JPH06321541A - Production of zirconia singly dispersed spherical ultrafine particle powder - Google Patents

Production of zirconia singly dispersed spherical ultrafine particle powder

Info

Publication number
JPH06321541A
JPH06321541A JP15100893A JP15100893A JPH06321541A JP H06321541 A JPH06321541 A JP H06321541A JP 15100893 A JP15100893 A JP 15100893A JP 15100893 A JP15100893 A JP 15100893A JP H06321541 A JPH06321541 A JP H06321541A
Authority
JP
Japan
Prior art keywords
zirconia
spherical
temperature
container
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15100893A
Other languages
Japanese (ja)
Inventor
Etsuro Kato
悦朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15100893A priority Critical patent/JPH06321541A/en
Publication of JPH06321541A publication Critical patent/JPH06321541A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To provide a method for economically, efficiently and massively producing a zirconia singly dispersed spherical ultrafine particle powder having excellent perfectly isolated dispersibility in an ultrafine particle region of 0.1-0.8mum at the lowest cost. CONSTITUTION:A method for producing the zirconia singly dispersed spherical ultrafine particle powder comprises mixing a zirconia compound such as zirconyl chloride, zirconium hydroxide, zirconia hydrate or basic zirconium carbonate with hydrochloric acid or water to give a homogeneous mixture or solution comprising ZrO2, HCl, H2O and a compound such as a metal salt in a chemical composition molar ratio of 1:0.8-2.0:6-10:0-0.2, respectively, subjecting the mixture or solution to a hydrothermic treatment at 100-220 deg.C for a necessary optimal time in a hydrothermic treatment container, while the contents in the container are moved, cooling the container at a temperature of <=50 deg.C in the closed state, lyophilizing the cooled contents at a temperature of <=50 deg.C, and subsequently thermally treating the dried product at a temperature of >=100 deg.C, thus providing the zirconia singly dispersed spherical ultrafine particle powder having a particle diameter of 0.1-0.8mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業状の利用分野】本発明は、ファインセラミックス
の原料粉末、即ちジルコニアを主成分とするセラミック
スやジルコニウム化合物を含むセラミックスの原料粉末
として有用な優れた特性を有し、また特殊な化粧品用や
顔料用等としても有用なサブミクロンのジルコニア単分
散球状超微粉末を安価に且つ大量に製造する方法に関す
るものである。
INDUSTRIAL APPLICABILITY The present invention has excellent properties useful as a raw material powder for fine ceramics, that is, as a raw material powder for ceramics containing zirconia as a main component or a ceramic containing a zirconium compound, and for special cosmetics or The present invention relates to a method for inexpensively producing a large amount of submicron zirconia monodisperse spherical ultrafine powder which is also useful as a pigment.

【0002】[0002]

【背景技術】ファインセラミックスの原料微粉末、特に
焼結体用としては成形充填密度を高くすることができ、
焼結が均一に進行して寸法精度の良い、均質な焼結体微
組織が得られ、また他の成分との固相反応では、混合が
均一になり、均質な反応生成物が得られるなどの利点か
ら、一般に高純度、均一、球形状、孤立性に優れた微粒
子が、求められている。
BACKGROUND ART As a raw material fine powder for fine ceramics, especially for a sintered body, the molding packing density can be increased,
Sintering progresses uniformly to obtain a homogeneous microstructure of a sintered body with good dimensional accuracy. In the solid-phase reaction with other components, the mixing is uniform and a homogeneous reaction product is obtained. In view of the above advantages, fine particles having high purity, uniformity, spherical shape, and excellent isolation are generally required.

【0003】従来、このような単分散ジルコニア微粒子
の製造法として知られているのは、アルコキシドのアル
コール溶液の加水分解によるもの(J.Am.Cer
a.Soc.72[3]421−26(1989))で
あり、1μm前後の孤立した単分散球状の非晶質ジルコ
ニア微粒子が得られるが、ZrOの濃度として0.1
モル/l程度以下の極めて希薄な溶液を使用する必要か
ら、一定の装置容積に対する生成量が極めて少なく、且
つ原料のアルコキシドやアルコールが高価につくため、
一般に経済性に劣り、工業的大量生産に適さない欠点が
あった。従ってジルコニアでは、単分散球状微粒子は特
殊な用途以外には使用できず、セラミックス原料用とし
ても使用されることはなかった。
Conventionally, a known method for producing such monodisperse zirconia fine particles is by hydrolysis of an alcohol solution of alkoxide (J. Am. Cer.
a. Soc. 72 [3] 421-26 (1989)), and isolated monodisperse spherical amorphous zirconia fine particles of about 1 μm are obtained, but the ZrO 2 concentration is 0.1.
Since it is necessary to use an extremely dilute solution of about mol / l or less, the amount produced in a given apparatus volume is extremely small, and the raw material alkoxide and alcohol are expensive.
In general, it is inferior in economic efficiency and has a drawback that it is not suitable for industrial mass production. Therefore, in zirconia, the monodisperse spherical fine particles can be used only for a special purpose, and have not been used as a ceramic raw material.

【0004】現在、ジルコニア系ファインセラミックス
の焼結用原料として用いられるジルコニア微粉末の粒子
径は一般に0.2〜0.4μmの超微粒子から成るもの
で、このようなジルコニア超微粒子粉末は、非晶質の水
酸化ジルコニウム、又は0.1μm以下のコロイド生成
物などの仮焼物をポールミルなどにより微粉砕して製造
するものが殆どであり、工業的に実用されているもの
は、球状ではなく、単分散でもないのが現状である。
At present, zirconia fine powder used as a raw material for sintering zirconia-based fine ceramics is generally composed of ultrafine particles having a particle size of 0.2 to 0.4 μm. Mostly, crystalline calcined zirconium hydroxide or a calcined product such as a colloidal product having a particle size of 0.1 μm or less is finely pulverized by a pole mill or the like to produce, and the industrially used one is not spherical, Currently, it is not monodisperse.

【0005】本発明者は、既に以前、経済的に大量処理
可能な球状粒子の製造方法として、結晶性含水塩化ジル
コニル単独、またはこれを主成分としZrOに固溶可
能な金属酸化物となる化合物を小量含む固体混合物を密
閉容器中で150℃〜300℃で加熱反応させ、これを
加熱脱水して0.5〜1μm程度の球状ジルコニア微粒
子を製造する方法を特許出願した(特願昭62−107
578)、また結晶性含水塩化ジルコニルをそのまま、
または僅かの水を添加して150℃〜200℃で水熱処
理し、これを加熱脱水して、0.5〜1μm程度の球状
ジルコニア微粒子が得られることを論文(日本セラミッ
クス協会学術論文誌、98[3]300−04(199
0))発表した。
The present inventor has already used, as a method for producing spherical particles that can be economically processed in large quantities, crystalline hydrous zirconyl chloride alone or a metal oxide containing this as a main component and capable of forming a solid solution in ZrO 2. A patent application was filed for a method for producing a spherical zirconia fine particle of about 0.5 to 1 μm by heating and reacting a solid mixture containing a small amount of a compound in a closed container at 150 ° C. to 300 ° C., and heating and dehydrating the mixture. 62-107
578), or the crystalline hydrous zirconyl chloride as it is,
Alternatively, a slight amount of water may be added to hydrothermally treat at 150 ° C. to 200 ° C., and this may be heated and dehydrated to obtain spherical zirconia fine particles of about 0.5 to 1 μm (Journal of Ceramic Society of Japan, 98 [3] 300-04 (199
0)) announced.

【0006】本発明者による上記の方法は、濃厚な出発
組成物の水熱反応により0.01μm以下の単斜ジルコ
ニア超微結晶が0.5〜1μm程度の球状に一時的に軟
凝集した生成物が得られ、この凝集はそのままでは、水
中に投入すれば直ちに崩壊して元の0.01μm以下の
単斜ジルコニア超微結晶に分散して半透明のゾルとなっ
てしまうが、これを熱的に乾燥固定化することにより水
に対し安定な球状微粒子となることを見い出したもので
ある。従って、ジルコニア球状微粒子の製造方法として
は全く新しい画期的な方法であり、特に極めて濃厚な混
合物を処理するので、一定の装置容積に対し生成物が大
量に得られる点が極めて特徴的であった゜
The above-mentioned method by the present inventor is a method in which monoclinic zirconia ultrafine crystals of 0.01 μm or less are temporarily soft-aggregated into spherical particles of about 0.5 to 1 μm by hydrothermal reaction of a concentrated starting composition. If the product is obtained, and this agglomeration is left as it is, it will disintegrate immediately into the original monoclinic zirconia ultrafine crystals of 0.01 μm or less and become a semi-transparent sol. It has been found that spherical particles which are stable to water can be formed by dry fixing. Therefore, it is a completely new and innovative method for producing spherical zirconia fine particles, and since a particularly thick mixture is processed, a characteristic feature is that a large amount of product can be obtained for a given apparatus volume. Ta °

【0007】しかしながら上記論文(日本セラミックス
協会学術論文誌、98[3]300−04(199
0))中に示した生成球状微粒子の形状の電子顕微鏡写
真に明らかに見られるように、この凝集粒子は比較的均
一な球状ではあるが、それらは互いに部分的に融着して
2次、3次に凝集しており、粉末状態での構成粒子の孤
立性、分散性が著しく不十分となる欠点があった。研究
のこの時点では、まだ球状微粒子の融着・凝集の現象が
製造工程のどの段階で発生するのか不明であり、また球
状凝集のために最適時間が存在し、この時間を過ぎると
生成した球状凝集微粒子が次第に融着するとの認識も全
く不明であった。従ってこの方式により得られた生成粉
末は、そのままでは実用性に乏しいものであった。
However, the above paper (Journal of the Ceramic Society of Japan, 98 [3] 300-04 (199
As can be clearly seen in the electron micrograph of the resulting spherical microparticles shown in 0)), the agglomerated particles are relatively uniform spheres, but they are partially fused to each other There was a defect that the particles were aggregated in the third order and the isolation and dispersibility of the constituent particles in the powder state were extremely insufficient. At this point in the study, it is still unknown at which stage in the manufacturing process the phenomenon of fusion and agglomeration of spherical fine particles occurs, and there is an optimum time for spherical agglomeration. It was also completely unknown that the aggregated fine particles gradually fused. Therefore, the produced powder obtained by this method is poor in practicality as it is.

【0008】[0008]

【発明が解決しようとする問題点】本発明の目的は、上
記方法の欠点である球状微粒子の融着・凝集化を完全に
除去克服し、濃厚原料処理方式による、微粒子製造を完
成させ、Zrとしての濃度が5モル/l程度の極めて濃
厚な出発原料の水熱処理により、従来得られたことのな
い主として0.1〜0.8μmのサブミクロン超微粒子
領域で、完全に孤立化し分散性に優れたジルコニア単分
散球状超微粒子粉末を、経済的に最も安価に且つ効率よ
く大量に製造する方法を提供するものである。
The object of the present invention is to completely eliminate the fusion and agglomeration of spherical fine particles, which is the drawback of the above method, and to complete the production of fine particles by the concentrated raw material treatment method. As a result of the hydrothermal treatment of the starting material with a very high concentration of about 5 mol / l, it was completely isolated and dispersible in the submicron ultrafine particle region of 0.1 to 0.8 μm, which has never been obtained before. It is intended to provide a method for economically producing the excellent monodisperse spherical ultrafine particle powder of zirconia in a large amount at the lowest cost and efficiently.

【0009】[0009]

【問題を解決するための手段】本発明者は、このような
課題を解決するため、数多くの実験研究を繰り返し、特
にZrOCl−Zr(OH)−HO系に就いて、
その組成を広範に変化させて研究を重ね、生成する球状
凝集粒子の粒径を0.1〜0.8μmに調整可能である
ことを見いだし、これらの微粒子の均一単分散性を高
め、完全に孤立化し分散性に優れたジルコニア単分散球
状超微粒子粉末とするために、次のような順序に沿った
方法が不可欠であることを見いだした。
In order to solve such a problem, the present inventor has repeated a number of experiments and studies, especially on the ZrOCl 2 -Zr (OH) 4 -H 2 O system,
By conducting extensive research by varying the composition, it was found that the particle size of the spherical agglomerated particles produced could be adjusted to 0.1 to 0.8 μm, and the uniform monodispersity of these particles was increased to completely It was found that the following method is indispensable to obtain a zirconia monodisperse spherical ultrafine particle powder which is isolated and has excellent dispersibility.

【0010】即ち、本発明は第一に塩化ジルコニル、水
酸化ジルコニウムもしくは水和ジルコニア、塩酸または
水などを主なる出発原料とし、化学組成比がZrO
1モルに対し、HClが0.8〜2.0モル、HOが
6〜10モル、及び金属塩等の化合物が0〜0.2モル
の範囲となるように配合することが必要であり、その他
に、予めこの原料を粉砕混合して均一な混合物とするこ
と、及びこの混合物を耐酸性の密閉水熱容器中で、容器
の回転などにより混合物を移動させながら100〜22
0℃の温度で必要最適時間だけ水熱処理を行うことが、
水熱反応を均一一定に進行させるために必要であり、こ
れらの処理によって初めて、生成する球状凝集超微粒子
の均一性が確保されることを見いだした。
That is, in the present invention, first, zirconyl chloride, zirconium hydroxide or hydrated zirconia, hydrochloric acid, water or the like is used as a main starting material, and the chemical composition ratio is 0.8 mol of HCl to 1 mol of ZrO 2. ˜2.0 mol, H 2 O 6 to 10 mol, and a compound such as a metal salt in a range of 0 to 0.2 mol. Mixing to form a uniform mixture, and this mixture in an acid-resistant closed hydrothermal container while moving the mixture by rotating the container, etc.
Hydrothermal treatment at a temperature of 0 ° C for the required optimum time
It was found that it is necessary for the hydrothermal reaction to proceed uniformly and uniformly, and the uniformity of the spherical agglomerated ultrafine particles to be formed is ensured only by these treatments.

【0011】またこの反応生成物は、主に単斜ジルコニ
アの球状凝集超微粒子から成る殆ど流動性の無い濃泥状
物であるが、これは約50℃以上の加熱乾燥に際して互
いに融着して粗大凝集塊となり易いことを発見した。こ
のため、水熱反応の生成物は、水熱容器中に密閉のまま
50℃以下に冷却した後、加熱乾燥の前に先ず50℃以
下の温度で減圧乾燥して水と塩酸の大部分を除去する事
が必要不可欠であり、この後で初めて100℃以上の温
度で熱処理することにより、球状凝集が部分融着するこ
となく孤立化した、単分散性に優れた球状凝集超微粒子
となり、水に対しても安定な超微粒子粉末となることを
見いだしたのである。
The reaction product is a thick mud-like substance which is composed mainly of spherical agglomerated ultrafine particles of monoclinic zirconia and has almost no fluidity, but they are fused to each other when heated and dried at about 50 ° C. or higher. It was discovered that coarse aggregates tended to be formed. Therefore, the product of the hydrothermal reaction is cooled to 50 ° C or lower in a hydrothermal container while being hermetically sealed, and then dried under reduced pressure at a temperature of 50 ° C or lower before heating and drying to remove most of water and hydrochloric acid. It is indispensable to remove them, and after that, the first heat treatment at a temperature of 100 ° C. or higher makes spherical aggregates isolated without partial fusion, and spherical aggregated ultrafine particles excellent in monodispersity are obtained. It was found that a stable ultrafine particle powder can be obtained.

【0012】[0012]

【具体的構成】本発明では、塩化ジルコニル、水酸化ジ
ルコニウムもしくは水和ジルコニア、塩酸または水など
を主な出発原料とし、化学組成比がZrOの1モルに
対し、HClが0.8〜2.0モル、HOが6〜10
モル、及び金属塩等の化合物が0〜0.2モルの範囲と
なるように配合し、予め粉砕混合により均一な泥状混合
物とすることが必要である。必要なHCl及びHOの
量として、ZrOの1モルに対し、HClが0.8〜
2.0モル、HOが6〜10モルの極めて狭い範囲に
限定したのは、生成物の凝集球状粒子の径はHClとH
Oの比の減少と共に減少し、HClが0.8モル以下
で粒径が0.1μm程度以下となり、球状、孤立性が悪
くなり、またHClが2.0モル以上では、水熱反応の
終了に高温、長時間を要し、水熱容器の強酸性下での圧
力が高くなりすぎ実用的でなく、一方、HOが6モル
以下では原料の流動性が悪くて生成物が均一とならず、
Oが10モル以上では生成物の流動性が高くなり過
ぎ、水分のため球状凝集粒子の孤立性が損なわれるから
である。
SPECIFIC STRUCTURE In the present invention, zirconyl chloride, zirconium hydroxide or hydrated zirconia, hydrochloric acid, water or the like is used as a main starting material, and a chemical composition ratio of ZrO 2 is 1 mol of ZrO 2. 0.0 mol, H 2 O 6-10
It is necessary to mix the moles and compounds such as metal salts so as to be in the range of 0 to 0.2 moles, and pulverize and mix them in advance to form a uniform mud-like mixture. The required amount of HCl and H 2 O is 0.8 to 0.1 mol of HCl based on 1 mol of ZrO 2.
2.0 mol, H 2 O was limited to a very narrow range of 6 to 10 mol because the diameter of the agglomerated spherical particles of the product was HCl and H.
It decreases with a decrease in the ratio of 2 O, the particle size becomes about 0.1 μm or less when HCl is 0.8 mol or less, the spherical shape and the isolation are deteriorated, and the hydrothermal reaction of HCl is 2.0 mol or more. It requires a high temperature and a long time to finish, and the pressure in the hydrothermal container under strong acidity is too high to be practical. On the other hand, when H 2 O is 6 mol or less, the fluidity of the raw material is poor and the product is uniform. Not
This is because when H 2 O is 10 mol or more, the fluidity of the product becomes too high and the isolation of the spherical agglomerated particles is impaired due to water.

【0013】以上のようなZr成分の極めて濃厚な組成
物では、混合物中の液体部分が少なく、反応後生成物は
殆ど流動性の無い濃泥状物となるので、反応中、水熱容
器を回転するなどして、原料の均一性を図ることが必要
である。反応物を靜置固定した場合には、底部の凝集粒
子の孤立性が幾らか悪くなり、また表面上層部は底部よ
り幾らか粗粒子となり単分散性を損なうのである。
In the composition having a very high concentration of Zr component as described above, the liquid portion in the mixture is small, and the product after the reaction becomes a thick mud having almost no fluidity. It is necessary to make the raw material uniform by rotating it. When the reaction product is fixed in place, the isolation of the agglomerated particles at the bottom becomes somewhat worse, and the upper surface layer becomes somewhat coarser than at the bottom, impairing the monodispersity.

【0014】本発明の方法を実行するには、出発組成、
温度及び時間の3種の変数が適当な関係になければなら
ない。当然高温になる程必要処理時間は短くなるが、一
般に、原料組成中のHCl/HOの比が高いほど生成
する凝集粒子径が大きくなり、必要な水熱処理時間は長
くなる。このときの水熱反応の温度を100〜220℃
に限定したのは、100℃以下では反応が殆ど進行しな
いからであり、また220℃以上では塩酸蒸気の圧力が
高く通常の装置では作業が困難となるからである。最も
実際的な水熱処理温度は130℃〜180℃である。ま
た、この水熱処理時間は長すぎても充分な結果が得られ
ず、原料組成と処理温度の組み合わせ毎にそれぞれ最適
な水熱処理時間が存在することが分かった。水熱処理時
間がこの最適時間を過ぎると生成球状凝集粒子は次第に
崩れ、孤立性も悪くなるのである。最適水熱処理時間
は、原料組成中のHClの量が増加するに従い長くな
り、水熱処理温度が高くなるほど短くなるが、具体的な
最適温度は、原料組成と処理温度に対しそれぞれ実験的
に決定されなければならない。
To carry out the process of the invention, the starting composition:
The three variables of temperature and time must be in proper relationship. Naturally, the higher the temperature, the shorter the required treatment time, but in general, the higher the ratio of HCl / H 2 O in the raw material composition, the larger the agglomerated particle size generated, and the longer the required hydrothermal treatment time. The temperature of the hydrothermal reaction at this time is 100 to 220 ° C.
The reason for limiting the above is that the reaction hardly progresses at 100 ° C. or lower, and at 220 ° C. or higher, the pressure of hydrochloric acid vapor is high and it becomes difficult to work with an ordinary apparatus. The most practical hydrothermal treatment temperature is 130 ° C to 180 ° C. Further, even if this hydrothermal treatment time was too long, sufficient results were not obtained, and it was found that there is an optimum hydrothermal treatment time for each combination of the raw material composition and the treatment temperature. When the hydrothermal treatment time exceeds this optimum time, the produced spherical agglomerated particles gradually collapse and the isolation becomes worse. The optimum hydrothermal treatment time becomes longer as the amount of HCl in the raw material composition increases, and becomes shorter as the hydrothermal treatment temperature becomes higher. The specific optimum temperature is experimentally determined for each raw material composition and treatment temperature. There must be.

【0015】本発明に於ける水熱処理の反応生成物は、
主に単斜ジルコニアの球状凝集超微粒子から成る殆ど流
動性の無い濃泥状物であるが、これはそのままでは約5
0℃以上の加熱乾燥に際して容易に互いに部分融着して
2次、または3次凝集粒が生成し、孤立単分散化した球
状凝集微粒子にならない。反応生成物は、水熱容器中に
密閉のまま50℃以下に冷却した後、加熱乾燥の前に、
先ず50℃以下の温度で減圧乾燥して水と塩酸の大部分
を除去する事が必要不可欠である。この減圧乾燥の温度
は、50℃を大凡の上限とし、これより低い温度となる
ほど球状凝集微粒子の孤立分散性が優れるのである。
The reaction product of the hydrothermal treatment in the present invention is
It is a thick mud that has almost no fluidity and consists mainly of spherical agglomerated ultrafine particles of monoclinic zirconia.
When heated and dried at 0 ° C. or higher, they are easily partially fused to each other to form secondary or tertiary aggregated particles, and do not become isolated monodispersed spherical aggregated particles. The reaction product is cooled to 50 ° C. or lower in a hydrothermal container while being hermetically sealed, and before heating and drying,
First, it is essential to dry under reduced pressure at a temperature of 50 ° C. or lower to remove most of water and hydrochloric acid. The temperature of this reduced-pressure drying has an upper limit of about 50 ° C., and the lower the temperature, the better the isolated dispersibility of the spherical aggregated particles.

【0016】このようにして得られるジルコニア単分散
球状超微粒子は、まだそれを水中に投入すれば、容易に
崩壊分散して、更に超微細な0.01μm以下の超微結
晶の分散したゾルに変化してしまうので、水に対して安
定な超微粉末とするには、この減圧乾燥の後で100℃
以上の熱処理が必要である。この熱処理により、僅かに
未反応物として残留する可溶性ジルコニウム塩などがZ
rOに変化し、球状超微粒子が固定化され、水に対し
て安定になるものと考えられる。
The zirconia monodisperse spherical ultrafine particles thus obtained are easily disintegrated and dispersed when they are still put in water to form a sol in which ultrafine crystals of 0.01 μm or less of ultrafine crystals are dispersed. As it will change, 100 ℃
The above heat treatment is required. By this heat treatment, the soluble zirconium salt etc. slightly remaining as an unreacted substance is converted into Z.
It is considered that the particle size changes to rO 2 , the spherical ultrafine particles are immobilized, and it becomes stable to water.

【0017】[0017]

【実施例】以下に、本発明の幾つかの実施例を示し、本
発明を更に具体的に説明する。
EXAMPLES Some examples of the present invention will be shown below to more specifically describe the present invention.

【0018】実施例1 試薬塩化ジルコニル(ZrOCl・8HO)、半乾
燥含水水酸化ジルコニウム(ZrOH・0.9H
O)、及び蒸留水を、それぞれ表1に示した割合で配
合し、それぞれ乳鉢中でよく摩砕混合してA、B、C、
及びDの4種類の試料の混合物を作成した。これらの化
学組成は、表1に併記したように、ZrOの1モルに
対し、HClは1.0モル〜1.9モル、またHOは
7.0モル〜8.2モル、に相当し、総て特許請求の範
囲内である。これらの混合物はそれぞれステンレス製耐
圧容器中の硬質テフロン容器(内容積25ml)中に充
填した。混合物の体積は何れも約20mlで、充填割合
は何れも容器内容積の約80%である。原料混合物を充
填した各耐圧容器は密封して、熱風循環式ドライオーブ
ン中に回転する軸にセットして内部が転動するように耐
圧容器を回転しながら200℃にそれぞれ所定時間熱処
理を加えた。水熱処理の必要最適時間は表1に示すよう
で、HClとHOのモル比が大きいほど長くなる。
[0018] Example 1 Reagent zirconyl chloride (ZrOCl 2 · 8H 2 O) , semi-dried hydrous zirconium hydroxide (ZrOH 4 · 0.9H
2 O) and distilled water were mixed in the proportions shown in Table 1 and mixed well by grinding in a mortar.
And a mixture of 4 samples of D were prepared. As shown in Table 1, the chemical compositions of these compounds are 1.0 mol to 1.9 mol of HCl and 7.0 mol to 8.2 mol of H 2 O per mol of ZrO 2. Corresponding and all are within the scope of the claims. Each of these mixtures was filled in a hard Teflon container (internal volume: 25 ml) in a pressure resistant container made of stainless steel. The volume of each mixture was about 20 ml, and the filling rate was about 80% of the inner volume of the container. Each pressure-resistant container filled with the raw material mixture was hermetically sealed, set on a rotating shaft in a hot air circulation type dry oven, and heat-treated at 200 ° C. for a predetermined time while rotating the pressure-resistant container so that the inside would roll. . The optimum time required for hydrothermal treatment is as shown in Table 1, and it becomes longer as the molar ratio of HCl and H 2 O increases.

【0019】各試料は加熱処理後、耐圧容器と共に室温
に10時間放置した後、密封を解いたところ何れも白色
の流動性の殆ど無い濃泥状物が生成していた。これをそ
れぞれ蒸発皿に掻き出しそのまま真空デシケータ中に入
れ、真空ポンプにより減圧乾燥した。減圧乾燥した状態
では、これらの生成物は何れも白色の柔らかい粉末集合
物であるが、これらはそのまま水中に投入すれば容易に
0.01μm以下の1次超微粒子に分散して半透明のゾ
ルを与える。しかし約250℃に数時間加熱処理を加え
ることにより水に再分散しなくなった。この生成物は、
柔らかい塊状で、軽く抑えただけで容易にほぐれて粉末
となった。この粉末の走査型電子顕微鏡写真は、図1に
A試料の例を示すように、良く孤立した0.63〜0.
7μmの球状単分散の超微粒子から成っていることが分
かる。B、C、及びDの試料もほぼ同様であるが、その
粒子径は表1に示したように、HClとHOのモル比
が小さくなるに従って次第に小さくなる。
After each sample was heat-treated, it was left at room temperature for 10 hours together with a pressure resistant container, and then unsealed. As a result, a white thick mud-like substance having almost no fluidity was formed. Each of these was scraped out on an evaporation dish and placed in a vacuum desiccator as it was, and dried under reduced pressure by a vacuum pump. In the dried state under reduced pressure, all of these products are white soft powder aggregates, but if they are put into water as they are, they are easily dispersed in primary ultrafine particles of 0.01 μm or less to form a translucent sol. give. However, by heating at about 250 ° C. for several hours, it was not redispersed in water. This product is
It was a soft lump and was easily loosened to a powder just by holding it lightly. Scanning electron micrographs of this powder show well isolated 0.63-0.
It can be seen that it is composed of spherical monodisperse ultrafine particles of 7 μm. The samples of B, C, and D are almost the same, but the particle size thereof becomes smaller as the molar ratio of HCl and H 2 O becomes smaller, as shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例2 試薬塩化ジルコニル(ZrOCl・8HO)、半乾
燥含水水酸化ジルコニウム(ZrOH・3.9H
O)、及び蒸留水を、それぞれ表2に示した割合で配
合し、それぞれ実施例1と同様にして乳鉢中で摩砕混合
し、E、F、及びGの3種類の試料の泥状混合物を作成
した。これらの化学組成は、表2に併記した。これらの
泥状混合物は実施例1と同様にして、150℃若しくは
130℃でそれぞれ水熱処理を加えた。処理温度が低い
ため、最適水熱処理時間はHCl量が少ないにもかかわ
らず、表2に示すように幾らか長時間となった。
[0021] Example 2 Reagent zirconyl chloride (ZrOCl 2 · 8H 2 O) , semi-dried hydrous zirconium hydroxide (ZrOH 4 · 3.9H
2 O) and distilled water were mixed in the proportions shown in Table 2, respectively, and ground and mixed in a mortar in the same manner as in Example 1 to prepare three types of E, F, and G samples in a muddy state. A mixture was made. The chemical compositions of these are also shown in Table 2. These mud-like mixtures were hydrothermally treated in the same manner as in Example 1 at 150 ° C. or 130 ° C., respectively. Since the treatment temperature was low, the optimum hydrothermal treatment time was somewhat long as shown in Table 2 although the amount of HCl was small.

【0022】各試料は加熱処理後、実施例1と同様に容
器密封のまま室温に冷却後開放して濃泥状生成物を真空
デシケータ中に入れ、真空ポンプにより減圧乾燥した。
この状態でこれらの生成物は何れも白色の柔らかい粉末
集合体であり、約250℃に数時間加熱処理を加えるこ
とにより球状凝集超微粒子を水に対し安定化させること
ができた。この生成物も、非常に柔らかい塊状で、軽く
抑えただけで容易にほぐれて粉末となり、この粉末の電
子顕微鏡写真によれば何れも良く孤立した球状微粒子
で、写真から求めた粒子径は表2に示すようであった。
After heat treatment, each sample was cooled to room temperature and left open in the same manner as in Example 1 while keeping the vessel sealed, the concentrated mud-like product was placed in a vacuum desiccator, and dried under reduced pressure by a vacuum pump.
In this state, all of these products were white soft powder aggregates, and the spherical aggregated ultrafine particles could be stabilized against water by applying heat treatment at about 250 ° C. for several hours. This product was also a very soft lump, and was easily loosened by just holding it lightly to give a powder. According to an electron micrograph of the powder, all were well-isolated spherical fine particles, and the particle diameters obtained from the photograph are shown in Table 2. It was as shown in.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例3 試薬塩化ジルコニル(ZrOCl・8HO)、半乾
燥含水水酸化ジルコニウム(ZrOH・3.9H
O)、及び蒸留水の他に、ジルコニアに固溶して正方
ジルコニアとなるように、水酸化イットリウムを添加し
た試料Hを、表2に示した割合で配合し、実施例1と同
様にして乳鉢中で摩砕混合し、泥状混合物を作成した。
この化学組成は、表2に併記した。この泥状混合物は実
施例1と同様にして、200℃で水熱処理を加えた。
[0024] EXAMPLE 3 Reagents zirconyl chloride (ZrOCl 2 · 8H 2 O) , semi-dried hydrous zirconium hydroxide (ZrOH 4 · 3.9H
2 O), and distilled water, sample H to which yttrium hydroxide was added so as to form tetragonal zirconia as a solid solution in zirconia was mixed in the proportions shown in Table 2, and the same as in Example 1. The mixture was ground and mixed in a mortar to prepare a mud-like mixture.
The chemical composition is also shown in Table 2. This mud-like mixture was hydrothermally treated at 200 ° C. in the same manner as in Example 1.

【0025】この試料は加熱処理後、実施例1と同様に
密封のまま室温に冷却した後、真空デシケータ中に入
れ、真空ポンプにより減圧乾燥し、その後約1000℃
で2時間仮焼した。この生成物は、実施例1及び2の定
温熱処理だけのものより幾らか固い塊状であったが、乳
鉢などで軽く磨砕するだけで容易にほぐれて粉末とな
り、粉末X線回折は正方ジルコニア結晶のピークを示
し、この粉末の走査型電子顕微鏡写真は図2に示すよう
に0.35〜0.4μmの良く孤立した単分散球状超微
微粒子から成るものであった。
After heat treatment, this sample was cooled to room temperature while being hermetically sealed as in Example 1, placed in a vacuum desiccator, dried under reduced pressure by a vacuum pump, and then heated to about 1000 ° C.
It was calcined for 2 hours. Although this product was in the form of a lump that was somewhat harder than that of only the constant temperature heat treatment of Examples 1 and 2, it was easily disintegrated into a powder by lightly grinding it in a mortar or the like, and powder X-ray diffraction showed a tetragonal zirconia crystal. , And the scanning electron micrograph of this powder consisted of well-isolated monodisperse spherical ultrafine particles of 0.35 to 0.4 μm as shown in FIG.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
によれば、従来得られたことのない主として0.2〜
0.7μmの超微粒子領域で、完全に孤立化し、分散性
に優れたジルコニア単分散球状超微粒子粉末を製造する
ことが可能になり、ファインセラミックス用原料粉末に
単分散球状超微粒子が初めて工業的に実用に供されるよ
うになるため、ジルコニア系ファインセラミックスの性
能が大きく向上することが期待される。また、原料が比
較的安価で、製造工程が比較的簡単であり、特に水熱処
理がZrO濃度で、5モル/l程度の極めて高濃度で
処理できるので、極めて高効率となり、経済的に最も安
価に且つ大量にジルコニア粉末の製造が可能になったも
ので、このためおそらく世界のジルコニア粉末の生産方
式を一新させる可能性があるものと考えられる。
As is apparent from the above description, according to the present invention, it is possible to obtain 0.2 to 0.2 which has never been obtained conventionally.
It becomes possible to produce zirconia monodisperse spherical ultrafine particles that are completely isolated and have excellent dispersibility in the ultrafine particle region of 0.7 μm. Therefore, it is expected that the performance of zirconia-based fine ceramics will be greatly improved. In addition, the raw materials are relatively inexpensive, the manufacturing process is relatively simple, and hydrothermal treatment can be performed at an extremely high concentration of about 5 mol / l at a ZrO 2 concentration, resulting in extremely high efficiency and economically most advantageous. It is possible to manufacture zirconia powder inexpensively and in large quantities. Therefore, it is considered that there is a possibility that the zirconia powder production system in the world may be renewed.

【図面の簡単な説明】[Brief description of drawings]

【図1】代表的な試料Aの走査型電子顕微鏡写真であ
る。
FIG. 1 is a scanning electron micrograph of a representative sample A.

【図2】イットリュウムを固溶した代表的な試料Hの走
査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph of a representative sample H in which yttrium is solid-dissolved.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月9日[Submission date] September 9, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業状の利用分野】本発明は、ファインセラミックス
の原料粉末、即ちジルコニアを主成分とするセラミック
スやジルコニウム化合物を含むセラミックスの原料粉末
として有用な優れた特性を有し、また特殊な化粧品用や
顔料用等としても有用なサブミクロンのジルコニア単分
散球状超微粉末を安価に且つ大量に製造する方法に関す
るものである。
INDUSTRIAL APPLICABILITY The present invention has excellent properties useful as a raw material powder for fine ceramics, that is, as a raw material powder for ceramics containing zirconia as a main component or a ceramic containing a zirconium compound, and for special cosmetics or The present invention relates to a method for inexpensively producing a large amount of submicron zirconia monodisperse spherical ultrafine powder which is also useful as a pigment.

【0002】[0002]

【背景技術】ファインセラミックスの原料微粉末、特に
焼結体用としては成形充填密度を高くすることができ、
焼結が均一に進行して寸法精度の良い、均質な焼結体微
組織が得られ、また他の成分との固相反応では、混合が
均一になり、均質な反応生成物が得られるなどの利点か
ら、一般に高純度、均一、球形状、孤立性に優れた微粒
子が、求められている。
BACKGROUND ART As a raw material fine powder for fine ceramics, especially for a sintered body, the molding packing density can be increased,
Sintering progresses uniformly to obtain a homogeneous microstructure of a sintered body with good dimensional accuracy. In the solid-phase reaction with other components, the mixing is uniform and a homogeneous reaction product is obtained. In view of the above advantages, fine particles having high purity, uniformity, spherical shape, and excellent isolation are generally required.

【0003】従来、このような単分散ジルコニア微粒子
の製造法として知られているのは、アルコキシドのアル
コール溶液の加水分解によるもの(J.Am.Cer
a.Soc.72[3]421−26(1989))
であり、1μm前後の孤立した単分散球状の非晶質ジル
コニア微粒子が得られるが、ZrOの濃度として0.
1モル/1程度以下の極めて希薄な溶液を使用する必要
から、一定の装置容積に対する生成量が極めて少なく、
且つ原料のアルコキシドやアルコールが高価につくた
め、一般に経済性に劣り、工業的大量生産に適さない欠
点があった。従ってジルコニアでは、単分散球状微粒子
は特殊な用途以外には使用できず、セラミックス原料用
としても使用されることはなかった。
Conventionally, a known method for producing such monodisperse zirconia fine particles is by hydrolysis of an alcohol solution of alkoxide (J. Am. Cer.
a. Soc. 72 [3] 421-26 (1989)).
Thus, isolated monodisperse spherical amorphous zirconia fine particles having a size of about 1 μm can be obtained, but the ZrO 2 concentration is 0.
Since it is necessary to use an extremely dilute solution of about 1 mol / 1 or less, the production amount for a given apparatus volume is extremely small,
In addition, since the raw material alkoxide and alcohol are expensive, they are generally inferior in economic efficiency and have a drawback that they are not suitable for industrial mass production. Therefore, in zirconia, the monodisperse spherical fine particles can be used only for a special purpose, and have not been used as a ceramic raw material.

【0004】現在、ジルコニア系ファインセラミックス
の焼結用原料として用いられるジルコニア微粉末の粒子
径は一般に0.2〜0.4μmの超微粒子から成るもの
で、このようなジルコニア超微粒子粉末は、非晶質の水
酸化ジルコニウム、又は0.μm以下のコロイド生成物
などの仮焼物をボールミルなどにより微粉砕して製造す
るものが殆どであり、工業的に実用されているものは、
球状ではなく、単分散でもないのが現状である。
At present, zirconia fine powder used as a raw material for sintering zirconia-based fine ceramics is generally composed of ultrafine particles having a particle size of 0.2 to 0.4 μm. Crystalline zirconium hydroxide, or 0. Most of them are produced by finely pulverizing a calcined product such as a colloidal product having a size of μm or less with a ball mill or the like.
At present, it is neither spherical nor monodisperse.

【0005】本発明者は、既に以前、経済的に大量処理
可能な球状粒子の製造方法として、結晶性含水塩化ジル
コニル単独、またはこれを主成分としZrOに固溶可
能な金属酸化物となる化合物を少量含む固体混合物を密
閉容器中で150℃〜300℃で加熱反応させ、これを
加熱脱水して0.5〜1μm程度の球状ジルコニア微粒
子を製造する方法を特許出願した(特願平62−107
578)、また結晶性含水塩化ジルコニルをそのまま、
または僅かの水を添加して150℃〜200℃で水熱処
理し、これを加熱脱水して、0.5〜1μm程度の球状
ジルコニア微粒子が得られることを論文(日本セラミッ
クス協会学術論文誌、98[3]300−04(199
0))発表した。
The present inventor has already used, as a method for producing spherical particles that can be economically processed in large quantities, crystalline hydrous zirconyl chloride alone or a metal oxide containing this as a main component and capable of forming a solid solution in ZrO 2. A patent application was filed for a method of producing a spherical zirconia fine particle of about 0.5 to 1 μm by heating and reacting a solid mixture containing a small amount of a compound in a closed container at 150 ° C. to 300 ° C. -107
578), or the crystalline hydrous zirconyl chloride as it is,
Alternatively, a slight amount of water may be added to hydrothermally treat at 150 ° C. to 200 ° C., and this may be heated and dehydrated to obtain spherical zirconia fine particles of about 0.5 to 1 μm (Journal of Ceramic Society of Japan, 98 [3] 300-04 (199
0)) announced.

【0006】本発明者による上記の方法は、濃厚な出発
組成物の水熱反応により0.01μm以下の単斜ジルコ
ニア超微粒子が0.5〜1μm程度の球状に一時的に軟
凝集した生成物が得られ、この凝集はそのままでは、水
中に投入すれば直ちに崩壊して元の0.01μm以下の
単斜ジルコニア超微結晶に分散して半透明のゾルとなっ
てしまうが、これを熱的に乾燥固定化することにより水
に対し安定な球状微粒子となることを見い出したもので
ある。従って、ジルコニア球状微粒子の製造方法として
は全く新しい画期的な方法であり、特に極めて濃厚な混
合物を処理するので、一定の装置容積に対し生成物が大
量に得られる点が極めて特徴的であった。
The above method by the present inventor is a product obtained by temporarily soft agglomerating monoclinic zirconia ultrafine particles of 0.01 μm or less into a spherical shape of about 0.5 to 1 μm by hydrothermal reaction of a concentrated starting composition. If this agglomeration is left as it is, it will disintegrate immediately when poured into water and disperse into the original monoclinic zirconia ultrafine crystals of 0.01 μm or less to form a translucent sol. It has been found that by drying and immobilizing it on, it becomes stable spherical particles in water. Therefore, it is a completely new and innovative method for producing spherical zirconia fine particles, and since a particularly thick mixture is processed, a characteristic feature is that a large amount of product can be obtained for a given apparatus volume. It was

【0007】しかしながら上記論文(日本セラミックス
協会学術論文誌、98[3]300−04(199
0))中に示した生成球状微粒子の形状の電子顕微鏡写
真に明らかに見られるように、この凝集粒子は比較的均
一な球状ではあるが、それらは互いに部分的に融着して
2次、3次に凝集しており、粉末状態での構成粒子の孤
立性、分散性が著しく不十分となる欠点があった。研究
のこの時点では、まだ球状微粒子の融着・凝集の現象が
製造工程のどの段階で発生するのか不明であり、また球
状凝集のために最適時間が存在し、この時間を過ぎると
生成した球状凝集微粒子が次第に融着するとの認識も全
く不明であった。従ってこの方式により得られた生成粉
末は、そのままでは実用性に乏しいものであった。
However, the above paper (Journal of the Ceramic Society of Japan, 98 [3] 300-04 (199
As can be clearly seen in the electron micrograph of the resulting spherical microparticles shown in 0)), the agglomerated particles are relatively uniform spheres, but they are partially fused to each other There was a defect that the particles were aggregated in the third order and the isolation and dispersibility of the constituent particles in the powder state were extremely insufficient. At this point in the study, it is still unknown at which stage in the manufacturing process the phenomenon of fusion and agglomeration of spherical fine particles occurs, and there is an optimum time for spherical agglomeration. It was also completely unknown that the aggregated fine particles gradually fused. Therefore, the produced powder obtained by this method is poor in practicality as it is.

【0008】[0008]

【発明が解決しようとする課題点】本発明の目的は、上
記方法の欠点である球状微粒子の融着・凝集化を完全に
除去克服し、濃厚原料処理方式による微粉末製造法を完
成させ、Zrとしての濃度が5モル/1程度の極めて濃
厚な出発原料の水熱処理により、従来得られたことのな
い主として0.1〜0.8μmのサブミクロン超微粒子
領域で、完全に孤立化し分散性に優れたジルコニア単分
散球状超微粒子粉末を、経済的に最も安価に且つ効率よ
く大量に製造する方法を提供するものである。
The object of the present invention is to completely eliminate the fusion and agglomeration of spherical fine particles, which is a drawback of the above method, and complete a fine powder manufacturing method by a concentrated raw material treatment method. By hydrothermal treatment of an extremely concentrated starting material with a Zr concentration of about 5 mol / l, completely isolated and dispersed in a submicron ultrafine particle region of 0.1 to 0.8 μm, which has never been obtained before. The present invention provides a method for producing a large amount of zirconia monodisperse spherical ultrafine particle powder, which is excellent in terms of cost, economically, at the lowest cost, and efficiently.

【0009】[0009]

【問題を解決するための手段】本発明者は、このような
課題を解決するため、数多くの実験研究を繰り返し、特
にZrOCl−Zr(OH)−HO系に就いて、
その組成を広範に変化させて研究を重ね、生成する球状
凝集粒子の粒径を0.1〜0.8μmに調整可能である
ことを見いだし、これらの微粒子の均一単分散性を高
め、完全に孤立化し分散性に優れたジルコニア単分散球
状超微粒子粉末とするために、次のような順序に沿った
方法が不可欠であることを見いだした。
In order to solve such a problem, the present inventor has repeated a number of experiments and studies, especially on the ZrOCl 2 -Zr (OH) 4 -H 2 O system,
By conducting extensive research by varying the composition, it was found that the particle size of the spherical agglomerated particles produced could be adjusted to 0.1 to 0.8 μm, and the uniform monodispersity of these particles was increased to completely It was found that the following method is indispensable to obtain a zirconia monodisperse spherical ultrafine particle powder which is isolated and has excellent dispersibility.

【0010】即ち、本発明は第一に塩化ジルコニル、水
酸化ジルコニウム、水和ジルコニア、塩基性炭酸ジルコ
ニウムなどのジルコニウム化合物と塩酸または水などを
混合し、化学組成比がZrOの1モルに対し、HCl
が0.8〜2.0モル、HOが6〜10モル、及び金
属塩等の化合物が0〜0.2モルとなる、均一な混合物
または溶液とすることが必要であり、その他に、予めこ
の原料を粉砕混合などにより均一な混合物または溶液
すること、及びこの組成物を耐酸性の密閉水熱容器中
で、容器の回転などにより内容物を移動させながら10
0〜220℃の温度で必要最適時間だけ水熱処理を行う
ことが、水熱反応を均一一定に進行させるために必要で
あり、これらの処理によって初めて、生成する球状凝集
超微粒子の均一性が確保されることを見いだした。
That is, the present invention is as follows. First, zirconyl chloride, zirconium hydroxide, hydrated zirconia, basic zirconium carbonate.
Zirconium compounds such as Ni and hydrochloric acid or water
When mixed, the chemical composition ratio is 1 mol of ZrO 2 , and HCl is added.
But 0.8 to 2.0 mol, H 2 O is 6 to 10 mol, and compounds such as metal salts becomes 0 to 0.2 mol, homogeneous mixture
Or it is necessary to a solution, the other, previously the material due pulverized and mixed to a homogeneous mixture or solution, and the composition in acid resistance of the sealed hydrothermal vessel, due the rotation of the container 10 while moving contents
It is necessary to carry out hydrothermal treatment at a temperature of 0 to 220 ° C. for a necessary optimum time in order for the hydrothermal reaction to proceed uniformly and uniformly, and for the first time by these treatments, the uniformity of the spherical agglomerated ultrafine particles produced is ensured. I was found to be done.

【0011】またこの反応生成物は、主に単斜ジルコニ
アの球状凝集超微粒子から成る殆ど流動性の無い濃泥状
物であるが、これは約50℃以上の加熱乾燥に際して互
いに融着して粗大凝集塊となり易いことを発見した。こ
のため、水熱反応の生成物は、水熱容器中に密閉のまま
50℃以下に冷却した後、加熱乾燥の前に先ず50℃以
下の温度で減圧乾燥して水と塩酸の大部分を除去する事
が必要不可決であり、この後で初めて100℃以上の温
度で熱処理することにより、球状凝集が部分融着するこ
となく孤立化した、単分散性に優れた球状凝集超微粒子
となり、水に対しても安定な超微粒子粉末となることを
見いだしたのである。
The reaction product is a thick mud-like substance which is composed mainly of spherical agglomerated ultrafine particles of monoclinic zirconia and has almost no fluidity, but they are fused to each other when heated and dried at about 50 ° C. or higher. It was discovered that coarse aggregates tended to be formed. Therefore, the product of the hydrothermal reaction is cooled to 50 ° C or lower in a hydrothermal container while being hermetically sealed, and then dried under reduced pressure at a temperature of 50 ° C or lower before heating and drying to remove most of water and hydrochloric acid. It is absolutely necessary to remove it, and after that, by first performing heat treatment at a temperature of 100 ° C. or higher, spherical aggregates are isolated without partial fusion and spherical aggregated ultrafine particles excellent in monodispersity are obtained, They have found that it becomes ultrafine powder powder that is stable against water.

【0012】[0012]

【具体的構成】本発明では、塩化ジルコニル、水酸化ジ
ルコニウム、水和ジルコニア、塩基性炭酸ジルコニウム
などのジルコニウム化合物と塩酸または水などを混合
し、化学組成比がZrOの1モルに対し、HClが
0.8〜2.0モル、HOが6〜10モル、及び金属
塩等の化合物が0〜0.2モルとなる、均一な混合物ま
たは溶液とすることが必要である。必要なHCl及びH
Oの量として、ZrOの1モルに対し、HClが
0.8〜2.0モル、HOが6〜10モルの極めて狭
い範囲に限定したのは、生成物の凝集球状粒子の径はH
ClとHOの比の減少と共に減少し、HClが0.8
モル以下では粒径が0.1μm程度以下となり、球状、
孤立性が悪くなり、またHClが2.0モル以上では、
水熱反応の終了に高温、長時間を要し、水熱要器の強酸
性下での圧力が高くなりすぎ実用的でなく、一方、H
Oが6モル以上では原料の流動性が悪くて生成物が均一
とならず、HOが10モル以上では生成物の流動性が
高くなり過ぎ、水分のため球状凝集粒子の孤立性が損な
われるからである。
[Specific Structure] In the present invention, zirconyl chloride, zirconium hydroxide, hydrated zirconia, basic zirconium carbonate
Mixing zirconium compounds such as hydrochloric acid or water
Then, with respect to the chemical composition ratio of 1 mole of ZrO 2 , HCl is 0.8 to 2.0 moles, H 2 O is 6 to 10 moles, and compounds such as metal salts are 0 to 0.2 moles . Even mixture
Or a solution is required. Required HCl and H
As the amount of 2 O, relative to 1 mole of ZrO 2, the HCl is 0.8 to 2.0 mol, H 2 O is limited to a very narrow range of 6 to 10 moles, of the product of aggregated spherical particles Diameter is H
Decreases with decreasing ratio of Cl to H 2 O, HCl is 0.8
If it is less than molar, the particle size will be about 0.1 μm or less,
The isolation becomes worse, and when HCl is 2.0 mol or more,
The end of the hydrothermal reaction requires high temperature and a long time, and the pressure of the hydrothermal device under strong acidity becomes too high to be practical, while H 2
When O is 6 mol or more, the fluidity of the raw material is poor and the product is not uniform, and when H 2 O is 10 mol or more, the fluidity of the product becomes too high, and the isolation of the spherical aggregated particles is impaired due to water. Because it is done.

【0013】以上のようなZr成分の極めて濃厚な組成
物では、混合物中の液体部分が少なく、反応後生成物は
殆ど流動性の無い濃泥状物となるので、反応中、水熱容
器を回転するなどして、原料の均一性を図ることが必要
である。反応物を静置固定した場合には、底部の凝集粒
子の孤立性が幾らか悪くなり、また表面上層部は底部よ
り幾らか粗粒子となり単分散性を損なうのである。
In the composition having a very high concentration of Zr component as described above, the liquid portion in the mixture is small, and the product after the reaction becomes a thick mud having almost no fluidity. It is necessary to make the raw material uniform by rotating it. When the reaction product is statically fixed, the isolation of the aggregated particles at the bottom becomes somewhat worse, and the upper surface layer becomes somewhat coarser than at the bottom, impairing the monodispersity.

【0014】本発明の方法を実行するには、出発組成、
温度及び時間の3種の変数が適当な関係になければなら
ない。当然高温になる程必要処理時間は短くなるが、一
般に、原料組成中のHCl/HOの比が高いほど生成
する凝集粒子径が大きくなり、必要な水熱処理時間が長
くなる。このときの水熱反応の温度を100〜220℃
に限定したのは、100℃以下では反応が殆ど進行しな
いからであり、また220℃以上では塩酸蒸気の圧力が
高く通常の装置では作業が困難となるからである。最も
実際的な水熱処理温度は130℃〜180℃である。ま
た、この水熱処理時間は長すぎても充分な結果が得られ
ず、原料組成と処理温度の組み合わせ毎にそれぞれ最適
な水熱処理時間が存在することが分かった。水熱処理時
間がこの最適時間を過ぎると生成球状凝集粒子は次第に
崩れ、孤立性も悪くなるのである。最適水熱処理時間
は、原料組成中のHClの量が増加するに従い長くなり
水熱処理温度が高くなるほど短くなるが、具体的な最適
温度は、原料組成と処理温度に対しそれぞれ実験的に決
定されなければならない。
To carry out the process of the invention, the starting composition:
The three variables of temperature and time must be in proper relationship. Naturally, the higher the temperature, the shorter the required treatment time, but in general, the higher the ratio of HCl / H 2 O in the raw material composition, the larger the agglomerated particle size generated, and the longer the required hydrothermal treatment time. The temperature of the hydrothermal reaction at this time is 100 to 220 ° C.
The reason for limiting the above is that the reaction hardly progresses at 100 ° C. or lower, and at 220 ° C. or higher, the pressure of hydrochloric acid vapor is high and it becomes difficult to work with an ordinary apparatus. The most practical hydrothermal treatment temperature is 130 ° C to 180 ° C. Further, even if this hydrothermal treatment time was too long, sufficient results were not obtained, and it was found that there is an optimum hydrothermal treatment time for each combination of the raw material composition and the treatment temperature. When the hydrothermal treatment time exceeds this optimum time, the produced spherical agglomerated particles gradually collapse and the isolation becomes worse. The optimum hydrothermal treatment time becomes longer as the amount of HCl in the raw material composition increases, and becomes shorter as the hydrothermal treatment temperature becomes higher, but the specific optimum temperature must be experimentally determined for the raw material composition and the treatment temperature, respectively. I have to.

【0015】本発明に於ける水熱処理の反応生成物は、
主に単斜ジルコニアの球状凝集超微粒子から成る殆ど流
動性の無い濃泥状物であるが、これはそのままでは約5
0℃以上の加熱乾燥に際して容易に互いに部分融着して
2次、または3次凝集粒が生成し、孤立単分散化した球
状凝集微粒子にならない。反応生成物は、水熱容器中に
密閉のまま50℃以下に冷却した後、加熱乾燥の前に、
先ず50℃以下の温度で減圧乾燥して水と塩酸の大部分
を除去する事が必要不可欠である。この減圧乾燥の温度
は、50℃を大凡の上限とし、これより低い温度となる
ほど球状凝集微粒子の孤立分散性が優れるのである。
The reaction product of the hydrothermal treatment in the present invention is
It is a thick mud that has almost no fluidity and consists mainly of spherical agglomerated ultrafine particles of monoclinic zirconia.
When heated and dried at 0 ° C. or higher, they are easily partially fused to each other to form secondary or tertiary aggregated particles, and do not become isolated monodispersed spherical aggregated particles. The reaction product is cooled to 50 ° C. or lower in a hydrothermal container while being hermetically sealed, and before heating and drying,
First, it is essential to dry under reduced pressure at a temperature of 50 ° C. or lower to remove most of water and hydrochloric acid. The temperature of this reduced-pressure drying has an upper limit of about 50 ° C., and the lower the temperature, the better the isolated dispersibility of the spherical aggregated particles.

【0016】このようにして得られるジルコニア単分散
球状超微粒子は、まだそれを水中に投入すれば、容易に
崩壊分散して、更に超微細な0.01μm以下の超微結
晶の分散したゾルに変化してしまうので、水に対して安
定な超微粉末とするには、この減圧乾燥の後で100℃
以上の熱処理が必要である。この熱処理により、僅かに
未反応物として残留する可溶性ジルコニウム塩などがZ
rOに変化し、球状超微粒子が固定化され、水に対し
て安定になるものと考えられる。
The zirconia monodisperse spherical ultrafine particles thus obtained are easily disintegrated and dispersed when they are still put into water, and the ultrafine sol in which ultrafine crystals of 0.01 μm or less are dispersed. Therefore, in order to obtain ultra-fine powder that is stable against water, after drying under reduced pressure at 100 ° C
The above heat treatment is required. By this heat treatment, the soluble zirconium salt etc. slightly remaining as an unreacted substance is converted into Z.
It is considered that the particle size changes to rO 2 , the spherical ultrafine particles are immobilized, and it becomes stable to water.

【0017】[0017]

【実施例】以下に、本発明の幾つかの実施例を示し、本
発明を更に具体的に説明する。
EXAMPLES Some examples of the present invention will be shown below to more specifically describe the present invention.

