JPH10139436A - Zirconia particle for solid electrolyte and its production - Google Patents

Zirconia particle for solid electrolyte and its production

Info

Publication number
JPH10139436A
JPH10139436A JP8300080A JP30008096A JPH10139436A JP H10139436 A JPH10139436 A JP H10139436A JP 8300080 A JP8300080 A JP 8300080A JP 30008096 A JP30008096 A JP 30008096A JP H10139436 A JPH10139436 A JP H10139436A
Authority
JP
Japan
Prior art keywords
zirconia
average particle
particle size
solid electrolyte
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8300080A
Other languages
Japanese (ja)
Other versions
JP3959762B2 (en
Inventor
Koji Matsui
光二 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP30008096A priority Critical patent/JP3959762B2/en
Publication of JPH10139436A publication Critical patent/JPH10139436A/en
Application granted granted Critical
Publication of JP3959762B2 publication Critical patent/JP3959762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain zirconia particles used for solid electrolytes, eliminated in the defects of products produced by conventional methods, good in moldability, excellent in low temperature sintering ability, and further excellent in ion conductivity, and to provide a method for producing the zirconia powder for the solid electrolytes, enabling to produce the zirconia powder in simple processes. SOLUTION: This zirconia particles for solid electrolytes comprise secondary agglomerates containing solid dissolved yttrium in an amount of 4-10mol.% as a stabilizer and having a BET specific surface area of 8-20m<2> /g and an average particle diameter of 0.1-1.0μm. This method for producing the zirconia particles for the solid electrolytes comprises calcining a mixture comprising a yttrium compound and a zirconia sol hydrate obtained by the hydrolysis of a zirconium salt aqueous solution and having a yttrium content of 4-10mol.% at a temperature of 800-1200 deg.C and subsequently grinding the calcination product into an average particle diameter of 0.1-1.0μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池用の電気伝導性固体隔膜、エンジン等の排ガス中の
酸素濃度及びNOxガス濃度を検出するガスセンサに用
いられる固体電解質に使用されるジルコニア粉末及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention is used in a solid electrolyte used electrically conductive solid membrane for a solid electrolyte type fuel cell, a gas sensor for detecting the oxygen concentration and NO x gas concentration in the exhaust gas of an engine The present invention relates to a zirconia powder and a method for producing the same.

【0002】[0002]

【従来の技術】従来、固体電解質用のジルコニア粉末と
しては、共沈により得られた比表面積が2.5〜7m
2/g、平均粒径1μm以下のY23固溶ジルコニア粉
末を、1500℃以下で焼成して固体電解質を得る方法
(特開平1−275467公報)等が知られている。
2. Description of the Related Art Conventionally, a zirconia powder for a solid electrolyte has a specific surface area obtained by coprecipitation of 2.5 to 7 m.
A method of firing a solid solution of zirconia powder of Y 2 O 3 having a 2 / g average particle diameter of 1 μm or less at 1500 ° C. or less to obtain a solid electrolyte (Japanese Patent Laid-Open No. 1-275467) is known.

【0003】[0003]

【発明が解決しようとする課題】ところで、の共沈法
で得られる固体電解質用ジルコニア粉末は、BET比表
面積が小さく、かつ、硬い粗粒の存在する粉末であり、
このように比表面積が小さくなると、成形し焼結させる
際の焼結温度が高くなって、得られる焼結体の密度が低
く、かつ、結晶粒径が大きくなる。このような焼結体
は、機械的及び熱衝撃強度が低く、さらにイオン伝導性
の悪いものになり、固体電解質に不適なものとなる。
The zirconia powder for a solid electrolyte obtained by the coprecipitation method is a powder having a small BET specific surface area and having hard coarse particles,
When the specific surface area is reduced as described above, the sintering temperature at the time of molding and sintering increases, the density of the obtained sintered body is low, and the crystal grain size is large. Such a sintered body has a low mechanical and thermal shock strength, has poor ionic conductivity, and is unsuitable for a solid electrolyte.

【0004】本発明では、このような従来方法における
欠点を解消した、成形性がよく、かつ、低温焼結性にも
優れ、これらに加えてイオン伝導性にも優れた固体電解
質用のジルコニア粉末の提供;ならびにその固体電解質
用ジルコニア粉末を簡易なプロセスにより製造すること
のできる方法の提供を目的とするものである。
According to the present invention, a zirconia powder for a solid electrolyte which solves the drawbacks of the conventional method, has good moldability, is excellent in low-temperature sinterability, and is excellent in ion conductivity in addition to these. And a method for producing the zirconia powder for a solid electrolyte by a simple process.

【0005】[0005]

【課題を解決するための手段】本発明者らは、イットリ
アが固溶したジルコニア粉末のBET比表面積と平均粒
径に着目して、成形特性,焼結特性及びイオン伝導性を
詳細に検討し、本発明に到達した。即ち、本発明は、安
定化剤として固溶しているイットリア含有量が4〜10
mol%であり、BET比表面積が8〜20m2/g、
かつ、平均粒径が1μm以下の2次凝集粒子からなる、
固体電解質用ジルコニア微粉末及びその製造方法とし
て、ジルコニウム塩水溶液の加水分解により得られる水
和ジルコニアゾルとイットリウム化合物とからなる、イ
ットリア含有量4〜10mol%の混合物を800〜1
200℃の温度で仮焼し、平均粒径が1μm以下になる
まで粉砕することを特徴とする固体電解質用ジルコニア
微粉末の製造方法を要旨とするものである。
Means for Solving the Problems The present inventors have studied in detail the molding characteristics, sintering characteristics and ionic conductivity by paying attention to the BET specific surface area and the average particle size of zirconia powder in which yttria is dissolved. Reached the present invention. That is, the present invention has a yttria content of 4 to 10 as a solid solution as a stabilizer.
mol%, and a BET specific surface area of 8 to 20 m 2 / g,
And an average particle size of secondary aggregated particles of 1 μm or less,
As a zirconia fine powder for a solid electrolyte and a method for producing the same, a mixture of a hydrated zirconia sol obtained by hydrolysis of an aqueous solution of a zirconium salt and a yttrium compound and having a yttria content of 4 to 10 mol% is 800 to 1.
A gist of the present invention is a method for producing zirconia fine powder for a solid electrolyte, which is calcined at a temperature of 200 ° C. and pulverized until the average particle diameter becomes 1 μm or less.

【0006】本明細書において、固体電解質用のジルコ
ニア微粉末に係わる「イットリア含有量」とは、Y23
/(ZrO2+Y23)の比率をモル%として表した値
をいう。
In the present specification, the “yttria content” related to zirconia fine powder for a solid electrolyte refers to Y 2 O 3
/ (ZrO 2 + Y 2 O 3 ) means a value expressed as mol%.

【0007】「平均粒径」とは、体積基準分布が中央値
(メディアン)である2次凝集粒子と同じ体積の球の直
径をいい、レーザー回折法,遠心沈降法などの粒度分布
測定装置によって測定することができる。「電子顕微鏡
で測定される平均粒径」とは、電子顕微鏡写真により観
察される個々の2次粒子の大きさを面積で読み取り、そ
れを円形に換算して粒径を算出したものの平均値をい
う。
The “average particle size” refers to the diameter of a sphere having the same volume as the secondary aggregated particles whose volume-based distribution is the median (median), and is measured by a particle size distribution measuring device such as a laser diffraction method or a centrifugal sedimentation method. Can be measured. "Average particle size measured by electron microscope" means the size of each secondary particle observed in an electron micrograph as an area, converts it to a circle, and calculates the average particle size. Say.

【0008】「BET比表面積」とは、吸着分子として
窒素を用いて測定したものをいう。「BET比表面積か
ら求められる平均粒径」とは、2次粒子の形状を球に仮
定して、粒子の理論密度とBET比表面積から算出され
る直径をいう。
[0008] "BET specific surface area" refers to a value measured using nitrogen as an adsorbed molecule. The “average particle diameter determined from the BET specific surface area” refers to a diameter calculated from the theoretical density of the particles and the BET specific surface area, assuming that the shape of the secondary particles is a sphere.

【0009】また、水和ジルコニアゾルに係わる「平均
粒径」は、光子相関法によるものであるが、上記のジル
コニア粉末と同様に電子顕微鏡によって測定したもの
と、実質上同じ値を示す。
The "average particle size" of the hydrated zirconia sol is measured by a photon correlation method, and shows substantially the same value as that measured by an electron microscope in the same manner as the above zirconia powder.

【0010】本発明の固体電解質用ジルコニア微粉末
は、安定化剤として固溶しているイットリア含有量が4
〜10mol%の範囲でなければならない。イットリア
含有量が4mol%よりも小さくなると、ジルコニア微
粉末を成形して焼結して得られる固体電解質のイオン伝
導性が悪くなり、いっぽう、10mol%よりも大きく
なると得られる固体電解質のイオン伝導性が悪くなり、
かつ、機械的強度及び熱衝撃強度が弱くなるからであ
る。好ましいイットリア含有量は、4〜8mol%であ
り、より好ましくは4〜6mol%である。
The zirconia fine powder for a solid electrolyte of the present invention has a yttria content of 4 as a solid solution as a stabilizer.
It must be in the range of 〜1010 mol%. If the yttria content is less than 4 mol%, the ionic conductivity of the solid electrolyte obtained by molding and sintering the zirconia fine powder deteriorates, while if it exceeds 10 mol%, the ionic conductivity of the obtained solid electrolyte becomes poor. Gets worse,
In addition, the mechanical strength and the thermal shock strength are weakened. The preferred yttria content is 4-8 mol%, more preferably 4-6 mol%.

【0011】上記のジルコニア微粉末は、BET比表面
積が8〜20m2/gであることを必要とする。ジルコ
ニア粉末のBET比表面積が8m2/gよりも小さくな
ると低温側で焼結しにくい高温焼結性の粉末となり、ま
た、20m2/gよりも大きくなると、粒子間の凝集力
が著しい粉末となるために、固体電解質用の原料粉末と
しては扱いにくく適さないものとなる。より望ましいB
ET比表面積は、10〜18m2/gである。
The above zirconia fine powder needs to have a BET specific surface area of 8 to 20 m 2 / g. BET specific surface area of the zirconia powder is sintered hard high temperature sintering of the powder at a low temperature side becomes smaller than 8m 2 / g, also becomes larger than 20 m 2 / g, and significant powder cohesion between particles Therefore, it becomes difficult and unsuitable as a raw material powder for a solid electrolyte. More desirable B
The ET specific surface area is 10 to 18 m 2 / g.

【0012】さらに上記のジルコニア微粉末は、2次凝
集粒子の平均粒径が0.1〜1.0μmの範囲にあるも
のでなければならない。平均粒径が1μmよりも大きく
なると、硬い凝集粒子を多く含む粗粒が多くなり、硬い
粒子がそのままに近い形状で成形体中に残り、それによ
って焼結時に不均一収縮が起り、かつ焼結体中に気孔が
残ることになる。このように気孔の存在する低密度の焼
結体は、イオン伝導性の悪いものとなって、固体電解質
として不適なものとなる。また、このような粉末にバイ
ンダーを加えて成形し焼結すると、脱脂性の低下に起因
する割れが顕著になる。一方、0.1μm未満となる
と、粒子間の凝集力が著しい粉末となるため成形しにく
く、固体電解質用の原料粉末としては適さないものとな
る。好ましい平均粒径は、0.3〜1μmである。
Further, the zirconia fine powder must have an average particle size of the secondary aggregated particles in the range of 0.1 to 1.0 μm. When the average particle size is larger than 1 μm, coarse particles containing many hard agglomerated particles increase, and the hard particles remain in the compact in a shape close to that, thereby causing uneven shrinkage during sintering and sintering. Stomata will remain in the body. Such a low-density sintered body having pores has poor ionic conductivity and is unsuitable as a solid electrolyte. Further, when a binder is added to such a powder and then molded and sintered, cracks due to a decrease in degreasing property become remarkable. On the other hand, when the thickness is less than 0.1 μm, the powder has a remarkable agglomeration force between the particles, so that it is difficult to form the powder and is not suitable as a raw material powder for a solid electrolyte. The preferred average particle size is 0.3-1 μm.

【0013】上記のBET比表面積及び平均粒径の他
に、電子顕微鏡で測定される平均粒径/BET比表面積
から求められる平均粒径の比(以下、平均粒径比と表記
する)が1〜3の条件を満足すれば、よりいっそう成形
性及び低温焼結性に優れ、これらに加えて酸素イオン伝
導性にも優れた固体電解質用のジルコニア粉末となる。
すなわち、平均粒径比が1〜3の範囲にあれば、電子顕
微鏡の観察から2〜10個の1次粒子が焼結して1個の
2次粒子を構成しているが、2次粒子間の強固な焼結が
ほとんど見られず、かつ、2次粒子内部に存在する閉気
孔が実質上観測されない緻密な粒子になっている。等方
性の緻密な粒子であれば、この比が1となるが、ジルコ
ニア粉末の粒子形状に歪があるため1〜3で緻密な粒子
となるのである。より望ましい平均粒径比は、1.1〜
1.5である。
In addition to the above-mentioned BET specific surface area and average particle size, the ratio of the average particle size measured by an electron microscope / the average particle size obtained from the BET specific surface area (hereinafter referred to as the average particle size ratio) is 1 If the conditions of the conditions (1) to (3) are satisfied, a zirconia powder for a solid electrolyte which is more excellent in moldability and low-temperature sinterability, and in addition, has excellent oxygen ion conductivity.
That is, if the average particle size ratio is in the range of 1 to 3, observation of an electron microscope shows that 2 to 10 primary particles are sintered to form one secondary particle. Intermediate solid sintering is hardly observed, and dense particles in which closed pores existing inside the secondary particles are not substantially observed. If the particles are isotropic and dense, this ratio will be 1, but since the particle shape of the zirconia powder is distorted, dense particles will be formed at 1-3. A more desirable average particle size ratio is 1.1 to
1.5.

【0014】本発明の固体電解質用ジルコニア粉末を得
るにあたっては、ジルコニウム塩水溶液の加水分解によ
り得られる水和ジルコニアゾルを用いなければならな
い。この反応で得られる水和ジルコニアゾルは、均一粒
径の結晶性粒子であり、その水和ジルコニアゾルを下記
の本発明の条件で仮焼し粉砕すると、分散性のよい固体
電解質のジルコニア微粉末を得ることができる。例え
ば、ジルコニウム塩及びイットリウム塩の混合水溶液を
アルカリで中和して仮焼する中和共沈法で得られる粉末
は、中和時に生成する不定形ゲル状水酸化物が仮焼時に
硬い粗粒を形成するため、上記のとおり、酸素イオン伝
導性の悪いものとなって、固体電解質として不適なもの
となる。
In order to obtain the zirconia powder for a solid electrolyte of the present invention, a hydrated zirconia sol obtained by hydrolysis of an aqueous solution of a zirconium salt must be used. The hydrated zirconia sol obtained by this reaction is crystalline particles having a uniform particle size, and when the hydrated zirconia sol is calcined and pulverized under the following conditions of the present invention, a zirconia fine powder of a solid electrolyte having good dispersibility is obtained. Can be obtained. For example, a powder obtained by a neutralization coprecipitation method in which a mixed aqueous solution of a zirconium salt and a yttrium salt is neutralized with an alkali and calcined, the amorphous gel hydroxide generated during the neutralization is hard coarse particles during the calcining. Is formed, as described above, resulting in poor oxygen ion conductivity and unsuitable as a solid electrolyte.

【0015】上記の水和ジルコニアゾルは、平均粒径を
0.05〜0.09μmの範囲に制御すると、さらに成
形性及び低温焼結性に優れた固体電解質用のジルコニア
粉末になる。水和ジルコニアゾルの平均粒径は、反応終
了時の反応液のpHを調整することにより制御すること
ができる。例えば、反応終了時のpHが−0.1〜0.
4または1〜1.5となるように調整することにより、
平均粒径0.05〜0.09μmの水和ジルコニアゾル
が得られる。このpHすなわち水和ジルコニアゾルの平
均粒径を制御する方法としては、ジルコニウム塩水溶液
にアルカリまたは酸などを添加する;陰イオン交換樹脂
によりジルコニウム塩を構成している陰イオンの一部を
除去することによりpHを調整して加水分解させる;水
酸化ジルコニウムと酸との混合スラリーのpHを調整し
て加水分解させるなどの方法を挙げることができる。ま
た、反応速度を促進させるために、水和ジルコニアゾル
を上記のジルコニウム塩水溶液に添加して、加水分解反
応を行ってもよい。水和ジルコニアゾルの製造に用いら
れるジルコニウム塩としては、オキシ塩化ジルコニウ
ム,硝酸ジルコニル,塩化ジルコニウム,硫酸ジルコニ
ウムなどが挙げられるが、この他に水酸化ジルコニウム
と酸との混合物を用いてもよい。水和ジルコニアゾルの
平均粒径を制御するために添加するアルカリとしては、
アンモニア,水酸化ナトリウム,水酸化カリウムなどが
挙げられることができるが、これらの他に尿素のように
分解して塩基性を示す化合物でもよい。また、酸として
は塩酸,硝酸,硫酸を挙げることができるが、これらの
他に酢酸,クエン酸などの有機酸を用いてもよい。
When the above-mentioned hydrated zirconia sol is controlled to have an average particle size in the range of 0.05 to 0.09 μm, it becomes a zirconia powder for a solid electrolyte which is more excellent in moldability and low-temperature sinterability. The average particle size of the hydrated zirconia sol can be controlled by adjusting the pH of the reaction solution at the end of the reaction. For example, the pH at the end of the reaction is -0.1 to 0.1.
By adjusting to be 4 or 1 to 1.5,
A hydrated zirconia sol having an average particle size of 0.05 to 0.09 μm is obtained. As a method for controlling the pH, that is, the average particle size of the hydrated zirconia sol, an alkali or an acid is added to an aqueous solution of a zirconium salt; an anion exchange resin removes a part of anions constituting the zirconium salt. In this case, the pH is adjusted to effect hydrolysis. A method of adjusting the pH of a mixed slurry of zirconium hydroxide and an acid to effect hydrolysis is provided. In order to accelerate the reaction rate, a hydrolysis reaction may be performed by adding a hydrated zirconia sol to the above-mentioned aqueous solution of zirconium salt. Examples of the zirconium salt used in the production of the hydrated zirconia sol include zirconium oxychloride, zirconyl nitrate, zirconium chloride, zirconium sulfate, and the like. Alternatively, a mixture of zirconium hydroxide and an acid may be used. As the alkali added to control the average particle size of the hydrated zirconia sol,
Ammonia, sodium hydroxide, potassium hydroxide and the like can be mentioned, but in addition to these, compounds which decompose and show basicity like urea may be used. Examples of the acid include hydrochloric acid, nitric acid, and sulfuric acid. In addition, organic acids such as acetic acid and citric acid may be used.

【0016】次いで、本発明では、上記で得られた水和
ジルコニアゾルとイットリウム化合物とからなる、イッ
トリア含有量4〜10mol%の混合物を得ることを必
要とする。水和ジルコニアゾルとイットリウム化合物と
を混合し乾燥させる方法に特に制限はなく、上記の加水
分解で得られた水和ジルコニア含有液に、イットリア含
有量が4〜10mol%になるようにイットリウム化合
物を添加して乾燥させてもよく、加水分解反応のときに
前もってイットリウム化合物を添加してもよい。イット
リウム化合物及び水和ジルコニアゾルを含有する混合溶
液を乾燥する方法としては、例えば混合溶液をそのまま
噴霧乾燥、または混合溶液に有機溶媒を添加して噴霧乾
燥する;該懸濁液にアルカリなどを添加して濾過,水洗
して乾燥する方法を挙げることができる。安定化剤の原
料として用いられるイットリウム化合物としては、水酸
化イットリウム,酸化イットリウム,塩化イットリウ
ム,硝酸イットリウム,硫酸イットリウム,炭酸イット
リウム,酢酸イットリウムなどが挙げられる。
Next, in the present invention, it is necessary to obtain a mixture of the hydrated zirconia sol obtained above and a yttrium compound having a yttria content of 4 to 10 mol%. The method of mixing and drying the hydrated zirconia sol and the yttrium compound is not particularly limited, and the yttrium compound is added to the hydrated zirconia-containing liquid obtained by the above-mentioned hydrolysis so that the yttria content becomes 4 to 10 mol%. It may be added and dried, or an yttrium compound may be added in advance during the hydrolysis reaction. As a method of drying a mixed solution containing the yttrium compound and the hydrated zirconia sol, for example, the mixed solution is spray-dried as it is, or an organic solvent is added to the mixed solution and spray-dried; Filtration, washing with water and drying. Examples of the yttrium compound used as a raw material of the stabilizer include yttrium hydroxide, yttrium oxide, yttrium chloride, yttrium nitrate, yttrium sulfate, yttrium carbonate, yttrium acetate, and the like.

