Example 1 except that diethylene glycol was not added in Example 3 (2). As a result of analyzing the obtained powder by XRD, it was confirmed that cerium oxide (CeO 2 ) was formed.

実施例1〜7と比較例1〜3で得られた酸化物粉末の比表面積を窒素ガスを用いたBET法により測定した。結果を表1に示す。   The specific surface areas of the oxide powders obtained in Examples 1 to 7 and Comparative Examples 1 to 3 were measured by the BET method using nitrogen gas. The results are shown in Table 1.

Figure 2007230800
Figure 2007230800

表1に示すとおり、本発明の実施例1〜7によって作成した酸化物粉末は、比較例1〜3によって作成した酸化物粉末と比較して、同じ成分の材料にもかかわらず、比表面積が著しく高いことがわかる。このため、本発明の酸化物粉末を用いて固体酸化物形燃料電池を作成する場合に、高い出力で発電することができる。なお、本発明の実施例、比較例において酸化物生成過程の熱重量分析を実施したところ、熱処理温度450℃において重量減少が停止しており、酸化物の形成が450℃までに完了していることがわかった。   As shown in Table 1, the oxide powder prepared according to Examples 1 to 7 of the present invention has a specific surface area in comparison with the oxide powder prepared according to Comparative Examples 1 to 3 despite the materials of the same components. It can be seen that it is extremely high. For this reason, when producing a solid oxide fuel cell using the oxide powder of the present invention, it is possible to generate electric power with high output. In addition, when the thermogravimetric analysis of the oxide formation process was performed in the examples and comparative examples of the present invention, the weight reduction stopped at the heat treatment temperature of 450 ° C., and the oxide formation was completed by 450 ° C. I understood it.

本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれることは言うまでもない。   It goes without saying that the present invention is not limited to the above-described embodiments, and includes various modifications and improvements that can be made within the scope of the technical idea.

本発明の実施形態の効果について説明する。   The effect of the embodiment of the present invention will be described.

この実施形態では希土類酸化物を作成する場合に、希土類元素の原料である水溶性の塩とアルカリ性物質との反応により生成される沈殿物の凝縮を阻害する凝縮阻害物質を含んだ溶液中で塩とアルカリ性物質とを反応させるので、沈殿物の凝縮を抑制し、粒径の小さい希土類酸化物の微粒子を得ることができる。   In this embodiment, when preparing a rare earth oxide, the salt in a solution containing a condensation inhibitor that inhibits the condensation of precipitates formed by the reaction between a water-soluble salt that is a raw material of the rare earth element and an alkaline substance. And the alkaline substance are reacted, so that the condensation of the precipitate can be suppressed and the rare earth oxide fine particles having a small particle diameter can be obtained.

凝縮阻害物質は、分子内に炭素原子よりも電気陰性度が大きい酸素原子または窒素原子を有しており、凝縮阻害物質が沈殿物の粒子に強く吸着することで、沈殿物の凝縮を抑制し、粒径の小さい希土類酸化物の微粒子を得ることができる。   Condensation-inhibiting substances have oxygen or nitrogen atoms that have a greater electronegativity than carbon atoms in the molecule, and the condensation-inhibiting substance strongly adsorbs to the particles of the precipitate, thereby suppressing the condensation of the precipitate. Thus, fine particles of rare earth oxide having a small particle size can be obtained.

固体酸化物形燃料電池に利用することができる。   It can be used for a solid oxide fuel cell.

Claims (6)

1種類の希土類元素あるいは2種類の希土類元素からなる希土類酸化物の製造方法であって、
前記希土類元素を有する原料は、水溶性の塩であり、
前記塩とアルカリ性物質との反応により生成する沈殿物の凝縮を抑制する物質を有する溶液中で、前記塩と前記アルカリ性物質とを反応させ、前記沈殿物を熱処理することを特徴とする希土類酸化物の製造方法。
A method for producing a rare earth oxide comprising one kind of rare earth element or two kinds of rare earth elements,
The raw material having the rare earth element is a water-soluble salt,
Rare earth oxide characterized by reacting the salt and the alkaline substance in a solution having a substance that suppresses condensation of the precipitate generated by the reaction between the salt and the alkaline substance, and heat-treating the precipitate. Manufacturing method.
前記沈殿物の凝縮を抑制する物質は、分子内に炭素原子よりも電気陰性度が大きい原子を有する水溶性有機物であることを特徴とする請求項1に記載の希土類酸化物の製造方法。   The method for producing a rare earth oxide according to claim 1, wherein the substance that suppresses the condensation of the precipitate is a water-soluble organic substance having an atom having a greater electronegativity than a carbon atom in the molecule. 前記水溶性有機物は、分子内に酸素あるいは窒素を有することを特徴とする請求項2に記載の希土類酸化物の製造方法。   The method for producing a rare earth oxide according to claim 2, wherein the water-soluble organic substance has oxygen or nitrogen in the molecule. 前記水溶性有機物は、ジエチレングリコール、トリエチレングリコール、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンのいずれかであることを特徴とする請求項2または3に記載の希土類酸化物の製造方法。   The method for producing a rare earth oxide according to claim 2 or 3, wherein the water-soluble organic substance is any one of diethylene glycol, triethylene glycol, monoethanolamine, diethanolamine, and triethanolamine. 前記アルカリ性物質は、炭素水素アンモニウムであることを特徴とする請求項1から4のいずれか一つに記載の希土類酸化物の製造方法。   The method for producing a rare earth oxide according to any one of claims 1 to 4, wherein the alkaline substance is ammonium hydrogen carbonate. 1種類の希土類元素あるいは2種類の希土類元素を有する希土類酸化物であって、
前記希土類元素を有する水溶性の塩とアルカリ性物質との反応により生成する沈殿物の凝縮を抑制する物質を有する溶液中で、前記塩と前記アルカリ性物質とを反応させた沈殿物を熱処理することを特徴とする希土類酸化物。
A rare earth oxide having one kind of rare earth element or two kinds of rare earth elements,
Heat-treating the precipitate obtained by reacting the salt and the alkaline substance in a solution having a substance that suppresses condensation of the precipitate generated by the reaction between the water-soluble salt containing the rare earth element and the alkaline substance. Rare earth oxide characterized.
JP2006052032A 2006-02-28 2006-02-28 Method for producing rare earth oxide Expired - Fee Related JP5305496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052032A JP5305496B2 (en) 2006-02-28 2006-02-28 Method for producing rare earth oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052032A JP5305496B2 (en) 2006-02-28 2006-02-28 Method for producing rare earth oxide

Publications (2)

Publication Number Publication Date
JP2007230800A true JP2007230800A (en) 2007-09-13
JP5305496B2 JP5305496B2 (en) 2013-10-02

Family

ID=38551775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052032A Expired - Fee Related JP5305496B2 (en) 2006-02-28 2006-02-28 Method for producing rare earth oxide

Country Status (1)

Country Link
JP (1) JP5305496B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105428A (en) * 1991-10-15 1993-04-27 Santoku Kinzoku Kogyo Kk Cerium oxide having oxygen absorbing and releasing ability and its production
JP2002201023A (en) * 2000-12-27 2002-07-16 National Institute For Materials Science Method for producing nano-ceria powder
JP2003020224A (en) * 2001-07-09 2003-01-24 National Institute For Materials Science Method for manufacturing ceria powder in which individual particles are separated into nanosize
JP2004083350A (en) * 2002-08-28 2004-03-18 Nippon Denko Kk Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP2004107186A (en) * 2002-09-20 2004-04-08 National Institute For Materials Science Method for manufacturing nanosphere particle ceria compound powder having easy sintering property
JP2005145739A (en) * 2003-11-12 2005-06-09 Tosoh Corp Cerium oxide powder and its production method
JP2005519845A (en) * 2002-04-15 2005-07-07 エルジー ケミカル エルティーディー. Method for producing single crystal cerium oxide powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105428A (en) * 1991-10-15 1993-04-27 Santoku Kinzoku Kogyo Kk Cerium oxide having oxygen absorbing and releasing ability and its production
JP2002201023A (en) * 2000-12-27 2002-07-16 National Institute For Materials Science Method for producing nano-ceria powder
JP2003020224A (en) * 2001-07-09 2003-01-24 National Institute For Materials Science Method for manufacturing ceria powder in which individual particles are separated into nanosize
JP2005519845A (en) * 2002-04-15 2005-07-07 エルジー ケミカル エルティーディー. Method for producing single crystal cerium oxide powder
JP2004083350A (en) * 2002-08-28 2004-03-18 Nippon Denko Kk Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP2004107186A (en) * 2002-09-20 2004-04-08 National Institute For Materials Science Method for manufacturing nanosphere particle ceria compound powder having easy sintering property
JP2005145739A (en) * 2003-11-12 2005-06-09 Tosoh Corp Cerium oxide powder and its production method

Also Published As

Publication number Publication date
JP5305496B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5063252B2 (en) Porous zirconia-based powder and method for producing the same
CN107442150B (en) Two-dimensional anatase TiO2/g-C3N4Composite material and preparation method and application thereof
JP4972140B2 (en) Scandia-stabilized zirconia and process for producing the same
CN110773219B (en) photo-Fenton desulfurization and denitrification catalyst and preparation method thereof
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
CN111097442B (en) Flue gas synergistic denitration and demercuration catalyst and preparation method thereof
WO2019076090A1 (en) Supported vocs catalytic combustion catalyst and preparation method therefor
CN103374430B (en) High-stability oxygen carrier, preparation method and applications
JP2013129554A (en) Composite oxide, method for producing the same, and catalyst for exhaust gas purification
CN104528799A (en) Preparation method of ultrafine magnesium-based rare earth hexaaluminate powder
JP6223354B2 (en) Composite oxide, method for producing the same, and catalyst for purification of exhaust gas
CN103372436B (en) Oxygen carrier, preparation method and applications
JP3586711B2 (en) Method for producing nanoceria powder
JP4869647B2 (en) Method for producing rare earth element-added cerium oxide powder
CN107552059B (en) Preparation method of iron-doped cerium-based solid solution flue gas denitration catalyst
JP2011121851A (en) Cerium-zirconium based compound oxide and manufacturing method of the same
JP5305496B2 (en) Method for producing rare earth oxide
Wang et al. Effects of deep eutectic solvent on Cu-Mn-CO composite catalysts: Surface species, physical and chemical properties in methane combustion
KR20150088409A (en) Method of forming a gdc/lscf composite powder
KR20200043060A (en) Method for synthesizing metal ion-doped ceria using solvothermal synthesis
CN104086181A (en) Preparation method of SLMTON (Sr, La, Mg, Ta, O and N) perovskite-type nitrogen oxide solid solution powder
JP2022179935A (en) Ceria-zirconia microcrystalline powder, oxygen absorption and release material using the same, and method for producing the same
CN107446580A (en) A kind of preparation method of oxysulfide luminescent powder
CN113145099A (en) Bismuth-loaded bismuth titanate/calcium titanate composite photocatalyst, and preparation method and application thereof
JP2021126599A (en) Voc removal catalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees