JP2003020224A - Method for manufacturing ceria powder in which individual particles are separated into nanosize - Google Patents

Method for manufacturing ceria powder in which individual particles are separated into nanosize

Info

Publication number
JP2003020224A
JP2003020224A JP2001207974A JP2001207974A JP2003020224A JP 2003020224 A JP2003020224 A JP 2003020224A JP 2001207974 A JP2001207974 A JP 2001207974A JP 2001207974 A JP2001207974 A JP 2001207974A JP 2003020224 A JP2003020224 A JP 2003020224A
Authority
JP
Japan
Prior art keywords
mol
aqueous solution
cerium
carbonate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001207974A
Other languages
Japanese (ja)
Other versions
JP3793802B2 (en
Inventor
Takayasu Ikegami
隆康 池上
Tsugumitsu Ri
継光 李
Hideyuki Tokuda
秀之 得田
Yusuke Moriyoshi
佑介 守吉
Toshiyuki Mori
利之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2001207974A priority Critical patent/JP3793802B2/en
Publication of JP2003020224A publication Critical patent/JP2003020224A/en
Application granted granted Critical
Publication of JP3793802B2 publication Critical patent/JP3793802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing ceria powder in which individual particles are separated into a nanosize, and which is suitable as raw material powder for manufacturing a dense sintered compact, or a catalyst, or a grinding material. SOLUTION: In the method for synthesizing ceria powder in which the mean particle size of primary particles is 10 to 100 nm, and the hard flocculation of the primary particles is not observed, a cerium salt aqueous solution having a saturation concentration of 0.05 mol/l or higher and an ammonium carbonate aqueous solution or an ammonium hydrogen carbonate aqueous solution having a saturation concentration of 0.3 to 3 mol/l are mixed to precipitate ammonium cerium carbonate which can be described by the chemical formula of (NH4 )h CeOk (CO3 )m .nH2 O (wherein, (h) is 0.05 to 1.2, (k) is <=2, and (m) is <=4), thereafter, the ammonium cerium carbonate is aged in the temperature range of 50 to 90 deg.C for <=12 hr, is cleaned, and is calcined at 500 to <1,000 deg.C. In the above manufacturing method, instead of the cerium salt aqueous solution, an acidic aqueous solution containing cerium ions and one or plural kinds of metallic ions of 0.1 to 30 mol% in total to the cerium ions is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、触媒や研磨剤とし
て、或いは電子光学材料や蛍光材料、磁気冷凍材料、レ
ーザー材料、サーミスタ材料、圧電材料、超伝導体材
料、誘電体、焼結助剤等の原料粉末として使用されるナ
ノサイズに分散したセリア粉末の製造法に関する。
TECHNICAL FIELD The present invention relates to a catalyst, an abrasive, or an electro-optical material, a fluorescent material, a magnetic refrigerating material, a laser material, a thermistor material, a piezoelectric material, a superconductor material, a dielectric material, and a sintering aid. The present invention relates to a method for producing a nano-sized dispersed ceria powder used as a raw material powder for the above.

【0002】[0002]

【従来の技術】従来より、セリアの結晶構造は蛍石型で
あることからイオン導電性に優れ、燃料電池や酸素ポン
プの性能を支配する固体電解質としての利用が期待され
ていた。また、セリアの硬度はダイヤモンドやアルミナ
のそれらに比べて小さいので、その粉末は研磨面に歪み
を残さない精密研磨材として期待されていた。さらに、
セリウムイオンの価数は雰囲気の酸素分圧で変化するの
で、セリア微粒子は触媒あるいは触媒担体としても注目
されてきた。これらの材料の機能を高めるには個々の粒
子がナノサイズに分離した粒度分布が狭いセリアの原料
粉末の開発が不可欠であった。
2. Description of the Related Art Conventionally, since ceria has a fluorite type crystal structure, it has been expected to be used as a solid electrolyte that has excellent ionic conductivity and controls the performance of fuel cells and oxygen pumps. Further, since the hardness of ceria is smaller than those of diamond and alumina, the powder thereof has been expected as a precision abrasive material that does not leave distortion on the polished surface. further,
Since the valence of cerium ions changes depending on the oxygen partial pressure of the atmosphere, fine ceria particles have been attracting attention as catalysts or catalyst supports. In order to enhance the function of these materials, it was essential to develop a raw material powder of ceria, in which individual particles were separated into nano-sized particles with a narrow particle size distribution.

【0003】セリアの前駆体を合成する従来方法とし
て、セリウム塩にアンモニア水等の塩基剤を反応させる
方法、セリア塩の加水分解法、尿素やヘキサメチレンジ
アミンの熱分解を利用した均一沈殿法、セリウム塩と炭
酸塩を用いたセリウム炭酸塩製造法、電気化学法、水熱
合成法などが提案されていた。
As a conventional method of synthesizing a ceria precursor, a method of reacting a cerium salt with a basic agent such as aqueous ammonia, a hydrolysis method of a ceria salt, a uniform precipitation method utilizing thermal decomposition of urea or hexamethylenediamine, A cerium carbonate production method using a cerium salt and a carbonate, an electrochemical method, a hydrothermal synthesis method, and the like have been proposed.

【0004】[0004]

【発明が解決しようとする課題】セリウム塩にアンモニ
ア水等の塩基剤を反応させる方法やセリウム塩の加水分
解法、尿素やヘキサメチレンジアミンの熱分解を利用し
た均一沈殿法等の水溶液を用いた従来の化学湿式法で
も、一次粒子がナノサイズのセリア粉末を合成すること
は可能である。
An aqueous solution such as a method of reacting a base agent such as aqueous ammonia with a cerium salt, a hydrolysis method of a cerium salt, a homogeneous precipitation method utilizing the thermal decomposition of urea or hexamethylenediamine is used. It is possible to synthesize ceria powder having primary particles of nanosize by the conventional chemical wet method.

【0005】しかしながら、該一次粒子は強固に凝集し
た直径が1μm以上の二次粒子を形成している。セリア粉
末の焼結性や触媒活性、研磨特性等は一次粒子の大きさ
よりも二次粒子の大きさやその形態に支配されるので、
ナノサイズの一次粒子を製造した利点が生かされないと
いう欠点があった。
However, the primary particles are strongly aggregated to form secondary particles having a diameter of 1 μm or more. Since the sinterability, catalytic activity, polishing characteristics, etc. of ceria powder are governed by the size and morphology of secondary particles rather than the size of primary particles,
There is a drawback in that the advantage of producing nano-sized primary particles is not utilized.