【0017】次いで、上記の水和ジルコニアゾルとイッ
トリウム化合物とからなる混合物を、800〜1200
℃の温度で仮焼しなければならない。仮焼温度が800
℃よりも小さくなると、下記の粉砕条件で得られるジル
コニア粉末のBET比表面積が20m2/gよりも大き
くなり、いっぽう、1200℃よりも高くなると粉砕後
のBET比表面積が8m2/gよりも小さくなるからで
ある。さらに、水和ジルコニアゾルの平均粒径φ(μ
m)の範囲が0.05〜0.09μmであり、仮焼温度
T(℃)が800〜1200℃の範囲であって、かつ、 T≧3000・φ+650 を満足すれば、いっそう成形性及び焼結性の優れた固体
電解質用のジルコニア粉末となる。
Next, the mixture comprising the above-mentioned hydrated zirconia sol and the yttrium compound is mixed with a mixture of 800 to 1200.
It must be calcined at a temperature of ° C. Calcination temperature is 800
C., the BET specific surface area of the zirconia powder obtained under the following pulverization conditions is larger than 20 m 2 / g, while if it is higher than 1200 ° C., the BET specific surface area after pulverization is more than 8 m 2 / g. This is because it becomes smaller. Further, the average particle diameter φ (μ) of the hydrated zirconia sol
m) is in the range of 0.05 to 0.09 μm, the calcination temperature T (° C.) is in the range of 800 to 1200 ° C., and if T ≧ 3000 · φ + 650 is satisfied, the moldability and the sintering property are further improved. It becomes a zirconia powder for solid electrolytes having excellent binding properties.

【0018】仮焼温度の保持時間は、0.5〜10時間
がよく、昇温速度は0.5〜10℃/minが好まし
い。保持時間が0.5時間よりも小さくなると均一に仮
焼されにくく、10時間よりも長くなると生産性が低下
するので好ましくない。また、昇温速度が0.5℃/m
inよりも小さくなると設定温度に達するまでの時間が
長くなり、10℃/minよりも大きくなると仮焼時に
粉末が激しく飛散して操作性が悪くなり生産性が低下す
る。
The holding time of the calcination temperature is preferably 0.5 to 10 hours, and the heating rate is preferably 0.5 to 10 ° C./min. If the holding time is shorter than 0.5 hour, it is difficult to uniformly calcine, and if the holding time is longer than 10 hours, productivity is undesirably reduced. Further, the heating rate is 0.5 ° C./m
If the value is smaller than "in", the time required to reach the set temperature becomes longer.

【0019】次いで、上記の仮焼粉を、2次凝集粒子の
平均粒径が1μm以下になるまで粉砕する。粉砕方法と
しては、乾式または湿式のどちらの方法を選んでもよ
い。粉砕機器としては、種々の機種を選ぶことができ、
ボールミル,振動ミル,パールミルなどを挙げることが
できる。また、粉砕条件は機種により異なるが、ボール
ミルを用いた場合、スラリー濃度30〜50wt%,粉
砕時間は30〜80時間がよく、振動ミルの場合、30
〜60wt%,10〜30時間が最適である。必要に応
じて粉砕時に焼結助剤として、例えばアルミナなどを添
加してもよい。
Next, the calcined powder is pulverized until the average particle size of the secondary aggregated particles becomes 1 μm or less. As a grinding method, either a dry method or a wet method may be selected. Various types of crushing equipment can be selected,
Ball mills, vibration mills, pearl mills and the like can be mentioned. The grinding conditions differ depending on the model, but when a ball mill is used, the slurry concentration is 30 to 50% by weight, the grinding time is 30 to 80 hours.
6060 wt%, optimal for 10 to 30 hours. If necessary, for example, alumina may be added as a sintering aid at the time of pulverization.

【0020】[0020]

【発明の効果】以上、説明したとおり、本発明の固体電
解質用ジルコニア粉末は、成形性がよく、かつ、低温焼
結性に優れ、これらに加えて酸素イオン伝導性にも優れ
ている。また、本発明の方法により、容易に上記の固体
電解質用ジルコニア粉末を製造することができる。
As described above, the zirconia powder for a solid electrolyte of the present invention has good moldability, excellent low-temperature sinterability, and excellent oxygen ion conductivity in addition to these. Further, the zirconia powder for a solid electrolyte can be easily produced by the method of the present invention.

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例により何等限定されるも
のでない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0022】実施例中、水和ジルコニアゾルの平均粒径
は、光子相関法により求めた。ジルコニア粉末の2次凝
集粒子の平均粒径は、レーザー回折法により求めた。ジ
ルコニア粉末の電子顕微鏡で測定される2次粒子の平均
粒径は、透過型電子顕微鏡を用い、300個の2次粒子
について画像解析処理して求めた。BET比表面積から
求められる平均粒径を算出するのに必要なジルコニア粉
末の理論密度は、各結晶相の組成をX線回折パターンの
回折線のピーク強度によって求め、下式によって算出し
た。
In the examples, the average particle size of the hydrated zirconia sol was determined by a photon correlation method. The average particle size of the secondary aggregated particles of the zirconia powder was determined by a laser diffraction method. The average particle size of the secondary particles of the zirconia powder measured by an electron microscope was determined by performing image analysis on 300 secondary particles using a transmission electron microscope. The theoretical density of the zirconia powder required to calculate the average particle size determined from the BET specific surface area was determined by calculating the composition of each crystal phase from the peak intensity of the diffraction line of the X-ray diffraction pattern and using the following formula.

