WO2014208379A1 - Abrasive, method for producing abrasive, and polishing method - Google Patents

Abrasive, method for producing abrasive, and polishing method Download PDF

Info

Publication number
WO2014208379A1
WO2014208379A1 PCT/JP2014/065873 JP2014065873W WO2014208379A1 WO 2014208379 A1 WO2014208379 A1 WO 2014208379A1 JP 2014065873 W JP2014065873 W JP 2014065873W WO 2014208379 A1 WO2014208379 A1 WO 2014208379A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
aqueous solution
particles
mol
urea
Prior art date
Application number
PCT/JP2014/065873
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 溝口
前澤 明弘
高橋 篤
奈津紀 伊藤
奈津実 平山
若松 秀明
佑樹 永井
智恵 乾
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015523985A priority Critical patent/JP6424818B2/en
Publication of WO2014208379A1 publication Critical patent/WO2014208379A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the present invention relates to an abrasive, a method for manufacturing an abrasive, and a polishing method. More specifically, the present invention relates to an abrasive having improved polishing performance, a method for producing the abrasive, and a polishing method using the abrasive.
  • a rare earth element oxide with cerium oxide as the main component and lanthanum oxide, neodymium oxide, praseodymium oxide, etc. added to it has been used.
  • Other abrasives include diamond, iron oxide, aluminum oxide, zirconium oxide, colloidal silica, etc., but when compared in terms of polishing rate and surface roughness of the polished object, cerium oxide Is known to be effective and is used extensively.
  • cerium oxide particles were mainly prepared by wet pulverization method, but the shape of cerium oxide particles obtained by wet pulverization method is non-uniform, and polishing properties (smoothness of polishing surface and polishing rate) ) Is also inferior. Therefore, in a manufacturing process that requires high smoothness of angstrom ( ⁇ ) level, it is common to polish using cerium oxide or the like having a high polishing rate and then polishing using colloidal silica of several tens of nanometers. is there. However, there is a problem that productivity is lowered due to the multi-stage polishing process. In addition, there is an increasing demand for smoothness, and there is a demand for an abrasive that generates few scratches while maintaining a high polishing rate.
  • cerium oxide abrasives containing cerium oxide particles having fine and high monodispersity prepared by a wet synthesis method have recently been studied.
  • the method of obtaining cerium oxide particles by this wet synthesis method is mainly performed by adding a salt of carbonic acid, oxalic acid, acetic acid or the like to a purified aqueous solution of cerium nitrate, cerous chloride, cerous sulfate or the like.
  • This is a method of precipitating cerium carbonate, cerium oxalate, cerium acetate, and other products, filtering this precipitate, drying it, and firing it to obtain cerium oxide particles. It has been attracting attention as a technique that can achieve both smoothness and a high polishing rate.
  • Non-Patent Document 1 proposes a method of obtaining particles having a narrow particle size distribution by heating and stirring an aqueous solution in which a cerium nitrate aqueous solution, an yttrium nitrate solution, and urea are mixed.
  • the polishing rate was low.
  • the cause of reducing the polishing rate is that elements other than cerium (yttrium) are mixed to adjust the particle shape and particle size distribution, thereby reducing the cerium concentration on the particle surface and reducing the polishing rate. ing.
  • Patent Document 1 in addition to cerium, at least one element selected from lanthanum, praseodymium, neodymium, samarium, europium and at least 1 selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • a method of obtaining spherical rare earth oxide particles by adding a urea compound to an aqueous solution containing salts of various elements to form a spherical rare earth basic carbonate and firing it is described. ing.
  • spherical particles cannot be obtained unless at least one element selected from yttrium and gadolinium is contained in a proportion of 20 mol% or more.
  • Patent Document 2 and Patent Document 3 gadolinium, terbium, europium, samarium, neodymium, dysprosium, holmium, erbium, thulium, and ytterbium are used as methods for obtaining spherical monodisperse rare earth oxide particles.
  • An example is given. However, there is no description of a method for obtaining cerium spherical monodisperse oxide particles.
  • Non-Patent Document 2 describes a method for preparing rare earth element oxides by adding urea to a mineral salt aqueous solution of rare earth elements, heating to precipitate an insoluble salt of rare earth elements, and firing the salt. Yes.
  • the synthetic scale is increased, particles that grow anisotropically are generated instead of spherical particles.
  • Patent Document 5 uses a mixed rare earth fluorine compound having an average crystallite diameter within a range of 20 to 40 nm (200 to 400 mm) obtained by firing at a temperature range of 700 to 1300 ° C. for 1 to 10 hours.
  • a method for producing a cerium-based abrasive has been disclosed. In this method, a cerium-based abrasive is obtained by mixing and grinding a mixed rare earth oxide and a mixed rare earth fluoride.
  • the polishing process includes primary polishing where the polishing speed is more important than polishing accuracy, and secondary polishing where emphasis is placed on smoothness and surface uniformity which are the final finished quality.
  • polishing speed is more important than smoothness and surface accuracy, and development of an abrasive suitable for a primary polishing process that affects the overall polishing efficiency is desired.
  • the present invention has been made in view of the above-mentioned problems, and the solution is to include abrasive particles that are high in productivity and suitable for precision polishing, and can maintain the initial polishing rate for a long period of time. It is to provide an abrasive material. Moreover, it is providing the manufacturing method of the abrasive
  • the present inventor has been made in view of the above problems and situations, and the solution is to include cerium in the process of examining the relationship between the composition and shape of the abrasive particles, and is suitable for precision polishing.
  • the present inventors have found an abrasive containing abrasive particles and have reached the present invention.
  • the process of forming abrasive precursor particles is divided into a nucleation process at the initial stage of reaction and a growth process of particles that grow the generated nuclei.
  • an aqueous solution of heat-decomposed ureas which is a raw material for abrasive precursor particles, is added to an aqueous solution of a rare earth element-containing compound containing cerium (hereinafter also referred to as an aqueous rare earth salt solution) to quickly form abrasive precursor particles.
  • a rare earth element-containing compound containing cerium hereinafter also referred to as an aqueous rare earth salt solution
  • a cerium oxide abrasive containing cerium oxide particles not containing fluorine element wherein the average crystallite diameter of the cerium oxide particles is in a range of 420 to 500 mm, and the particle diameter of the cerium oxide particles
  • a cerium oxide abrasive that is suitable for the primary polishing process has a high polishing rate, and can maintain the initial polishing rate over a long period of time due to the cerium oxide abrasive having a monodispersity of 30% or less.
  • Cerium (Ce) With at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm) and europium (Eu), The total content is 81 mol% or more, At least one selected from yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) Containing abrasive particles having an elemental content of 19 mol% or less, An abrasive having a monodispersity of particle size of the abrasive particles of 30% or less.
  • the content of cerium (Ce) is 81 mol% or more, At least one selected from yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu)
  • Y gadolinium
  • Gd gadolinium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • Tm thulium
  • Yb lutetium
  • polishing material as described in any one of the 1st term
  • cerium (Ce) is 90 mol% or more, At least one selected from yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu)
  • Y gadolinium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • Tm ytterbium
  • Yb lutetium
  • polishing material as described in any one of the 1st term
  • abrasive particles Containing abrasive particles in which the content of cerium (Ce) is in the range of 95 to 100 mol%, An abrasive having a monodispersity of particle size of the abrasive particles of 30% or less.
  • a manufacturing method for manufacturing the abrasive according to any one of items 1 to 8 Contains abrasive particles characterized by including carbon dioxide gas continuously or intermittently into the following aqueous solution or reaction solution, including at least the following steps 1 to 5 and at least the following steps 2 to 3.
  • a manufacturing method of an abrasive consists of:
  • Step 1 Step of preparing and heating an aqueous solution containing cerium (Ce)
  • Step 2 Step of preparing a reaction solution by adding a precipitant to the aqueous solution heated in Step 1
  • Step 3 Heating the reaction solution Step of stirring to generate abrasive particle precursor
  • Step 4 Separating the abrasive particle precursor generated in Step 3 from the reaction solution
  • Step 5 The abrasive particle obtained by separating in Step 4 A step of firing the precursor in an oxidizing atmosphere to form abrasive particles
  • Item 10 The method for producing an abrasive containing abrasive particles according to Item 9, wherein the aqueous solution satisfies the following requirements 1a to 3a.
  • Requirement 1a In addition to cerium, the aqueous solution contains lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), yttrium (Y), gadolinium (Gd), terbium ( At least one element selected from 14 rare earth elements consisting of Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) contains.
  • La lanthanum
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Eu europium
  • Y yttrium
  • Gd
  • Requirement 2a The total content of cerium contained in the aqueous solution and at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium contained in the aqueous solution is contained in the aqueous solution. It is 81 mol% or more with respect to the whole quantity of rare earth elements.
  • Requirement 3a The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the whole of the rare earth elements contained in the aqueous solution It is 19 mol% or less with respect to quantity.
  • Item 11 The method for producing an abrasive containing abrasive particles according to Item 10, wherein the aqueous solution satisfies the following requirements 1b to 3b.
  • Requirement 1b In addition to the cerium, the aqueous solution contains at least one element selected from nine kinds of rare earth elements consisting of yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • Requirement 2b The content of cerium in the aqueous solution is 81 mol% or more with respect to the total amount of rare earth elements contained in the aqueous solution.
  • Requirement 3b The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the entire rare earth element contained in the aqueous solution It is 19 mol% or less with respect to quantity.
  • Any one of Items 9 to 12, wherein the concentration of carbonate ions in the aqueous solution or the reaction solution immediately before adding the precipitant in Step 2 is in the range of 50 to 1600 mg / L.
  • Item 15 The method for producing an abrasive containing abrasive particles according to any one of Items 9 to 14, wherein the precipitant is urea or a urea-based compound.
  • the addition rate of the thermally decomposed urea aqueous solution added in the nucleation process of the particles at the initial stage of the reaction is in the range of 0.01 to 50 mol per minute per 1 liter of the reaction solution in terms of the urea concentration before the thermal decomposition.
  • Item 18 A method for producing an abrasive containing the abrasive particles according to Item 16,
  • Item 18 or Item 17 is characterized in that the carbonate ion concentration of the thermally decomposed aqueous urea solution added in the nucleation process of the particles at the initial stage of reaction is in the range of 2.5 to 50 mmol / L.
  • a method for producing an abrasive containing abrasive particles is characterized in that the carbonate ion concentration of the thermally decomposed aqueous urea solution added in the nucleation process of the particles at the initial stage of reaction is in the range of 2.5 to 50 mmol / L.
  • the abrasive particles contained in the abrasive are produced by firing an abrasive particle precursor containing at least cerium oxide as a main component, and the firing treatment is performed at a firing temperature of 1050 to 1500 ° C.
  • a method for producing an abrasive material characterized in that the method comprises:
  • Item 22 The method for producing an abrasive according to Item 21, wherein the baking apparatus for baking the abrasive particle precursor in the baking step is a roller hearth kiln or a rotary kiln.
  • a polishing method wherein the abrasive according to any one of items 1 to 8 is used for polishing an object to be polished.
  • the above means of the present invention it is possible to provide an abrasive containing abrasive particles having high productivity and suitable for precision polishing and capable of maintaining the initial polishing rate for a long period of time. Moreover, the manufacturing method of the abrasive
  • the abrasive containing the abrasive particles can show a high polishing rate by containing cerium, but if an edge is present on the surface of the abrasive particles, it leads to generation of scratches during polishing. Therefore, by adding cerium to the abrasive particles and making it a specific composition, the polishing rate can be maintained, and it is effective for reducing the surface roughness of the object to be polished, which enables precision polishing. I found. Conventionally, when polishing with abrasive particles having a large crystallite size, the polishing rate is high, but the surface roughness is generally rough.
  • the polishing rate of each abrasive particle depends on the particle diameter, and if there is variation (distribution) in the particle diameter of the abrasive particles, the crystallite size increases.
  • the difference in the polishing rate due to the effect of the particle diameter appears significantly, and the difference in the polishing rate on the surface of the object to be polished may appear as the roughness of the surface. That is, in order to ensure a high polishing rate and uniform surface roughness, an abrasive with excellent monodispersibility, uniform abrasive particle diameter, and large crystallite size is required.
  • the polishing rate of each abrasive particle is constant, the overall polishing rate is faster than when the polishing rate varies. Therefore, it is not necessary to form a fluorine compound as abrasive particles, and a fluorination step is not necessary.
  • the present invention is effective in a method for producing an abrasive containing abrasive particles containing certain spherical cerium.
  • the heat-decomposed urea aqueous solution for nucleation is added to the rare earth salt aqueous solution at the beginning of the reaction to produce core particles with a uniform particle size distribution.
  • spherical abrasive precursor particles excellent in monodispersion can be obtained while maintaining the particle size distribution by subsequently adding a urea aqueous solution or a thermally decomposed urea aqueous solution as a raw material.
  • An example of a scanning photomicrograph of abrasive particles according to the present invention An example of a scanning photomicrograph of abrasive particles according to the present invention Schematic showing the crystallites of cerium oxide particles Electron micrograph showing an example of cerium oxide particles with crystallites
  • the schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention The schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention
  • the schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention The schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention
  • the schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention The schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention
  • the abrasive of the present invention contains cerium (Ce) and at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), and europium (Eu).
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • Tm thulium
  • the content of at least one element selected from lutetium (Lu) contains abrasive particles of 19 mol% or less, and the monodispersity of the particle diameter of the abrasive particles is 30% or less.
  • This feature is a technical feature common to the inventions according to claims 1 to 23.
  • the average crystallite size of the abrasive particles is preferably in the range of 420 to 500 mm from the viewpoint of obtaining a higher polishing rate.
  • the average particle diameter D 50 of the abrasive particles is preferably in the range of 0.5 to 0.9 ⁇ m from the viewpoint of obtaining a higher polishing rate.
  • the average content of the abrasive particles is 80% by mass or more of the total abrasive particles from the viewpoint of obtaining a higher polishing rate.
  • the content of cerium (Ce) is 81 mol% or more, and yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( It is preferable to contain abrasive particles in which the content of at least one element selected from Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) is 19 mol% or less. This is because the polishing material particles have a high cerium content, thereby exhibiting an excellent polishing rate.
  • the content of cerium (Ce) is 90 mol% or more, and yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (The content of at least one element selected from Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) is preferably 10 mol% or less.
  • the abrasive particles having a cerium (Ce) content in the range of 95 to 100 mol% are contained, and the monodispersity of the particle diameter of the abrasive particles is 30% or less. It is preferable that the ratio of cerium is high because a high polishing rate can be obtained.
  • the monodispersity of the particle diameter of the abrasive particles is 20% or less because scratches are hardly generated and suitable for precision polishing.
  • An embodiment of the method for producing an abrasive containing abrasive particles of the present invention includes at least the following steps 1 to 5, and at least the following steps 2 to 3, carbon dioxide gas in the following aqueous solution or reaction solution: Is preferably introduced continuously or intermittently from the viewpoint of the effects of the present invention.
  • Step 1 Step of preparing and heating an aqueous solution containing cerium (Ce)
  • Step 2 Step of preparing a reaction solution by adding a precipitant to the aqueous solution heated in Step 1
  • Step 3 Heating the reaction solution Step of stirring to generate abrasive particle precursor
  • Step 4 Separating the abrasive particle precursor generated in Step 3 from the reaction solution
  • Step 5 The abrasive particle obtained by separating in Step 4 A step of firing the precursor in an oxidizing atmosphere to form abrasive particles
  • the aqueous solution satisfies the requirements 1a to 3a.
  • the aqueous solution satisfies the requirements 1b to 3b in that spherical abrasive particles having a high cerium content and excellent polishing performance can be produced.
  • the cerium content of the aqueous solution is within the range of 95 to 100 mol% with respect to the total amount of rare earth elements contained in the aqueous solution, and the cerium content is high, Since it does not contain other elements, it is preferable in that the abrasive can be produced with a small number of production steps.
  • the carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in Step 2 is in the range of 50 to 1600 mg / L.
  • An amount of carbon dioxide gas can be introduced, which is preferable in that the supply amount of carbon dioxide gas can be controlled.
  • the carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in the step 2 is within the range of 58 to 1569 mg / L. It is preferable to make it more prominent.
  • the precipitating agent is urea or a urea-based compound in that carbon dioxide and ammonia can be supplied by a hydrolysis reaction.
  • an aqueous urea solution is added to an aqueous solution of a rare earth element-containing compound containing cerium to form abrasive precursor particles, and A process of firing abrasive precursor particles, and adding an aqueous urea solution that is thermally decomposed in the nucleation process of particles at the initial stage of the reaction in the process of forming the abrasive precursor particles. It is preferable from the viewpoint of the effects of the present invention to add an aqueous urea solution or an aqueous urea solution decomposed by heat decomposition in the subsequent particle growth process.
  • the addition rate of the thermally decomposed urea aqueous solution added in the nucleation process of the particles at the initial stage of the reaction is converted to the urea concentration before the thermal decomposition.
  • it is preferably in the range of 0.01 to 50 mol per minute per 1 L of the reaction solution.
  • the carbonate ion concentration of the thermally decomposed aqueous urea solution added in the particle nucleation process at the initial stage of the reaction is in the range of 2.5 to 50 mmol / L.
  • the concentration of the urea aqueous solution added during the particle growth process is in the range of 0.05 to 10 mol / L.
  • the carbonate ion concentration of the thermally decomposed aqueous urea solution added during the particle growth process is in the range of 0.1 to 30 mmol / L.
  • the abrasive particles contained in the abrasive material calcinate an abrasive particle precursor containing at least cerium oxide as a main component.
  • the firing treatment is preferably a step of treating the firing temperature within a range of 1050 to 1500 ° C.
  • the baking apparatus for baking the abrasive particle precursor in the baking step is a roller hearth kiln or a rotary kiln. From the viewpoint of being able to.
  • the abrasive of the present invention for polishing an object to be polished from the viewpoint of manifesting the effects of the present invention.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • Common abrasives include those made by dispersing abrasive particles such as bengara ( ⁇ Fe 2 O 3 ), cerium oxide, aluminum oxide, manganese oxide, zirconium oxide, colloidal silica in water or oil to form a slurry. is there.
  • the present invention is a chemical mechanical polishing method for polishing semiconductor devices and glass, in which polishing is performed by both physical action and chemical action in order to obtain a sufficient polishing rate while maintaining flatness with high accuracy.
  • the abrasive particles according to the present invention include cerium (Ce) and at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), and europium (Eu).
  • the total content is 81 mol% or more, and yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb ) And at least one element selected from lutetium (Lu) contains abrasive particles of 19 mol% or less, and the monodispersity of the particle diameter of the abrasive particles is 30% or less.
  • the abrasive particles according to the present invention necessarily contain cerium, and the total content of at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium is 81 mol% or more, It contains abrasive particles in which the content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium is 19 mol% or less, and the particle size of the abrasive particles is simply The degree of dispersion is 30% or less.
  • the abrasive particles always contain cerium, and need only contain at least one kind selected from lanthanum, praseodymium, neodymium, samarium and europium, and several kinds of elements are appropriately selected according to the performance of the intended abrasive. May be included.
  • the total content of cerium and at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium contained in the abrasive particles is 81 mol% or more, and yttrium, gadolinium, terbium, dysprosium, holmium, erbium
  • the content of at least one element selected from thulium, ytterbium and lutetium is 19 mol% or less
  • the monodispersity of the particle diameter of the abrasive particles is 30% or less, so that yttrium, gadolinium, terbium An abrasive exhibiting high polishing performance can be obtained while suppressing the content of at least one element selected from dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • the content of each rare earth element in the abrasive particles contained in the abrasive can be determined by elemental analysis. For example, 1 g is dissolved in a mixed solution of 10 ml of nitric acid aqueous solution and 1.0 ml of hydrogen peroxide solution, and elemental analysis is performed using an ICP emission spectral plasma apparatus (ICP-AES) manufactured by SII Nano Technology.
  • ICP-AES ICP emission spectral plasma apparatus
  • the composition ratio (mol%) can be determined from the content of each rare earth element in the abrasive particles.
  • the composition distribution of the abrasive particles may be determined by performing an elemental analysis of the cross section of the abrasive particles.
  • the abrasive particles are subjected to cross-section processing using a focused ion beam (FB-2000A) manufactured by Hitachi High-Technologies, and a surface passing through the vicinity of the particle center is cut out. From the cut surface, elemental analysis can be performed using STEM-EDX (HD-2000) manufactured by Hitachi High-Technologies to determine the composition distribution of each rare earth element in the abrasive particles.
  • FB-2000A focused ion beam
  • HD-2000 manufactured by Hitachi High-Technologies
  • the monodispersity of the particle diameter of the abrasive particles according to the present invention is 30% or less, and the monodispersity is preferably 20% or less, particularly preferably 10%. % Or less.
  • the monodispersity can be defined by a variation coefficient of a particle diameter distribution that can be obtained from a scanning micrograph (SEM image) of a predetermined number of abrasive particles.
  • the coefficient of variation (also referred to as “monodispersity”) of the particle size distribution can be obtained from an SEM image of 100 abrasive particles, and the monodispersity can be evaluated.
  • the particle diameter is determined based on the area of the photographic image of each particle, and the equivalent particle diameter is determined as the particle diameter of each particle.
  • the particle size distribution variation coefficient is obtained by the following formula.
  • Coefficient of variation (%) (standard deviation of particle size distribution / average particle size) ⁇ 100
  • the measurement of the said particle diameter, distribution, etc. can be performed using an image processing measuring device (for example, Luzex AP; Nireco Corporation make).
  • the abrasive particles of the present invention are preferably spherical.
  • the spherical shape is defined based on a scanning micrograph (SEM image) of the abrasive particles. Specifically, a scanning micrograph is taken of the abrasive particles, and 100 abrasive particles are randomly selected.
  • SEM image scanning micrograph
  • the major axis of the selected abrasive particles is a and the minor axis is b
  • an average value of a / b is obtained as an aspect ratio.
  • the circumscribing rectangle when drawing a circumscribing rectangle for each particle (referred to as “the circumscribing rectangle”), the shortest short side of the circumscribed rectangle is the shortest length, and the longest long side is the length. Is the major axis.
  • the aspect ratio is in the range of 1.00 to 1.15, more preferably in the range of 1.00 to 1.05, it is classified as a spherical shape. If it is out
  • the abrasive containing the abrasive particles according to the present invention having high sphericity is suitable for precision polishing and has a high polishing rate, and is excellent in terms of high productivity.
  • a scanning photomicrograph (magnification 1000 times) of the abrasive particles according to the present invention is shown in FIG. Further, FIG. 2 shows the SEM image of FIG. It can be seen that it is spherical and has a high degree of monodispersity.
  • the average particle diameter D 50 of the abrasive particles according to the present invention is in the range of 0.5 to 0.9 ⁇ m.
  • the average particle diameter D 50 determined as a whole by 100% cumulative curve of the measured value of the particle size of the abrasive particles (integral curve), the particle diameter when the cumulative curve becomes 50% and the average particle diameter D 50 To do.
  • a method of measuring 200 particle diameters using the above SEM (scanning electron microscope) and obtaining a frequency distribution can be used.
  • it can be obtained by using a dynamic light scattering method, a laser diffraction method, a centrifugal sedimentation method, an FFF method (field flow fraction method), an electrical detector method, or the like.
  • the abrasive particles according to the present invention have a cerium content of 90 mol% or more, and contain at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • Spherical abrasive particles having an amount of 10 mol% or less are preferred. This suppresses the content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained together with cerium, thereby maintaining the production cost while maintaining the spherical shape. Can be suppressed.
  • the abrasive particles according to the present invention are characterized by having a spherical shape with a cerium content in the range of 95 to 100 mol%.
  • An abrasive containing spherical abrasive particles having a cerium content in the range of 95 to 100 mol% has a high cerium content, so that a high polishing rate can be obtained.
  • the polishing speed is determined by supplying the abrasive slurry in which the abrasive powder containing the abrasive particles is dispersed in a solvent such as water to the surface to be polished of the polishing machine while the surface to be polished is polished with a polishing cloth. It can be measured by polishing.
  • the polishing rate can be measured by, for example, circulating the abrasive slurry to a polishing machine and performing polishing.
  • the thickness before and after polishing is measured by Nikon Digimicro (MF501), and the polishing amount ( ⁇ m) per minute can be calculated from the thickness displacement to obtain the polishing rate.
  • the monodispersity of the particle diameter of the abrasive particles according to the present invention is 20.0% or less.
  • An abrasive containing abrasive particles exhibiting a high degree of monodispersity is less susceptible to scratches and is suitable for precision polishing.
  • the occurrence of scratches can be determined by evaluating the surface state of the glass substrate. For example, with respect to the surface state (surface roughness Ra) of the glass substrate surface, the surface roughness of a glass substrate that has been polished for 30 minutes is evaluated with a light wave interference type surface roughness meter (Dual-channel ZeMapper manufactured by Zygo). be able to.
  • Ra represents the arithmetic average roughness in JIS B0601-2001.
  • the abrasive particles according to the present invention are characterized in that no fluorine element is mixed therein.
  • no fluorine element means that the average content (mol%) of the fluorine element is 1.0 mol% or less, preferably 0.1 mol% or less, among the elements constituting the abrasive particles. It is.
  • a method for measuring the fluorine element content in the abrasive particles for example, 1 g of abrasive particles is dissolved in a mixed solution of 10 ml of nitric acid aqueous solution and 1.0 ml of hydrogen peroxide solution, and SII Nanotechnology Inc. Elemental analysis was performed using an ICP emission spectral plasma apparatus (ICP-AES). The average value of the content of fluorine element in the abrasive particles was determined as the composition ratio (mol%).
  • the average crystallite diameter is preferably in the range of 420 to 500 mm.
  • the “crystallite” according to the present invention refers to the largest region of microcrystals present as a complete single crystal in a polycrystalline particle.
  • the abrasive particle 1 according to the present invention is formed of a plurality of crystallites 2. Since the growth rate of the crystallite 2 varies depending on the firing temperature and time, in the present invention, for example, by firing within a range of 1050 to 1500 ° C., an average crystallite diameter A suitable as an abrasive is 420. It is considered that an abrasive containing abrasive particles 1 in the range of ⁇ 500 mm can be obtained.
  • 3 shown in FIG. 3 is the particle diameter of the abrasive particles 1.
  • the obtained average crystallite diameter A represents the size of a crystal growing in the same direction in a crystal grain.
  • the fact that the average crystallite diameter A is small means that the crystallite 2 growing in the same specific direction in the crystal grain is small.
  • crystallite 2 grows by baking at an appropriate baking temperature for an appropriate time, crystal grains having a large average crystallite diameter A can be formed.
  • the crystallite diameter A when the crystallite diameter A is large, the growth in the same direction is large and the abrasive particles 1 become hard. In addition, when the crystallite diameter A is small, the growth in the same direction is small and the abrasive particles 1 are soft.
  • the average crystallite diameter A according to the present invention can be calculated by the XRD (X-ray diffraction) measurement using the Scherrer equation shown below.
  • A K ⁇ / ⁇ cos ⁇
  • K is the Scherrer constant and ⁇ is the X-ray wavelength.
  • is the half width of the diffraction line.
  • is the Bragg angle with respect to the diffraction line.
  • FIG. 4 shows a scanning electron micrograph of cerium oxide particles having crystallites according to the present invention.
  • the means for setting the average crystallite diameter A according to the present invention within the range of 420 to 500 mm, but in particular, it is preferable to control the firing temperature in the range of 1050 to 1500 ° C. in particular. It is.
  • the initial high polishing rate can be maintained even when continuous polishing is performed.
  • the abrasive particles contained in the abrasive are produced by firing an abrasive particle precursor containing at least cerium oxide as a main component, and the firing treatment is performed at a firing temperature. Is preferably a step of treating within a range of 1050 to 1500 ° C.
  • the abrasive particles are preferably prepared by a wet synthesis method.
  • the wet synthesis method referred to in the present invention is a mixture of a rare earth aqueous solution containing cerium nitrate, cerium hydrochloride or cerium sulfate in a solution medium and an aqueous solution of a urea compound to prepare an abrasive particle precursor, followed by firing. This is a method of forming abrasive particles by treatment.
  • cerium oxide as a main component means that the content of cerium oxide is 55 mol% or more, preferably 81 mol% or more, more preferably 90 mol% or more. Especially preferably, it is 95 mol% or more.
  • the method for producing an abrasive according to the present invention is preferably prepared by a wet synthesis method. More specifically, as shown in FIG. 5, mainly, the abrasive particle precursor forming step (IA), A production method comprising a solid-liquid separation step (IB) and a firing step (IC) is preferred.
  • Abrasive Particle Precursor Forming Step Abrasive particle precursor forming step that does not contain a fluorine compound is prepared by a wet synthesis method and contains Ce, or Ce and Y, La, without containing a fluorine compound. , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and a part of the solution was previously thermally decomposed into an aqueous solution containing a salt with at least one element selected from Lu A urea compound is added, and said Ce or Ce and at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; A dispersion solution is prepared in which a basic carbonate of the salt is dispersed.
  • nitrate is used as the salt of Ce or Ce and at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • Hydrochloride, sulfate and the like can be used, and among them, nitrate is preferable.
  • Urea compounds such as urea, urea salts (eg, nitrates, hydrochlorides, etc.), N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, trimethyl Urea, tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea and the like can be mentioned, and urea is preferred.
  • urea is preferred.
  • ion concentration in the aqueous solution of the salt with the element is preferably in the range of 0.001 to 0.1 mol / L, and urea is preferably in the range of 5 to 50 times the ion concentration. This is in an aqueous solution of the above-mentioned Ce or Ce and at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • the mixed aqueous solution is heated and stirred at 80 ° C. or higher to grow a basic carbonate dispersed in the aqueous solution.
  • the shape of the stirrer is not particularly specified if sufficient stirring efficiency can be obtained, but in order to obtain higher stirring efficiency, a rotor / stator type stirrer should be used. Is preferred.
  • a high polishing rate can be obtained when the ratio (content ratio) of cerium oxide in the metal oxide composed of the above-described metal is 81 mol% or more. From the viewpoint of being able to.
  • Solid-liquid separation step In the solid-liquid separation step, the formed abrasive particle precursor is subjected to solid-liquid separation from the dispersion solution containing the abrasive particle precursor obtained in (1) precursor particle forming step. It is a step of collecting abrasive particles to obtain an abrasive particle precursor.
  • the solid-liquid separation method a method of performing solid-liquid separation by natural sedimentation can be applied without applying forced separation means.
  • the dispersion solution containing the abrasive particle precursor is allowed to stand and separated into a supernatant liquid and an abrasive particle precursor precipitated at the bottom, and then the decantation method, for example, tilting the kettle to drain the supernatant liquid.
  • the decantation method for example, tilting the kettle to drain the supernatant liquid.
  • the abrasive particle precursor may be separated by solid-liquid separation using a filter or the like.
  • the obtained abrasive particle precursor may be washed with water and alcohol and dried and then transferred to the following (3) firing step.
  • the precursor of the basic carbonate abrasive particles obtained by solid-liquid separation is 400 ° C. or higher in the air or in an oxidizing atmosphere, and preferably 1050 to 1500 in the present invention.
  • the calcination is carried out at a calcination temperature of 0 ° C. within a range of 1 to 5 hours. Since the precursor of the abrasive particles is desorbed with carbon dioxide when fired, the basic carbonate is converted to an oxide, and the desired average particle size in the range of 420 to 500 mm is obtained. It is done.
  • an average crystallite diameter in the range of 420 to 500 mm capable of realizing a high polishing rate as an abrasive. It is considered that the abrasive particles possessed grow and the abrasive particles having sufficient hardness are obtained during polishing.
  • a specific firing apparatus for firing the precursor of the abrasive particles is preferably a known roller hearth kiln or rotary kiln. Thereby, heat is uniformly applied to the precursor of the abrasive particles, which is preferable from the viewpoint of obtaining abrasive particles having a uniform structure.
  • roller hearth kiln for example, a plurality of rollers are installed in the furnace, and the raw material is carried on the roller, so that the area in the furnace can be adjusted according to the temperature such as pre-baking, baking, cooling. it can.
  • a general rotary kiln for example, it is substantially cylindrical, and the raw material is gradually fed while slowly rotating in the kiln.
  • temporary baking can also be performed.
  • the preliminary calcination is preferably performed within a range of a calcination temperature of 300 to 490 ° C. and a range of 1 to 5 hours.
  • a calcination temperature 300 to 490 ° C. and a range of 1 to 5 hours.
  • a well-known roller hearth kiln or rotary kiln can be used similarly to a baking process.
  • the temperature in the firing step is preferable to raise the temperature in the firing step at a rate of temperature rise in the range of 20 to 50 ° C./min. Thereby, it is considered that crystallites containing a large amount of cerium grow stably.
  • the temperature from 500 ° C. to room temperature (25 ° C.) at a temperature lowering rate within the range of 1 to 20 ° C./min.
  • the abrasive manufacturing method 2 generally comprises the following five steps (see FIG. 6).
  • Urea aqueous solution preparation process II-A In the urea aqueous solution preparation step II-A, a urea aqueous solution having a predetermined concentration is prepared and heated in a sealed container to prepare a urea aqueous solution to be added. For example, 0.5 L of a 5.0 mol / L urea aqueous solution is prepared (room temperature) (II-A1) and heated in a sealed container at 100 ° C. for 6 hours (II-A2, II-A3). Thereafter, a urea aqueous solution (II-A5) to which a urea aqueous solution (II-A4) cooled to 20 ° C. is added can be obtained.
  • the hydrolysis can proceed while retaining the solvent.
  • the three components of urea are dissolved in the urea aqueous solution.
  • urea salt eg, nitrate, hydrochloride, etc.
  • N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, trimethylurea Tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea and the like can also be used.
  • urea salt eg, nitrate, hydrochloride, etc.
  • Rare earth aqueous solution preparation process II-B The rare earth aqueous solution preparation step II-B necessarily contains an aqueous solution or cerium having a cerium content of 95 to 100 mol%, and includes lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, and thulium.
  • An aqueous solution containing at least one element selected from ytterbium and lutetium is prepared.
  • An aqueous solution or cerium having a cerium content of 95 to 100 mol% is necessarily contained, and at least one selected from lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium
  • the ion concentration in the aqueous solution containing the seed element is 0.001 mol / L to 0.1 mol / L, and urea is preferably 5 to 50 times the ion concentration.
  • salts of these elements that can be used for preparing the aqueous solution, nitrates, hydrochlorides, sulfates and the like can be used, but it is preferable to use nitrates. Thereby, an abrasive with few impurities can be manufactured.
  • the addition of the urea aqueous solution is preferably performed at a higher addition rate.
  • the addition rate of the urea aqueous solution is preferably 0.5 mL / min or more, and particularly preferably 1.0 mL / min or more.
  • the precursor of the abrasive particles is produced as a basic carbonate by reacting the rare earth aqueous solution and the urea aqueous solution (II-C3).
  • the heating temperature for heating is preferably 80 ° C. or higher, particularly preferably 90 ° C. or higher.
  • the stirring time is preferably 1 hour or more and 10 hours or less, and particularly preferably 1 hour or more and 3 hours or less.
  • heating temperature and stirring time can be suitably adjusted according to the target particle diameter.
  • the shape of the stirrer is not specified, but in order to obtain higher stirring efficiency, a rotor / stator type stirrer should be used. Is preferred.