【0018】実施例1 試薬塩化ジルコニル(ZrOCl・8HO)、半乾
燥含水水酸化ジルコニウム(ZrOH・0.9H
O)、 及び蒸留水を、それぞれ表1に示した割合で
配合し、それぞれ乳鉢中でよく摩砕混合してA、B、
C、及びDの4種類の試料の混合物を作成した。これら
の化学組成は、表1に併記したように、ZrOの1モ
ルに対し、HClは1.0モル〜1.9モル、またH
Oは7.0モル〜8.2モル、に相当し、総て特許請求
の範囲内である。これらの混合物はそれぞれステンレス
製耐圧容器中の硬質テフロン容器(内容積25ml)中
に充填した。混合物の体積は何れも約20mlで、充填
割合は何れも容器内容積の約80%である。原料混合物
を充填した各耐圧容器は密封して、熱風循環式ドライオ
ーブン中に回転する軸にセットして内部が転動するよう
に耐圧容器を回転しながら200℃にそれぞれ所定時間
熱処理を加えた。水熱処理の必要最低時間は表1に示す
ようで、HClとHOのモル比が大きいほど長くな
る。
[0018] Example 1 Reagent zirconyl chloride (ZrOCl 2 · 8H 2 O) , semi-dried hydrous zirconium hydroxide (ZrOH 4 · 0.9H
2 O), and distilled water were mixed in the proportions shown in Table 1 and mixed well in a mortar to mix A, B, and
A mixture of four kinds of samples C and D was prepared. These chemical compositions are as shown in Table 1, with respect to 1 mole of ZrO 2, HCl 1.0 mol to 1.9 mol, also H 2
O corresponds to 7.0 mol-8.2 mol, all within the scope of the claims. Each of these mixtures was filled in a hard Teflon container (internal volume: 25 ml) in a pressure resistant container made of stainless steel. The volume of each mixture was about 20 ml, and the filling rate was about 80% of the inner volume of the container. Each pressure-resistant container filled with the raw material mixture was hermetically sealed, set on a rotating shaft in a hot air circulation type dry oven, and heat-treated at 200 ° C. for a predetermined time while rotating the pressure-resistant container so that the inside would roll. . The minimum time required for hydrothermal treatment is as shown in Table 1, and the longer the molar ratio of HCl to H 2 O, the longer it becomes.

【0019】各試料は加熱処理後、耐圧容器と共に室温
に10時間放置した後、密封を解いたところ何れも白色
の流動性の殆ど無い濃泥状物が生成していた。これをそ
れぞれ蒸発皿に掻き出しそのまま真空デシケータ中に入
れ、真空ポンプにより減圧乾燥した。減圧乾燥した状態
では、これらの生成物は何れも白色の柔らかい粉末集合
物であるが、これらはそのまま水中に投入すれば容易に
0.01μm以下の1次超微粒子に分散して半透明のゾ
ルを与える。しかし約250℃に数時間加熱処理を加え
ることにより水に再分散しなくなった。この成成物は、
柔らかい塊状で、軽く抑えただけで容易にほぐれて粉末
となった。この粉末の走査型電子顕微鏡写真は、図1に
A試料の例を示すように、良く孤立した0.63〜0.
7μmの球状単分散の超微粒子から成っていることが分
かる。B、C、及びDの試料もほぼ同様であるが、その
粒子径は表1に示したように、HClとHOのモル比
が小さくなるに従って次第に小さくなる。
After each sample was heat-treated, it was left at room temperature for 10 hours together with a pressure resistant container, and then unsealed. As a result, a white, almost mud-like substance having almost no fluidity was formed. Each of these was scraped out on an evaporation dish and placed in a vacuum desiccator as it was, and dried under reduced pressure by a vacuum pump. In the dried state under reduced pressure, all of these products are white soft powder aggregates, but if they are put into water as they are, they are easily dispersed in primary ultrafine particles of 0.01 μm or less to form a translucent sol. give. However, by heating at about 250 ° C. for several hours, it was not redispersed in water. This product is
It was a soft lump and was easily loosened to a powder just by holding it lightly. Scanning electron micrographs of this powder show well isolated 0.63-0.
It can be seen that it is composed of spherical monodisperse ultrafine particles of 7 μm. The samples of B, C, and D are almost the same, but the particle size thereof becomes smaller as the molar ratio of HCl and H 2 O becomes smaller, as shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例2 試薬塩化ジルコニル(ZrOCl・8HO)、半乾
燥含水水酸化ジルコニウム(Zr(OH) ・3.9H
O)、及び蒸溜水を、それぞれ表2に示した割合で配
合し、それぞれ実施例1と同様にして乳鉢中で摩砕混合
し、E、F、及びGの3種類の試料の泥状混合物を作成
した。これらの化学組成は、表2に併記した。これらの
泥状混合物は実施例1と同様にして、150℃もしくは
130℃でそれぞれ水熱処理を加えた。処理温度が低い
ため、最適水熱処理時間はHCl量が少ないにもかかわ
らず、表2に示すように幾らか長時間となった。
[0021] Example 2 Reagent zirconyl chloride (ZrOCl 2 · 8H 2 O) , semi-dried hydrous zirconium hydroxide (Zr (OH) 4 · 3.9H
2 O) and distilled water were mixed in the proportions shown in Table 2 and ground and mixed in a mortar in the same manner as in Example 1 to prepare three types of E, F, and G samples in the form of mud. A mixture was made. The chemical compositions of these are also shown in Table 2. These mud-like mixtures were hydrothermally treated at 150 ° C. or 130 ° C. in the same manner as in Example 1. Since the treatment temperature was low, the optimum hydrothermal treatment time was somewhat long as shown in Table 2 although the amount of HCl was small.

【0022】各試料は加熱処理後、実施例1と同様に容
器密封のまま室温に冷却後開放して濃泥状生成物を真空
デシケータ中に入れ、真空ポンプにより減圧乾燥した。
この状態でこれらの生成物は何れも白色の柔らかい粉末
集合物であり、約250℃に数時間熱処理を加えること
により球状凝集超微粒子を水に対し安定化させることが
できた。この生成物も、非常に柔らかい塊状で、軽く抑
えただけで容易にほぐれて粉末となり、この粉末の電子
顕微鏡写真によれば何れも良く孤立した球状微粒子で、
写真から求めた粒子径は表2に示すようであった。
After heat treatment, each sample was cooled to room temperature and left open in the same manner as in Example 1 while keeping the vessel sealed, the concentrated mud-like product was placed in a vacuum desiccator, and dried under reduced pressure by a vacuum pump.
In this state, all of these products were white soft powder aggregates, and the spherical aggregated ultrafine particles could be stabilized against water by applying a heat treatment at about 250 ° C. for several hours. This product is also a very soft lump, and is easily loosened to a powder by just holding it lightly, and according to the electron micrograph of this powder, all are well isolated spherical fine particles,
The particle size obtained from the photograph is shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例3 試薬塩化ヒジルコニル(ZrOCl・8HO)、半
乾燥含水水酸化ジルコニウム(Zr(OH) ・3.9
O)、及び蒸留水の他に、ジルコニアに固溶して正
方ジルコニアとなるように、水酸化イットリウムを添加
した試料Hを、表2に示した割合で配合し、実施例1と
同様にして乳鉢中で磨砕混合し、泥状混合物を作成し
た。この化学組成は、表2に併記した。この泥状混合物
は実施例1と同様にして、200℃で水熱処理を加え
た。
[0024] EXAMPLE 3 Reagents chloride Hijirukoniru (ZrOCl 2 · 8H 2 O) , semi-dried hydrous zirconium hydroxide (Zr (OH) 4 · 3.9
H 2 O), distilled water, and yttrium hydroxide were added so as to form tetragonal zirconia as a solid solution in zirconia, and sample H was blended in the proportions shown in Table 2 and the same as in Example 1. Then, the mixture was ground and mixed in a mortar to prepare a mud-like mixture. The chemical composition is also shown in Table 2. This mud-like mixture was hydrothermally treated at 200 ° C. in the same manner as in Example 1.

【0025】この試料は加熱処理後、実施例1と同様に
密封のまま室温に冷却した後、真空デシケータ中に入
れ、真空ボンプにより減圧乾燥し、その後約1000℃
で2時間仮焼した。この生成物は、実施例1及び2の低
温熱処理だけのものより幾らか固い塊状であったが、乳
鉢体などで軽く磨砕するだけで容易にほぐれて粉末とな
り、粉末X線回折は正方ジルコニア結晶のピークを示
し、この粉末の走査型電子顕微鏡写真は図2に示すよう
に0.35〜0.4μmの良く孤立した単分散球状超微
微粒子から成るものであった。
After heat treatment, this sample was cooled to room temperature while being hermetically sealed in the same manner as in Example 1, placed in a vacuum desiccator, dried under reduced pressure by a vacuum pump, and then heated to about 1000 ° C.
It was calcined for 2 hours. This product was in the form of a lump that was somewhat harder than that of the low temperature heat treatments of Examples 1 and 2, but it was easily disintegrated into a powder by lightly grinding it with a mortar or the like, and powder X-ray diffraction showed tetragonal zirconia. The peak of the crystal was shown, and the scanning electron micrograph of this powder was composed of well-isolated monodisperse spherical ultrafine particles of 0.35 to 0.4 μm as shown in FIG.

【0026】実施例4 塩基性炭酸ジルコニウム(Zr(OH)CO
・6.06HO)を208.7g秤取し、これを、1
2N濃塩酸83.3mlと混合したところ、炭酸ガスを
発生して透明な溶液となった。この溶液の化学組成比
は、計算上、ZrOの1モルに対し、HClが1.0
モル、HOが7.0モル、で、実施例2の資料Eに相
当する。この溶液の一部を取り、実施例2と同様にし
て、150℃で24時間、水熱処理を加えた。次いでこ
の試料はその後実施例1と全く同様に処理したところ、
生成物は、電子顕微鏡写真によれば何れも良く孤立した
球状微粒子で、表2の資
Example 4 Basic Zirconium Carbonate (Zr 2 O 2 (OH) 2 CO 3
206.0 g of (6.06H 2 O) was weighed and
When mixed with 83.3 ml of 2N concentrated hydrochloric acid, carbon dioxide gas
It evolved into a clear solution. Chemical composition ratio of this solution
Is calculated by adding 1 mol of ZrO 2 to HCl of 1.0.
Moles, 7.0 moles of H 2 O,
Hit A portion of this solution was taken and processed as in Example 2.
Then, hydrothermal treatment was performed at 150 ° C. for 24 hours. Next
Sample was then treated exactly as in Example 1,
The products were all well isolated according to electron micrographs
Spherical particles

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
によれば、従来得られたことのない主として0.2〜
0.7μmの超微粒子領域で、完全に孤立化し、分散性
に優れたジルコニア単分散球状超微粒子粉末を製造する
ことが可能になり、ファインセラミックス用原料粉末に
単分散球状超微粒子が初めて工業的に実用に供されるよ
うになるため、ジルコニア系ファインセラミックスの性
能が大きく向上することが期待される。また、原料が比
較的安価で、製造工程が比較的簡単であり、特に水熱処
理がZrO濃度で、5モル/1程度の極めて高濃度で
処理できるので、極めて高効率となり、経済的に最も安
価に且つ大量にジルコニア粉末の製造が可能になったも
ので、このためおそらく世界のジルコニア粉末の生産方
式を一新させる可能性があるものと考えられる。
As is apparent from the above description, according to the present invention, it is possible to obtain 0.2 to 0.2 which has never been obtained conventionally.
It becomes possible to produce zirconia monodisperse spherical ultrafine particles that are completely isolated and have excellent dispersibility in the ultrafine particle region of 0.7 μm. Therefore, it is expected that the performance of zirconia-based fine ceramics will be greatly improved. In addition, the raw material is relatively inexpensive, the manufacturing process is relatively simple, and the hydrothermal treatment can be performed at a ZrO 2 concentration of 5 mol / 1, which is an extremely high concentration. It is possible to manufacture zirconia powder inexpensively and in large quantities. Therefore, it is considered that there is a possibility that the zirconia powder production system in the world may be renewed.

Claims (1)

【整理番号】 0010 【特許請求の範囲】[Reference number] 0010 [Claims] 【請求項1】 塩化ジルコニル、水酸化ジルコニウムも
しくは水和ジルコニア、塩酸または水などを主なる出発
原料とし、化学組成比がZrOの1モルに対し、HC
lが0.8〜2.0モル、HOが6〜10モル、及び
金属塩等の化合物が0〜0.2モルの範囲となるよう
に、配合し、予め粉砕混合により均一な混合物とし、こ
れを耐酸性の密閉水熱容器中で、容器の回転などにより
混合物を移動させながら100〜220℃の温度で必要
な最適時間水熱処理を行い、容器を密閉のまま50℃以
下に冷却した後、この反応生成物である濃泥状物を先ず
50℃以下の温度で減圧乾燥することにより水と塩酸の
大部分を除去して固化物とし、次いでこれを100℃以
上の温度で熱処理して固化物中の球状凝集超微粒子を水
に対し安定化することを特徴とするジルコニア単分散球
状超微粒子粉末の製造方法。
1. A main starting material is zirconyl chloride, zirconium hydroxide or hydrated zirconia, hydrochloric acid, water or the like, and the chemical composition ratio is 1 mol of ZrO 2 to HC.
1 to 0.8 to 2.0 moles, H 2 O to 6 to 10 moles, and compounds such as metal salts in the range of 0 to 0.2 mole, and pulverized and mixed in advance to obtain a uniform mixture. In an acid-resistant closed hydrothermal container, hydrothermal treatment was performed at a temperature of 100 to 220 ° C for the optimum time while moving the mixture by rotating the container, etc., and the container was cooled to 50 ° C or less while being sealed. After that, the concentrated mud-like substance which is the reaction product is first dried under reduced pressure at a temperature of 50 ° C or lower to remove most of water and hydrochloric acid to form a solidified product, which is then heat-treated at a temperature of 100 ° C or higher. A method for producing monodisperse spherical ultrafine particles of zirconia, characterized in that the spherical aggregated ultrafine particles in the solidified product are stabilized against water.
JP15100893A 1993-05-18 1993-05-18 Production of zirconia singly dispersed spherical ultrafine particle powder Pending JPH06321541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15100893A JPH06321541A (en) 1993-05-18 1993-05-18 Production of zirconia singly dispersed spherical ultrafine particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15100893A JPH06321541A (en) 1993-05-18 1993-05-18 Production of zirconia singly dispersed spherical ultrafine particle powder

Publications (1)

Publication Number Publication Date
JPH06321541A true JPH06321541A (en) 1994-11-22

Family

ID=15509281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15100893A Pending JPH06321541A (en) 1993-05-18 1993-05-18 Production of zirconia singly dispersed spherical ultrafine particle powder

Country Status (1)

Country Link
JP (1) JPH06321541A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840641A (en) * 1996-05-15 1998-11-24 Basf Aktiengesellschaft Preparation of pulverulent zirconium dioxide
JP2006240928A (en) * 2005-03-04 2006-09-14 Tosoh Corp Zirconia fine powder and method of manufacturing the same
JP2008526669A (en) * 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー Zirconia particles
WO2008139100A2 (en) 2007-04-04 2008-11-20 Essilor International (Compagnie Generale D'optique) Method for preparing a colloidal zirconia solution
JP2011500501A (en) * 2007-10-23 2011-01-06 エボニック デグサ ゲーエムベーハー Zirconium dioxide powder and zirconium dioxide dispersion
US8895059B2 (en) 2002-06-05 2014-11-25 Ivax Pharmaceuticals S.R.O. Reduction of cross-linking gelatin in gelatin capsules
CN108689431A (en) * 2018-07-26 2018-10-23 北京化工大学 A kind of preparation method of water phase nano zircite particle dispersion

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840641A (en) * 1996-05-15 1998-11-24 Basf Aktiengesellschaft Preparation of pulverulent zirconium dioxide
US8895059B2 (en) 2002-06-05 2014-11-25 Ivax Pharmaceuticals S.R.O. Reduction of cross-linking gelatin in gelatin capsules
JP2008526669A (en) * 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー Zirconia particles
JP2006240928A (en) * 2005-03-04 2006-09-14 Tosoh Corp Zirconia fine powder and method of manufacturing the same
WO2008139100A2 (en) 2007-04-04 2008-11-20 Essilor International (Compagnie Generale D'optique) Method for preparing a colloidal zirconia solution
WO2008139100A3 (en) * 2007-04-04 2009-01-08 Essilor Int Method for preparing a colloidal zirconia solution
US20100144918A1 (en) * 2007-04-04 2010-06-10 Essilor International (Compagnie Generale D'optique Method for Preparing a Colloidal Zirconia Solution
US8337788B2 (en) 2007-04-04 2012-12-25 Essilor International (Compagnie Generale D'optique) Method for preparing a colloidal zirconia solution
JP2011500501A (en) * 2007-10-23 2011-01-06 エボニック デグサ ゲーエムベーハー Zirconium dioxide powder and zirconium dioxide dispersion
CN108689431A (en) * 2018-07-26 2018-10-23 北京化工大学 A kind of preparation method of water phase nano zircite particle dispersion
CN108689431B (en) * 2018-07-26 2020-05-19 北京化工大学 Preparation method of aqueous phase nano zirconium oxide particle dispersoid

Similar Documents

Publication Publication Date Title
Mori et al. Preparation of high‐purity ZrSiO4 powder using sol–gel processing and mechanical properties of the sintered body
AU596390B2 (en) High-dispersion sol or gel of monoclinic zirconia supermicrocrystals and production of the same
US4619817A (en) Hydrothermal method for producing stabilized zirconia
Chen et al. Preparation and properties of barium titanate nanopowder by conventional and high-gravity reactive precipitation methods
Manivasakan et al. Synthesis of monoclinic and cubic ZrO2 nanoparticles from zircon
Lee et al. Synthesis of spherical zirconia by precipitation between two water/oil emulsions
TWI275567B (en) Method for manufacturing stabilized zirconia
TWI503281B (en) Titanium oxide sol, method for producing the same, ultrafine particulate titanium oxide, method and use thereof
JP2006240928A (en) Zirconia fine powder and method of manufacturing the same
CN112745105A (en) High-sintering-activity alumina ceramic powder and preparation method thereof
JPH02503790A (en) sinterable nitride
JPH0472774B2 (en)
JPH06321541A (en) Production of zirconia singly dispersed spherical ultrafine particle powder
JPH03170332A (en) Zirconium dioxide powder, its manufacture and use as well as sintered product
CN113860350A (en) Method for preparing thorium dioxide nano material based on molten salt method and thorium dioxide nano material obtained by method
JPS5879818A (en) Colloidal sol, fine powder of crystalline zirconia and preparation thereof
Settu Characterisation of MgO–ZrO2 precursor powders prepared by in-situ peptisation of coprecipitated oxalate gel
JPH07118016A (en) Uniform-composition zirconia solid solution monodisperse fine globular powder and its production
JPS6197134A (en) Powder of zirconia agglomerated particle and preparation thereof
JPH03141115A (en) Production of fine yttrium oxide powder
Lee et al. Synthesis of zirconia colloids from aqueous salt solutions
Vasylkiv et al. Features of preparing nano-size powders of tetragonal zirconium dioxide stabilized with yttrium
Li et al. The effects of preparation method on the characteristics of alumina-zirconia powders
JPS62202813A (en) Production of mullite fine powder containing uniformly dispersed zirconia
WO2024045201A1 (en) Alumina ceramic powder with high sintering activity and preparation method therefor