【0023】理論密度=単斜相率×5.6+(正方+立
方)相率×6.1 ジルコニア粉末の成形は、金型プレスにより成形圧力7
00kgf/cm2で行い、得られた成形体は、140
0℃−2時間の条件で焼結させた。
Theoretical density = monoclinic phase ratio × 5.6 + (square + cubic) phase ratio × 6.1 The zirconia powder was molded by a molding press with a molding pressure of 7%.
The operation was carried out at a pressure of 00 kgf / cm 2 ,
Sintering was performed at 0 ° C. for 2 hours.

【0024】実施例1 0.4mol/リットルのZrOCl2水溶液2リット
ルを160時間煮沸したあと、この溶液に2mol/リ
ットルのZrOCl2水溶液3.6リットルと蒸留水
4.4リットルとを加えて、さらに45時間煮沸して、
平均粒径0.054μmの水和ジルコニアゾルを得た。
Example 1 After 2 liters of a 0.4 mol / l ZrOCl 2 aqueous solution were boiled for 160 hours, 3.6 liters of a 2 mol / l ZrOCl 2 aqueous solution and 4.4 liters of distilled water were added to this solution. Boil for another 45 hours,
A hydrated zirconia sol having an average particle size of 0.054 μm was obtained.

【0025】次いで、上記の水和ジルコニアゾル含有液
に、YCl3を0.42mol(Y23含有量5mol
%)添加して噴霧乾燥させ、水和ジルコニアとYCl3
とからなる混合物を得て、その混合物を1050℃の温
度で2時間仮焼した。得られた仮焼粉を水洗したあと
に、Al23を(ZrO2+Y23)に対して0.2w
t%添加し、振動ミルを用いて35wt%のスラリー濃
度で16時間粉砕した。
Then, 0.42 mol of YCl 3 (Y 2 O 3 content of 5 mol) was added to the above-mentioned liquid containing hydrated zirconia sol.
%) And spray dried, hydrated zirconia and YCl 3
Was obtained, and the mixture was calcined at a temperature of 1050 ° C. for 2 hours. After the obtained calcined powder was washed with water, Al 2 O 3 was added to (ZrO 2 + Y 2 O 3 ) for 0.2 w.
Then, the mixture was pulverized at a slurry concentration of 35 wt% for 16 hours using a vibration mill.

【0026】得られたジルコニア粉末は、レーザー回折
法による2次凝集粒子の平均粒径が0.7μmであり、
BET比表面積が11m2/gであり、単斜相3%,
(正方+立方)相97%であって理論密度が6.1であ
り、したがって、電子顕微鏡により2次粒子の平均粒径
は0.11μmであり(すなわち、平均粒径比=1.
2)、緻密な2次粒子を形成していることが確認され
た。
The obtained zirconia powder has an average particle size of secondary aggregated particles of 0.7 μm by a laser diffraction method.
BET specific surface area is 11 m 2 / g, monoclinic phase 3%,
The (square + cubic) phase is 97% and the theoretical density is 6.1. Therefore, according to the electron microscope, the average particle size of the secondary particles is 0.11 μm (that is, the average particle size ratio = 1.
2) It was confirmed that dense secondary particles were formed.

【0027】次いで、上記で得られたジルコニア粉末を
用いて、プレス成形により成形体を作製したところ、成
形体密度は2.77g/cm3であった。この成形体を
焼成して得られた焼結体の密度は6.02g/cm3
あり、曲げ強度は68kgf/mm2であった。この焼
結体を用いて酸素イオン伝導性を測定したところ、60
0℃の温度で電気電導度が3×10-3Ω-1・cm-1であ
った。
Next, a compact was produced by press molding using the zirconia powder obtained above, and the compact density was 2.77 g / cm 3 . The density of the sintered body obtained by firing this molded body was 6.02 g / cm 3 , and the bending strength was 68 kgf / mm 2 . Oxygen ion conductivity was measured using this sintered body.
At a temperature of 0 ° C., the electrical conductivity was 3 × 10 −3 Ω− 1 · cm −1 .

【0028】実施例2 水和ジルコニアゾル含有液にYCl3を0.7mol
(Y23含有量8mol%)添加した以外は、実施例1
と同様の条件でおこなった。
EXAMPLE 2 0.7 mol of YCl 3 was added to the hydrated zirconia sol-containing solution.
Example 1 (Y 2 O 3 content: 8 mol%)
The same conditions were used.

【0029】得られたジルコニア粉末は、レーザー回折
法による2次凝集粒子の平均粒径が0.6μmであり、
BET比表面積が12m2/gであり、単斜相0%,
(正方+立方)相100%であって理論密度が6.1で
あり、したがって、電子顕微鏡により2次粒子の平均粒
径は0.10μmであり(すなわち、平均粒径比=1.
2)、緻密な2次粒子を形成していることが確認され
た。
The obtained zirconia powder has an average particle size of secondary aggregated particles of 0.6 μm by a laser diffraction method.
BET specific surface area is 12 m 2 / g, monoclinic phase 0%,
The (square + cubic) phase is 100% and the theoretical density is 6.1. Therefore, according to the electron microscope, the average particle size of the secondary particles is 0.10 μm (that is, the average particle size ratio = 1.
2) It was confirmed that dense secondary particles were formed.

【0030】次いで、上記で得られたジルコニア粉末を
用いて、プレス成形により成形体を作製したところ、成
形体密度は2.78g/cm3であった。この成形体を
焼成して得られた焼結体の密度は6.04g/cm3
あり、曲げ強度は33kgf/mm2であった。この焼
結体を用いて酸素イオン伝導性を測定したところ、60
0℃の温度で電気電導度が9×10-3Ω-1・cm-1であ
った。
Next, a compact was produced by press molding using the zirconia powder obtained above, and the compact density was 2.78 g / cm 3 . The density of the sintered body obtained by firing this molded body was 6.04 g / cm 3 , and the bending strength was 33 kgf / mm 2 . Oxygen ion conductivity was measured using this sintered body.
At a temperature of 0 ° C., the electrical conductivity was 9 × 10 −3 Ω −1 · cm −1 .

【0031】比較例1 水和ジルコニアゾル含有液にYCl3を1.1mol
(Y23含有量12mol%)添加し、仮焼温度を13
00℃に設定した以外は、実施例1と同様の条件でおこ
なった。得られたジルコニア粉末のレーザー回折法によ
る2次凝集粒子の平均粒径が1.5μmであり、また、
BET比表面積が2m2/gであった。次いで、上記で
得られたジルコニア粉末を用いて、プレス成形により成
形体を作製したところ、成形体密度は2.58g/cm
3であり、この成形体を焼成して得られた焼結体の密度
は5.85g/cm3であり、600℃の温度で電気電
導度が2×10-3Ω-1・cm-1を示したものの、曲げ強
度は極めて低く10kgf/mm2以下であった。
Comparative Example 1 1.1 mol of YCl 3 was added to the hydrated zirconia sol-containing liquid.
(Y 2 O 3 content: 12 mol%), and the calcination temperature was 13
The procedure was performed under the same conditions as in Example 1 except that the temperature was set to 00 ° C. The average particle size of the secondary aggregated particles of the obtained zirconia powder by a laser diffraction method is 1.5 μm,
The BET specific surface area was 2 m 2 / g. Next, when a compact was produced by press molding using the zirconia powder obtained above, the compact density was 2.58 g / cm.
3, and the density of the sintered body obtained by firing the molded body is 5.85 g / cm 3, the electrical conductivity at a temperature of 600 ° C. is 2 × 10 -3 Ω -1 · cm -1 However, the flexural strength was extremely low and was 10 kgf / mm 2 or less.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】安定化剤として固溶しているイットリア含
有量が4〜10mol%であり、BET比表面積が8〜
20m2/g、かつ、平均粒径が0.1〜1.0μmの
範囲にある2次凝集粒子からなることを特徴とする固体
電解質用ジルコニア微粉末。
(1) The content of yttria as a solid solution as a stabilizer is 4 to 10 mol%, and the BET specific surface area is 8 to 10 mol%.
A zirconia fine powder for a solid electrolyte, comprising secondary aggregated particles having a particle size of 20 m 2 / g and an average particle size in a range of 0.1 to 1.0 μm.
【請求項2】ジルコニウム塩水溶液の加水分解により得
られる水和ジルコニアゾルとイットリウム化合物とから
なる、イットリア含有量4〜10mol%の混合物を8
00〜1200℃の温度で仮焼し、平均粒径が0.1〜
1.0μmの範囲になるまで粉砕することを特徴とする
請求項1に記載の固体電解質用ジルコニア微粉末を製造
する方法。
2. A mixture of a hydrated zirconia sol obtained by hydrolysis of an aqueous solution of a zirconium salt and a yttrium compound having a yttria content of 4 to 10 mol% is prepared by mixing 8
Calcined at a temperature of 00 to 1200 ° C and an average particle size of 0.1 to
The method for producing zirconia fine powder for a solid electrolyte according to claim 1, wherein the zirconia is pulverized to a range of 1.0 μm.
JP30008096A 1996-11-12 1996-11-12 Zirconia fine powder for solid electrolyte and method for producing the same Expired - Fee Related JP3959762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30008096A JP3959762B2 (en) 1996-11-12 1996-11-12 Zirconia fine powder for solid electrolyte and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30008096A JP3959762B2 (en) 1996-11-12 1996-11-12 Zirconia fine powder for solid electrolyte and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10139436A true JPH10139436A (en) 1998-05-26
JP3959762B2 JP3959762B2 (en) 2007-08-15

Family

ID=17880469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30008096A Expired - Fee Related JP3959762B2 (en) 1996-11-12 1996-11-12 Zirconia fine powder for solid electrolyte and method for producing the same

Country Status (1)