  • Solid-liquid separation process II-D After heating and stirring, solid-liquid separation is performed to separate the generated precipitate (precursor of abrasive fine particles) from the solution.
  • the solid-liquid separation method may be a general method.
  • a precursor of abrasive particles can be obtained by filtration using a filter or the like.
  • Firing step II-E In the firing step II-E, the precursor of the abrasive particles obtained in the solid-liquid separation step II-D is fired at 400 ° C. or higher in air or in an oxidizing atmosphere.
  • the precursor of the baked abrasive particle becomes an oxide and becomes an abrasive particle containing cerium oxide.
  • an abrasive containing spherical abrasive particles that hardly contains anisotropically grown abrasive particles can be obtained.
  • the abrasive of the present invention contains 50% by mass or more of the abrasive particles, preferably 70% by mass or more, and particularly preferably 90% by mass or more. Thereby, the abrasive
  • the abrasive production method 3 is shown below.
  • the method for producing the abrasive preferably includes at least the following steps 1 to 5 and introduces carbon dioxide gas continuously or intermittently into the following aqueous solution or reaction solution at least during the following steps 2 to 3. .
  • Step 1 Step of preparing and heating an aqueous solution containing cerium (Ce)
  • Step 2 Step of preparing a reaction solution by adding a precipitant to the aqueous solution heated in Step 1
  • Step 3 Heating the reaction solution Step of stirring to generate abrasive particle precursor
  • Step 4 Separating the abrasive particle precursor generated in Step 3 from the reaction solution
  • Step 5 The abrasive particle obtained by separating in Step 4 A step of firing the precursor in an oxidizing atmosphere to form abrasive particles
  • the method for producing an abrasive of the present invention generally comprises the following five steps 1 (III-A) to 5 (III-E) (see FIG. 7).
  • Carbon dioxide gas (III-C1) may be introduced continuously or intermittently from step 1 (III-A) to step 4 (III-D), and at least step 2 (III-B) It is characterized in that it is introduced for up to Step 3 (III-C).
  • continuous means introducing carbon dioxide into the reaction solution at a constant flow rate and pressure from the start to the end.
  • intermittent means that the introduction of carbon dioxide gas is introduced into the reaction solution at a predetermined flow rate and pressure from the start to the end.
  • interval can be suitably set according to a flow volume and a pressure. Specifically, it is sufficient that the carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in Step 2 (III-B) is in the range of 50 to 1600 mg / L.
  • An amount of carbon dioxide gas can be introduced, which is preferable in that the supply amount of carbon dioxide gas can be controlled.
  • the carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in Step 2 (III-B) is in the range of 58 to 1569 mg / L. This is preferable.
  • Step 1 (rare earth aqueous solution preparation step III-A)
  • an aqueous solution (III-A1) containing cerium (Ce) is prepared and heated (III-A2) to obtain a rare earth aqueous solution (III-A3) at 90 ° C. .
  • an aqueous solution containing cerium is prepared.
  • An aqueous solution containing at least one element selected from 14 kinds of rare earth elements consisting of dysprosium, holmium, erbium, thulium, ytterbium and lutetium is prepared.
  • the aqueous solution prepared by the step 1 (rare earth aqueous solution preparation step III-A) satisfies the following requirements 1a to 3a in that it can produce spherical abrasive particles with a high polishing rate and less scratches. preferable.
  • Requirement 1a In addition to cerium, the aqueous solution is selected from the 14 rare earth elements consisting of lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. Contains at least one element selected.
  • Requirement 2a The total content of cerium contained in the aqueous solution and at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium contained in the aqueous solution is contained in the aqueous solution. It is 81 mol% or more with respect to the whole quantity of rare earth elements.
  • Requirement 3a The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the whole of the rare earth elements contained in the aqueous solution It is 19 mol% or less with respect to quantity.
  • the aqueous solution prepared by Step 1 (rare earth aqueous solution preparation step III-A) satisfies the following requirements 1b to 3b, so that spherical abrasive particles having a high cerium content and excellent polishing performance are obtained. It is preferable in that it can be manufactured.
  • Requirement 1b In addition to the cerium, the aqueous solution contains at least one element selected from nine kinds of rare earth elements consisting of yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. .
  • Requirement 2b The content of cerium in the aqueous solution is 81 mol% or more with respect to the total amount of rare earth elements contained in the aqueous solution.
  • Requirement 3b The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the entire rare earth element contained in the aqueous solution It is 19 mol% or less with respect to quantity.
  • the aqueous solution prepared in Step 1 (rare earth aqueous solution preparation step III-A) satisfies the following requirements 1c to 3c, and has a spherical content with a higher cerium content and better polishing performance. It is preferable at the point which can produce particle
  • Requirement 1c In addition to the cerium, the aqueous solution contains at least one element selected from nine kinds of rare earth elements consisting of yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. .
  • Requirement 2c The content of cerium in the aqueous solution is 90 mol% or more with respect to the total amount of rare earth elements contained in the aqueous solution.
  • Requirement 3c The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the whole of the rare earth elements contained in the aqueous solution It is 10 mol% or less with respect to the quantity.
  • the cerium content of the aqueous solution should be within the range of 95 to 100 mol% with respect to the total amount of rare earth elements contained in the aqueous solution, and the cerium content should be high and other elements should not be included. Therefore, it is preferable in that the abrasive can be produced with a small number of production steps.
  • the cerium content always includes an aqueous solution or cerium that is 95 to 100 mol% with respect to the total amount of rare earth elements contained in the aqueous solution, and includes lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium.
  • the ion concentration in the aqueous solution containing at least one element selected from dysprosium, holmium, erbium, thulium, ytterbium and lutetium is 0.001 mol / L to 0.1 mol / L, and urea has the above ion concentration. A concentration of 5 to 50 times is preferable.
  • salts of these elements that can be used for preparing the aqueous solution, nitrates, hydrochlorides, sulfates and the like can be used, but it is preferable to use nitrates. Thereby, an abrasive with few impurities can be manufactured.
  • Step 2 Precipitating agent addition step III-B
  • a precipitating agent (III-B3) is added to the aqueous solution (III-A3) heated in step 1 (III-A) to prepare a reaction solution.
  • the precipitating agent is preferably urea or a urea-based compound in that carbon dioxide and ammonia can be supplied by a hydrolysis reaction.
  • a urea aqueous solution having a predetermined concentration is prepared in advance at room temperature (III-B1), and the urea aqueous solution is heated (III-B2). Added.
  • 0.5 L of a 5.0 mol / L urea aqueous solution is prepared and heated to 60 ° C. (III-B3).
  • urea can be maintained without hydrolysis, and the reaction proceeds without drastically reducing the temperature of the reaction liquid when added to the heated aqueous solution in Step 1. be able to.
  • urea salt eg, nitrate, hydrochloride, etc.
  • An aqueous solution prepared from a urea-based compound such as tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea, ammonium hydrogencarbonate, or the like can also be used.
  • the addition of the urea aqueous solution is preferably performed at a higher addition rate.
  • the addition rate of the urea aqueous solution is preferably 0.5 L / min or more, and particularly preferably 1.0 L / min or more.
  • Step 3 (Abrasive Particle Precursor Generation Step III-C)
  • the reaction liquid is heated and stirred (III-C2) to generate an abrasive particle precursor.
  • the mixed solution is stirred while being heated.
  • nuclei of abrasive particles are generated and dispersed in the mixed solution.
  • the nuclei of the abrasive grow and the precursor of the abrasive particles is obtained.
  • the precursor of the abrasive particles is produced as a basic carbonate by reacting a rare earth aqueous solution and a urea aqueous solution (III-C3).
  • the heating temperature for heating is preferably 80 ° C. or higher, particularly preferably 90 ° C. or higher.
  • the stirring time is preferably 1 hour or more and 10 hours or less, and particularly preferably 1 hour or more and 3 hours or less.
  • heating temperature and stirring time can be suitably adjusted according to the target particle diameter.
  • the shape of the stirrer is not particularly specified, but in order to obtain higher stirring efficiency, a rotor / stator type stirring is performed. It is preferable to use a machine.
  • Step 4 Solid-liquid separation step III-D
  • step 4 solid-liquid separation step III-D
  • a solid-liquid separation operation is performed to separate the produced precipitate (precursor of abrasive fine particles) from the reaction solution.
  • the method of solid-liquid separation operation may be a general method.
  • a precursor of abrasive particles can be obtained by filtration using a filter or the like.
  • Step 5 (Firing Step III-E)
  • the precursor of the abrasive particles obtained in step 4 solid-liquid separation step III-D
  • the precursor of the baked abrasive particle becomes an oxide and becomes an abrasive particle containing cerium oxide.
  • an abrasive containing spherical abrasive particles that hardly contains anisotropically grown abrasive particles can be obtained.
  • the abrasive of the present invention contains 50% by mass or more of the abrasive particles, preferably 70% by mass or more, and particularly preferably 90% by mass or more. Thereby, the abrasive
  • the method for producing spherical abrasive particles of the present invention is a method for producing spherical abrasive particles containing cerium oxide, Adding an aqueous urea solution to an aqueous solution of a rare earth element-containing compound containing cerium to form abrasive precursor particles; Adding at least a step of firing the abrasive precursor particles, and adding an aqueous urea solution that is thermally decomposed in the nucleation process of the particles in the initial stage of the reaction in the step of forming the abrasive precursor particles, In the grain growth process after the nucleation process, a urea aqueous solution or a thermally decomposed urea aqueous solution is added.
  • the present invention is a chemical mechanical polishing method for polishing semiconductor devices and glass, in which polishing is performed by both physical action and chemical action in order to obtain a sufficient polishing rate while maintaining flatness with high accuracy.
  • This is a method for producing spherical abrasive particles containing cerium oxide capable of being subjected to CMP (Chemical Mechanical Polishing).
  • the spherical abrasive particles are obtained by firing the abrasive precursor particles generated in the reaction liquid by mixing and heating the rare earth salt aqueous solution and the urea aqueous solution.
  • the reaction liquid refers to a liquid obtained by mixing a rare earth salt aqueous solution and a urea aqueous solution.
  • the method for producing spherical abrasive particles of the present invention includes a step of adding an aqueous urea solution in at least a rare earth salt aqueous solution to form abrasive precursor particles and a step of firing the abrasive precursor particles.
  • the following five steps (1. Urea aqueous solution preparation step IV-A, 2. Rare earth salt aqueous solution preparation step IV-B, 3. Forming abrasive precursor particles IV-C, 4. Solid-liquid separation step IV -D, 5.
  • the step IV-E of firing (see FIG. 8)) is preferable.
  • Urea aqueous solution preparation process IV-A In the urea aqueous solution preparation step IV-A, a urea aqueous solution (IV-A1a) having a predetermined concentration is prepared or heated by being heated in a sealed container to add a thermally decomposed urea aqueous solution (decomposed urea aqueous solution). This is a step for preparing IV-A1b). For example, by heating an aqueous urea solution in a hermetically sealed container, hydrolysis can proceed while retaining the solvent. Thereby, in addition to the carbon dioxide and ammonia produced by the hydrolysis of urea, the three components of urea are dissolved in the urea aqueous solution.
  • thermally decomposed urea aqueous solution refers to an aqueous urea solution containing carbonate ions as a result of hydrolysis of urea by heating.
  • Carbonate ions are preferably contained in the aqueous solution at a carbonate ion concentration of 2.5 to 50 mmol / L. More preferably, it is in the range of 10 to 30 mmol / L.
  • a carbonate ion concentration of 2.5 to 50 mmol / L More preferably, it is in the range of 10 to 30 mmol / L.
  • 0.5 L of a 5.0 mol / L urea aqueous solution is prepared and heated in a sealed container at 100 ° C. for 6 hours. Then, it can be set as the urea aqueous solution which adds the urea aqueous solution cooled to 20 degreeC.
  • the degree of hydrolysis can be controlled by the temperature and time of heating in the sealed container.
  • such an aqueous solution in which ureas are hydrolyzed and contains carbonate ions is also referred to as “decomposed urea liquid”.
  • ureas in addition to urea, salts of urea (eg, nitrates, hydrochlorides, etc.), N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, Examples thereof include trimethylurea, tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea, ammonium carbonate, and ammonium bicarbonate. Of these, urea is preferred. In addition, in the following Examples, although it shows about the case where basic carbonate is formed using urea aqueous solution, it is an example and it is not limited to this.
  • the carbonate ion concentration in the decomposed urea solution is a value measured at room temperature (25 ° C.).
  • the carbonate ion concentration can be measured by an ion chromatography method. For example, it can be measured using an ion chromatograph manufactured by DIONEX, DX500 or the like.
  • the rare earth salt aqueous solution preparation step IV-B is a step of preparing an aqueous solution of a rare earth element-containing compound containing cerium (rare earth salt aqueous solution).
  • the aqueous rare earth salt solution (IV-B1) at room temperature is heated (IV-B2) to prepare a rare earth salt aqueous solution at 90 ° C. (IV-B3).
  • the rare earth salt aqueous solution always contains cerium, and the total content of at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium is 81 mol% or more, and yttrium, gadolinium. It is preferable to prepare an aqueous solution having such a composition that the content of at least one element selected from terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium is 19 mol% or less.
  • the rare earth salt aqueous solution always contains cerium, and the total content of at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium is 81 mol% or more based on the total rare earth elements.
  • an aqueous solution having a composition in which the content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium is 19 mol% or less with respect to the total rare earth elements Is preferred.
  • the ion concentration of these solutions in an aqueous solution is 0.001 to 50 mol / L, and ureas are preferably 5 to 50 times the ion concentration.
  • lanthanum praseodymium, neodymium, samarium
  • europium yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • salts of these elements that can be used for preparing the aqueous solution, nitrates, hydrochlorides, sulfates and the like can be used, but it is preferable to use nitrates. Thereby, an abrasive with few impurities can be manufactured.
  • Step IV-C for forming abrasive precursor particles is a step of forming abrasive precursor particles by adding an aqueous urea solution or the like to an aqueous solution of a rare earth element-containing compound containing cerium (rare earth salt aqueous solution IV-B3). It is.
  • the aqueous urea solution decomposed in the nucleation step (IV-C1a) of the initial reaction particles is added to the rare earth salt solution, and the nucleation step ( In the grain growth process (IV-C1b) after IV-C1a), an aqueous urea solution or an aqueous urea solution decomposed by heat decomposition is added.
  • the present inventor has developed a process for forming abrasive precursor particles as a nucleation step (IV-C1a) at the initial stage of reaction and a grown nucleus.
  • the thermally decomposed aqueous solution of ureas which is the raw material of the abrasive precursor particles, is added to the rare earth salt aqueous solution.
  • the inventors have found that it is important to form nuclei and grow them at an early stage of body particle formation in order to produce spherical abrasive particles having high sphericity and excellent monodispersibility.
  • a rare earth salt containing cerium is added at the beginning of the reaction with an aqueous urea solution in an amount necessary for nucleation.
  • aqueous urea solution By adding to the aqueous solution, it is considered that core particles having a uniform particle size distribution are generated. It is considered that spherical abrasive precursor particles excellent in monodispersion can be obtained while maintaining the particle size distribution by subsequently adding the urea aqueous solution as a raw material.
  • the particle size distribution of the produced nuclei can be made narrower than before, compared with the case where the abrasive precursor particles are formed by mixing a conventional rare earth salt aqueous solution and a decomposed urea solution and then heating the mixture. .
  • the size of the nucleus is preferably about 10 to 300 nm. It can be carried out by appropriately controlling the concentration of the rare earth salt aqueous solution and the decomposed urea solution, the reaction temperature, the degree of decomposition of the decomposed urea solution, the addition rate and the added amount of the decomposed urea solution. The formation of nuclei can be confirmed by the reaction solution becoming colored or cloudy from blue to white. When the particle size is small, it is observed in blue, and as it increases, it is observed in white.
  • the addition rate of the thermally decomposed urea aqueous solution added in the nucleation process (IV-C1a) is within a range of 0.01 to 50 mol per minute per 1 liter of the reaction solution in terms of the urea concentration before the thermal decomposition. It is preferable that More preferably, the addition rate is in the range of 0.10 to 30 mol. The faster the rate of addition, the narrower the particle size distribution of the produced nuclei, but if it is too early, the produced nuclei will aggregate or the local concentration distribution will become larger, causing the nuclei to grow anisotropically, resulting in a nuclear particle size distribution. This is because may increase.
  • the addition time is preferably within 10 minutes. More preferably, it is within 5 minutes. More preferably, it is within 1 minute.
  • the carbonate ion concentration of the thermally decomposed aqueous urea solution to be added is preferably in the range of 2.5 to 50 mmol / L.
  • the degree of decomposition of ureas in the decomposed urea liquid is preferably 0.5% or more. Furthermore, 3% or more is preferable.
  • the temperature of the reaction solution in which the rare earth salt aqueous solution and the decomposed urea solution are mixed is preferably a temperature at which ureas can be hydrolyzed. Specifically, the temperature of the reaction solution is in the range of 75 to 100 ° C., preferably 80 to 100 ° C., more preferably 90 to 100 ° C.
  • the particle growth process (IV-C1b) is a process for growing the core particles formed in the nucleation process (IV-C1a) into larger abrasive precursor particles.
  • the grain growth process (IV-C1a) is performed after the nucleation process (IV-C1a).
  • the reaction solution After completion of the addition of the decomposed urea aqueous solution (IV-A1a) added in the nucleation process (IV-C1a), the reaction solution turns blue to white or becomes cloudy, and then the urea aqueous solution or the thermally decomposed urea aqueous solution (IV
  • the grain growth process is started by adding -A1b).
  • the urea aqueous solution preparation step IV-A is performed.
  • the urea aqueous solution prepared in step 1 or the thermally decomposed urea aqueous solution is added to the rare earth salt aqueous solution prepared in the rare earth salt aqueous solution preparation step IV-B.
  • the mixed solution is stirred while heating.
  • the concentration of the aqueous urea solution added during the growth process is preferably in the range of 0.05 to 10 mol / L. Further, the carbonate ion concentration of the thermally decomposed urea aqueous solution added during the particle growth process is in the range of 0.01 to 30 mol / L, so that the particle size distribution of the growing abrasive precursor particles is not increased. It is preferable from the viewpoint.
  • the temperature of the reaction solution in which the rare earth salt aqueous solution and the decomposed urea aqueous solution are mixed is preferably a temperature at which ureas can be hydrolyzed.
  • the temperature of the reaction solution is in the range of 75 to 100 ° C., preferably 80 to 100 ° C., more preferably 90 to 100 ° C.
  • the stirring time is preferably 1 hour or more and 10 hours or less, and particularly preferably 1 hour or more and 3 hours or less.
  • heating temperature and stirring time can be suitably adjusted according to the target particle diameter.
  • the shape of the stirrer is not particularly specified as long as sufficient stirring efficiency is obtained, but in order to obtain higher stirring efficiency, the rotor It is preferable to use a stator type stirrer.
  • Solid-liquid separation process IV-D After heating and stirring, solid-liquid separation is performed to separate the generated precipitate (precursor of abrasive fine particles) from the solution.
  • the solid-liquid separation method may be a general method.
  • a precursor of abrasive particles can be obtained by filtration using a filter or the like.
  • Firing step IV-E In the firing step IV-E (also referred to as firing step), the precursor of the abrasive particles obtained in the solid-liquid separation step IV-D is fired at 400 ° C. or higher in air or in an oxidizing atmosphere. The precursor of the baked abrasive particle becomes an oxide and becomes an abrasive particle containing cerium oxide.
  • the abrasive particles By cooling after firing, the abrasive particles can be stabilized and then recovered as an abrasive containing the abrasive particles.
  • an abrasive containing spherical abrasive particles that hardly contains anisotropically grown abrasive particles can be obtained.
  • the abrasive containing spherical abrasive particles produced by the production method of the present invention contains 50% by mass or more of the spherical abrasive particles, preferably 70% by mass or more, and particularly 90% by mass or more. preferable. Thereby, the abrasive
  • Preparation of Abrasive Slurry Powder of the abrasive of the present invention containing abrasive particles according to the present invention is added to a solvent such as water to prepare an abrasive slurry.
  • a dispersant or the like By adding a dispersant or the like to the abrasive slurry, aggregation is prevented, and the slurry is constantly stirred using a stirrer or the like to maintain a dispersed state.
  • the abrasive slurry is circulated and supplied to the polishing machine using a supply pump.
  • polishing process The glass substrate is brought into contact with the upper and lower surface plates of the polishing machine to which the polishing pad (polishing cloth) is applied, and the pad and the glass are moved relative to each other under pressure while supplying the abrasive slurry to the contact surface. Thus, the glass substrate is polished.
  • the abrasive is used under pressure as in the polishing step. For this reason, the abrasive particles contained in the abrasive gradually collapse and become finer as the polishing time elapses. Since miniaturization of the abrasive particles causes a decrease in the polishing rate, an abrasive particle having a small change in particle size distribution before and after polishing is desired.
  • the abrasive containing abrasive particles having an average crystallite diameter in the range of 420 to 500 mm and a monodispersity of 30% or less according to the present invention has smoothness and polishing uniformity due to its high polishing rate.
  • the polishing rate is more important than the secondary polishing step in which the above is required, the characteristics can be sufficiently exhibited.
  • Step 1 ⁇ Preparation of abrasive> ⁇ Preparation of abrasive 101> (Step 1) After preparing 0.5 L of 5.0 mol / L urea aqueous solution, this urea aqueous solution was transferred to a container, the container was sealed, and then heat treatment was performed at 100 ° C. for 6 hours to decompose urea at high temperature. Thereafter, the urea aqueous solution was cooled to 20 ° C. to suppress scattering of carbon dioxide gas generated by the decomposition, and the amount dissolved in the urea aqueous solution was increased.
  • Step 3 Transfer 9.5 L of this 90 ° C. rare earth aqueous solution to a mixing kettle equipped with an axial flow stirrer, add the 20 ° C. urea aqueous solution prepared in Step 1 and stir at 90 ° C. for 120 minutes while stirring.
  • An abrasive particle precursor dispersion of basic carbonate was prepared.
  • Step 4 Solid-liquid separation process
  • Step 5 Firing process
  • the separated basic carbonate abrasive precursor was subjected to a baking treatment at a temperature of 1050 ° C. for 1 hour using a commercially available roller hearth kiln, an average particle diameter of 1.3 ⁇ m, and a fluorine compound.
  • An abrasive 101 containing abrasive particles 101 having an average content of cerium oxide of 70 mol% and an average content of lanthanum oxide of 30 mol% was prepared.
  • the monodispersity of the abrasive particles contained in the abrasive 101 was 24% as a result of measurement by the method described below.
  • polishing material 101 contains was 100 mass%.
  • abrasive 102-108 In the preparation of the abrasive 101, except that the firing temperature in the firing step of Step 5 was changed to the conditions shown in Table 1, abrasive particles 102 comprising 70 mol% cerium oxide and 30 mol% lanthanum oxide were used. Abrasive materials 102 to 108 containing ⁇ 108 were prepared.
  • abrasives 109-111 In the preparation of the abrasive 101, monodispersion was carried out by appropriately adjusting the addition rate, stirring efficiency, liquid temperature and formation time of the urea aqueous solution to the rare earth aqueous solution during the formation of the basic carbonate abrasive particle precursor in Step 3. Abrasive materials 109 to 111 having degrees of 18%, 35%, and 42%, respectively, were prepared.
  • the basic carbonate abrasive particle precursor used in the preparation of the abrasive 101 and the prepared abrasive (cerium oxide) fluoride precursor were mixed at a mass ratio of 76:24, and then Step 5
  • the abrasive is subjected to a baking treatment at a temperature of 1050 ° C. for 1 hour, an average particle diameter is 1.3 ⁇ m, contains a fluorine compound, cerium oxide is 70 mol%, and lanthanum oxide is 30 mol%.
  • An abrasive 112 containing particles 112 was prepared.
  • the cerium content in the abrasive particles is measured by dissolving 1 g of the obtained abrasive particles in a mixed solution of 10 ml of nitric acid aqueous solution and 1.0 ml of hydrogen peroxide solution, and an ICP emission spectral plasma apparatus manufactured by SII Nano Technology. Elemental analysis is performed using (ICP-AES) to determine the total number of rare earth elements such as cerium, lanthanum, and yttrium in the abrasive particles, and the ratio of cerium to the total number of rare earth elements (mol%) This was taken as the average cerium content (mol%) in the abrasive particles.
  • the average particle diameter D 50 of the abrasive particles About the abrasive particle which comprises each abrasive
  • the abrasive particles constituting each abrasive are photographed using a TEM (transmission electron microscope), and the diameter of a circle having the same area as the photographed abrasive particle image is defined as the particle diameter of the abrasive particles.
  • the particle size of 200 randomly selected abrasive particles was measured, and the average value was obtained as the average particle size of the abrasive particles.
  • the standard deviation was determined from the difference between the measured average particle size and the particle size of the individual abrasive particles.
  • Monodispersity (standard deviation of particle diameter of abrasive particles) / (average particle diameter of abrasive particles) ⁇ 100
  • the polishing machine used for the evaluation of the polishing rate is a method of polishing the polishing target surface with a polishing cloth while supplying the polishing slurry prepared by dispersing the polishing material containing abrasive particles in a solvent to the polishing target surface. A polishing machine was used.
  • the abrasive slurry was prepared by dispersing abrasive particles as a dispersion medium using only water, and the particle concentration was 100 g / L.
  • the polishing rate was measured by circulating and supplying abrasive slurry at a flow rate of 10 L / min.
  • a 65 mm ⁇ glass substrate was used as the object to be polished, and a polishing cloth made of polyurethane was used as the polishing cloth.
  • the polishing pressure on the polishing surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 50 min ⁇ 1 (rpm), and polishing was performed for 30 minutes.
  • the thickness of the glass substrate before polishing and after polishing for 30 minutes was measured using Nikon Digimicro (MF501), and the polishing amount ( ⁇ m) per minute was calculated from the thickness displacement.
  • the polishing rate was 1 ( ⁇ m / min).
  • polishing rate 2 ( ⁇ m / min) in the 10th batch was measured.
  • the polishing rate was determined according to the following criteria.
  • the polishing rate of the abrasive was determined by the rank of the polishing rate 1, and the polishing rate durability was evaluated by the change in the determination rank of the polishing rate 2 with respect to the polishing rate 1.
  • a rank of B or higher is a practically preferable range.
  • the polishing rate is 0.90 ⁇ m / min or more.
  • the abrasives 101 to 107 of the present invention containing abrasive particles having an average crystallite diameter in the range of 420 to 500 mm and a monodispersity of 30% or less.
  • the decrease rate of the polishing rate is small even after continuous polishing, and the dependency on the polishing rate is excellent.
  • the abrasive particles contained in the abrasive 108 as a comparative example have an average crystallite diameter that is equal to or less than the conditions specified in the present invention. As the process progressed, the abrasive particles cracked, and the number of particles contributing to the polishing rate decreased, resulting in poor polishing rate sustainability.
  • the abrasive particles contained in the abrasive 109 as a comparative example have a size that exceeds the conditions specified by the present invention in the average crystallite diameter, become hard particles, and have high stability as particles, It is presumed that the chemical reactivity of this was weakened and the polishing rate was lowered.
  • the abrasives 110 and 111 containing abrasive particles having a monodispersity of more than 30% had a low polishing rate and a poor polishing rate sustainability.
  • polishing material 112 containing a fluorine compound in the polishing material also had a low polishing rate and inferior polishing rate sustainability.
  • Example I-2 ⁇ Preparation of abrasive> ⁇ Preparation of abrasives 113 to 117>
  • the reaction time of the rare earth aqueous solution and the urea aqueous solution in Step 3 at 90 ° C. was appropriately shortened from 90 minutes, so that the average particle diameter D 50 of the abrasive particles contained was reduced.
  • the number of abrasive particles contributing to polishing in the polishing step is increased by setting the range of the average particle diameter D 50 within the range of 0.5 to 0.9 ⁇ m. It can be seen that the polishing rate is higher than the initial level, and the polishing rate sustainability is also excellent.
  • abrasive 117 range is less than 0.5 ⁇ m of 50, although the polishing rate is high in the initial stage of the polishing, with the progress of the polishing operation, it is the abrasive particle surface easily covered with polishing debris, A slight decrease was observed from the viewpoint of sustaining the polishing rate.
  • Example I-3 ⁇ Preparation of abrasive> ⁇ Preparation of abrasives 118-120> Abrasive materials 118 to 120 were prepared in the same manner as in the preparation of the abrasive material 114 described in Example I-2, except that the cerium oxide content in the abrasive particles was changed to the conditions described in Table 3. The lanthanum oxide content was adjusted as the cerium oxide content increased.
  • the additive element 1 in Table 4 represents a rare earth element contained in the aqueous solution when another rare earth aqueous solution is added to the cerium nitrate aqueous solution, and the addition amount of the aqueous solution containing the element is the addition element 1 addition amount.
  • additive element 2 represents a rare earth element contained in an aqueous solution in the case of adding another kind of rare earth aqueous solution in addition to additive element 1, and the addition amount of the aqueous solution containing the element is the addition element 2 addition amount.
  • the synthesis method of the abrasive particles is the synthesis method of the embodiment in which the preheated urea aqueous solution is added to the preheated rare earth aqueous solution.
  • the method On the other hand, the synthesis method of the comparative example in which the urea aqueous solution and the rare earth aqueous solution are mixed and then heated is referred to as a synthesis method using “heated urea”.
  • ⁇ Abrasive 201 Example> (1) 0.5 L of a 5.0 mol / L urea aqueous solution was prepared and heated at 100 ° C. for 6 hours in a sealed container. Thereafter, the urea aqueous solution was cooled to room temperature. (2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C. (3) The urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated to 90 ° C. in (2) at an addition rate of 1 L / min.
  • ⁇ Abrasive 202 Example> (1) 0.5 L of a 5.0 mol / L urea aqueous solution was prepared and heated at 100 ° C. for 6 hours in a sealed container. Thereafter, the urea aqueous solution was cooled to room temperature. (2) After mixing 180 mL of 1.0 mol / L cerium nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution, pure water was added to make 9.5 L, and this mixed aqueous solution was heated to 90 ° C. . (3) The urea aqueous solution prepared in (1) was added to the mixed aqueous solution heated to 90 ° C.
  • Abrasive materials 203 to 211 are produced by mixing the yttrium nitrate aqueous solution mixed in (2) of the abrasive material 2 production method with gadolinium nitrate aqueous solution, terbium nitrate aqueous solution, dysprosium nitrate aqueous solution, holmium nitrate aqueous solution, erbium nitrate aqueous solution, respectively.
  • An abrasive was obtained by the same procedure except that the aqueous solution was changed to a thulium nitrate aqueous solution, an ytterbium nitrate aqueous solution, a lutetium nitrate aqueous solution, or an yttrium chloride aqueous solution.
  • ⁇ Abrasive 212 Example>
  • the manufacturing method of the abrasive 212 is the same as the procedure (2) of the manufacturing method of the abrasive 202 except that 180 mL of a 1.0 mol / L cerium nitrate aqueous solution, 10 mL of a 1.0 mol / L yttrium nitrate aqueous solution, and 1.0 mol / L.
  • a polishing material was obtained by the same procedure except that the mixture was mixed with 10 mL of L gadolinium nitrate aqueous solution.
  • ⁇ Abrasives 213 and 214 Examples> The manufacturing method of the abrasives 213 and 214 is the same as the procedure (2) of the manufacturing method of the abrasive 202 by mixing 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution. A polishing material was obtained in the same manner except that it was changed or mixed with 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L gadolinium nitrate aqueous solution.
  • ⁇ Abrasive 215 Example>
  • the manufacturing method of the abrasive 215 is the same as the procedure (2) of the manufacturing method of the abrasive 212 except that 162 mL of a 1.0 mol / L cerium nitrate aqueous solution, 20 mL of a 1.0 mol / L yttrium nitrate aqueous solution, and 1.0 mol / L.
  • a polishing material was obtained by the same procedure except that the mixture was mixed with 18 mL of L gadolinium nitrate aqueous solution.
  • ⁇ Abrasive 216 Example> (1) 0.5 L of a 5.0 mol / L urea aqueous solution was prepared and heated at 100 ° C. for 6 hours in a sealed container. Thereafter, the urea aqueous solution was cooled to room temperature. (2) After mixing 140 mL of 1.0 mol / L cerium nitrate aqueous solution and 60 mL of 1.0 mol / L lanthanum nitrate aqueous solution, pure water was added to make 9.5 L, and this mixed aqueous solution was heated to 90 ° C. (3) The urea aqueous solution prepared in (1) was added to the mixed aqueous solution heated to 90 ° C.
  • the manufacturing method of the abrasives 217 to 220 is that the lanthanum nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 216 is changed to a praseodymium nitrate aqueous solution, a neodymium nitrate aqueous solution, a samarium nitrate aqueous solution, and a europium nitrate aqueous solution, respectively. The same procedure was followed to obtain an abrasive.
  • the manufacturing method of the abrasive 221 is that 60 mL of a 1.0 mol / L lanthanum nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 216 is replaced with 40 mL of 1.0 mol / L lanthanum nitrate aqueous solution and 1.0 mol / L of lanthanum nitrate aqueous solution. Except having changed to 20 mL of praseodymium nitrate aqueous solution, it prepared in the same procedure and obtained the abrasive
  • ⁇ Abrasive material 222 Example>
  • the manufacturing method of the abrasives 222 is 40 mL of a 1.0 mol / L lanthanum nitrate aqueous solution and 20 mL of a 1.0 mol / L praseodymium nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 221.
  • a polishing material was obtained by the same procedure except that the aqueous solution was changed to 40 mL of lanthanum nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution.
  • the manufacturing method of the abrasive 223 is that 1.0 mL / L of the 1.0 mol / L lanthanum nitrate aqueous solution and 20 mL of the 1.0 mol / L yttrium nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 222 are changed to 1.0 mol / L.
  • a polishing material was obtained by the same procedure except that the solution was changed to 22 mL of a lanthanum nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution.
  • ⁇ Abrasive 224 Example> The manufacturing method of the abrasive 224 was prepared in the same procedure except that the addition rate of the aqueous urea solution added in (3) of the manufacturing method of the abrasive 201 was changed to 0.5 L / min. It was.
  • ⁇ Abrasive 225 Example> The manufacturing method of the abrasive 225 was prepared in the same procedure except that the addition rate of the urea aqueous solution added in (3) of the manufacturing method of the abrasive 202 was changed to 0.5 L / min. It was.
  • ⁇ Abrasive 226 Example> The manufacturing method of the abrasive 226 is prepared in the same procedure except that the addition rate of the urea aqueous solution added in (3) of the manufacturing method of the abrasive 213 is changed to 0.5 L / min. It was.
  • ⁇ Abrasive 227 Example> The manufacturing method of the abrasive 227 was prepared in the same procedure except that the addition rate of the urea aqueous solution added in (3) of the manufacturing method of the abrasive 216 was changed to 0.5 L / min. It was.
  • ⁇ Abrasive 228 Example> The manufacturing method of the abrasive 228 was prepared in the same procedure except that the addition rate of the urea aqueous solution added in (3) of the manufacturing method of the abrasive 222 was changed to 0.5 L / min. It was.
  • ⁇ Abrasive 229 Comparative Example> (1) 1.0 L of 2.5 mol / L urea aqueous solution was prepared. (2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L. (3) The urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution prepared in (2) and stirred for 10 minutes. (4) The mixed solution stirred in (3) was heated to 90 ° C. and heated and stirred for 2 hours. (5) The precursor of the abrasive particles precipitated in the mixed solution heated and stirred in (4) was separated by a membrane filter. (6) The precursor of abrasive particles separated in (5) was baked at 600 ° C. to obtain an abrasive containing abrasive particles.
  • ⁇ Abrasive material 230 Comparative example>
  • the manufacturing method of the abrasive 230 is (2) of the manufacturing method of the abrasive 229. Instead of 200 mL of the 1.0 mol / L cerium nitrate aqueous solution, 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 1.0 mol / L After mixing with 38 mL of an aqueous solution of L yttrium nitrate, preparation was performed in the same procedure except that pure water was added to make 9.0 L to obtain an abrasive.
  • the manufacturing method of the abrasive 231 is (2) of the manufacturing method of the abrasive 230, and 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution are mixed with 1.0 mol / L.
  • a polishing material was obtained by the same procedure except that the solution was changed to 140 mL of a cerium nitrate aqueous solution and 60 mL of a 1.0 mol / L lanthanum nitrate aqueous solution.
  • the manufacturing method of the abrasive 232 is (2) of the manufacturing method of the abrasive 230, and 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution are mixed with 1.0 mol / L.
  • a polishing material was obtained in the same manner except that 140 mL of an aqueous cerium nitrate solution, 22 mL of a 1.0 mol / L lanthanum nitrate aqueous solution, and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution were used.
  • Table 4 shows the synthesis conditions of the abrasives 201 to 232 thus obtained.
  • Particle shape / aspect ratio For abrasive particles, a scanning micrograph (SEM image) was taken, 100 particles were randomly selected, and the major axis was a and the minor axis was b. The average value was obtained as the aspect ratio. In addition, when drawing a circumscribing rectangle for each particle (referred to as “the circumscribing rectangle”), the shortest short side of the circumscribed rectangle is the shortest length, and the longest long side is the length. Is the major axis. When the aspect ratio is in the range of 1.00 to 1.15, more preferably in the range of 1.00 to 1.05, it is classified as a spherical shape. When it was outside the range of 1.00 to 1.15, it was classified as an indeterminate form.
  • polishing speed is determined by polishing the surface to be polished with a polishing cloth while supplying abrasive slurry in which abrasive powder using abrasive particles is dispersed in a solvent such as water to the surface to be polished of the polishing machine.
  • the abrasive slurry was passed through a filter having a pore size of 5 ⁇ m with a dispersion medium of only water and a concentration of 100 g / L.
  • polishing was performed by circulatingly supplying an abrasive slurry at a flow rate of 5 L / min.
  • a 65 mm ⁇ glass substrate was used as the object to be polished, and a polyurethane cloth was used as the polishing cloth.
  • the polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min ⁇ 1 (rpm), and polishing was performed for 30 minutes.
  • the thickness before and after polishing was measured with Nikon Digimicro (MF501), and the polishing amount per minute ( ⁇ m) was calculated from the thickness displacement, and was used as the polishing rate.
  • the composition ratio (mol%) of each rare earth element of the abrasive particles contained in each abrasive is a value corresponding to the concentration and amount of the aqueous solution mixed in the manufacturing process of each abrasive.
  • the abrasives of the examples in which the rare earth aqueous solution and the urea aqueous solution were mixed in advance after being heated in advance were mixed with the sphericity (particle shape / aspect ratio) rather than the comparative abrasive in which the aqueous solution was mixed and heated and stirred.
  • Ratio) and particle diameter variation coefficient (CV value) were small, and it was found that the polishing rate was high.
  • polishing material of an Example is smaller than the abrasive
  • Example III Hereinafter, although an Example and a comparative example are given and the manufacturing method of an abrasive
  • the display of “part” or “%” is used, but “part by mass” or “% by mass” is expressed unless otherwise specified.
  • additive element 1 in Table 7 represents a rare earth element contained in the aqueous solution when another rare earth aqueous solution is added to the cerium nitrate aqueous solution, and the addition amount of the aqueous solution containing the element is the addition element 1 addition amount.
  • additive element 2 represents a rare earth element contained in an aqueous solution in the case of adding another kind of rare earth aqueous solution in addition to additive element 1, and the addition amount of the aqueous solution containing the element is the addition element 2 addition amount.
  • an open system is an aqueous solution or an aqueous solution without sealing a container or the like continuously or intermittently at a predetermined pressure and flow rate for a certain period from the start to the end of carbon dioxide introduction. It refers to a method in which carbon dioxide gas is blown out and dissolved in the reaction solution.
  • the closed system blows and dissolves carbon dioxide as bubbles in an aqueous solution or reaction solution in a sealed container or the like continuously or intermittently at a predetermined pressure and flow rate for a certain period from the start to the end of carbon dioxide introduction. The method of letting you say.
  • the carbonate ion concentration shown in Table 7 represents the carbonate ion concentration at 90 ° C. measured immediately before adding the urea aqueous solution in the preparation process of each abrasive. Specifically, the carbonate ion concentration in the liquid was measured by collecting the reaction liquid immediately before the addition of the urea aqueous solution and using an ion chromatograph DX500 manufactured by DIONEX.
  • the urea addition start time shown in Table 7 represents the time from the start of introduction of carbon dioxide gas into the aqueous solution or reaction solution until the urea aqueous solution is added.
  • ⁇ Abrasive 301 Example> (1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C. (2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C. (3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa. (4) 15 minutes after the start of the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C.
  • reaction solution a solution obtained by adding an aqueous urea solution to an aqueous cerium nitrate solution in the above (4) (hereinafter referred to as reaction solution) was heated and stirred at 90 ° C. for 2 hours.
  • reaction solution a solution obtained by adding an aqueous urea solution to an aqueous cerium nitrate solution in the above (4) (hereinafter referred to as reaction solution) was heated and stirred at 90 ° C. for 2 hours.
  • reaction solution A solution obtained by adding an aqueous urea solution to an aqueous cerium nitrate solution in the above (4) (hereinafter referred to as reaction solution) was heated and stirred at 90 ° C. for 2 hours.
  • reaction solution a solution obtained by adding an aqueous urea solution to an aqueous cerium nitrate solution in the above (4) (hereinafter referred to as reaction solution) was heated and stirred at 90 ° C. for 2 hours.
  • reaction solution The
  • ⁇ Abrasive 302 Example> (1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C. (2) After mixing 180 mL of 1.0 mol / L cerium nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution, pure water was added to make 9.5 L, and this mixed aqueous solution was heated to 90 ° C. . (3) Carbon dioxide was supplied to the mixed aqueous solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
  • the urea prepared in (1) above is heated to 90 ° C. in (3) and added to the aqueous cerium nitrate solution supplied with carbon dioxide gas.
  • the aqueous solution was added at an addition rate of 1 L / min.
  • the reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
  • the precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
  • the precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
  • the manufacturing method of the abrasives 303 to 311 includes the aqueous solution of yttrium nitrate mixed in (2) of the manufacturing method of the abrasive 302, respectively, an aqueous solution of gadolinium nitrate, an aqueous solution of terbium nitrate, an aqueous solution of dysprosium nitrate, an aqueous solution of holmium nitrate, an aqueous solution of erbium nitrate, An abrasive was obtained by the same procedure except that the aqueous solution was changed to a thulium nitrate aqueous solution, an ytterbium nitrate aqueous solution, a lutetium nitrate aqueous solution, or an yttrium chloride aqueous solution.
  • ⁇ Abrasive material 312 Example>
  • the manufacturing method of the abrasive 312 is the same as the procedure (2) of the manufacturing method of the abrasive 302 except that 180 mL of a 1.0 mol / L cerium nitrate aqueous solution, 10 mL of a 1.0 mol / L yttrium nitrate aqueous solution, and 1.0 mol / L.
  • a polishing material was obtained by the same procedure except that the mixture was mixed with 10 mL of L gadolinium nitrate aqueous solution.
  • ⁇ Abrasives 313 and 314 Examples> The manufacturing method of the abrasives 313 and 314 is the same as the procedure (2) of the manufacturing method of the abrasive 302 by mixing 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution. A polishing material was obtained in the same manner except that it was changed or mixed with 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L gadolinium nitrate aqueous solution.
  • ⁇ Abrasive 315 Example> The manufacturing method of the abrasive 315 is the same as the procedure (2) of the manufacturing method of the abrasive 312, 162 mL of a 1.0 mol / L cerium nitrate aqueous solution, 20 mL of a 1.0 mol / L yttrium nitrate aqueous solution, and 1.0 mol / L.
  • a polishing material was obtained by the same procedure except that the mixture was mixed with 18 mL of L gadolinium nitrate aqueous solution.
  • ⁇ Abrasive 316 Example> (1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C. (2) After mixing 140 mL of 1.0 mol / L cerium nitrate aqueous solution and 60 mL of 1.0 mol / L lanthanum nitrate aqueous solution, pure water was added to make 9.5 L, and this mixed aqueous solution was heated to 90 ° C. . (3) Carbon dioxide was supplied to the mixed aqueous solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
  • the urea prepared in (1) above is heated to 90 ° C. in (3) and added to the aqueous cerium nitrate solution supplied with carbon dioxide gas.
  • the aqueous solution was added at an addition rate of 1 L / min.
  • the reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
  • the precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
  • the precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
  • ⁇ Abrasives 317 to 320 Examples> The manufacturing method of the abrasives 317 to 320 was changed except that the lanthanum nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 316 was changed to a praseodymium nitrate aqueous solution, a neodymium nitrate aqueous solution, a samarium nitrate aqueous solution, and a europium nitrate aqueous solution, respectively. The same procedure was followed to obtain an abrasive.
  • the manufacturing method of the abrasive 321 is that 60 mL of a 1.0 mol / L lanthanum nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 316 is replaced by 40 mL of 1.0 mol / L lanthanum nitrate aqueous solution and 1.0 mol / L of lanthanum nitrate aqueous solution. Except having changed to 20 mL of praseodymium nitrate aqueous solution, it prepared in the same procedure and obtained the abrasive
  • ⁇ Abrasive 322 Example> The manufacturing method of the abrasive 322 is obtained by adding 40 mL of a 1.0 mol / L lanthanum nitrate aqueous solution and 20 mL of a 1.0 mol / L praseodymium nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 321 to 1.0 mol / L.
  • a polishing material was obtained by the same procedure except that the aqueous solution was changed to 40 mL of lanthanum nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution.
  • a manufacturing method of the abrasive 323 is obtained by adding 40 mL of 1.0 mol / L lanthanum nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 322 to 1.0 mol / L.
  • a polishing material was obtained by the same procedure except that the solution was changed to 22 mL of a lanthanum nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution.
  • ⁇ Abrasive 324 Example> (1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C. (2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C. (3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa. (4) One minute after starting the supply of carbon dioxide gas in (3) above, the urea prepared in (1) above is heated to 90 ° C.
  • ⁇ Abrasive 326 Example> (1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C. (2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C. (3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa. (4) Five minutes after starting the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C.
  • ⁇ Abrasive 328 Example> (1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C. (2) Using an autoclave, pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C. (3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa. (4) Ten minutes after starting the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C.
  • ⁇ Abrasive material 330 Example> (1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C. (2) Using an autoclave, pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C. (3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa. (4) 30 minutes after the start of the supply of carbon dioxide gas in (3) above, the urea prepared in (1) above is heated to 90 ° C.
  • ⁇ Abrasive 331 Example> (1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C. (2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C. (3) The cerium nitrate aqueous solution heated to 90 ° C. in the above (2) was alternately supplied and stopped for 2 minutes at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa. (4) Fifteen minutes after the start of the supply of carbon dioxide gas in (3) above, the mixture is heated to 90 ° C.
  • ⁇ Abrasive 332 Comparative Example> (1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C. (2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C. (3) The aqueous urea solution prepared in (1) above was added to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at an addition rate of 1 L / min. (4) The reaction solution obtained by adding the aqueous urea solution to the aqueous cerium nitrate solution in (3) above was heated and stirred at 90 ° C.
  • Table 7 shows the synthesis conditions of the abrasives 301 to 332 obtained as described above.
  • Particle size variation coefficient (CV value) The coefficient of variation (also referred to as “monodispersity”) of the particle size distribution was determined from a scanning electron micrograph (SEM image) of 100 abrasive particles, and the monodispersity was evaluated. The particle diameter is determined based on the area of the photographic image of each particle, and the equivalent particle diameter is determined as the particle diameter of each particle.
  • polishing speed is determined by polishing the surface to be polished with a polishing cloth while supplying abrasive slurry in which abrasive powder using abrasive particles is dispersed in a solvent such as water to the surface to be polished of the polishing machine.
  • the abrasive slurry was passed through a filter having a pore size of 5 ⁇ m with a dispersion medium of only water and a concentration of 100 g / L.
  • polishing was performed by circulatingly supplying an abrasive slurry at a flow rate of 5 L / min.
  • a 65 mm ⁇ glass substrate was used as the object to be polished, and a polyurethane cloth was used as the polishing cloth.
  • the polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min ⁇ 1 (rpm), and polishing was performed for 30 minutes.
  • the thickness before and after polishing was measured with Nikon Digimicro (MF501), and the polishing amount per minute ( ⁇ m) was calculated from the thickness displacement, and was used as the polishing rate.
  • the glass substrate was polished for 30 minutes using a light wave interference type surface roughness meter (Dual-channel ZeMapper manufactured by Zygo). The number of scratches was evaluated by measuring the unevenness. Specifically, the surface of the glass substrate polished for 30 minutes was visually inspected for the presence of scratches in the range of 50 to 100 ⁇ m on five glass substrates using a Dual-channel ZeMapper manufactured by Zygo, The average number of occurrences per sheet was expressed.
  • the abrasives 301 to 331 of the examples prepared by introducing carbon dioxide have a spherical particle shape, whereas the abrasives 332 of the comparative example prepared without introducing carbon dioxide are not suitable. It became a fixed form.
  • the abrasive of the example in which carbon dioxide was introduced had a smaller particle diameter variation coefficient (CV value) and surface roughness and fewer scratches than the abrasive of the comparative example in which no carbon dioxide was introduced. . It was found that the polishing rate was almost proportional to the amount of cerium solution used for the production of the abrasive.
  • aqueous urea solution B1 0.5 L of 10 mol / L urea aqueous solution was prepared, and it heated at 100 degreeC for 6 hours within the airtight container. Thereafter, the urea aqueous solution was cooled to room temperature (25 ° C.) to obtain a urea aqueous solution of B1. The carbonate ion concentration measured at room temperature (25 ° C.) was 12 mmol / L.
  • urea aqueous solutions B3-5 In the preparation of the urea aqueous solution B1, urea aqueous solutions B3 to 5 were prepared in the same manner except that the concentration of the urea aqueous solution was changed so that the concentration of the decomposed urea solution became the carbonate ion concentration shown in Table 10. The liquid was used. (Preparation of aqueous urea solutions B6-9) In the preparation of the urea aqueous solution B1, the urea aqueous solution was decomposed by changing the temperature of the urea and the heating time, and cooled to room temperature (25 ° C.) to prepare decomposed urea aqueous solutions B6-9.
  • Table 10 shows the results of measuring the carbonate ion concentration at room temperature (25 ° C.).
  • urea aqueous solution B8 and B9 it heated and prepared at 140 degreeC using the pressure
  • aqueous urea solution B10-13 In the preparation of the urea aqueous solution B1, the decomposition concentration, time, and temperature are changed as shown in Table 1, the urea aqueous solution is decomposed, cooled to room temperature (25 ° C.), and the decomposition urea aqueous solutions B10 to 13 used in the growth process are prepared. Prepared.
  • Table 9 shows the results of measuring the carbonate ion concentration at room temperature (25 ° C.).
  • Carbonate ion concentration was measured by ion chromatography. The measurement was performed using an ion chromatograph DX500 manufactured by DIONEX.
  • Comparative abrasive particles 401 were produced by the following procedure. (1) 1.0 L of a 2.5 mol / L urea aqueous solution was prepared (urea aqueous solution A1). (2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L. (3) The cerium nitrate aqueous solution prepared in (2) above was heated to 90 ° C. (4) The urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated in (3) above, and the mixture was heated and stirred for 1 hour.
  • the abrasive particles 402 according to the present invention were manufactured by the following procedure. (1) 0.5 L of 5.0 mol / L decomposition urea aqueous solution was prepared (urea aqueous solution B1). (2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L. (3) The cerium nitrate aqueous solution prepared in (2) above was heated to 90 ° C. (4) The decomposed urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated in (3) above, and the mixture was heated and stirred for 10 minutes (nucleation process).
  • aqueous urea solution having a concentration of 0.05 mol / L was added to the mixed solution of (4) above, and the mixture was stirred for 50 minutes by heating (growth process).
  • the precursor of the abrasive particles precipitated in the mixed solution heated and stirred in the above (5) was separated with a membrane filter.
  • the abrasive particle precursors separated in (6) above were fired at 600 ° C. to obtain abrasive particles 402.
  • urea aqueous solution B1 5.0 L of 5.0 mol / L decomposition urea aqueous solution was prepared (urea aqueous solution B1).
  • Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L.
  • the cerium nitrate aqueous solution prepared in (2) above was heated to 90 ° C.
  • the decomposed urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated in (3) above, and the mixture was heated and stirred for 10 minutes.
  • aqueous urea solution (urea aqueous solution A3 to A5) having the concentration shown in Table 10 was added to the mixed solution of (4), and the mixture was heated and stirred for 50 minutes.
  • the precursor of the abrasive particles precipitated in the mixed solution heated and stirred in the above (5) was separated with a membrane filter.
  • the abrasive particle precursors separated in (6) above were fired at 600 ° C. to obtain abrasive particles 410 to 412.