【0006】従来の炭酸塩法で調製したセリウム炭酸塩
は幅が0.3μm以上、長さが1μm以上の板状をしており、
該炭酸塩を仮焼して得られるセリア粉末は母塩の形状が
形骸として残るので個々の粒子がナノサイズに分離した
粉末を調製できない欠点があった。
Cerium carbonate prepared by the conventional carbonate method has a plate shape with a width of 0.3 μm or more and a length of 1 μm or more,
The ceria powder obtained by calcination of the carbonate has a defect that the shape of the mother salt remains as a skeleton, so that a powder in which individual particles are separated into a nano size cannot be prepared.

【0007】アルコキシド法はナノサイズに単分散した
原料粉末を製造できるという長所はあるが、予め、高価
な金属アルコキシドを生成する必要がありコストが高い
という欠点があった。水熱合成法は一次粒子が個々に分
離した原料粉末を製造できるが、一次粒子サイズが100n
m以上と比較的大きいことや、高価な高圧容器を必要す
ると同時に高圧処理のために作業性が悪くコストが高く
なるという欠点があった。
The alkoxide method has the advantage of being able to produce a raw material powder monodispersed in the nanosize, but has the drawback that the expensive metal alkoxide has to be produced in advance and the cost is high. The hydrothermal synthesis method can produce raw material powder in which the primary particles are individually separated, but the primary particle size is 100n.
It has a drawback that it is relatively large, such as m or more, and that it requires an expensive high-pressure container and, at the same time, the workability is poor and the cost is high because of high-pressure processing.

【0008】[0008]

【課題を解決するための手段】本発明者等は、粒子がナ
ノサイズに分離したセリア粉末について種々調査・研究
した。その結果、セリウム塩と炭酸塩を水溶液中で反応
させて生成した沈殿を比較的高い温度で熟成して成長さ
せ、個々の粒子がナノサイズに分離したセリア粉末を製
造でき、このセリア粉末は、緻密焼結体を製造する原料
粉末、あるいは触媒や研磨材として好適であることを見
出した。
Means for Solving the Problems The present inventors have conducted various investigations and researches on ceria powder in which particles are separated into nano-sized particles. As a result, a precipitate produced by reacting a cerium salt and a carbonate in an aqueous solution can be aged and grown at a relatively high temperature to produce ceria powder in which individual particles are separated into nanosizes. It has been found that it is suitable as a raw material powder for producing a dense sintered body, or as a catalyst or an abrasive.

【0009】本発明の製造方法は、0.05モル/l〜飽和濃
度のセリウム塩の水溶液と0.3〜3モル/lの炭酸アンモニ
ウム水溶液あるいは炭酸水素アンモニウム水溶液の水溶
液を混合して((NH4)hCeOk(CO3)m・nH2O(ただし、hは0.
05〜1.2、kは2以内、mは4以内)の化学式で記述できる
アンモニウムセリウムカーボネイト(以下、ACCと記述
する)を沈殿せしめた後に熟成を50℃〜90℃の範囲の温
度で最長12時間行い、洗浄し、500℃〜1000℃で仮焼す
ることを特徴とする一次粒子の平均粒径が10nm〜100nm
の一次粒子の硬い凝集が認められないセリア粉末を合成
することを特徴としている。
In the production method of the present invention, an aqueous solution of 0.05 mol / l to a saturated concentration of cerium salt and an aqueous solution of 0.3 to 3 mol / l of ammonium carbonate solution or ammonium hydrogen carbonate solution are mixed ((NH 4 ) h CeO k (CO 3 ) m・ nH 2 O (however, h is 0.
05-1.2, k is within 2 and m is within 4) Ammonium cerium carbonate (hereinafter referred to as ACC), which can be described by the chemical formula, is precipitated and then aged at a temperature in the range of 50 ° C to 90 ° C for up to 12 hours The average particle size of primary particles is 10 nm to 100 nm, which is characterized by performing, washing, and calcining at 500 ° C to 1000 ° C.
It is characterized by synthesizing ceria powder in which hard agglomeration of primary particles is not observed.

【0010】また、上記の製造法で、セリウム塩水溶液
の代わりにセリウムイオンとセリウムイオンに対して合
計が0.1モル%〜30モル%の一種或いは複数種類の金属イ
オンを含む酸性水溶液を用いることを特徴とする一次粒
子の平均粒径が10nm〜100nmの金属酸化物添加セリア粉
末を製造することを特徴としている。
Further, in the above production method, it is preferable to use an acidic aqueous solution containing cerium ions and one or more kinds of metal ions in a total amount of 0.1 mol% to 30 mol% with respect to the cerium ions instead of the cerium salt aqueous solution. It is characterized in that a ceria powder containing metal oxide having an average primary particle size of 10 nm to 100 nm is produced.

【0011】本発明の特徴を発揮するACCのh、k、mはそ
れぞれ0.05〜1.2、2以内、4以内に制限する必要があ
る。nの値はACCの乾燥状態で異なり、通常の方法で乾燥
したACCのnは4以下に制限される。これらの中で、hの値
は水溶液のpHやアンモニウムイオン濃度で制御できる。
炭酸塩を用いた場合のkはゼロに近く、炭酸水素塩の場
合は1に近い値を持つ。mは反応溶液中の炭酸イオンの濃
度で制御できる。
It is necessary to limit h, k, and m of ACC that exhibits the features of the present invention to 0.05 to 1.2, 2 or less and 4 or less, respectively. The value of n varies depending on the dry state of ACC, and n of ACC dried by the usual method is limited to 4 or less. Among these, the value of h can be controlled by the pH of the aqueous solution and the ammonium ion concentration.
When carbonate is used, k has a value close to zero, and when hydrogen carbonate has a value close to 1. m can be controlled by the concentration of carbonate ion in the reaction solution.

【0012】[0012]

【発明の実施の形態】本発明で使用するセリウム塩とし
て、硝酸塩や塩化塩、硫酸塩等の無機系のセリウム酸性
化合物や蓚酸セリウム等の有機系のセリウム酸性化合物
が例示される。水に対する溶解度の大きいセリウム塩で
あれば、特にその種類に限定されない。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the cerium salt used in the present invention include inorganic cerium acidic compounds such as nitrates, chlorides and sulfates, and organic cerium acidic compounds such as cerium oxalate. The type of cerium salt is not particularly limited as long as it has a high solubility in water.

【0013】本発明で使用するセリウム塩水溶液の濃度
は0.05モル/l以上が好ましい。該濃度が0.05モル/l以下
であると、使用する水溶液の割には得られる沈殿量が少
ないので好ましくない。該濃度はセリウム塩の飽和濃度
まで好ましい。
The concentration of the cerium salt aqueous solution used in the present invention is preferably 0.05 mol / l or more. When the concentration is 0.05 mol / l or less, the amount of precipitation obtained is small for the aqueous solution used, which is not preferable. The concentration is preferably up to the saturation concentration of the cerium salt.

【0014】本発明で使用する炭酸アンモニウムや炭酸
水素アンモニウムに特に制限はなく、市販の物でも自作
の物でも良い。最終的に得られるセリアの純度はこれら
の化学薬品にも影響されるので、セリアの使用目的によ
って使用する薬品の純度を決める必要がある。
The ammonium carbonate or ammonium hydrogen carbonate used in the present invention is not particularly limited and may be a commercially available product or a self-made product. Since the purity of the ceria finally obtained is also affected by these chemicals, it is necessary to determine the purity of the chemical to be used depending on the intended use of the ceria.

【0015】本発明で使用する炭酸塩あるいは炭酸水素
塩の濃度として、0.3〜3モル/lが好ましく、1モル/lか
ら2モル/lが特に好ましい。該濃度が0.3モル/l以下であ
ると、反応溶液中のアンモニウムイオン濃度が少なく、
hが実質的にゼロのセリウム炭酸塩が生成する。該炭酸
塩沈殿は幅が0.3μm以上、長さが1μm以上の板状であ
り、この沈殿を仮焼しても個々の粒子がナノサイズに分
離した一次粒子を製造できないので好ましくない。
The concentration of the carbonate or hydrogen carbonate used in the present invention is preferably 0.3 to 3 mol / l, particularly preferably 1 mol / l to 2 mol / l. When the concentration is 0.3 mol / l or less, the ammonium ion concentration in the reaction solution is low,
Cerium carbonate is formed with h substantially zero. The carbonate precipitate has a plate-like shape with a width of 0.3 μm or more and a length of 1 μm or more, and even if this precipitation is calcined, primary particles in which individual particles are separated into nano-sized particles cannot be produced, which is not preferable.

【0016】水溶液中のアンモニウムイオン濃度が増加
するとhが大きくなりACCの溶解度は大きくなる。hが1.0
以上になると溶解-析出機構よるACC沈殿粒子の成長や該
粒子間の接合が顕著になる。その結果、沈殿は直径が0.
4μm以上の粒子が線状或いは板状に接合した硬い凝集粒
子となる。該粒子を仮焼しても炭酸塩の形状が残留し、
個々の粒子がナノサイズに分離したセリア粉末を製造で
きないので好ましくない。
As the ammonium ion concentration in the aqueous solution increases, h increases and the solubility of ACC increases. h is 1.0
In the above cases, the growth of ACC precipitated particles and the bonding between the particles due to the dissolution-precipitation mechanism become remarkable. As a result, the precipitate has a diameter of 0.
Hard agglomerated particles in which particles of 4 μm or more are joined in a linear or plate shape. Even if the particles are calcined, the shape of carbonate remains,
It is not preferable because it is impossible to produce ceria powder in which individual particles are separated into nano-sized particles.

【0017】本発明では、ACC沈殿を適当な大きさに成
長せしめるために50℃〜90℃の温度範囲で、特に60℃〜
80℃の温度範囲で熟成することが好ましい。熟成温度が
50℃よりも低いと、該炭酸塩沈殿は非晶質あるいは非晶
質に近い微細な粒子であり、該沈殿を乾燥すると硬い塊
となり好ましくない。一方、熟成温度が90℃よりも高く
なると、熟成中に沈殿粒子が成長すると同時に沈殿粒子
が硬く接合して大きな凝集粒子を形成するので好ましく
ない。
In the present invention, in order to grow the ACC precipitate to an appropriate size, the temperature range of 50 ° C. to 90 ° C., especially 60 ° C.
Aging is preferably carried out in the temperature range of 80 ° C. The aging temperature
If it is lower than 50 ° C., the carbonate precipitate is amorphous or fine particles close to amorphous, and if the precipitate is dried, it becomes a hard mass, which is not preferable. On the other hand, when the aging temperature is higher than 90 ° C., the precipitated particles grow during the aging, and at the same time, the precipitated particles are hard-bonded to form large aggregated particles, which is not preferable.

【0018】本発明のセリウム塩と塩基性炭酸塩を反応
させる温度やそれらを混合する速度は特に制限はなく、
作業性や経済性を考慮して決定できる。
There are no particular restrictions on the temperature at which the cerium salt of the present invention is reacted with the basic carbonate, and the speed at which they are mixed.
It can be determined in consideration of workability and economy.

【0019】本発明のセリウム炭酸塩の熟成時間は、全
てのセリウム塩水溶液と塩基性炭酸塩水溶液を混合した
後に熟成温度(50℃〜90℃の範囲)で保持する時間をい
う。熟成を12時間以上行っても熟成効果はそれほど改善
されないので、12時間以上の熟成は好ましくない。
The aging time of the cerium carbonate of the present invention means the time for which all the cerium salt aqueous solution and the basic carbonate aqueous solution are mixed and then kept at the aging temperature (range of 50 ° C to 90 ° C). Even if the aging is performed for 12 hours or more, the aging effect is not improved so much, so that aging for 12 hours or more is not preferable.

【0020】本発明の洗浄は、ACC沈殿生成時に生じた
不要の陰イオンやアンモニウムイオンを除去するために
行う。陰イオンとアンモニウムイオンの合計が3重量%
以上該沈殿生成物中に残存すると、仮焼により得られる
セリア粉末は一次粒子同士が硬く凝集した粒子を形成す
るので好ましくない。
The washing according to the present invention is carried out in order to remove unnecessary anions and ammonium ions generated during the formation of ACC precipitates. 3% by weight of anion and ammonium ion
If the ceria powder obtained by calcination remains in the precipitation product as described above, primary particles form hard agglomerated particles, which is not preferable.

【0021】本発明の仮焼は、セリアの特性を発現す
るために沈殿生成物の不要な成分を除去し、該特性を
最大限に発揮させるためにナノサイズに分離したセリア
粉末を得る目的で行う。仮焼温度が500℃以下である
と、セリア粉末は多量のガスを吸着するための目的を
達成できないので好ましくない。一方、仮焼温度が1000
℃以上になると仮焼中にセリア粒子はサブミクロンまで
成長しの目的が達成できないので好ましくない。
The calcination of the present invention is intended to remove unnecessary components of the precipitation product in order to develop the characteristics of ceria and to obtain ceria powder separated into nanosizes to maximize the characteristics. To do. If the calcination temperature is 500 ° C. or lower, the ceria powder cannot achieve the purpose of adsorbing a large amount of gas, which is not preferable. On the other hand, the calcination temperature is 1000
When the temperature is higher than 0 ° C, the ceria particles grow to submicron during the calcination and the purpose cannot be achieved, which is not preferable.

【0022】仮焼を500℃〜600℃の範囲で行うと、仮焼
したセリア粉末の一次粒子は微細で、粒子同士の摩擦が
大きいので粉末の充填が不均一になる。このため、成形
を適切に行わないと焼結でクラックが入ることがある。
一方、仮焼温度が900℃以上になると、理論密度の98%以
上の焼結密度を達成する温度は1100o℃よりも高くな
る。仮焼温度が1000℃以上になると1300℃以上で焼結を
行う必要があり、焼結性は従来の方法で製造したセリア
粉末と同じになるので好ましくない。すなわち、本発明
の好ましい仮焼温度は500℃以上〜1000℃未満の範囲に
あり、600℃〜900℃の範囲が特に好ましい。
When the calcination is carried out in the range of 500 ° C. to 600 ° C., the primary particles of the calcined ceria powder are fine and the friction between the particles is large, so that the powder filling becomes uneven. For this reason, cracking may occur during sintering if not properly molded.
On the other hand, when the calcination temperature is above 900 ° C., a temperature to achieve a sintered density of 98% or more of the theoretical density is higher than 1100 o ° C.. When the calcination temperature is 1000 ° C or higher, it is necessary to sinter at 1300 ° C or higher, and the sinterability is the same as that of the ceria powder produced by the conventional method, which is not preferable. That is, the preferable calcination temperature of the present invention is in the range of 500 ° C or higher and lower than 1000 ° C, and the range of 600 ° C to 900 ° C is particularly preferable.

【0023】本発明のセリア粉末の粒径は仮焼温度に強
く依存するが、仮焼時間にはあまり依存せず、仮焼時間
を長くしても粒径の増大は無視できる。実用的仮焼時間
は1時間〜8時間であるが、この範囲を外れていても仮焼
温度が上記の範囲であれば、本発明の特徴は発揮され
る。
Although the particle size of the ceria powder of the present invention strongly depends on the calcination temperature, it does not depend so much on the calcination time, and even if the calcination time is lengthened, the increase in the particle size can be ignored. The practical calcination time is 1 to 8 hours, but the characteristics of the present invention are exhibited even if the calcination temperature is out of this range as long as the calcination temperature is in the above range.

【0024】セリアの機能性を高めるために色々な物質
が添加剤として利用される。添加効果を発揮させるため
には添加剤を0.1モル%以上加える必要がある。添加量が
増加するほど目的とする機能を高めることができるが、
添加量が30モル%を越えると機能は逆に低下するので、
本発明の添加量は0.1〜30モル%が好ましい。添加量が30
モル%以下であっても、第2相が出現する場合はセリア
本来の性質が損なわれるので好ましくなく、添加量は添
加物がセリア中に完全に固溶する量に制限する必要があ
る。
Various substances are used as additives to enhance the functionality of ceria. In order to exert the effect of addition, it is necessary to add the additive in an amount of 0.1 mol% or more. As the amount added increases, the desired function can be improved,
If the amount added exceeds 30 mol%, the function will be adversely affected.
The addition amount of the present invention is preferably 0.1 to 30 mol%. 30 added
Even if it is less than mol%, when the second phase appears, the original properties of ceria are impaired, which is not preferable, and the addition amount must be limited to the amount in which the additive is completely dissolved in ceria.

【0025】本発明の金属イオン添加では、セリウム塩
水溶液の代わりに、セリウムイオンとセリウムイオンに
対して合計が0.1モル%〜30モル%の一種或いは複数種類
の金属イオンを溶解した水溶液を用いるので、添加物イ
オンを原子オーダーで均一に分散したACCを製造でき
る。このACCを用いると、セリアが固溶できる限度内で
あれば低い温度で仮焼しても添加物イオンが均一に分散
したセリア粉末を合成できる。
In the metal ion addition of the present invention, an aqueous solution containing cerium ions and one or more kinds of metal ions in a total amount of 0.1 mol% to 30 mol% with respect to the cerium ions is used instead of the cerium salt aqueous solution. It is possible to manufacture ACC in which additive ions are uniformly dispersed in atomic order. If this ACC is used, ceria powder in which additive ions are uniformly dispersed can be synthesized even if calcined at a low temperature as long as it is within the limit where ceria can form a solid solution.

【0026】本発明でセリアに添加する金属酸化物の金
属としてイッテリビウムやサマリウムなどで例示される
希土類元素やアルミニウム、アルカリ土類金属、遷移金
属等が例示される。アルカリ金属等のように、水に対す
る溶解度が大きい炭酸塩や炭酸水素塩を形成する金属類
は本発明の方法で定量的に添加できないので好ましくな
い。
Examples of the metal of the metal oxide added to ceria in the present invention include rare earth elements such as ytterbium and samarium, aluminum, alkaline earth metals and transition metals. Metals such as alkali metals which form a carbonate or hydrogen carbonate having a high solubility in water cannot be quantitatively added by the method of the present invention, which is not preferable.

【0027】本発明の方法で製造したセリア粉末の一次
粒子の平均粒径は10nm〜100nmが好ましい。この平均粒
径が10nmよりも小さいと、粒子の充填性が悪く緻密焼結
体を製造できないので好ましくない。一方、この平均粒
径が100nm以上になるように仮焼すると、一次粒子間の
接合が進行し、従来の方法で製造したセリア粉末と同様
に硬い凝集粒子が形成されるので好ましくない。
The average particle size of the primary particles of the ceria powder produced by the method of the present invention is preferably 10 nm to 100 nm. If the average particle size is smaller than 10 nm, the packing property of the particles is poor and a dense sintered body cannot be produced, which is not preferable. On the other hand, calcination so that the average particle size becomes 100 nm or more is not preferable because bonding between the primary particles proceeds and hard agglomerated particles are formed like the ceria powder manufactured by the conventional method.

【0028】[0028]

【実施例】実施例1:攪拌しながら70℃に保った1.5モル
/lの炭酸アンモニウム溶液300mlに、0.15モル/lの硝酸
セリウム水溶液300mlを毎分5mlの速度で滴下して沈殿を
生成する。1時間保持した後ろ過し蒸留水を加える操作
を3回繰り返し硝酸イオンやアンモニウムイオンなどの
反応後に残るイオン類を除去する。最終的にろ過した沈
殿を室温、窒素気流中で乾燥する。この乾燥試料をアル
ミナ乳鉢で軽くほぐし、管状電気炉で酸素ガスを流しな
がら700℃、2時間仮焼する。
Examples Example 1: 1.5 mol kept at 70 ° C with stirring
To 300 ml of ammonium carbonate solution / l, 300 ml of 0.15 mol / l cerium nitrate aqueous solution is dropped at a rate of 5 ml / min to form a precipitate. After holding for 1 hour, filtration and addition of distilled water are repeated 3 times to remove ions such as nitrate ions and ammonium ions remaining after the reaction. The finally filtered precipitate is dried at room temperature in a nitrogen stream. This dried sample is lightly loosened in an alumina mortar and calcined at 700 ° C for 2 hours while flowing oxygen gas in a tubular electric furnace.

【0029】得られた前駆体及び仮焼粉末のSEM像をそ
れぞれ図1aと図2aに示す。図1aはACCが平板状に凝集し
ていることを示すが、図2aから仮焼により凝集は崩れて
個々の粒子がナノサイズに分離したナノサイズのセリア
粉末が得られることが分かる。
SEM images of the obtained precursor and calcined powder are shown in FIGS. 1a and 2a, respectively. Although Fig. 1a shows that ACC aggregates in a flat plate shape, it can be seen from Fig. 2a that nano-sized ceria powder in which individual grains are separated into nano-sized particles is obtained by calcining and the aggregation is destroyed.

【0030】仮焼して得た粉末を内径が6mmの金型で30M
Paで成形したのち、200MPaで静水圧プレスした錠剤の10
℃/minの速度で昇温したときの緻密化による収縮曲線を
調べた。この収縮曲線と生嵩密度から計算した嵩密度を
図3の曲線aに示す。この曲線から1000℃という非常に低
い温度で緻密化が実質的に完了することが分かる。
The powder obtained by calcination is 30M in a mold having an inner diameter of 6 mm.
10 tablets of isostatically pressed tablets at 200 MPa after molding with Pa
The shrinkage curve due to densification when the temperature was raised at a rate of ° C / min was investigated. The bulk density calculated from this shrinkage curve and the raw bulk density is shown by the curve a in FIG. It can be seen from this curve that densification is substantially complete at temperatures as low as 1000 ° C.

【0031】実施例2 実施例1の硝酸セリウム溶液の替わりに、1リットルの蒸
留水に0.12モルの硝酸セリウムと0.03モルの希土類硝酸
塩(希土類としてSm, Y, Yb)を溶解した水溶液を用い
る。その他の実験は実施例1の方法で行った。化学分析
及び粉末X線回折測定によると前駆体の化学式は添加物
の種類で大きく2つに分けることができた。
Example 2 Instead of the cerium nitrate solution of Example 1, an aqueous solution prepared by dissolving 0.12 mol of cerium nitrate and 0.03 mol of rare earth nitrate (Sm, Y, Yb as rare earth) in 1 liter of distilled water is used. Other experiments were performed by the method of Example 1. According to the chemical analysis and powder X-ray diffractometry, the chemical formula of the precursor could be divided into two types according to the kind of additive.

【0032】イオン半径が大きいサマリウムを添加した
時は、 (NH4)CeSm0.25(CO3)2.375・H2O (1) イオン半径が相対的に小さいイットリウムやイッテルビ
ウムを添加した時は、 (NH4).25CeRE0.25(CO3)2.0・2H2O (2) で記述できる。ここで、REはイットリウムあるいはイッ
テルビウムを意味する。
When samarium having a large ionic radius is added, (NH 4 ) CeSm 0.25 (CO 3 ) 2.375 · H 2 O (1) When yttrium or ytterbium having a relatively small ionic radius is added, (NH 4 ) It can be described by .25 CeRE 0.25 (CO 3 ) 2.0・ 2H 2 O (2). Here, RE means yttrium or ytterbium.

【0033】20モル%サマリウム添加ACC、20モル%イッ
トリウム添加ACC、20モル%イッテリビウム添加ACCのSEM
像をそれぞれ図1のb、c、dに、それらを700℃で2時間
仮焼した粉末のSEM像をそれぞれ図2のb、c、dに示す。
サマリウムやイットリウム、イッテリビウムの添加量を
酸化物として計算すると、セリアに対してそれぞれ10モ
ル%に相当するので、図2では10モル%Sm2O3添加CeO2
10モル%Y2O3添加CeO2、10モル%Yb2O3添加CeO2のよう
に表した。
SEM of ACC with 20 mol% samarium, ACC with 20 mol% yttrium, and ACC with 20 mol% ytterbium
The images are shown in b, c and d of FIG. 1, respectively, and the SEM images of the powders which are calcined at 700 ° C. for 2 hours are shown in b, c and d of FIG. 2, respectively.
When the addition amounts of samarium, yttrium, and ytterbium are calculated as oxides, they correspond to 10 mol% with respect to ceria, respectively, so in FIG. 2, 10 mol% Sm 2 O 3 added CeO 2 ,
It was expressed as 10 mol% Y 2 O 3 added CeO 2 and 10 mol% Yb 2 O 3 added CeO 2 .

【0034】図1と図2から、添加したACCや仮焼粉末は
球状になることが分かる。図3の曲線b,c,dはそれぞれサ
マリウムやイットリウム、イッテリビウムを添加したセ
リアの等速昇温下の緻密化曲線を示す。いずれも緻密化
は実質的に1100℃ 以下で終了しており、本発明の方法
で製造したセリア粉末は焼結性に優れていることがわか
る。
From FIGS. 1 and 2, it can be seen that the added ACC and the calcined powder are spherical. Curves b, c, and d in FIG. 3 are densification curves of ceria added with samarium, yttrium, and ytterbium under constant speed heating. In both cases, the densification is substantially 1100 ° C The following is completed, and it can be seen that the ceria powder produced by the method of the present invention has excellent sinterability.

【0035】実施例3:1.5モル/lの炭酸水素アンモニ
ウム溶液400mlを70℃に保持しながら攪拌し、1モル/lの
硝酸セリウム水溶液50mlを毎分3mlの速度で滴下して沈
殿を生成する。30分間攪拌保持した後にろ過し蒸留水を
加える方法で硝酸イオンやアンモニウムイオンなどの反
応後に残るイオン類を除去する。最終的にろ過した沈殿
を室温、窒素気流中で乾燥する。この乾燥試料をアルミ
ナ乳鉢で軽くほぐし、管状電気炉で酸素ガスを流しなが
ら800℃、2時間仮焼する。得られた前駆体を化学分析し
て得たアンモニアイオン、硝酸イオン、炭素それぞれの割
合と、該前駆体の重量減少から評価したセリウムと水の
割合から、該前駆体は(NH4).1Ce2.0O(CO3)2.0・H2Oの化
学式で記述できた。
Example 3: 400 ml of a 1.5 mol / l ammonium hydrogen carbonate solution was stirred while maintaining it at 70 ° C., and 50 ml of a 1 mol / l cerium nitrate aqueous solution was added dropwise at a rate of 3 ml / min to form a precipitate. . After stirring and holding for 30 minutes, the solution is filtered and distilled water is added to remove ions such as nitrate ions and ammonium ions remaining after the reaction. The finally filtered precipitate is dried at room temperature in a nitrogen stream. This dried sample is lightly loosened in an alumina mortar and calcined at 800 ° C for 2 hours while flowing oxygen gas in a tubular electric furnace. From the ratio of ammonia ions, nitrate ions, and carbon obtained by chemical analysis of the obtained precursor, and the ratio of cerium and water evaluated from the weight reduction of the precursor, the precursor was (NH 4 ) .1 It could be described by the chemical formula of Ce 2.0 O (CO 3 ) 2.0 · H 2 O.

【0036】該前駆体及びそれを仮焼して得た粉末のSE
M像をそれぞれ図4aと図5aに示す。図4aは直径が30〜50n
mで長さが100〜300nmの細長い米粒状の粒子を、図5aは
一辺が30〜50nmの角に丸みのあるサイコロ状の粒子を示
す。図6の曲線aに図5aに示したセリア粒子を10 ℃/min
速度で昇温した時の各温度における嵩密度を示す。この
曲線から、1100℃までの等速昇温焼成で97%まで緻密化
したことが分かる。
SE of the precursor and powder obtained by calcining the precursor
M images are shown in Figures 4a and 5a, respectively. Figure 4a has a diameter of 30-50n
Fig. 5a shows elongated rice-shaped particles having a length of m and a length of 100 to 300 nm, and Fig. 5a shows dice-shaped particles having a side of 30 to 50 nm and rounded corners. The curve a in FIG. 6 shows the ceria particles shown in FIG. ℃ / min
The bulk density at each temperature when the temperature is raised at a speed is shown. From this curve, it can be seen that the densification to 97% was achieved by the constant rate heating to 1100 ° C.

【0037】比較例1:熟成を室温で行う以外は実施例1
の方法でセリア粉末を合成し、等速昇温焼結実験を行っ
た。図3の曲線eに線収縮率の測定値から計算した焼結体
の嵩密度を示す。800℃以上で急激に収縮するが、1000
℃以上では緻密化速度が低下し、1300℃まで昇温しても
到達密度は理論密度の94%にすぎなかった。
Comparative Example 1: Example 1 except that aging is performed at room temperature
Ceria powder was synthesized by the above method, and a constant rate temperature rising sintering experiment was performed. Curve e in FIG. 3 shows the bulk density of the sintered body calculated from the measured values of the linear shrinkage. Shrinks sharply above 800 ° C, but 1000
Above ℃, the densification rate decreased, and the reached density was only 94% of the theoretical density even after heating up to 1300 ℃.

【0038】比較例2:熟成を90℃で行う以外は実施例1
の方法でセリア粉末を合成し、等速昇温焼結実験を行っ
た。図3の曲線fに線収縮率の測定値から計算した焼結体
の嵩密度を示す。1100℃〜1400℃の温度範囲では、曲線
fの方が曲線eよりも高密度を示すが、1300℃まで昇温し
ても到達密度は理論密度の96%にすぎなかった。
Comparative Example 2: Example 1 except aging at 90 ° C
Ceria powder was synthesized by the above method, and a constant rate temperature rising sintering experiment was performed. Curve f in FIG. 3 shows the bulk density of the sintered body calculated from the measured values of the linear shrinkage. In the temperature range from 1100 ℃ to 1400 ℃, the curve
Although f shows a higher density than curve e, the reached density was only 96% of the theoretical density even when the temperature was raised to 1300 ° C.

【0039】比較例3:実施例3の方法で調製した前駆体
を1000℃で仮焼した。該粉末の圧粉体の焼結による嵩密
度の変化を図6の曲線bに示す。同曲線から、成形体密度
は理論密度の67%〜68%と大きいが焼結温度が高くなって
も緻密化はあまり進まず、1500℃で2時間焼成しても焼
結密度は95以下であったことが分かる。
Comparative Example 3: The precursor prepared by the method of Example 3 was calcined at 1000 ° C. A curve b in FIG. 6 shows a change in bulk density due to sintering of the green compact of the powder. From the same curve, the compact density is as large as 67% to 68% of the theoretical density, but the densification does not proceed much even if the sintering temperature rises, and the sintering density is 95 or less even after firing at 1500 ° C for 2 hours. I know there was.

【0040】比較例4:沈殿を30℃で熟成した以外は実
施例3の条件で合成した前駆体及び仮焼粉末のSEM像をそ
れぞれ図4bと5bに示す。これらの図の比較から、前駆体
粉末の形状は仮焼後も残る事が分かる。図6の曲線cに図
5bに示したセリア粉末の圧粉体を焼結した時の嵩密度変
化を示す。なお、成形や焼結は実施例3の方法で行っ
た。図6の曲線cから緻密化が非常に悪いことが分かる。
Comparative Example 4: SEM images of the precursor and calcined powder synthesized under the conditions of Example 3 except that the precipitate was aged at 30 ° C. are shown in FIGS. 4b and 5b, respectively. From the comparison of these figures, it can be seen that the shape of the precursor powder remains even after calcination. Figure 6 in curve c
5 shows a change in bulk density when the green compact of ceria powder shown in 5b is sintered. The molding and sintering were performed by the method of Example 3. It can be seen from curve c in Fig. 6 that the densification is very poor.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のACC(a:無添加、b:20モル%サマリウ
ム添加、c:20モル%イットリウム添加、d:20モル%イッテ
リビウム添加)の図面代用SEM写真である。
FIG. 1 is a drawing-substitute SEM photograph of ACC of Example 1 (a: no addition, b: 20 mol% samarium added, c: 20 mol% yttrium added, d: 20 mol% ytterbium added).

【図2】図1に示すACCを700℃で2時間仮焼した粉末の
図面代用SEM写真である。
FIG. 2 is a drawing-substitute SEM photograph of powder obtained by calcining the ACC shown in FIG. 1 at 700 ° C. for 2 hours.

【図3】種々のセリアの等速昇温焼結による嵩密度変化
を示すグラフである。
FIG. 3 is a graph showing changes in bulk density of various types of ceria due to constant rate temperature rising sintering.

【図4】実施例3(a:75℃で熟成)および比較例4(b:
30℃で熟成)で合成したACCのの図面代用SEM写真で
ある。
FIG. 4 Example 3 (a: aged at 75 ° C.) and Comparative Example 4 (b:
It is a drawing-substitute SEM photograph of ACC synthesized by aging at 30 ° C).

【図5】図4に示す実施例3(a:75℃で熟成)および比
較例4(b:30℃で熟成)で合成したACCを700℃で仮焼し
て得たセリア粉末の図面代用SEM写真である。
5 is a drawing substitute of the ceria powder obtained by calcining ACC synthesized in Example 3 (a: aged at 75 ° C.) and Comparative Example 4 (b: aged at 30 ° C.) shown in FIG. 4 at 700 ° C. It is a SEM photograph.

【図6】実施例、比較例3、比較例4で得られたセリア
の等速昇温焼結による嵩密度変化を示すグラフである。
FIG. 6 is a graph showing a change in bulk density of ceria obtained in Examples, Comparative Examples 3 and 4 due to constant rate temperature rising sintering.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守吉 佑介 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 (72)発明者 森 利之 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 Fターム(参考) 4G076 AA02 AA18 AB07 BA13 BA15 BA38 BA45 BD02 CA04 CA05 CA26 DA01 DA03 DA04 DA07 DA11 DA30    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yusuke Moriyoshi             1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent             National Institute for Materials Science (72) Inventor Toshiyuki Mori             1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent             National Institute for Materials Science F-term (reference) 4G076 AA02 AA18 AB07 BA13 BA15                       BA38 BA45 BD02 CA04 CA05                       CA26 DA01 DA03 DA04 DA07                       DA11 DA30

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0.05モル/l〜飽和濃度のセリウム塩水溶
液と0.3〜3モル/lの炭酸アンモニウム水溶液あるいは炭
酸水素アンモニウム水溶液を混合して((NH4)hCeOk(C
O3)m・nH2O(ただし、hは0.05〜1.2、kは2以内、mは4以
内)の化学式で記述できるアンモニウムセリウムカーボ
ネイトを沈殿せしめた後に、熟成を50℃〜90℃の温度範
囲で最長12時間行い、洗浄し、500℃以上〜1000℃未満
で仮焼することを特徴とする一次粒子の平均粒径が10nm
〜100nmの一次粒子の硬い凝集が認められないセリア粉
末の合成法。
1. An aqueous solution of cerium salt having a concentration of 0.05 mol / l to a saturated concentration and an aqueous solution of ammonium carbonate or an aqueous solution of ammonium hydrogencarbonate having a concentration of 0.3 to 3 mol / l are mixed ((NH 4 ) h CeO k (C
O 3 ) m・ nH 2 O (however, h is 0.05 to 1.2, k is 2 or less, m is 4 or less) can be described by ammonium cerium carbonate, and then aging is performed at a temperature of 50 to 90 ° C. The average particle diameter of the primary particles is 10 nm, which is characterized by performing cleaning for up to 12 hours in the range, washing, and calcining at 500 ° C or higher and lower than 1000 ° C.
A method for synthesizing ceria powder in which hard agglomeration of primary particles of ~ 100 nm is not observed.
【請求項2】 請求項1記載の合成法で、セリウム塩水
溶液の代わりにセリウムイオンとセリウムイオンに対し
て合計が0.1モル%〜30モル%の一種或いは複数種類の金
属イオンを含む酸性水溶液を用いることを特徴とする一
次粒子の平均粒径が10nm〜100nmの金属酸化物添加セリ
ア粉末の製造法。
2. The synthetic method according to claim 1, wherein instead of the aqueous cerium salt solution, an acidic aqueous solution containing cerium ions and one or more kinds of metal ions in a total amount of 0.1 mol% to 30 mol% with respect to the cerium ions is used. A method for producing a metal oxide-added ceria powder having an average primary particle diameter of 10 nm to 100 nm, which is used.
JP2001207974A 2001-07-09 2001-07-09 Production method of ceria powder with individual particles separated into nano size Expired - Lifetime JP3793802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207974A JP3793802B2 (en) 2001-07-09 2001-07-09 Production method of ceria powder with individual particles separated into nano size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207974A JP3793802B2 (en) 2001-07-09 2001-07-09 Production method of ceria powder with individual particles separated into nano size

Publications (2)

Publication Number Publication Date
JP2003020224A true JP2003020224A (en) 2003-01-24
JP3793802B2 JP3793802B2 (en) 2006-07-05

Family

ID=19043876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207974A Expired - Lifetime JP3793802B2 (en) 2001-07-09 2001-07-09 Production method of ceria powder with individual particles separated into nano size

Country Status (1)

Country Link
JP (1) JP3793802B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104134A1 (en) * 2003-05-22 2004-12-02 Hanwha Chemical Corporation Concentrate of fine ceria particles for chemical mechanical polishing and preparing method thereof
WO2006006739A1 (en) * 2004-07-14 2006-01-19 National Institute For Materials Science Pt/CeO2/CONDUCTIVE CARBON NANOHETEROANODE MATERIAL AND PROCESS FOR PRODUCING THE SAME
CN1321896C (en) * 2004-04-14 2007-06-20 北京方正稀土科技研究所有限公司 Process for preparing nano cerium dioxide
JP2007230800A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Method for producing rare earth oxide
JP2007245054A (en) * 2006-03-17 2007-09-27 Dowa Holdings Co Ltd Cerium oxide powder for catalyst, its manufacturing method and dpf
KR100815050B1 (en) * 2005-06-22 2008-03-18 주식회사 엘지화학 Method for preparing cerium oxide nano powder
KR100815051B1 (en) * 2005-06-22 2008-03-18 주식회사 엘지화학 Method for preparing cerium carbonate nano powder
JP2008515764A (en) * 2005-10-14 2008-05-15 エルジー・ケム・リミテッド Method for producing cerium oxide powder for CMP slurry and method for producing slurry composition for CMP using the same
CN100485086C (en) * 2006-04-14 2009-05-06 中国科学院金属研究所 Preparation method for depositing cerium dioxide on carbon nano-tube in overcritical water
WO2009102615A2 (en) 2008-02-12 2009-08-20 Saint-Gobain Ceramics & Plastics, Inc. Ceria material and method of forming same
JP2011042512A (en) * 2009-08-19 2011-03-03 Fuji Kagaku Kk Method for producing rare earth carbonate particle
WO2014208379A1 (en) * 2013-06-27 2014-12-31 コニカミノルタ株式会社 Abrasive, method for producing abrasive, and polishing method
WO2014208414A1 (en) * 2013-06-27 2014-12-31 コニカミノルタ株式会社 Cerium oxide abrasive, method for producing cerium oxide abrasive, and polishing method
WO2015019888A1 (en) * 2013-08-07 2015-02-12 コニカミノルタ株式会社 Polishing material particles, method for producing polishing material, and polishing processing method
KR20150028293A (en) * 2012-06-13 2015-03-13 세리온 엔터프라이즈, 엘엘씨 Nanoceria for the treatment of oxidative stress