Country Link
JP (1) JP3959762B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185919A (en) * 1998-10-01 2000-07-04 Tosoh Corp Zirconia fine powder and its production
JP2001080919A (en) * 1999-07-09 2001-03-27 Tosoh Corp Fine powdery zirconia and its production
JP2007070212A (en) * 2005-09-02 2007-03-22 Daiichi Kigensokagaku Kogyo Co Ltd SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME
WO2007142116A1 (en) 2006-06-05 2007-12-13 Nissan Chemical Industries, Ltd. Method for producing metal oxide particle
JP2010137998A (en) * 2008-12-09 2010-06-24 Denso Corp Partially stabilized zirconia ceramic and producing method of the same
JP2013075825A (en) * 2012-12-27 2013-04-25 Denso Corp Method for producing partially stabilized zirconia ceramic
WO2019087736A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Solid electrolyte, method for preparing same, and gas sensor
WO2019087737A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Solid electrolyte for gas sensor and gas sensor
JP2021059463A (en) * 2019-10-03 2021-04-15 東ソー株式会社 Zirconia powder and its production method
CN113471519A (en) * 2021-06-29 2021-10-01 深圳大学 Sulfide solid electrolyte diaphragm, precursor sol thereof and preparation method
CN114746747A (en) * 2019-12-04 2022-07-12 株式会社电装 Gas sensor and powder for gas sensor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185919A (en) * 1998-10-01 2000-07-04 Tosoh Corp Zirconia fine powder and its production
JP2001080919A (en) * 1999-07-09 2001-03-27 Tosoh Corp Fine powdery zirconia and its production
JP4696338B2 (en) * 1999-07-09 2011-06-08 東ソー株式会社 Method for producing fine zirconia powder
JP2007070212A (en) * 2005-09-02 2007-03-22 Daiichi Kigensokagaku Kogyo Co Ltd SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME
WO2007142116A1 (en) 2006-06-05 2007-12-13 Nissan Chemical Industries, Ltd. Method for producing metal oxide particle
JP2010137998A (en) * 2008-12-09 2010-06-24 Denso Corp Partially stabilized zirconia ceramic and producing method of the same
JP2013075825A (en) * 2012-12-27 2013-04-25 Denso Corp Method for producing partially stabilized zirconia ceramic
WO2019087737A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Solid electrolyte for gas sensor and gas sensor
WO2019087736A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Solid electrolyte, method for preparing same, and gas sensor
JP2019086345A (en) * 2017-11-03 2019-06-06 株式会社デンソー Solid electrolyte for solid electrolyte and gas sensor
JP2019085285A (en) * 2017-11-03 2019-06-06 株式会社デンソー Solid electrolyte, method of manufacturing the same, and gas sensor
CN111372905A (en) * 2017-11-03 2020-07-03 株式会社电装 Solid electrolyte, method for producing same, and gas sensor
US11656196B2 (en) 2017-11-03 2023-05-23 Denso Corporation Solid electrolyte, manufacturing method thereof, and gas sensor
JP2021059463A (en) * 2019-10-03 2021-04-15 東ソー株式会社 Zirconia powder and its production method
CN114746747A (en) * 2019-12-04 2022-07-12 株式会社电装 Gas sensor and powder for gas sensor
CN113471519A (en) * 2021-06-29 2021-10-01 深圳大学 Sulfide solid electrolyte diaphragm, precursor sol thereof and preparation method
CN113471519B (en) * 2021-06-29 2023-04-07 深圳大学 Sulfide solid electrolyte diaphragm, precursor sol thereof and preparation method

Also Published As

Publication number Publication date
JP3959762B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP5356639B2 (en) Zirconia fine powder and method for producing the same
JP5034349B2 (en) Zirconia fine powder, production method thereof and use thereof
JP5356665B2 (en) Zirconia sintered body
JPH10139436A (en) Zirconia particle for solid electrolyte and its production
JP2023171832A (en) Zirconia powder and its production method
JP3368507B2 (en) Zirconia powder and method for producing the same
JP4210533B2 (en) Sinterable tetragonal zirconia powder and method for producing the same
JPH1179746A (en) Perovskite composite oxide and its production
JP4253877B2 (en) Zirconia fine powder and method for producing the same
KR101747901B1 (en) Preparation method of yttria-stabilized zirconia
JP3339076B2 (en) Zirconia fine powder
JP3146578B2 (en) Manufacturing method of zirconia fine powder
JP3355655B2 (en) Method for producing hydrated zirconia gel and zirconia powder
JP3265597B2 (en) Method for producing zirconia fine powder
JP3257095B2 (en) Method for producing zirconia powder
JP2022156626A (en) Ceramic powder material, method for producing ceramic powder material, molded body, sintered body, and battery
JP2003212546A (en) Zirconia fine powder and manufacturing method therefor
JP3896614B2 (en) Zirconia powder and method for producing the same
JP3331633B2 (en) Method for producing hydrated zirconia sol and zirconia powder
JPH06171944A (en) Production of zirconium oxide powder
JPH06171943A (en) Production of zirconium oxide powder
JP3254693B2 (en) Preparation of hydrated zirconia sol and zirconia powder
JP3484706B2 (en) Hydrated zirconia sol and method for producing the same
JP3008517B2 (en) Hydrated zirconia dry powder
JP3331634B2 (en) Method for producing hydrated zirconia sol and zirconia powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees