JPH07118016A - Uniform-composition zirconia solid solution monodisperse fine globular powder and its production - Google Patents

Uniform-composition zirconia solid solution monodisperse fine globular powder and its production

Info

Publication number
JPH07118016A
JPH07118016A JP5298871A JP29887193A JPH07118016A JP H07118016 A JPH07118016 A JP H07118016A JP 5298871 A JP5298871 A JP 5298871A JP 29887193 A JP29887193 A JP 29887193A JP H07118016 A JPH07118016 A JP H07118016A
Authority
JP
Japan
Prior art keywords
spherical
zirconia
uniform
particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5298871A
Other languages
Japanese (ja)
Inventor
Etsuro Kato
悦朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5298871A priority Critical patent/JPH07118016A/en
Publication of JPH07118016A publication Critical patent/JPH07118016A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the powder excellent in dispersibility by hydrothermally treating an aq. soln. contg. specified amts. of Zr compd. and hydrochloric acid at >=100 deg.C, immobilizing the compd. into a monoclinic globular zirconia superfine particle and coating the surface with a hydroxide, etc. CONSTITUTION:A soln. consisting of one mol of Zr compd. (as ZrO2), 0.8-2mols of HCI and 6-10mols of H2O is hydrothermally treated at 100-220 deg.C in a closed vessel to obtain monodisperse monoclinic globular zirconia fine particles having 0.2-0.8mum diameter. The particle is vacuum-dried, then heat-treated at >=100 deg.C and immobilized into the globular fine particle stable to water. The fine particle is dispersed in the soln. of the soluble salts of rare-earth elements (Se, Y, Yb) and urea to obtain a uniform mixed suspension. A hydroxide, etc., are then deposited on the fine particle surface by the homogeneous precipitation due to the theraml decomposition of the urea in the soln. The coated particle is calcined at >=700 deg.C to cause it to enter into solid soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業状の利用分野】本発明は、高強度ジルコニアセラ
ミックス並びに酸素イオン導電性ジルコニアセラミック
スの原料粉末として有用な、サブミクロンの均一組成ジ
ルコニア固溶体単分散球状微粒子粉末を大量に製造する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a large amount of submicron homogeneous zirconia solid solution monodispersed spherical fine particle powder useful as a raw material powder for high strength zirconia ceramics and oxygen ion conductive zirconia ceramics. is there.

【0002】[0002]

【背景技術】ファインセラミックスの原料微粉末、特に
焼結体用としては、比較的低温で緻密化が進むように、
通常は微粒子粉末が用いられるが、さらに成形充填密度
を高くすることができ、焼結が均一に進行して寸法精度
の良い、均質な焼結体微組織を得るためには、一般に高
純度、均一、球形状、孤立性に優れた微粒子が、望まし
いと言われている。
[Background Art] For fine powders of fine ceramics, especially for sintered bodies, densification proceeds at a relatively low temperature,
Usually, fine particle powder is used, but in order to further increase the molding packing density, and to obtain a homogeneous sintered body microstructure with good dimensional accuracy and even progress of sintering, generally high purity, It is said that fine particles having a uniform shape, a spherical shape and excellent isolation are desirable.

【0003】しかしながら現在、ジルコニア系ファイン
セラミックスの焼結用原料として用いられるジルコニア
微粉末の粒子径は一般に0.2〜0.8μmの超微粒子
から成るもので、このようなジルコニア微粒子粉末は、
非晶質の水酸化ジルコニウム、又は0.1μm以下のコ
ロイド生成物などの仮焼物をボールミルなどにより微粉
砕して製造するものが殆どであり、工業的に実用されて
いるものは、球状ではなく、単分散でもないのが現状で
ある。
However, at present, zirconia fine powder used as a raw material for sintering zirconia-based fine ceramics is generally composed of ultrafine particles having a particle size of 0.2 to 0.8 μm.
Mostly, amorphous zirconium hydroxide or a calcined product such as a colloidal product having a particle size of 0.1 μm or less is finely pulverized by a ball mill or the like, and is manufactured industrially. At present, it is not monodisperse.

【0004】この問題の他に、さらにジルコニアセラミ
ックスでは、ZrO単独では焼結体として使用され
ず、必ず安定化剤として、アルカリ土類もしくは希土類
の金属酸化物を添加し、一般に固溶体セラミックスとし
て使用されるため、化学組成の均一性も極めて重要な問
題となる。通常ジルコニアセラミックスでは、高強度構
造材料には3モル%程度のY、イオン導電体とし
ては8〜10モル%程度のSc、Y、Yb、などの希土
類金属の酸化物を含む固溶体が利用されているが、一般
に均一な分布を図るため、これらの塩とZrの塩の混合
溶液からのアルカリによる共沈法などを利用して比較的
均一な混合物を得、これを仮焼し、粉砕することによっ
て固溶体粉末が得られている。
In addition to this problem, in zirconia ceramics, ZrO 2 alone is not used as a sintered body, but an alkaline earth or rare earth metal oxide is always added as a stabilizer, and it is generally used as a solid solution ceramic. Therefore, the uniformity of the chemical composition is also a very important issue. Usually, in zirconia ceramics, a solid solution containing about 3 mol% Y 2 O 3 as a high-strength structural material and about 8 to 10 mol% Sc, Y, or Yb oxide of a rare earth metal as an ionic conductor is used. In general, in order to obtain a uniform distribution, a relatively uniform mixture is obtained by coprecipitation with an alkali from a mixed solution of these salts and a Zr salt, and calcined. A solid solution powder is obtained by pulverizing.

【0005】しかしながら、これらの希土類元素はZr
に比し極めて塩基性が強く、析出速度が遅いため、如何
に急速な共沈を図っても、沈澱物中の希土類元素の分布
は均一となり難く、仮焼後もこの不均一は局部的に残存
し、個々の微粒子単位でみると、それぞれ極めて異なる
固溶体組成を持つものしか今までは得られていなかっ
た。例えば、バルクでは3モル%のYを含有する
市販の粉末について、個々の粒子を分析すると1%〜1
8%のバラツキがあると言われていた(ジルコニアセラ
ミックス、、115(1987))。
However, these rare earth elements are
In comparison with the above, the distribution of rare earth elements in the precipitate is difficult to be uniform, no matter how rapid co-precipitation is attempted, because the basicity is extremely strong and the precipitation rate is slow. Remaining, and in terms of individual fine particles, only those having extremely different solid solution compositions have been obtained so far. For example, for a commercial powder containing 3 mol% Y 2 O 3 in bulk, individual particle analysis of 1% to 1
It was said that there was a variation of 8% (Zirconia Ceramics, 9 , 115 (1987)).

【0006】各微粒子ごとの化学組成のバラツキは、粒
径のバラツキと同様、焼結過程における粒成長挙動に影
響し、生成する焼結セラミックスの粒径分布が不均一な
ものとなる。部分安定化ジルコニアセラミックスでは転
移による体積変化の応用、いわゆる転移強化を利用する
ものであり、転移が粒径と安定化剤の濃度に影響するの
で、粒径分布と安定化剤の濃度分布は特別に重要であ
り、それらの均一化によって機械的強度と劣化特性が大
きく改善される筈である。また酸素イオン導電体として
用いられる安定化ジルコニアセラミックスでは、導電特
性が安定化剤の濃度によって決定されるので、その濃度
分布の均一性は、優れた導電性能を発揮させるために不
可欠の条件であり、特に燃料電池用の固体電解質として
使用する薄板状セラミックスでは、導電率、強度、耐熱
衝撃性など、重要な全ての性能が、粒径分布と、添加成
分元素の濃度分布によって決定されると考えられるの
で、この問題は一層重要である。
The variation in the chemical composition of each fine particle influences the grain growth behavior in the sintering process similarly to the variation in the grain size, and the grain size distribution of the resulting sintered ceramics becomes non-uniform. Partially stabilized zirconia ceramics utilizes the application of volume change due to transition, so-called transition strengthening.Since the transition affects the particle size and the concentration of the stabilizer, the particle size distribution and the concentration distribution of the stabilizer are special. The mechanical strength and deterioration characteristics should be greatly improved by making them uniform. Further, in the stabilized zirconia ceramics used as the oxygen ion conductor, since the conductive property is determined by the concentration of the stabilizer, the uniformity of the concentration distribution is an essential condition for exhibiting excellent conductive performance. In particular, for thin plate ceramics used as a solid electrolyte for fuel cells, all important performances such as conductivity, strength and thermal shock resistance are considered to be determined by the particle size distribution and the concentration distribution of additive component elements. This problem is even more important as it is addressed.

【0007】更に、最近の研究では、第3成分として殆
ど固溶体とはならないAlの添加による強度変化
も研究されているが、微量の添加の場合には、ジルコニ
アがサブミクロンの超微粒子であることから、やはりそ
の均一な分布が大問題となる。本発明における添加成分
元素としては、Sc、Y、Yb、などの希土類元素の塩
化物や硝酸塩、Mg、Al、Niなどアンモニア水によ
り容易に沈澱する塩化物や硝酸塩などの可溶性塩があ
る。
Further, in recent studies, the strength change due to the addition of Al 2 O 3 which hardly forms a solid solution as the third component has also been studied, but in the case of adding a trace amount, zirconia is a submicron ultrafine particle. Therefore, its uniform distribution is still a big problem. Examples of the additive component element in the present invention include chlorides and nitrates of rare earth elements such as Sc, Y, and Yb, and soluble salts such as chlorides and nitrates that easily precipitate with aqueous ammonia such as Mg, Al, and Ni.

【0008】[0008]

【発明が解決しようとする問題点】以上のように、従来
のジルコニア微粒子粉末は、サブミクロンではあるが、
粒子径、粒子形状が不均一であるのみならず、個々の微
粒子単位では化学組成比も極めて不均一なものしか得ら
れていないので、それを原料としたジルコニアセラミッ
クスは、必ずしも均一な微構造を持たず、十分な特性を
発揮したものとはいえないのが現状である。本発明の目
的は、この問題を解決し、粒子径が0.2〜0.8μm
の範囲で、ほぼ球状単分散のサブミクロン超微粒子から
なり、しかも個々の球状微粒子がそれぞれ、Sc、Y、
Yb、などの必要な添加成分の1種以上をほぼ同量含有
していることを特徴とする、ほぼ理想化されたジルコニ
ア固溶体単分散球状微粒子粉末を実現すること、並びに
それを経済的に最も安価に且つ効率よく大量に製造する
方法を提供することである。
As described above, although the conventional zirconia fine particle powder is submicron,
Not only are the particle diameters and shapes not uniform, but the chemical composition ratios of individual fine particles are also extremely uneven, so zirconia ceramics made from them have a uniform microstructure. At present, it cannot be said that it does not possess sufficient properties. The object of the present invention is to solve this problem and to make the particle diameter 0.2 to 0.8 μm.
Within a range of substantially spherical monodisperse submicron ultrafine particles, and each of the spherical fine particles has Sc, Y,
Achieving a nearly idealized zirconia solid solution monodispersed spherical fine particle powder characterized by containing substantially the same amount of one or more necessary additional components such as Yb, and economically An object of the present invention is to provide a method for inexpensively and efficiently mass-producing.

【0009】[0009]

【問題を解決するための手段】本発明者は、このような
課題を解決するため、数多くの実験研究を繰り返し、特
にZrOCl−Zr(OH)−HO系に就いて、
その組成を広範に変化させて研究を重ね、生成する球状
凝集粒子の粒径を0.2〜0.8μmに調整可能である
ことを見いだし、これらの微粒子の均一単分散性を高
め、完全に孤立化し分散性に優れたジルコニア単分散球
状微粒子粉末とするために、次のような順序に沿った方
法が不可欠であることを見いだした。
In order to solve such a problem, the present inventor has repeated a number of experiments and studies, especially on the ZrOCl 2 -Zr (OH) 4 -H 2 O system,
By conducting extensive research by varying the composition, it was found that the particle size of the spherical agglomerated particles produced can be adjusted to 0.2 to 0.8 μm, and the uniform monodispersity of these particles was increased to completely It was found that the following method is indispensable in order to obtain a zirconia monodisperse spherical fine particle powder which is isolated and has excellent dispersibility.

【0010】即ち、本発明は第一段階として、ジルコニ
ウム化合物、塩酸及び水を主成分とし、化学組成比がZ
rOの1モルに対しHClが0.8〜2.0モル及び
Oが6〜10モルとなる、均一な混合物または溶液
を、耐酸性の密閉水熱容器中で、内容物を静置させるこ
となく、100〜220℃の温度で必要な最適時間水熱
処理を行うもので、これにより、粒子径が0.2〜0.
8μmのほぼ単分散球状に凝集した単斜結晶質球状ジル
コニア微粒子が合成できるのである。
That is, in the first step of the present invention, the zirconium compound, hydrochloric acid and water are the main components, and the chemical composition ratio is Z.
A homogeneous mixture or solution in which HCl is 0.8 to 2.0 mol and H 2 O is 6 to 10 mol per 1 mol of rO 2 is placed in an acid-resistant closed hydrothermal container, and the contents are allowed to stand still. The hydrothermal treatment is performed at a temperature of 100 to 220 ° C. for an optimum time without being placed, whereby the particle diameter is 0.2 to 0.
It is possible to synthesize monoclinic crystalline spherical zirconia fine particles that are aggregated in a substantially monodisperse spherical shape of 8 μm.