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975874B1 (en) 2020-03-27 2021-12-01 日本化薬株式会社 Dissimilar metal-doped cerium oxide and its manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104134A1 (en) * 2003-05-22 2004-12-02 Hanwha Chemical Corporation Concentrate of fine ceria particles for chemical mechanical polishing and preparing method thereof
CN1321896C (en) * 2004-04-14 2007-06-20 北京方正稀土科技研究所有限公司 Process for preparing nano cerium dioxide
JP5164089B2 (en) * 2004-07-14 2013-03-13 独立行政法人物質・材料研究機構 Pt / CeO2 / conductive carbon nanoheteroanode material and method for producing the same
WO2006006739A1 (en) * 2004-07-14 2006-01-19 National Institute For Materials Science Pt/CeO2/CONDUCTIVE CARBON NANOHETEROANODE MATERIAL AND PROCESS FOR PRODUCING THE SAME
US7563394B2 (en) 2004-07-14 2009-07-21 National Institute For Materials Science Pt/CeO2/electroconductive carbon nano-hetero anode material and production method thereof
KR100815050B1 (en) * 2005-06-22 2008-03-18 주식회사 엘지화학 Method for preparing cerium oxide nano powder
KR100815051B1 (en) * 2005-06-22 2008-03-18 주식회사 엘지화학 Method for preparing cerium carbonate nano powder
JP2008515764A (en) * 2005-10-14 2008-05-15 エルジー・ケム・リミテッド Method for producing cerium oxide powder for CMP slurry and method for producing slurry composition for CMP using the same
JP2007230800A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Method for producing rare earth oxide
JP2007245054A (en) * 2006-03-17 2007-09-27 Dowa Holdings Co Ltd Cerium oxide powder for catalyst, its manufacturing method and dpf
CN100485086C (en) * 2006-04-14 2009-05-06 中国科学院金属研究所 Preparation method for depositing cerium dioxide on carbon nano-tube in overcritical water
WO2009102615A2 (en) 2008-02-12 2009-08-20 Saint-Gobain Ceramics & Plastics, Inc. Ceria material and method of forming same
EP2260013A4 (en) * 2008-02-12 2014-12-24 Saint Gobain Ceramics Ceria material and method of forming same
JP2011042512A (en) * 2009-08-19 2011-03-03 Fuji Kagaku Kk Method for producing rare earth carbonate particle
KR20150028293A (en) * 2012-06-13 2015-03-13 세리온 엔터프라이즈, 엘엘씨 Nanoceria for the treatment of oxidative stress
KR101990070B1 (en) 2012-06-13 2019-06-17 세리온, 엘엘씨 Nanoceria for the treatment of oxidative stress
WO2014208379A1 (en) * 2013-06-27 2014-12-31 コニカミノルタ株式会社 Abrasive, method for producing abrasive, and polishing method
WO2014208414A1 (en) * 2013-06-27 2014-12-31 コニカミノルタ株式会社 Cerium oxide abrasive, method for producing cerium oxide abrasive, and polishing method
JPWO2014208379A1 (en) * 2013-06-27 2017-02-23 コニカミノルタ株式会社 Abrasive material, method for producing abrasive material, and polishing method
US10047262B2 (en) 2013-06-27 2018-08-14 Konica Minolta, Inc. Cerium oxide abrasive, method for producing cerium oxide abrasive, and polishing method
WO2015019888A1 (en) * 2013-08-07 2015-02-12 コニカミノルタ株式会社 Polishing material particles, method for producing polishing material, and polishing processing method
TWI555832B (en) * 2013-08-07 2016-11-01 Konica Minolta Inc Grinding material, grinding material and grinding method
US9868885B2 (en) 2013-08-07 2018-01-16 Konica Minolta, Inc. Polishing material particles, method for producing polishing material, and polishing processing method

Also Published As

Publication number Publication date
JP3793802B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP3793802B2 (en) Production method of ceria powder with individual particles separated into nano size
Quinelato et al. Synthesis and sintering of ZrO2-CeO2 powder by use of polymeric precursor based on Pechini process
JP3861144B2 (en) Method for producing easily sinterable nanospherical ceria compound powder
JP6191608B2 (en) Method for producing abrasive particles
Wang et al. Low-temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2 ceramics
KR20070032907A (en) Cerium carbonate powder and manufacturing method, cerium oxide powder and method prepared therefrom, CPM slurry comprising the same
JP2008024555A (en) Zirconia fine powder, its manufacturing method and its use
JP2012504094A (en) Zirconium oxide powder
JP5467255B2 (en) Stabilized zirconia fine particles and method for producing the same
JP3586711B2 (en) Method for producing nanoceria powder
JP4869647B2 (en) Method for producing rare earth element-added cerium oxide powder
WO2007142116A1 (en) Method for producing metal oxide particle
KR100815050B1 (en) Method for preparing cerium oxide nano powder
JP2012504093A (en) Zirconium hydrate powder
JP4729700B2 (en) Dy-doped nano ceria-based sintered body
Bell et al. Practical colloidal processing of multication ceramics
JP2012504095A (en) Method for producing a derivative, hydrate or oxide of zirconium
Thomas et al. Structure and properties of nanocrystalline BaHfO3 synthesized by an auto-igniting single step combustion technique
JP5140909B2 (en) Rare earth element-containing cerium oxide powder containing aluminum oxide
JP4195931B2 (en) Scandium compound ultrafine particles and method for producing the same
JP3355655B2 (en) Method for producing hydrated zirconia gel and zirconia powder
KR101249991B1 (en) Method for Preparing Cerium Carbonate Powder Having Various Shape
JPH07118016A (en) Uniform-composition zirconia solid solution monodisperse fine globular powder and its production
JP3146578B2 (en) Manufacturing method of zirconia fine powder
JP3906353B2 (en) YAG fine powder manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Ref document number: 3793802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term