【0011】このときの反応生成物は、主に単斜ジルコ
ニアの球状凝集微粒子から成る殆ど流動性の無い濃泥状
物であるが、これはそのまま水中に投ずると、この球状
凝集は容易に約0.01μm以下の1次超微結晶にまで
崩壊して分散し、半透明のゾルと成ってしまう。また濃
泥状物に水を加えることなくそのまま加熱乾燥すると、
球状凝集は更に互いに融着して粗大な高次凝集塊となり
易い。このため、水熱反応の生成物は、加熱乾燥の前に
先ず50℃以下の温度で減圧乾燥して水と塩酸の大部分
を除去し、しかる後初めて100℃以上の温度で熱処理
するなどの、予備処理により、予め水に対し安定な球状
凝集の状態に変える必要がある。これにより、初めて、
球状凝集が相互に融着することなく孤立化した、単分散
性に優れた球状凝集微粒子となり、水に対しても崩壊せ
ず、安定な球状微粒子が得られるのである。
The reaction product at this time is a thick mud-like substance which is composed mainly of spherical agglomerated fine particles of monoclinic zirconia and has almost no fluidity. However, if this is directly thrown into water, this spherical agglomeration will easily occur. It collapses and disperses into primary ultrafine crystals of 0.01 μm or less, and becomes a semitransparent sol. Also, if you heat-dry the thick mud without adding water,
The spherical agglomerates are more likely to be fused together to form coarse higher-order agglomerates. Therefore, the product of the hydrothermal reaction is first dried under reduced pressure at a temperature of 50 ° C. or lower to remove most of water and hydrochloric acid before heat drying, and then heat treated at a temperature of 100 ° C. or higher for the first time. By the pretreatment, it is necessary to change to a state of spherical aggregation that is stable against water in advance. With this, for the first time,
Spherical agglomerates are isolated without fusion with each other and become spherical agglomerated fine particles excellent in monodispersity, and do not disintegrate in water, and stable spherical fine particles can be obtained.

【0012】またこのジルコニア球状微粒子は、塩酸の
強酸性下で生成するものであり、出発原料に塩基性の強
いSc、Y、Ybのような希土類元素化合物を共存させ
ても、それは溶液中に残留して、ジルコニア球状微粒子
生成時に直接固溶体化させることは原理的に不可能であ
る。従って、本発明方法では、上記のようにして先ず水
に対し安定なジルコニア球状微粒子を調整し、しかる後
固溶体化させる方法を取る。即ち、得られた水に対し安
定となったジルコニア球状凝集微粒子を、Sc、Y、Y
b、など必要な1種以上の添加成分元素の可溶性塩並び
に尿素の適当量を含有する溶液中に分散させて均一な混
合懸濁溶液とし、これを一定時間熱処理して、溶液中の
尿素の熱分解による均一沈澱法により、ジルコニア球状
微粒子のそれぞれの表面に、添加成分元素の水酸化物も
しくは塩基性炭酸塩を析出被着させる。しかる後、この
処理物を、通常の共沈物の場合と同様、700℃以上の
温度で仮焼して、各微粒子毎に固溶体化、または微粒子
毎に固定化するのである。
The spherical zirconia fine particles are produced under the strong acidity of hydrochloric acid, and even if a rare earth element compound such as Sc, Y or Yb having a strong basicity is coexistent in the starting material, it is in solution. In principle, it is impossible to remain and form a solid solution directly when the zirconia spherical fine particles are formed. Therefore, in the method of the present invention, as described above, first, the spherical zirconia fine particles which are stable in water are prepared, and then the solid solution is formed into a solid solution. That is, the obtained zirconia spherical agglomerated fine particles which became stable to water were added to Sc, Y, Y
b, etc. Disperse in a solution containing a soluble salt of one or more necessary additional component elements and an appropriate amount of urea to form a uniform mixed suspension solution, which is heat-treated for a certain period of time to remove urea in the solution. By the uniform precipitation method by thermal decomposition, the hydroxide or basic carbonate of the additive component element is deposited on each surface of the zirconia spherical fine particles. After that, this treated product is calcined at a temperature of 700 ° C. or higher in the same manner as in the case of a normal coprecipitate, to be solid solution for each fine particle, or to be fixed for each fine particle.

【0013】[0013]

【具体的構成】本発明では、ジルコニウム化合物、塩酸
及び水を主成分とし、化学組成比がZrOの1モルに
対しHClが0.8〜2.0モル及びHOが6〜10
モルとなる、均一な混合物または溶液が出発物質として
必要である。必要とするHCl及びHOの量として、
ZrOの1モルに対し、HClが0.8〜2.0モ
ル、HOが6〜10モルの極めて狭い範囲に限定した
のは、生成物の凝集球状粒子の径はHClとHOの比
の減少と共に減少し、HClが0.8モル以下では粒径
が0.1μm程度以下となり、球状、孤立性が悪くな
り、またHClが2.0モル以上では、水熱反応の終了
に高温、長時間を要し、水熱容器の強酸性下での圧力が
高くなりすぎ実用的でなく、一方、HOが6モル以下
では原料の流動性が悪くて生成物が均一とならず、H
Oが10モル以上では生成物の流動性が高くなり過ぎ、
水分のため球状凝集粒子の孤立性が損なわれるからであ
る。
SPECIFIC STRUCTURE In the present invention, zirconium compound, hydrochloric acid and water are the main components, and the chemical composition ratio is 0.8 to 2.0 mol of HCl and 6 to 10 mol of H 2 O per mol of ZrO 2.
Homogeneous, homogeneous mixtures or solutions are required as starting materials. As the amount of HCl and H 2 O required,
The reason for limiting the extremely narrow ranges of 0.8 to 2.0 moles of HCl and 6 to 10 moles of H 2 O to 1 mole of ZrO 2 is that the diameters of the agglomerated spherical particles of the product are HCl and H 2 It decreases with a decrease in the O ratio, and when HCl is 0.8 mol or less, the particle size is about 0.1 μm or less, and the spherical shape and the isolation are deteriorated. When HCl is 2.0 mol or more, the hydrothermal reaction is completed. Requires a high temperature and a long time, and the pressure of the hydrothermal container under strong acidity becomes too high to be practical. On the other hand, when H 2 O is 6 mol or less, the fluidity of the raw material is poor and the product is not uniform. No, H 2
When O is 10 mol or more, the fluidity of the product becomes too high,
This is because the water content impairs the isolation of the spherical aggregate particles.

【0014】以上のようなZr成分の極めて濃厚な組成
物では、混合物中の溶体部分が少なく、反応後生成物は
殆ど流動性の無い濃泥状物となるので、反応中、水熱容
器を回転するなどして、原料の均一性を図ることが望ま
しい。反応物を静置固定した場合には、底部の凝集粒子
の孤立性が幾らか悪くなり、また表面上層部は底部より
幾らか粗粒子となり単分散性を損なうのである。
In the case of a composition having an extremely high concentration of Zr component as described above, the amount of solution in the mixture is small, and the product after the reaction becomes a thick mud with almost no fluidity. It is desirable to make the raw material uniform by rotating it. When the reaction product is statically fixed, the isolation of the aggregated particles at the bottom becomes somewhat worse, and the upper surface layer becomes somewhat coarser than at the bottom, impairing the monodispersity.

【0015】本発明の方法を実行するには、出発組成、
温度及び時間の3種の変数が適当な関係になければなら
ない。当然高温になる程必要処理時間は短くなるが、一
般に、原料組成中のHCl/HOの比が高いほど生成
する凝集粒子径が大きくなり、必要な水熱処理時間は長
くなる。このときの水熱反応の温度を100〜220℃
に限定したのは、100℃以下では反応が殆ど進行しな
いからであり、また220℃以上では塩酸蒸気の圧力が
高く通常の装置では作業が困難となるからである。最も
実際的な水熱処理温度は130℃〜180℃である。ま
た、この水熱処理時間は長すぎても充分な結果が得られ
ず、原料組成と処理温度の組み合わせ毎にそれぞれ最適
な水熱処理時間が存在することが分かった。水熱処理時
間がこの最適時間を過ぎると生成球状凝集粒子は次第に
崩れ、孤立性も悪くなるのである。最適水熱処理時間
は、原料組成中のHClの量が増加するに従い長くな
り、水熱処理温度が高くなるほど短くなるが、具体的な
最適温度は、原料組成と処理温度に対しそれぞれ実験的
に決定されなければならない。
To carry out the process of the invention, a starting composition,
The three variables of temperature and time must be in proper relationship. Naturally, the higher the temperature, the shorter the required treatment time, but in general, the higher the ratio of HCl / H 2 O in the raw material composition, the larger the agglomerated particle size generated, and the longer the required hydrothermal treatment time. The temperature of the hydrothermal reaction at this time is 100 to 220 ° C.
The reason for limiting the above is that the reaction hardly progresses at 100 ° C. or lower, and at 220 ° C. or higher, the pressure of hydrochloric acid vapor is high and it becomes difficult to work with an ordinary apparatus. The most practical hydrothermal treatment temperature is 130 ° C to 180 ° C. Further, even if this hydrothermal treatment time was too long, sufficient results were not obtained, and it was found that there is an optimum hydrothermal treatment time for each combination of the raw material composition and the treatment temperature. When the hydrothermal treatment time exceeds this optimum time, the produced spherical agglomerated particles gradually collapse and the isolation becomes worse. The optimum hydrothermal treatment time becomes longer as the amount of HCl in the raw material composition increases, and becomes shorter as the hydrothermal treatment temperature becomes higher. The specific optimum temperature is experimentally determined for each raw material composition and treatment temperature. There must be.

【0016】本発明に於ける水熱処理の反応生成物は、
主に単斜ジルコニアの球状凝集超微粒子から成る殆ど流
動性の無い濃泥状物であるが、これはそのままでは約5
0℃以上の加熱乾燥に際して容易に互いに部分融着して
2次、または3次凝集粒が生成し易く、孤立単分散化し
た球状凝集微粒子になり難い。反応生成物は、加熱乾燥
の前に、先ず50℃以下の温度で減圧乾燥して水と塩酸
の大部分を除去する事が必要不可欠である。この減圧乾
燥の温度は、50℃を大凡の上限とし、これより低い温
度となるほど球状凝集微粒子の孤立分散性が優れるので
ある。
The reaction product of hydrothermal treatment in the present invention is
It is a thick mud that has almost no fluidity and consists mainly of spherical agglomerated ultrafine particles of monoclinic zirconia.
When heated and dried at 0 ° C. or higher, they are easily partially fused to each other to easily generate secondary or tertiary aggregated particles, and it is difficult to form isolated monodispersed spherical aggregated fine particles. It is essential that the reaction product is first dried under reduced pressure at a temperature of 50 ° C. or lower to remove most of water and hydrochloric acid before heating and drying. The temperature of this reduced-pressure drying has an upper limit of about 50 ° C., and the lower the temperature, the better the isolated dispersibility of the spherical aggregated particles.

【0017】このようにして得られるジルコニア単分散
球状超微粒子は、単に乾燥しただけでは、まだそれを水
中に投入すれば、容易に崩壊分散して更に超微細な0.
01μm以下の超微結晶の分散したゾルに変化してしま
う。従って、水に対して安定な球状凝集の超微粉末とす
るには、この減圧乾燥の後で100℃以上の熱処理など
が必要である。乾燥後の熱処理では、僅かに未反応物と
して残留する可溶性ジルコニウム塩などがZrOに変
化し、球状凝集微粒子が固定化され、水に対して安定に
なるものと考えられる。この目的のためには、他に、ア
ンモニアガスによる処理なども考えられよう。
The zirconia monodisperse spherical ultrafine particles thus obtained can be easily disintegrated and dispersed even if they are simply put into water, and the ultrafine particles of ultrafine particles can be obtained.
It changes into a sol in which ultrafine crystals of less than 01 μm are dispersed. Therefore, heat treatment at 100 ° C. or higher is required after the drying under reduced pressure in order to obtain a spherical aggregate ultrafine powder that is stable against water. It is considered that in the heat treatment after drying, the soluble zirconium salt or the like which remains as an unreacted substance slightly changes to ZrO 2 , and the spherical aggregated particles are fixed and become stable to water. For this purpose, treatment with ammonia gas may be considered.

【0018】この水に対し安定となったジルコニア球状
凝集微粒子は、pH7以下の弱酸性の水溶液中で球状粒
子として均一に分散するので、必要とする添加成分元
素、例えば希土類元素の硝酸塩や塩化物の水溶液中に均
一に分散混合させることができる。この水溶液中に尿素
を溶解し、約90℃に加熱すると、尿素は二酸化炭素と
アンモニアに分解し、溶液のpHは内部から均一に徐々
に上昇し、いわゆる均一沈澱のプロセスにより、例え
ば、YNO水溶液中では、水酸化イットリウムまたは
塩基性炭酸イットリウムの析出が起こる。分散したジル
コニア球状微粒子は、さらに超微細な1次粒子から成る
凝集粒子であり、まだ多孔質で、表面活性であるので、
これらの添加成分元素の水酸化物または塩基性炭酸塩の
析出は、適正な条件下では専らこの微粒子表面で起こ
る。
Since the zirconia spherical agglomerated fine particles which have been stabilized against water are uniformly dispersed as spherical particles in a weakly acidic aqueous solution having a pH of 7 or less, necessary additive element elements, for example, nitrates and chlorides of rare earth elements are required. Can be uniformly dispersed and mixed in the aqueous solution. When urea is dissolved in this aqueous solution and heated to about 90 ° C., urea is decomposed into carbon dioxide and ammonia, and the pH of the solution is gradually and uniformly increased from the inside. For example, YNO 3 is produced by a so-called uniform precipitation process. Yttrium hydroxide or basic yttrium carbonate is precipitated in the aqueous solution. The dispersed zirconia spherical fine particles are agglomerated particles composed of ultrafine primary particles, and since they are still porous and surface active,
The precipitation of hydroxides or basic carbonates of these additive component elements occurs exclusively on the surface of the fine particles under appropriate conditions.

【0019】懸濁液中、ジルコニア球状微粒子の含有量
が多くなると、液中でのジルコニア微粒子間の接触の機
会が増大し、また可溶性の添加成分元素の塩の濃度が高
い場合には、金属水酸化物または塩基性炭酸塩析出物の
核が微粒子表面以外に溶液中にも発生し、何れの場合に
も、ジルコニアの孤立分散性並びに添加成分元素の均一
分布を悪化させる。適正処理可能な懸濁液の大凡のジル
コニア含有量は、1〜10g/l程度、可溶性添加成分
金属塩の濃度は、0.1モル/l以下である。また、懸
濁液の熱処理温度も結果に影響し、温度が低い場合も高
すぎる場合にも均一な皮着が起き難く、実験の結果で
は、90℃程度の温度が適当であった。また希土類金属
塩、例えばYClの場合には、懸濁液を、開放容器中
で熱処理する場合には主として水酸化物、密閉容器中で
の熱処理する場合には主として塩基性炭酸塩が析出する
ようであるが、適正な処理の下では何れも均一に皮着
し、仮焼後の粉末には特に差異は認められなかった。
When the content of the zirconia spherical fine particles in the suspension increases, the chance of contact between the zirconia fine particles in the liquid increases, and when the concentration of the soluble additive component element salt is high, the metal content increases. Nuclei of hydroxides or basic carbonate precipitates are generated not only on the surface of the fine particles but also in the solution, and in any case, the isolated dispersibility of zirconia and the uniform distribution of the additive component elements are deteriorated. The zirconia content of the suspension which can be appropriately treated is about 1 to 10 g / l, and the concentration of the soluble additive component metal salt is 0.1 mol / l or less. Further, the heat treatment temperature of the suspension also influences the result, and uniform skinning is unlikely to occur even when the temperature is low or too high. According to the result of the experiment, the temperature of about 90 ° C was appropriate. In the case of a rare earth metal salt such as YCl 3 , hydroxide is mainly precipitated when the suspension is heat-treated in an open container, and basic carbonate is mainly precipitated when the suspension is heat-treated in a closed container. It seems that under the proper treatment, all of them were uniformly skinned, and no particular difference was observed in the powder after calcination.

【0020】本発明において、溶液中に懸濁する各球状
微粒子はほぼ同一の大きさで、粒子表面積もほぼ同一と
考えられるので、溶液からの添加成分元素化合物の析出
量も、均一沈澱法によれば各球状微粒子毎にほぼ同一量
と見なすことができる。従って、このような球状微粒子
粉末を700℃以上の温度で仮焼すると、個々の球状微
粒子は、極めて一定した環境の下でそれぞれ固溶体とな
り、高温での拡散現象と相まって、希土類元素の分布が
それぞれのジルコニア球状微粒子に対し極めて均一とな
る。また、このジルコニア球状微粒子は球状凝集粒子で
あり、個々の球状微粒子は多孔質で、固溶体化は主とし
てYがZrO中に拡散する形で行われるため
に、仮焼後も最初のジルコニア球状凝集微粒子の形状が
維持され、強固な凝集塊とならずに、凝集粒子内の焼結
によって個々の球状微粒子がそれぞれ緻密化し、軽度の
摩砕で比較的容易にほぐれて、孤立分散性の良い、球状
微粒子粉末が得られるのである。仮焼温度を700℃以
上としたのは、700℃以下の温度では、添加成分元素
の固溶体化が不十分であり、またジルコニア球状凝集粒
子も個々に十分緻密化した微粒子にならないからであ
る。
In the present invention, since the spherical fine particles suspended in the solution are considered to have substantially the same size and the same particle surface area, the amount of the additive component element compound deposited from the solution can be determined by the uniform precipitation method. Therefore, it can be considered that the spherical fine particles have substantially the same amount. Therefore, when such spherical fine particle powder is calcined at a temperature of 700 ° C. or higher, the individual spherical fine particles each become a solid solution under an extremely constant environment, and the distribution of rare earth elements becomes different due to the diffusion phenomenon at high temperature. It becomes extremely uniform with respect to the zirconia spherical fine particles. Further, the zirconia spherical fine particles are spherical agglomerated particles, the individual spherical fine particles are porous, and since solid solution is mainly performed in a form in which Y 2 O 3 diffuses in ZrO 2 , the initial zirconia particles are not calcined. The shape of zirconia spherical agglomerated fine particles is maintained, and each spherical fine particle is densified by sintering inside the agglomerated particles without becoming a strong agglomerate, and is easily disentangled by mild milling, resulting in isolated dispersibility. Spherical fine particle powder with good quality can be obtained. The reason why the calcination temperature is 700 ° C. or higher is that, at a temperature of 700 ° C. or lower, the solid solution of the additive component elements is insufficient and the zirconia spherical agglomerated particles do not become fine particles that are sufficiently densified individually.

【0021】[0021]

【実施例】以下に、本発明の実施例を示し、本発明を更
に具体的に説明する。
EXAMPLES The present invention will be described in more detail below by showing Examples of the present invention.

【0022】実施例1 試薬塩化ジルコニル(ZrOCl・8HO)、半乾
燥含水水酸化ジルコニウム(ZrOH・xHO)、
及び蒸溜水を、それぞれ表1に示した割合で配合し、そ
れぞれ乳鉢中でよく摩砕混合してA、B、C、及びDの
4種類の試料の混合物を作成した。これらの化学組成
は、表1に併記したように、ZrOの1モルに対し、
HClは1.0モル〜1.9モル、またHOは7.0
モル〜8.2モル、に相当し、総て特許請求の範囲内で
ある。これらの混合物はそれぞれステンレス製耐圧容器
中の硬質テフロン容器(内容積25ml)中に充填し
た。混合物の体積は何れも約20mlで、容器中充填物
の体積の割合は何れも容器内容積の約80%である。原
料混合物を充填した各耐圧容器は密封して、熱風循環式
ドライオーブン中に回転する軸にセットして内部が転動
するように耐圧容器を回転しながら、A、B、及びCの
材料は、200℃、またDの試料は150℃で、それぞ
れ所定時間熱処理を加えた。水熱処理の必要最適時間は
表1に示すようであり、HClとHOのモル比が大き
いほど長くなり、また処理温度が低くなるほど長くな
る。
[0022] Example 1 Reagent zirconyl chloride (ZrOCl 2 · 8H 2 O) , semi-dried hydrous zirconium hydroxide (ZrOH 4 · xH 2 O) ,
And distilled water were blended in the proportions shown in Table 1, respectively, and well mixed in a mortar to prepare a mixture of four kinds of samples A, B, C, and D. These chemical compositions are as shown in Table 1, with respect to 1 mole of ZrO 2,
HCl is 1.0 mol to 1.9 mol, and H 2 O is 7.0 mol.
Corresponding to mol to 8.2 mol, all within the scope of the claims. Each of these mixtures was filled in a hard Teflon container (internal volume: 25 ml) in a pressure resistant container made of stainless steel. The volume of each mixture was about 20 ml, and the volume ratio of the filling material in each container was about 80% of the inner volume of the container. Each pressure-resistant container filled with the raw material mixture is hermetically sealed, set on a rotating shaft in a hot air circulation type dry oven, and while rotating the pressure-resistant container so that the inside rolls, the materials A, B, and C are , 200 ° C., and the sample of D was heated at 150 ° C. for a predetermined time. The required optimum time of hydrothermal treatment is as shown in Table 1, and it becomes longer as the molar ratio of HCl and H 2 O becomes larger, and becomes longer as the processing temperature becomes lower.

【0023】各試料は加熱処理後、密封耐圧容器と共に
室温に10時間放置した後、開封して取り出したとこ
ろ、何れも白色の流動性の殆ど無い濃泥状物が生成して
いた。これをそれぞれ蒸発皿に掻き出しそのまま真空デ
シケータ中に入れ、真空ポンプにより減圧乾燥した。減
圧乾燥した状態では、これらの生成物は何れも白色の柔
らかい粉末集合物であるが、これらはそのまま水中に投
入すれば容易に0.01μm以下の1次超微粒子に分散
して半透明のゾルを与える。しかし約250℃に数時間
加熱処理を加えることにより水中で崩壊分散することが
なくなった。この生成物は、柔らかい塊状で、軽く抑え
ただけで容易にほぐれて粉末となった。この粉末の走査
型電子顕微鏡写真は、良く孤立した球状単分散の超微粒
子から成っていた。B、C、及びDの試料もほぼ同様で
あるが、その粒子径は表1に示したように、HClとH
Oのモル比が小さくなるに従って次第に小さくなる。
After each sample was heat-treated, it was left at room temperature for 10 hours together with a sealed pressure-resistant container, then opened and taken out. As a result, a white, thick, almost mud-like substance was formed. Each of these was scraped out on an evaporation dish and placed in a vacuum desiccator as it was, and dried under reduced pressure by a vacuum pump. In the dried state under reduced pressure, all of these products are white soft powder aggregates, but if they are put into water as they are, they are easily dispersed in primary ultrafine particles of 0.01 μm or less to form a translucent sol. give. However, by heating at about 250 ° C. for several hours, it no longer disintegrated and dispersed in water. The product was a soft lump and was easily loosened into a powder with only a slight hold. Scanning electron micrographs of this powder consisted of well-isolated spherical monodisperse ultrafine particles. The samples of B, C, and D are almost the same, but their particle sizes are as shown in Table 1, HCl and H
It becomes smaller as the molar ratio of 2 O becomes smaller.

【0024】[0024]

【表1】 [Table 1]

【0025】上記A、B及びCの大きさの異なる3種類
の球状微粒子各2.00gを、それぞれ、YCl0.
203g(ZrOに対しYとして3モル%に相
当)、及び十分量の尿素約0.5gを含有する水溶液1
000ml中に分散懸濁させ、攪拌しつつ約90℃で5
時間、均一沈澱のための加熱処理を行った。この生成物
は、走査型電子顕微鏡によれば、何れも析出前の球状微
粒子とほぼ同等の大きさを持つ球状微粒子で、球状微粒
子以外の別の析出物は認められなかった。図1に試料B
の例の走査電子顕微鏡写真を示す。
2.00 g of each of the above three kinds of spherical fine particles having different sizes A, B, and C was added to YCl 3 0.
An aqueous solution 1 containing 203 g (corresponding to 3 mol% of Y 2 O 3 with respect to ZrO 2 ) and a sufficient amount of about 0.5 g of urea.
Disperse and suspend in 000 ml and stir at about 90 ° C for 5
A heat treatment for uniform precipitation was performed for a period of time. According to a scanning electron microscope, all of these products were spherical fine particles having substantially the same size as the spherical fine particles before precipitation, and no other precipitate than the spherical fine particles was observed. Sample B in Figure 1
2 shows a scanning electron micrograph of the example of FIG.

【0026】この球状微粒子は極めて超微細であり、Y
(OH)、またはY(CO(OH)が個々の
球状微粒子の表面に均一に皮着しているかどうかを確認
することは困難であるが、次のような方法によって、ほ
ぼY成分が均一に分布していることを確認できる。即
ち、試料Bに対し、共沈法と均一沈澱法の、種々な方法
で、Yを添加し、仮焼後の単斜結晶ジルコニアの
残留割合を比較した結果は図2に示すようである。即
ち、上記ジルコニア球状微粒子とYとして3モル
%に相当するYClを含有する懸濁水溶液を調整し、
この懸濁液を14.5Nの濃アンモニア水中に滴下した
場合(a)、反対に濃アンモニア水を懸濁液中に滴下し
た場合(b)、及び尿素による上記均一沈澱を100℃
で行った場合(c)と90℃で行った場合(d)の試料
をそれぞれ800℃に仮焼した粉末のX線回折パターン
を比較して示した。a、b、c、何れの場合も固溶体化
を示す正方結晶ジルコニア(T相)の他に、単斜結晶ジ
ルコニア(M相)の残留若しくは生成が認められ、Y
が微小部分で局部的に不足していたことを示すが、
dの場合は、ほぼ完全に正方結晶ジルコニア(T相)の
みとなり、Yがほぼ均一に分布したことを示す。
The spherical fine particles are extremely fine, and Y
It is difficult to confirm whether (OH) 3 or Y (CO 3 ) x (OH) y is uniformly adhered to the surface of each spherical fine particle, but it is almost possible to confirm by the following method. It can be confirmed that the Y component is uniformly distributed. That is, with respect to the sample B, Y 2 O 3 was added by various methods such as a coprecipitation method and a uniform precipitation method, and the residual ratio of the monoclinic crystal zirconia after calcination was compared and the result is shown in FIG. Is. That is, a suspension aqueous solution containing the spherical zirconia fine particles and YCl 3 corresponding to 3 mol% as Y 2 O 3 was prepared,
When this suspension was dropped into 14.5 N concentrated ammonia water (a), conversely when concentrated ammonia water was dropped into the suspension (b), and the above uniform precipitation with urea was conducted at 100 ° C.
The X-ray diffraction patterns of the powders obtained by calcination at 800 ° C. for the samples obtained in (c) at 90 ° C. and (d) at 90 ° C. are shown in comparison. In addition to tetragonal crystal zirconia (T phase) showing solid solution in any of a, b, and c, residual or formation of monoclinic crystal zirconia (M phase) was observed, and Y 2
It shows that O 3 was locally insufficient in a minute part,
In the case of d, almost only tetragonal zirconia (T phase) was formed, indicating that Y 2 O 3 was distributed almost uniformly.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
によれば、従来得られたことのない主として0.2〜
0.8μmの超微粒子領域で、完全に孤立化し、分散性
に優れた均一組成の、ほぼ理想化されたジルコニア単分
散球状微粒子粉末を製造することが初めて可能になり、
高品位のファインセラミックス用原料粉末として単分散
球状超微粒子が工業的に実用に供されるようになるた
め、ジルコニア系ファインセラミックスの産業に大きく
貢献するものと思われる。特に、粒子が球状単分散であ
る他、個々の微粒子の化学組成がそれぞれほぼ同じにな
るので、これを用いて得られる焼結体の微組織が極めて
均一となり、機械的性質並びにイオン導電性など、あら
ゆる性能が特段に優れたものとなることが期待される。
またアルコキシドなどの高価な原料を使用せず、製造工
程が比較的簡単であり、特に水熱処理がZrO濃度
で、5モル/l程度の極めて高濃度で処理でき高効率で
あり、また均一沈澱による表面皮着は、100℃以下の
温度であるため、大量処理が容易であるなど、生産性に
著しい長所がある。
As is apparent from the above description, according to the present invention, it is possible to obtain 0.2 to 0.2 which has never been obtained conventionally.
For the first time, it is possible to produce almost idealized zirconia monodisperse spherical fine particle powders having a uniform composition which is completely isolated and has excellent dispersibility in the ultrafine particle region of 0.8 μm.
Since monodispersed spherical ultrafine particles will be put to practical use industrially as a raw material powder for high-quality fine ceramics, it is expected to make a great contribution to the industry of zirconia-based fine ceramics. In particular, since the particles are spherical monodisperse and the chemical composition of each fine particle is almost the same, the microstructure of the sintered body obtained using this becomes extremely uniform, and the mechanical properties and ionic conductivity, etc. It is expected that every performance will be exceptionally excellent.
In addition, since expensive raw materials such as alkoxides are not used, the manufacturing process is relatively simple, and hydrothermal treatment can be performed at a very high concentration of about 5 mol / l with ZrO 2 concentration, which is highly efficient, and uniform precipitation. The surface skinning by means of 100 ° C. or less has a remarkable advantage in productivity such as easy mass processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】3モル%のYを固溶した代表的な試料B
の走査型電子顕微鏡写真である。
FIG. 1 is a representative sample B in which 3 mol% Y 2 O 3 is solid-dissolved.
2 is a scanning electron micrograph of FIG.

【図2】Yの添加方法を異にする試料Bの仮焼後
の粉末X線回折図形の比較である。
FIG. 2 is a comparison of powder X-ray diffraction patterns after calcination of Sample B in which the method of adding Y 2 O 3 is different.

Claims (2)

【整理番号】 ZR0011 【特許請求の範囲】[Reference number] ZR0011 [Claims] 【請求項1】 粒子径が0.2〜0.8μmの範囲で、
ほぼ球状単分散のサブミクロン超微粒子からなり、しか
も個々の球状超微粒子がそれぞれ、Sc、Y、Yb、な
どの希土類元素の1種以上をほぼ同量含有していること
を特徴とする均一組成ジルコニア固溶体単分散球状微粒
子粉末。
1. A particle diameter in the range of 0.2 to 0.8 μm,
A uniform composition characterized by comprising substantially spherical monodisperse submicron ultrafine particles, and each individual spherical ultrafine particle contains substantially the same amount of one or more rare earth elements such as Sc, Y, and Yb. Zirconia solid solution monodisperse spherical fine particle powder.
【請求項2】 ジルコニウム化合物、塩酸及び水を主成
分とし、化学組成比がZrOの1モルに対しHClが
0.8〜2.0モル及びHOが6〜10モルとなる、
均一な混合物または溶液を、耐酸性の密閉水熱容器中
で、100〜220℃の温度で必要な最適時間水熱処理
を行い、粒子径が0.2〜0.8μmのほぼ単分散球状
に凝集した単斜結晶質球状ジルコニア超微粒子を合成
し、減圧乾燥後100℃以上の熱処理などにより、水に
対し安定な球状微粒子に固定化した後、希土類元素など
必要とする1種以上の添加成分元素の可溶性塩、並びに
尿素の適当量を含有する溶液中に分散させて、均一な混
合懸濁溶液とし、この溶液中の尿素の熱分解による均一
沈澱法により、球状ジルコニア凝集微粒子のそれぞれの
表面に、必要な添加成分元素の水酸化物もしくは塩基性
炭酸塩を析出被着させ、これを700℃以上の温度で仮
焼して各ジルコニア球状微粒子を固溶体化するすること
を特徴とする均一組成のジルコニア固溶体単分散球状微
粒子粉末の製造方法。
2. A zirconium compound, hydrochloric acid and water as main components, and the chemical composition ratio is 0.8 to 2.0 moles of HCl and 6 to 10 moles of H 2 O with respect to 1 mole of ZrO 2 .
The homogeneous mixture or solution is subjected to hydrothermal treatment at a temperature of 100 to 220 ° C. for an optimum time required in an acid-resistant closed hydrothermal container, and aggregated into almost monodisperse spherical particles having a particle diameter of 0.2 to 0.8 μm. After synthesizing the monoclinic crystalline spherical zirconia ultrafine particles that have been prepared, and fixing them to water-stable spherical fine particles by drying under reduced pressure and heat treatment at 100 ° C. or more, one or more necessary additional component elements such as rare earth elements Dispersed in a solution containing an appropriate amount of urea and a suitable amount of urea to form a uniform mixed suspension solution, and by a uniform precipitation method by thermal decomposition of urea in this solution, on each surface of spherical zirconia agglomerated fine particles. A uniform composition characterized in that a hydroxide or a basic carbonate of a necessary additional component element is deposited and deposited, and this is calcined at a temperature of 700 ° C. or higher to solidify each zirconia spherical fine particle. Method for producing a zirconia solid solution monodisperse spherical fine particles.
JP5298871A 1993-10-22 1993-10-22 Uniform-composition zirconia solid solution monodisperse fine globular powder and its production Pending JPH07118016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5298871A JPH07118016A (en) 1993-10-22 1993-10-22 Uniform-composition zirconia solid solution monodisperse fine globular powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5298871A JPH07118016A (en) 1993-10-22 1993-10-22 Uniform-composition zirconia solid solution monodisperse fine globular powder and its production

Publications (1)

Publication Number Publication Date
JPH07118016A true JPH07118016A (en) 1995-05-09

Family

ID=17865271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5298871A Pending JPH07118016A (en) 1993-10-22 1993-10-22 Uniform-composition zirconia solid solution monodisperse fine globular powder and its production

Country Status (1)

Country Link
JP (1) JPH07118016A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024555A (en) * 2006-07-21 2008-02-07 Tosoh Corp Zirconia fine powder, its manufacturing method and its use
JP2010500957A (en) * 2006-08-17 2010-01-14 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Zirconium oxide and method for producing the same
CN106395754A (en) * 2016-11-16 2017-02-15 天津巴莫科技股份有限公司 Preparation method of mono-/multi-metal coprecipitation hydroxide or carbonate
CN111807835A (en) * 2020-07-25 2020-10-23 巩义正宇新材料有限公司 High-stability zirconia and production process thereof
CN114644521A (en) * 2022-04-22 2022-06-21 烟台核晶陶瓷新材料有限公司 Preparation method of colored zirconia ceramic powder for false tooth
CN116262662A (en) * 2021-12-14 2023-06-16 东莞市陶陶新材料科技有限公司 Submicron spherical zirconia powder and preparation method thereof, and zirconia ceramic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024555A (en) * 2006-07-21 2008-02-07 Tosoh Corp Zirconia fine powder, its manufacturing method and its use
JP2010500957A (en) * 2006-08-17 2010-01-14 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Zirconium oxide and method for producing the same
CN106395754A (en) * 2016-11-16 2017-02-15 天津巴莫科技股份有限公司 Preparation method of mono-/multi-metal coprecipitation hydroxide or carbonate
CN111807835A (en) * 2020-07-25 2020-10-23 巩义正宇新材料有限公司 High-stability zirconia and production process thereof
CN116262662A (en) * 2021-12-14 2023-06-16 东莞市陶陶新材料科技有限公司 Submicron spherical zirconia powder and preparation method thereof, and zirconia ceramic
CN114644521A (en) * 2022-04-22 2022-06-21 烟台核晶陶瓷新材料有限公司 Preparation method of colored zirconia ceramic powder for false tooth

Similar Documents

Publication Publication Date Title
US4619817A (en) Hydrothermal method for producing stabilized zirconia
RU2137715C1 (en) Complex metal oxide powder, yttrium-aluminum garnet powder (versions), and method for preparing complex metal oxide
US5420086A (en) Method for producing stabilized zirconium oxide powder
TWI275567B (en) Method for manufacturing stabilized zirconia
Vasylkiv et al. Nonisothermal Synthesis of Yttria‐Stabilized Zirconia Nanopowder through Oxalate Processing: I, Characteristics of Y‐Zr Oxalate Synthesis and Its Decomposition
JP5464840B2 (en) Method for producing zirconia fine particles
US4873064A (en) Powder of coagulated spherical zirconia particles and process for producing them
JP3793802B2 (en) Production method of ceria powder with individual particles separated into nano size
US4835124A (en) Alumina ceramic product from colloidal alumina
CN112745105A (en) High-sintering-activity alumina ceramic powder and preparation method thereof
EP0254574A2 (en) Method for producing PLZT powder
CA2029707A1 (en) Zirconium dioxide powder, method for the production thereof, the use thereof and sintered bodies prepared therefrom
JPH07118016A (en) Uniform-composition zirconia solid solution monodisperse fine globular powder and its production
RU2637907C1 (en) Method of producing fine-grained barium titanate
JPH06321541A (en) Production of zirconia singly dispersed spherical ultrafine particle powder
JPH10139436A (en) Zirconia particle for solid electrolyte and its production
JPS61186219A (en) Production of lead-containing fine powder
JP3355655B2 (en) Method for producing hydrated zirconia gel and zirconia powder
JP3146578B2 (en) Manufacturing method of zirconia fine powder
Chen et al. Preparation of monodispersed spherical barium titanate particles
Choi et al. Synthesis and compaction behavior of monodispersed 3Y-ZrO 2 spherical agglomerates
JPS61122121A (en) Production of rare earth metal oxide powder
KR100481057B1 (en) Method for preparing alumina-zirconia composite
JPH06234526A (en) Powdery zirconia composition for rolling granulation
Shrout et al. Enhanced Processing of Perovskite Pb (Mg, Nb,) O, Relaxors Through Understanding the Surface Chemistry of the Component Powders