  • urea aqueous solution B1 5.0 L of 5.0 mol / L decomposition urea aqueous solution was prepared (urea aqueous solution B1).
  • Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L.
  • the cerium nitrate aqueous solution prepared in (2) above was heated to 90 ° C.
  • the decomposed urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated in (3) above, and the mixture was heated and stirred for 10 minutes.
  • aqueous urea solution urea aqueous solutions B10 to B13 decomposed at the concentration, decomposition temperature, and time shown in Table 9 was added to the mixed solution of (4) above, and the mixture was heated and stirred for 50 minutes. .
  • the abrasive particle precursors separated in (6) above were fired at 600 ° C. to obtain abrasive particles 413 to 416.
  • abrasive particles 417 to 425 In the production of the abrasive particles 402, as shown in Table 9, the rare earth elements in the rare earth salt aqueous solution were replaced with the respective mol% nitrates shown in the table without changing the total amount, and the types of urea aqueous solutions Abrasive particles 417 to 425 were prepared by changing the addition rate, concentration thereof, and carbonate ion concentration as shown in Table 10.
  • the addition rate (mol) represents the number of moles of urea added per minute with respect to 1 L of the reaction solution.
  • composition, shape and polishing performance of the abrasive particles 401 to 425 were evaluated according to the following method.
  • Particle shape / aspect ratio For abrasive particles, a scanning micrograph (SEM image) was taken, 100 particles were randomly selected, and the major axis was a and the minor axis was b. The average value was obtained as the aspect ratio. In addition, when drawing a circumscribing rectangle for each particle (referred to as “the circumscribing rectangle”), the shortest short side of the circumscribed rectangle is the shortest length, and the longest long side is the length. Is the major axis.
  • the aspect ratio is in the range of 1.00 to 1.15, more preferably in the range of 1.00 to 1.05, it is classified as a spherical shape. When it was outside the range of 1.00 to 1.15, it was classified as an indeterminate form.
  • polishing speed is determined by polishing the surface to be polished with a polishing cloth while supplying abrasive slurry in which abrasive powder using abrasive particles is dispersed in a solvent such as water to the surface to be polished of the polishing machine.
  • the abrasive slurry was passed through a filter having a pore size of 5 ⁇ m with a dispersion medium of only water and a concentration of 100 g / L.
  • polishing was performed by circulatingly supplying an abrasive slurry at a flow rate of 5 L / min.
  • a 65 mm ⁇ glass substrate was used as the object to be polished, and a polyurethane cloth was used as the polishing cloth.
  • the polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min ⁇ 1 (rpm), and polishing was performed for 30 minutes.
  • the thickness before and after polishing was measured with Nikon Digimicro (MF501), and the polishing amount per minute ( ⁇ m) was calculated from the thickness displacement, and was used as the polishing rate.
  • the composition ratio (mol%) of each rare earth element of the abrasive particles contained in each abrasive is a value corresponding to the concentration and amount of the aqueous solution mixed in the manufacturing process of each abrasive.
  • the abrasive particles 402 to 425 according to the present invention manufactured through the nucleation process and the growth process have a sphericity (particle shape / aspect ratio) and particles as compared with the abrasive particles 401 of the comparative example. It was found that the diameter variation coefficient (CV value) was small and the polishing rate was fast. Moreover, it turned out that the surface roughness of the abrasive
  • the present invention may be used in the field of polishing with an abrasive containing cerium oxide in the manufacturing process of glass products, semiconductor devices, crystal oscillators and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

The present invention addresses the problem of providing an abrasive containing abrasive particles which is highly producible, is appropriate for precision polishing, and is capable of maintaining the polishing speed of the initial polishing interval for a long time. This abrasive contains abrasive particles comprising: at least 81 mol% in total of one or more types of elements selected from cerium (Ce), lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), and europium (Eu); and no more than 19 mol% in total of yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). Furthermore, the abrasive is characterized in that the monodispersity of the particle diameter of the abrasive particles is 30% or less.

Description

研磨材、研磨材の製造方法及び研磨加工方法Abrasive material, method for producing abrasive material, and polishing method
 本発明は、研磨材、研磨材の製造方法及び研磨加工方法に関する。より詳しくは、研磨性能を改良した研磨材と当該研磨材の製造方法及び当該研磨材を用いる研磨加工方法に関する。 The present invention relates to an abrasive, a method for manufacturing an abrasive, and a polishing method. More specifically, the present invention relates to an abrasive having improved polishing performance, a method for producing the abrasive, and a polishing method using the abrasive.
 ガラス光学素子やガラス基板、半導体デバイスを製造工程で精密研磨する研磨材としては、従来、酸化セリウムを主成分とし、これに酸化ランタン、酸化ネオジム、酸化プラセオジムなどが加わった希土類元素酸化物が使用されている。この他の研磨材としては、ダイヤモンド、酸化鉄、酸化アルミニウム、酸化ジルコニウム、コロイダルシリカ等が挙げられるが、研磨速度、研磨後の被研磨物の表面粗さの観点から比較したときに、酸化セリウムが有効であることは公知であり、広範囲で用いられている。 As a polishing material for precision polishing of glass optical elements, glass substrates, and semiconductor devices in the manufacturing process, a rare earth element oxide with cerium oxide as the main component and lanthanum oxide, neodymium oxide, praseodymium oxide, etc. added to it has been used. Has been. Other abrasives include diamond, iron oxide, aluminum oxide, zirconium oxide, colloidal silica, etc., but when compared in terms of polishing rate and surface roughness of the polished object, cerium oxide Is known to be effective and is used extensively.
 今までは、酸化セリウム粒子としては、主には湿式粉砕法により調製されていたが、湿式粉砕法により得られる酸化セリウム粒子の形状が不均一で、研磨性(研磨面の平滑性や研磨速度)にも劣るという問題を抱えている。
 そこで、オングストローム(Å)レベルの高い平滑度が要求される製造工程では、研磨速度の速い酸化セリウム等によりあらかじめ研磨した後に、数十nmサイズのコロイダルシリカを使用して研磨することが一般的である。
 しかしながら、研磨工程が多段階にわたることで、生産性が低下していることが問題となっている。また、平滑度の要求が高まっており、高い研磨速度を維持したまま、傷(キズ)の発生が少ない研磨材が求められている。
Until now, cerium oxide particles were mainly prepared by wet pulverization method, but the shape of cerium oxide particles obtained by wet pulverization method is non-uniform, and polishing properties (smoothness of polishing surface and polishing rate) ) Is also inferior.
Therefore, in a manufacturing process that requires high smoothness of angstrom (Å) level, it is common to polish using cerium oxide or the like having a high polishing rate and then polishing using colloidal silica of several tens of nanometers. is there.
However, there is a problem that productivity is lowered due to the multi-stage polishing process. In addition, there is an increasing demand for smoothness, and there is a demand for an abrasive that generates few scratches while maintaining a high polishing rate.
 このような問題に対し、近年、湿式合成法により調製した微細で高い単分散性を備えた酸化セリウム粒子を含む酸化セリウム研磨材の検討がなされている。この湿式合成法により酸化セリウム粒子を得る方法は、主には、精製された硝酸第一セリウム、塩化第一セリウム、硫酸第一セリウム等の水溶液に炭酸、蓚酸、酢酸等の塩を添加して炭酸第一セリウム、蓚酸第一セリウム、酢酸第一セリウム等の生成物を沈殿させ、この沈殿物をろ過し、乾燥したのち、焼成して酸化セリウム粒子を得る方法であり、被研磨物の高平滑性と、高研磨速度を両立することができる技術として、注目されている。 In response to such problems, cerium oxide abrasives containing cerium oxide particles having fine and high monodispersity prepared by a wet synthesis method have recently been studied. The method of obtaining cerium oxide particles by this wet synthesis method is mainly performed by adding a salt of carbonic acid, oxalic acid, acetic acid or the like to a purified aqueous solution of cerium nitrate, cerous chloride, cerous sulfate or the like. This is a method of precipitating cerium carbonate, cerium oxalate, cerium acetate, and other products, filtering this precipitate, drying it, and firing it to obtain cerium oxide particles. It has been attracting attention as a technique that can achieve both smoothness and a high polishing rate.
 例えば、非特許文献1では、硝酸セリウム水溶液、硝酸イットリウム溶液、尿素を混合した水溶液を加熱撹拌し、粒子径分布の狭い粒子を得る方法が提案されている。
 しかしながら、非特許文献1の方法で製造された粒子を焼成し、研磨材としての効果を確認した結果、研磨速度が低かった。研磨速度を低下させる原因としては、粒子形状と粒子径分布を調整するために、セリウム以外の元素(イットリウム)が混合されていることが、粒子表面におけるセリウム濃度を低下させ、研磨速度を低下させている。
For example, Non-Patent Document 1 proposes a method of obtaining particles having a narrow particle size distribution by heating and stirring an aqueous solution in which a cerium nitrate aqueous solution, an yttrium nitrate solution, and urea are mixed.
However, as a result of firing the particles produced by the method of Non-Patent Document 1 and confirming the effect as an abrasive, the polishing rate was low. The cause of reducing the polishing rate is that elements other than cerium (yttrium) are mixed to adjust the particle shape and particle size distribution, thereby reducing the cerium concentration on the particle surface and reducing the polishing rate. ing.
 特許文献1では、セリウムに加え、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウムから選ばれる少なくとも1種類の元素と、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムから選ばれる少なくとも1種類の元素の塩を含有する水溶液に、尿素系化合物を添加して球形状の希土類塩基性炭酸塩を形成し、これを焼成することで、球形状の希土類酸化物粒子を得る方法が記載されている。
 しかしながら、この方法ではイットリウム及びガドリニウム等から選ばれる少なくとも1種類の元素を20mol%以上の割合で含有させないと、球形状の粒子を得ることができない。
In Patent Document 1, in addition to cerium, at least one element selected from lanthanum, praseodymium, neodymium, samarium, europium and at least 1 selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. A method of obtaining spherical rare earth oxide particles by adding a urea compound to an aqueous solution containing salts of various elements to form a spherical rare earth basic carbonate and firing it is described. ing.
However, in this method, spherical particles cannot be obtained unless at least one element selected from yttrium and gadolinium is contained in a proportion of 20 mol% or more.
 また、特許文献2及び特許文献3では、球形状の単分散性を示す希土類酸化物の粒子を得る方法について、ガドリニウム、テルビウム、ユウロピウム、サマリウム、ネオジム、ジスプロシウム、ホルミウム、エルビウム、ツリウム及びイッテルビウムを使用する例が記載されている。
 しかしながら、セリウムの球形状の単分散性を示す酸化物粒子を得る方法は記載されていない。
In Patent Document 2 and Patent Document 3, gadolinium, terbium, europium, samarium, neodymium, dysprosium, holmium, erbium, thulium, and ytterbium are used as methods for obtaining spherical monodisperse rare earth oxide particles. An example is given.
However, there is no description of a method for obtaining cerium spherical monodisperse oxide particles.
 また、非特許文献2では、希土類元素の鉱酸塩水溶液に尿素を添加し、加熱して希土類元素の不溶性塩を沈殿させ、これを焼成して希土類元素酸化物を作製する方法は記載されている。
 しかしながら、合成スケールを大きくすると、球形状の粒子ではなく、異方成長した粒子が生成されてしまう。
Non-Patent Document 2 describes a method for preparing rare earth element oxides by adding urea to a mineral salt aqueous solution of rare earth elements, heating to precipitate an insoluble salt of rare earth elements, and firing the salt. Yes.
However, when the synthetic scale is increased, particles that grow anisotropically are generated instead of spherical particles.
 また、特許文献4では、金属酸化物粒子が、金属塩、高分子化合物及び高沸点有機溶媒を含有する混合物を加熱することにより生成する金属酸化物を焼成して得られる金属酸化物粒子の製造方法が記されている。
 しかしながら、特許文献4の方法では、結晶子が凝集して粒子が形成されているため、真球形状ではなく、表面の凹凸が多く、キズが付きやすい。また、凝集粒からなる粒子であるため、研磨加工に用いた際に崩壊しやすい。
Moreover, in patent document 4, manufacture of the metal oxide particle obtained by baking the metal oxide which a metal oxide particle produces | generates by heating the mixture containing a metal salt, a high molecular compound, and a high boiling point organic solvent. The method is described.
However, in the method of Patent Document 4, since the crystallites are aggregated to form particles, the shape is not a true sphere, and the surface has many irregularities and is easily scratched. Moreover, since it is a particle | grains which consist of an agglomerated particle, when using for grinding | polishing process, it is easy to disintegrate.
 さらに、有機溶媒を溶媒として使用し、高温での反応を必要とするため、生産性が悪い。また、高分子を使用しているため、粒子表面に高分子が残った場合、焼成時に凝集が起こるため、粒子径の制御が難しいといった問題がある。
 また、酸化セリウム粒子による研磨においては、酸化セリウム表面に3価のセリウム原子が多く存在し、4価のセリウム原子が粒子内部に安定に存在することで、表面の3価のセリウムが被研磨物の分子結合を切断し、研磨が進行すると考えられている。しかしながら、小さい粒子の凝集体である特許文献4に記載の粒子においては、粒子表面と内部でセリウム原子の価数の差が表れにくく、表面に3価の粒子が存在しにくくなるため、研磨速度の増加が見込めない。
Furthermore, since an organic solvent is used as a solvent and a reaction at a high temperature is required, productivity is poor. In addition, since a polymer is used, if the polymer remains on the particle surface, aggregation occurs during firing, which makes it difficult to control the particle diameter.
In polishing with cerium oxide particles, a large amount of trivalent cerium atoms are present on the surface of cerium oxide, and tetravalent cerium atoms are stably present inside the particles, so that the trivalent cerium on the surface can be polished. It is believed that polishing proceeds by cutting the molecular bonds. However, in the particles described in Patent Document 4 which is an aggregate of small particles, a difference in valence of cerium atoms hardly appears on the particle surface and inside, and trivalent particles hardly exist on the surface. Increase is not expected.
 また、特許文献5には、700~1300℃の温度範囲で、1~10時間焼成して得られる平均結晶子径が20~40nm(200~400Å)の範囲内にある混合希土類フッ素化合物を用いたセリウム系研磨材の製造方法が開示されている。この方法では、混合希土類酸化物と混合希土類フッ素化物を混合し、粉砕することで、セリウム系研磨材を得ている。 Patent Document 5 uses a mixed rare earth fluorine compound having an average crystallite diameter within a range of 20 to 40 nm (200 to 400 mm) obtained by firing at a temperature range of 700 to 1300 ° C. for 1 to 10 hours. A method for producing a cerium-based abrasive has been disclosed. In this method, a cerium-based abrasive is obtained by mixing and grinding a mixed rare earth oxide and a mixed rare earth fluoride.
 しかしながら、特許文献5の方法で得られたセリウム系研磨材は、粒子の最表面のセリウム濃度が低いため、十分な研磨速度が得られない。また、特許文献5においては、平均結晶子径が400Åを越える平均結晶子径を持つ酸化セリウム粒子では、フッ素化反応が進行しづらくなり、高い研磨速度を得ることができないとされている。 However, since the cerium-based abrasive obtained by the method of Patent Document 5 has a low cerium concentration on the outermost surface of the particles, a sufficient polishing rate cannot be obtained. Further, in Patent Document 5, cerium oxide particles having an average crystallite diameter exceeding 400 mm have a difficulty in progressing the fluorination reaction, and a high polishing rate cannot be obtained.
 通常、研磨工程としては、研磨精度より研磨速度が重要視される一次研磨と、最終的な仕上がり品質である平滑性、表面均一性が重視される二次研磨が挙げられるが、上記のような硬質ガラス基板の研磨においては、平滑性や表面精度よりも研磨速度が重要視され、全体の研磨効率に影響がある一次研磨工程に適した研磨材の開発が要望されている。 Usually, the polishing process includes primary polishing where the polishing speed is more important than polishing accuracy, and secondary polishing where emphasis is placed on smoothness and surface uniformity which are the final finished quality. In polishing a hard glass substrate, polishing speed is more important than smoothness and surface accuracy, and development of an abrasive suitable for a primary polishing process that affects the overall polishing efficiency is desired.
国際公開第2012/101871号International Publication No. 2012/101871 米国特許第5015452号明細書US Pat. No. 5,015,452 特開平11-35320号公報Japanese Patent Laid-Open No. 11-35320 特開2013-110272号公報JP 2013-110272 A 特開2006-097014号公報JP 2006-097014 A
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、生産性が高く、精密研磨に適した、研磨初期の研磨速度を長期間にわたり維持することができる研磨材粒子を含有する研磨材を提供することである。また、当該研磨材粒子を含有する研磨材の製造方法及び当該研磨材を使用する研磨加工方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and the solution is to include abrasive particles that are high in productivity and suitable for precision polishing, and can maintain the initial polishing rate for a long period of time. It is to provide an abrasive material. Moreover, it is providing the manufacturing method of the abrasive | polishing material containing the said abrasive particle, and the grinding | polishing processing method using the said abrasive | polishing material.
 本発明者は、上記問題・状況に鑑みてなされたものであり、その解決課題は、研磨材粒子の組成と形状の関係等について検討する過程において、セリウムを必ず含み、精密研磨に適した、研磨材粒子を含有する研磨材を見出し本発明に至った。
 また、研磨材粒子の形状と粒子成長の関係等について検討した結果、研磨材前駆体粒子を形成する工程を反応初期の核形成過程と生成した核を成長させる粒子の成長過程に分け、核形成過程において研磨材前駆体粒子の原料となる加熱分解した尿素類の水溶液を、セリウムを含む希土類元素含有化合物の水溶液(以下希土類塩水溶液ともいう。)に添加し、研磨材前駆体粒子形成の早い段階で核を形成しそれを成長させることが、単分散性に優れ、かつ好ましい形状の研磨材粒子を製造する上で重要であることを見出し本発明に至った。
 また、フッ素元素が混入していない酸化セリウム粒子を含有する酸化セリウム研磨材であって、前記酸化セリウム粒子の平均結晶子径が420~500Åの範囲内にあり、かつ前記酸化セリウム粒子の粒子径の単分散度が30%以下である酸化セリウム研磨材により、一次研磨工程に適性を有し、高い研磨速度を有し、研磨初期の研磨速度を長期間にわたり維持することができる酸化セリウム研磨材を提供することができることをも見出し、本発明に至った。
 すなわち、本発明の上記課題は、下記の手段により解決される。
The present inventor has been made in view of the above problems and situations, and the solution is to include cerium in the process of examining the relationship between the composition and shape of the abrasive particles, and is suitable for precision polishing. The present inventors have found an abrasive containing abrasive particles and have reached the present invention.
In addition, as a result of examining the relationship between the shape of the abrasive particles and particle growth, etc., the process of forming abrasive precursor particles is divided into a nucleation process at the initial stage of reaction and a growth process of particles that grow the generated nuclei. In the process, an aqueous solution of heat-decomposed ureas, which is a raw material for abrasive precursor particles, is added to an aqueous solution of a rare earth element-containing compound containing cerium (hereinafter also referred to as an aqueous rare earth salt solution) to quickly form abrasive precursor particles. The inventors have found that it is important to form nuclei at a stage and grow them in order to produce abrasive particles having excellent monodispersibility and a preferable shape.
Also, a cerium oxide abrasive containing cerium oxide particles not containing fluorine element, wherein the average crystallite diameter of the cerium oxide particles is in a range of 420 to 500 mm, and the particle diameter of the cerium oxide particles A cerium oxide abrasive that is suitable for the primary polishing process, has a high polishing rate, and can maintain the initial polishing rate over a long period of time due to the cerium oxide abrasive having a monodispersity of 30% or less The inventors have also found out that the present invention can be provided, and have reached the present invention.
That is, the said subject of this invention is solved by the following means.
 1.セリウム(Ce)と、
 ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びユウロピウム(Eu)から選ばれる少なくとも1種類の元素との、
 含有量の合計が、81mol%以上であり、
 イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、19mol%以下である研磨材粒子を含有し、
 前記研磨材粒子の粒子径の単分散度が、30%以下であることを特徴とする研磨材。
1. Cerium (Ce),
With at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm) and europium (Eu),
The total content is 81 mol% or more,
At least one selected from yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) Containing abrasive particles having an elemental content of 19 mol% or less,
An abrasive having a monodispersity of particle size of the abrasive particles of 30% or less.
 2.前記研磨材粒子の平均結晶子径が、420~500Åの範囲内であることを特徴とする第1項に記載の研磨材。 2. 2. The abrasive according to item 1, wherein an average crystallite diameter of the abrasive particles is in the range of 420 to 500 mm.
 3.前記研磨材粒子の平均粒子径D50が、0.5~0.9μmの範囲内であることを特徴とする第1項又は第2項に記載の研磨材。 3. 3. The abrasive according to item 1 or 2, wherein an average particle diameter D 50 of the abrasive particles is in the range of 0.5 to 0.9 μm.
 4.前記研磨材粒子の平均含有率が、全研磨材粒子の80質量%以上であることを特徴とする第1項から第3項までのいずれか一項に記載の研磨材。 4. 4. The abrasive according to any one of items 1 to 3, wherein an average content of the abrasive particles is 80% by mass or more of all abrasive particles.
 5.セリウム(Ce)の含有量が、81mol%以上であり、
 イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、19mol%以下である研磨材粒子を含有することを特徴とする第1項から第4項までのいずれか一項に記載の研磨材。
5. The content of cerium (Ce) is 81 mol% or more,
At least one selected from yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) The abrasive | polishing material as described in any one of the 1st term | claim to the 4th term | claim characterized by containing the abrasive | polishing material particle whose content of said element is 19 mol% or less.
 6.セリウム(Ce)の含有量が、90mol%以上であり、
 イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、10mol%以下である研磨材粒子を含有することを特徴とする第1項から第5項までのいずれか一項に記載の研磨材。
6). The content of cerium (Ce) is 90 mol% or more,
At least one selected from yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) The abrasive | polishing material as described in any one of the 1st term | claim to the 5th term | claim characterized by containing the abrasive | polishing material particle whose content of said element is 10 mol% or less.
 7.セリウム(Ce)の含有量が、95~100mol%の範囲内である研磨材粒子を含有し、
 前記研磨材粒子の粒子径の単分散度が、30%以下であることを特徴とする研磨材。
7). Containing abrasive particles in which the content of cerium (Ce) is in the range of 95 to 100 mol%,
An abrasive having a monodispersity of particle size of the abrasive particles of 30% or less.
 8.前記研磨材粒子の粒子径の単分散度が、20%以下であることを特徴とする第7項に記載の研磨材。 8. The abrasive according to item 7, wherein the abrasive particles have a monodispersity of particle size of 20% or less.
 9.第1項から第8項までのいずれか一項に記載の研磨材を製造する製造方法であって、
 少なくとも下記工程1~工程5を含み、かつ少なくとも下記工程2~工程3までの間、下記水溶液又は反応液に炭酸ガスを連続的若しくは断続的に導入することを特徴とする研磨材粒子を含有する研磨材の製造方法。
 工程1:セリウム(Ce)を含有する水溶液を調製し加熱する工程
 工程2:前記工程1において加熱された前記水溶液に沈殿剤を添加して反応液を調製する工程
 工程3:前記反応液を加熱撹拌して研磨材粒子前駆体を生成させる工程
 工程4:前記工程3において生成した研磨材粒子前駆体を反応液から分離する工程
 工程5:前記工程4で分離して得られた前記研磨材粒子前駆体を酸化性雰囲気中で焼成して研磨材粒子を形成させる工程
9. A manufacturing method for manufacturing the abrasive according to any one of items 1 to 8,
Contains abrasive particles characterized by including carbon dioxide gas continuously or intermittently into the following aqueous solution or reaction solution, including at least the following steps 1 to 5 and at least the following steps 2 to 3. A manufacturing method of an abrasive.
Step 1: Step of preparing and heating an aqueous solution containing cerium (Ce) Step 2: Step of preparing a reaction solution by adding a precipitant to the aqueous solution heated in Step 1 Step 3: Heating the reaction solution Step of stirring to generate abrasive particle precursor Step 4: Separating the abrasive particle precursor generated in Step 3 from the reaction solution Step 5: The abrasive particle obtained by separating in Step 4 A step of firing the precursor in an oxidizing atmosphere to form abrasive particles
 10.前記水溶液が、下記要件1a~要件3aを満たすことを特徴とする第9項に記載の研磨材粒子を含有する研磨材の製造方法。
 要件1a:前記水溶液が、前記セリウムに加えて、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)からなる14種類の希土類元素のうちから選ばれる少なくとも1種類の元素を含有する。
 要件2a:前記水溶液に含有されるセリウムと、当該水溶液に含有される、ランタン、プラセオジム、ネオジム、サマリウム及びユウロピウムから選ばれる少なくとも1種類の元素との含有量の合計が、前記水溶液に含有される希土類元素の全体量に対して、81mol%以上である。
 要件3a:前記水溶液に含有される、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、前記水溶液に含有される希土類元素の全体量に対して、19mol%以下である。
10. Item 10. The method for producing an abrasive containing abrasive particles according to Item 9, wherein the aqueous solution satisfies the following requirements 1a to 3a.
Requirement 1a: In addition to cerium, the aqueous solution contains lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), yttrium (Y), gadolinium (Gd), terbium ( At least one element selected from 14 rare earth elements consisting of Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) contains.
Requirement 2a: The total content of cerium contained in the aqueous solution and at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium contained in the aqueous solution is contained in the aqueous solution. It is 81 mol% or more with respect to the whole quantity of rare earth elements.
Requirement 3a: The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the whole of the rare earth elements contained in the aqueous solution It is 19 mol% or less with respect to quantity.
 11.前記水溶液が、下記要件1b~要件3bを満たすことを特徴とする第10項に記載の研磨材粒子を含有する研磨材の製造方法。
 要件1b:前記水溶液が、前記セリウムに加えて、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムからなる9種類の希土類元素のうちから選ばれる少なくとも1種類の元素を含有する。
 要件2b:前記水溶液のセリウムの含有量が、前記水溶液に含有される希土類元素の全体量に対して、81mol%以上である。
 要件3b:前記水溶液に含有される、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、前記水溶液に含有される希土類元素の全体量に対して、19mol%以下である。
11. Item 11. The method for producing an abrasive containing abrasive particles according to Item 10, wherein the aqueous solution satisfies the following requirements 1b to 3b.
Requirement 1b: In addition to the cerium, the aqueous solution contains at least one element selected from nine kinds of rare earth elements consisting of yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. .
Requirement 2b: The content of cerium in the aqueous solution is 81 mol% or more with respect to the total amount of rare earth elements contained in the aqueous solution.
Requirement 3b: The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the entire rare earth element contained in the aqueous solution It is 19 mol% or less with respect to quantity.
 12.前記水溶液のセリウムの含有量が、前記水溶液に含有される希土類元素の全体量に対して、95~100mol%の範囲内であることを特徴とする第9項に記載の研磨材粒子を含有する研磨材の製造方法。 12. 10. The abrasive particles according to item 9, wherein the content of cerium in the aqueous solution is in the range of 95 to 100 mol% with respect to the total amount of rare earth elements contained in the aqueous solution. A manufacturing method of an abrasive.
 13.前記工程2で沈殿剤を添加する直前の、前記水溶液又は前記反応液中の炭酸イオン濃度が、50~1600mg/Lの範囲内であることを特徴とする第9項から第12項までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 13. Any one of Items 9 to 12, wherein the concentration of carbonate ions in the aqueous solution or the reaction solution immediately before adding the precipitant in Step 2 is in the range of 50 to 1600 mg / L. A method for producing an abrasive containing the abrasive particles according to claim 1.
 14.前記工程2で沈殿剤を添加する直前の、前記水溶液又は前記反応液中の炭酸イオン濃度が、58~1569mg/Lの範囲内であることを特徴とする第9項から第13項までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 14. Any one of Items 9 to 13, wherein the carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in Step 2 is in the range of 58 to 1569 mg / L. A method for producing an abrasive containing the abrasive particles according to claim 1.
 15.前記沈殿剤が、尿素又は尿素系化合物であることを特徴とする第9項から第14項までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 15. Item 15. The method for producing an abrasive containing abrasive particles according to any one of Items 9 to 14, wherein the precipitant is urea or a urea-based compound.
 16.第1項から第8項までのいずれか一項に記載の研磨材を製造する製造方法であって、
 セリウムを含む希土類元素含有化合物の水溶液中に尿素類水溶液を添加して研磨材前駆体粒子を形成する工程と、
 当該研磨材前駆体粒子を焼成する工程とを少なくとも有し、かつ
 前記研磨材前駆体粒子を形成する工程における反応初期の粒子の核形成過程において加熱分解した尿素類水溶液を添加し、
 前記核形成過程の後の粒子の成長過程において尿素類水溶液又は加熱分解した尿素類水溶液を添加することを特徴とする研磨材粒子を含有する研磨材の製造方法。
16. A manufacturing method for manufacturing the abrasive according to any one of items 1 to 8,
Adding an aqueous urea solution to an aqueous solution of a rare earth element-containing compound containing cerium to form abrasive precursor particles;
Adding at least a step of firing the abrasive precursor particles, and adding an aqueous urea solution that is thermally decomposed in the nucleation process of the particles in the initial stage of the reaction in the step of forming the abrasive precursor particles,
A method for producing an abrasive containing abrasive particles, wherein an aqueous urea solution or an aqueous urea solution decomposed by heat decomposition is added in a particle growth process after the nucleation process.
 17.前記反応初期の粒子の核形成過程において添加する加熱分解した尿素類水溶液の添加速度が、加熱分解前の尿素類濃度に換算して反応液1Lに対して1分当たり0.01~50molの範囲内であることを特徴とする第16項に記載の研磨材粒子を含有する研磨材の製造方法。 17. The addition rate of the thermally decomposed urea aqueous solution added in the nucleation process of the particles at the initial stage of the reaction is in the range of 0.01 to 50 mol per minute per 1 liter of the reaction solution in terms of the urea concentration before the thermal decomposition. Item 18. A method for producing an abrasive containing the abrasive particles according to Item 16,
 18.前記反応初期の粒子の核形成過程において添加する加熱分解した尿素類水溶液の炭酸イオン濃度が、2.5~50mmol/Lの範囲内であることを特徴とする第16項又は第17項に記載の研磨材粒子を含有する研磨材の製造方法。 18. Item 18 or Item 17 is characterized in that the carbonate ion concentration of the thermally decomposed aqueous urea solution added in the nucleation process of the particles at the initial stage of reaction is in the range of 2.5 to 50 mmol / L. A method for producing an abrasive containing abrasive particles.
 19.前記粒子の成長過程において添加する尿素類水溶液の濃度が、0.05~10mol/Lの範囲内であることを特徴とする第16項から第18項までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 19. 19. The abrasive according to any one of items 16 to 18, wherein the concentration of the urea aqueous solution added in the particle growth process is in the range of 0.05 to 10 mol / L. A method for producing an abrasive containing particles.
 20.前記粒子の成長過程において添加する前記加熱分解した尿素類水溶液の炭酸イオン濃度が、0.1~30mmol/Lの範囲内であることを特徴とする第16項から第19項までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 20. Any one of Items 16 to 19, wherein a carbonate ion concentration of the thermally decomposed urea aqueous solution added in the process of growing the particles is in a range of 0.1 to 30 mmol / L. A method for producing an abrasive containing the abrasive particles according to Item.
 21.第1項から第4項までのいずれか一項に記載の研磨材を製造する製造方法であって、
 前記研磨材が含有する研磨材粒子が、少なくとも酸化セリウムを主成分とする研磨材粒子前駆体を焼成処理することにより製造され、当該焼成処理が、焼成温度が1050~1500℃の範囲内で処理する工程であることを特徴とする研磨材の製造方法。
21. A manufacturing method for manufacturing the abrasive according to any one of items 1 to 4,
The abrasive particles contained in the abrasive are produced by firing an abrasive particle precursor containing at least cerium oxide as a main component, and the firing treatment is performed at a firing temperature of 1050 to 1500 ° C. A method for producing an abrasive material, characterized in that the method comprises:
 22.前記焼成工程で前記研磨材粒子前駆体を焼成する焼成装置が、ローラーハースキルン又はロータリーキルンであることを特徴とする第21項に記載の研磨材の製造方法。 22. Item 22. The method for producing an abrasive according to Item 21, wherein the baking apparatus for baking the abrasive particle precursor in the baking step is a roller hearth kiln or a rotary kiln.
 23.第1項から第8項までのいずれか一項に記載の研磨材を被研磨物の研磨加工に使用することを特徴とする研磨加工方法。 23. A polishing method, wherein the abrasive according to any one of items 1 to 8 is used for polishing an object to be polished.
 本発明の上記手段により、生産性が高く、精密研磨に適した、研磨初期の研磨速度を長期間にわたり維持することができる研磨材粒子を含有する研磨材を提供することができる。また、当該研磨材粒子を含有する研磨材の製造方法及び当該研磨材を使用する研磨加工方法を提供することができる。 By the above means of the present invention, it is possible to provide an abrasive containing abrasive particles having high productivity and suitable for precision polishing and capable of maintaining the initial polishing rate for a long period of time. Moreover, the manufacturing method of the abrasive | polishing material containing the said abrasive | polishing material particle and the grinding | polishing processing method using the said abrasive | polishing material can be provided.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 研磨材粒子を含有する研磨材は、セリウムを含有させることで、高い研磨速度を示すことができるが、研磨材粒子の表面にエッジが存在すると、研磨の際の傷の発生につながる。そこで、研磨材粒子にセリウムを含有させ、特定の組成にすることで、研磨速度を維持することができ、精密研磨が可能となる被研磨物の表面粗さを小さくすることに有効であることを見出した。
 また、従来、結晶子サイズの大きい研磨材粒子で研磨すると、研磨速度は速いが、表面の粗さは粗くなることが一般的であった。表面の粗さが粗くなる原因として、研磨材粒子1つ1つの研磨速度が粒子径に依存しており、研磨材粒子の粒子径にばらつき(分布)があると、結晶子サイズが大きくなればなるほど、粒子径の効果による研磨レートの差が顕著に表れ、この被研磨物表面での研磨レートの差が表面の粗さとなって表れてくることが考えられる。すなわち、研磨速度が速く、表面の粗さの均一性を確保するには、単分散性に優れ、研磨材粒子径が揃っており、かつ結晶子サイズの大きい研磨材が求められる。
The abrasive containing the abrasive particles can show a high polishing rate by containing cerium, but if an edge is present on the surface of the abrasive particles, it leads to generation of scratches during polishing. Therefore, by adding cerium to the abrasive particles and making it a specific composition, the polishing rate can be maintained, and it is effective for reducing the surface roughness of the object to be polished, which enables precision polishing. I found.
Conventionally, when polishing with abrasive particles having a large crystallite size, the polishing rate is high, but the surface roughness is generally rough. As the cause of the roughness of the surface, the polishing rate of each abrasive particle depends on the particle diameter, and if there is variation (distribution) in the particle diameter of the abrasive particles, the crystallite size increases. The difference in the polishing rate due to the effect of the particle diameter appears significantly, and the difference in the polishing rate on the surface of the object to be polished may appear as the roughness of the surface. That is, in order to ensure a high polishing rate and uniform surface roughness, an abrasive with excellent monodispersibility, uniform abrasive particle diameter, and large crystallite size is required.
 また、この研磨材粒子一つ一つの研磨速度が一定であるため、研磨速度にばらつきが有る場合に比べて、全体の研磨速度は速くなる。そのため、研磨材粒子として、フッ素化合物化する必要が無く、フッ素化の工程が必要ない。 Also, since the polishing rate of each abrasive particle is constant, the overall polishing rate is faster than when the polishing rate varies. Therefore, it is not necessary to form a fluorine compound as abrasive particles, and a fluorination step is not necessary.
 本発明者が検討を進めた結果では、むしろ、フッ素化工程を付加することにより、研磨材粒子1つ1つの表面におけるセリウム含有量にばらつきが発生するため、研磨材粒子1つ1つの研磨速度のばらつきの原因となり、研磨速度の低下の原因となることが明らかになった。 As a result of investigations made by the present inventors, rather, by adding a fluorination step, the cerium content on the surface of each abrasive particle varies, so that the polishing rate for each abrasive particle is different. It has become clear that this causes a variation in polishing speed and a decrease in polishing rate.
 研磨材に含有される研磨材粒子の前駆体の形成に、尿素等から加水分解して得られる二酸化炭素とアンモニアが必要であると考えられている。そこで、二酸化炭素、アンモニア及び尿素等の溶存する反応液中に、炭酸ガスを導入することで、研磨材粒子の前駆体を塩基性炭酸塩として効率的に得ることができ、精密研磨が可能である球形状のセリウムを含有する研磨材粒子を含有する研磨材の製造方法に有効であることを見出した。 It is considered that carbon dioxide and ammonia obtained by hydrolysis from urea or the like are necessary for the formation of the precursor of abrasive particles contained in the abrasive. Therefore, by introducing carbon dioxide into the dissolved reaction liquid such as carbon dioxide, ammonia and urea, the precursor of the abrasive particles can be efficiently obtained as basic carbonate, and precise polishing is possible. It has been found that the present invention is effective in a method for producing an abrasive containing abrasive particles containing certain spherical cerium.
 また、球状の研磨材前駆体粒子を形成する際、核形成するための加熱分解した尿素類水溶液を、反応の始めに希土類塩水溶液に添加することにより、粒径分布の揃った核粒子が生成すると考えられる。引き続き原料となる尿素類水溶液又は加熱分解した尿素類水溶液を添加することにより、粒径分布を維持しつつ単分散に優れた球状研磨材前駆体粒子が得られるようになったと考えられる。 Also, when forming spherical abrasive precursor particles, the heat-decomposed urea aqueous solution for nucleation is added to the rare earth salt aqueous solution at the beginning of the reaction to produce core particles with a uniform particle size distribution. I think that. It is considered that spherical abrasive precursor particles excellent in monodispersion can be obtained while maintaining the particle size distribution by subsequently adding a urea aqueous solution or a thermally decomposed urea aqueous solution as a raw material.
本発明に係る研磨材粒子の走査型顕微鏡写真の一例An example of a scanning photomicrograph of abrasive particles according to the present invention 本発明に係る研磨材粒子の走査型顕微鏡写真の一例An example of a scanning photomicrograph of abrasive particles according to the present invention 酸化セリウム粒子の結晶子を示す模式図Schematic showing the crystallites of cerium oxide particles 結晶子を有する酸化セリウム粒子の一例を示す電子顕微鏡写真Electron micrograph showing an example of cerium oxide particles with crystallites 本発明に係る研磨材の製造方法の流れの一例を示す模式図The schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention 本発明に係る研磨材の製造方法の流れの一例を示す模式図The schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention 本発明に係る研磨材の製造方法の流れの一例を示す模式図The schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention 本発明に係る研磨材の製造方法の流れの一例を示す模式図The schematic diagram which shows an example of the flow of the manufacturing method of the abrasives which concerns on this invention
 本発明の研磨材は、セリウム(Ce)と、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びユウロピウム(Eu)から選ばれる少なくとも1種類の元素との、含有量の合計が、81mol%以上であり、イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、19mol%以下である研磨材粒子を含有し、前記研磨材粒子の粒子径の単分散度が、30%以下であることを特徴とする。
 この特徴は、請求項1から請求項23までの請求項に係る発明に共通する技術的特徴である。
The abrasive of the present invention contains cerium (Ce) and at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), and europium (Eu). Of yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and The content of at least one element selected from lutetium (Lu) contains abrasive particles of 19 mol% or less, and the monodispersity of the particle diameter of the abrasive particles is 30% or less. And
This feature is a technical feature common to the inventions according to claims 1 to 23.
 本発明の実施態様としては、前記研磨材粒子の平均結晶子径が、420~500Åの範囲内であることが、より高い研磨速度を得ることができる観点から好ましい。 As an embodiment of the present invention, the average crystallite size of the abrasive particles is preferably in the range of 420 to 500 mm from the viewpoint of obtaining a higher polishing rate.
 本発明の実施態様としては、前記研磨材粒子の平均粒子径D50が、0.5~0.9μmの範囲内であることが、より高い研磨速度を得ることができる観点から好ましい。 As an embodiment of the present invention, the average particle diameter D 50 of the abrasive particles is preferably in the range of 0.5 to 0.9 μm from the viewpoint of obtaining a higher polishing rate.
 また、前記研磨材粒子の平均含有率が、全研磨材粒子の80質量%以上であることが、より高い研磨速度を得ることができる観点から好ましい。 In addition, it is preferable that the average content of the abrasive particles is 80% by mass or more of the total abrasive particles from the viewpoint of obtaining a higher polishing rate.
 本発明の実施態様としては、セリウム(Ce)の含有量が、81mol%以上であり、イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、19mol%以下である研磨材粒子を含有することが好ましい。研磨材粒子のセリウム含有量が多いことで、優れた研磨速度を示すためである。 As an embodiment of the present invention, the content of cerium (Ce) is 81 mol% or more, and yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( It is preferable to contain abrasive particles in which the content of at least one element selected from Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) is 19 mol% or less. This is because the polishing material particles have a high cerium content, thereby exhibiting an excellent polishing rate.
 本発明の実施態様としては、セリウム(Ce)の含有量が、90mol%以上であり、イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、10mol%以下であることが好ましい。これにより、セリウムとともに含有されるイットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量を抑制することで、球形状を維持しながら生産コストを抑えることができるためである。 As an embodiment of the present invention, the content of cerium (Ce) is 90 mol% or more, and yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( The content of at least one element selected from Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) is preferably 10 mol% or less. This suppresses the content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained together with cerium, thereby maintaining the production cost while maintaining the spherical shape. It is because it can suppress.
 本発明の実施態様としては、セリウム(Ce)の含有量が、95~100mol%の範囲内である研磨材粒子を含有し、前記研磨材粒子の粒子径の単分散度が、30%以下であることが、セリウムの割合が高いため、速い研磨速度が得られる点で好ましい。 As an embodiment of the present invention, the abrasive particles having a cerium (Ce) content in the range of 95 to 100 mol% are contained, and the monodispersity of the particle diameter of the abrasive particles is 30% or less. It is preferable that the ratio of cerium is high because a high polishing rate can be obtained.
 本発明の実施態様としては、前記研磨材粒子の粒子径の単分散度が、20%以下であることが、キズ(傷)が発生しにくく、精密研磨に適しているため好ましい。 As an embodiment of the present invention, it is preferable that the monodispersity of the particle diameter of the abrasive particles is 20% or less because scratches are hardly generated and suitable for precision polishing.
 本発明の研磨材粒子を含有する研磨材の製造方法の実施態様としては、少なくとも下記工程1~工程5を含み、かつ少なくとも下記工程2~工程3までの間、下記水溶液又は反応液に炭酸ガスを連続的若しくは断続的に導入することが、本発明の効果発現の観点から好ましい。
 工程1:セリウム(Ce)を含有する水溶液を調製し加熱する工程
 工程2:前記工程1において加熱された前記水溶液に沈殿剤を添加して反応液を調製する工程
 工程3:前記反応液を加熱撹拌して研磨材粒子前駆体を生成させる工程
 工程4:前記工程3において生成した研磨材粒子前駆体を反応液から分離する工程
 工程5:前記工程4で分離して得られた前記研磨材粒子前駆体を酸化性雰囲気中で焼成して研磨材粒子を形成させる工程
An embodiment of the method for producing an abrasive containing abrasive particles of the present invention includes at least the following steps 1 to 5, and at least the following steps 2 to 3, carbon dioxide gas in the following aqueous solution or reaction solution: Is preferably introduced continuously or intermittently from the viewpoint of the effects of the present invention.
Step 1: Step of preparing and heating an aqueous solution containing cerium (Ce) Step 2: Step of preparing a reaction solution by adding a precipitant to the aqueous solution heated in Step 1 Step 3: Heating the reaction solution Step of stirring to generate abrasive particle precursor Step 4: Separating the abrasive particle precursor generated in Step 3 from the reaction solution Step 5: The abrasive particle obtained by separating in Step 4 A step of firing the precursor in an oxidizing atmosphere to form abrasive particles
 本発明の実施態様としては、前記水溶液が、前記要件1a~要件3aを満たすことが、本発明の効果発現の観点から好ましい。 As an embodiment of the present invention, it is preferable from the viewpoint of manifesting the effect of the present invention that the aqueous solution satisfies the requirements 1a to 3a.
 また、本発明においては、前記水溶液が、前記要件1b~要件3bを満たすことが、セリウムの含有量が多く、研磨性能が優れた球形状の研磨材粒子を作製することができる点で好ましい。 In the present invention, it is preferable that the aqueous solution satisfies the requirements 1b to 3b in that spherical abrasive particles having a high cerium content and excellent polishing performance can be produced.
 また、本発明においては、前記水溶液のセリウムの含有量が、前記水溶液に含有される希土類元素の全体量に対して、95~100mol%の範囲内であることが、セリウムの含有量が高く、他の元素を含まないことから、少ない生産工程で研磨材を作製することができる点で好ましい。 In the present invention, the cerium content of the aqueous solution is within the range of 95 to 100 mol% with respect to the total amount of rare earth elements contained in the aqueous solution, and the cerium content is high, Since it does not contain other elements, it is preferable in that the abrasive can be produced with a small number of production steps.
 また、本発明においては、前記工程2で沈殿剤を添加する直前の、前記水溶液又は前記反応液中の炭酸イオン濃度が、50~1600mg/Lの範囲内であることが、反応液に十分な量の炭酸ガスを導入することができ、炭酸ガスの供給量を制御できる点で好ましい。 In the present invention, it is sufficient that the carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in Step 2 is in the range of 50 to 1600 mg / L. An amount of carbon dioxide gas can be introduced, which is preferable in that the supply amount of carbon dioxide gas can be controlled.
 また、本発明においては、前記工程2で沈殿剤を添加する直前の、前記水溶液又は前記反応液中の炭酸イオン濃度が、58~1569mg/Lの範囲内であることが、本発明の効果をより顕著にするために好ましい。 In the present invention, the carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in the step 2 is within the range of 58 to 1569 mg / L. It is preferable to make it more prominent.
 また、本発明においては、前記沈殿剤が、尿素又は尿素系化合物であることが、加水分解反応により二酸化炭素とアンモニアを供給できる点で好ましい。 In the present invention, it is preferable that the precipitating agent is urea or a urea-based compound in that carbon dioxide and ammonia can be supplied by a hydrolysis reaction.
 本発明の研磨材粒子を含有する研磨材の製造方法の実施態様としては、セリウムを含む希土類元素含有化合物の水溶液中に尿素類水溶液を添加して研磨材前駆体粒子を形成する工程と、当該研磨材前駆体粒子を焼成する工程とを少なくとも有し、かつ前記研磨材前駆体粒子を形成する工程における反応初期の粒子の核形成過程において加熱分解した尿素類水溶液を添加し、前記核形成過程の後の粒子の成長過程において尿素類水溶液又は加熱分解した尿素類水溶液を添加することが、本発明の効果発現の観点から好ましい。 As an embodiment of the method for producing an abrasive containing abrasive particles of the present invention, an aqueous urea solution is added to an aqueous solution of a rare earth element-containing compound containing cerium to form abrasive precursor particles, and A process of firing abrasive precursor particles, and adding an aqueous urea solution that is thermally decomposed in the nucleation process of particles at the initial stage of the reaction in the process of forming the abrasive precursor particles. It is preferable from the viewpoint of the effects of the present invention to add an aqueous urea solution or an aqueous urea solution decomposed by heat decomposition in the subsequent particle growth process.
 本発明の実施態様としては、本発明の効果発現の観点から、前記反応初期の粒子の核形成過程において添加する加熱分解した尿素類水溶液の添加速度が、加熱分解前の尿素類濃度に換算して反応液1Lに対して1分当たり0.01~50molの範囲内であることが好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, the addition rate of the thermally decomposed urea aqueous solution added in the nucleation process of the particles at the initial stage of the reaction is converted to the urea concentration before the thermal decomposition. Thus, it is preferably in the range of 0.01 to 50 mol per minute per 1 L of the reaction solution.
 また、本発明においては、前記反応初期の粒子の核形成過程において添加する加熱分解した尿素類水溶液の炭酸イオン濃度が、2.5~50mmol/Lの範囲内であることが好ましい。 In the present invention, it is preferable that the carbonate ion concentration of the thermally decomposed aqueous urea solution added in the particle nucleation process at the initial stage of the reaction is in the range of 2.5 to 50 mmol / L.
 また、本発明においては、前記粒子の成長過程において添加する尿素類水溶液の濃度が、0.05~10mol/Lの範囲内であることが好ましい。 In the present invention, it is preferable that the concentration of the urea aqueous solution added during the particle growth process is in the range of 0.05 to 10 mol / L.
 また、本発明においては、前記粒子の成長過程において添加する前記加熱分解した尿素類水溶液の炭酸イオン濃度が、0.1~30mmol/Lの範囲内であることが好ましい。 In the present invention, it is preferable that the carbonate ion concentration of the thermally decomposed aqueous urea solution added during the particle growth process is in the range of 0.1 to 30 mmol / L.
 また、本発明の研磨材粒子を含有する研磨材の製造方法の実施態様としては、前記研磨材が含有する研磨材粒子が、少なくとも酸化セリウムを主成分とする研磨材粒子前駆体を焼成処理することにより製造され、当該焼成処理が、焼成温度が1050~1500℃の範囲内で処理する工程であることが、本発明の効果発現の観点から好ましい。 Moreover, as an embodiment of the method for producing an abrasive material containing abrasive particles of the present invention, the abrasive particles contained in the abrasive material calcinate an abrasive particle precursor containing at least cerium oxide as a main component. In view of the effects of the present invention, the firing treatment is preferably a step of treating the firing temperature within a range of 1050 to 1500 ° C.
 また、本発明においては、前記焼成工程で前記研磨材粒子前駆体を焼成する焼成装置が、ローラーハースキルン又はロータリーキルンであることが、所望の結晶子を有する研磨材粒子を安定して得ることができる観点から好ましい。 Further, in the present invention, it is possible to stably obtain abrasive particles having desired crystallites, that the baking apparatus for baking the abrasive particle precursor in the baking step is a roller hearth kiln or a rotary kiln. From the viewpoint of being able to.
 また、本発明の研磨材を被研磨物の研磨加工に使用することが、本発明の効果発現の観点から好ましい。 In addition, it is preferable to use the abrasive of the present invention for polishing an object to be polished from the viewpoint of manifesting the effects of the present invention.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 <研磨材>
 一般的な研磨材には、ベンガラ(αFe)、酸化セリウム、酸化アルミニウム、酸化マンガン、酸化ジルコニウム、コロイダルシリカ等の研磨材粒子を水や油に分散させてスラリー状にしたものなどがある。本発明は、半導体デバイスやガラスの研磨加工において、高精度に平坦性を維持しつつ、十分な研磨速度を得るために物理的な作用と化学的な作用の両方で研磨を行う、化学機械研磨(CMP;Chemical Mechanical Polishing)が可能な酸化セリウムを含有する研磨材及び当該研磨材を使用した研磨加工方法であり、以下にその詳細を説明する。
<Abrasive>
Common abrasives include those made by dispersing abrasive particles such as bengara (αFe 2 O 3 ), cerium oxide, aluminum oxide, manganese oxide, zirconium oxide, colloidal silica in water or oil to form a slurry. is there. The present invention is a chemical mechanical polishing method for polishing semiconductor devices and glass, in which polishing is performed by both physical action and chemical action in order to obtain a sufficient polishing rate while maintaining flatness with high accuracy. A polishing material containing cerium oxide capable of being subjected to (CMP; Chemical Mechanical Polishing) and a polishing method using the polishing material, the details of which will be described below.
 <研磨材粒子>
 本発明に係る研磨材粒子は、セリウム(Ce)と、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びユウロピウム(Eu)から選ばれる少なくとも1種類の元素との、含有量の合計が、81mol%以上であり、イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、19mol%以下である研磨材粒子を含有し、研磨材粒子の粒子径の単分散度が、30%以下であることを特徴とする。
 具体的には、本発明に係る研磨材粒子は、セリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム及びユウロピウムから選ばれる少なくとも1種類の元素との、含有量の合計が81mol%以上であり、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、19mol%以下である研磨材粒子を含有し、研磨材粒子の粒子径の単分散度が、30%以下である。
<Abrasive particles>
The abrasive particles according to the present invention include cerium (Ce) and at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), and europium (Eu). The total content is 81 mol% or more, and yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb ) And at least one element selected from lutetium (Lu) contains abrasive particles of 19 mol% or less, and the monodispersity of the particle diameter of the abrasive particles is 30% or less. Features.
Specifically, the abrasive particles according to the present invention necessarily contain cerium, and the total content of at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium is 81 mol% or more, It contains abrasive particles in which the content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium is 19 mol% or less, and the particle size of the abrasive particles is simply The degree of dispersion is 30% or less.
 研磨材粒子には、セリウムが必ず含まれており、ランタン、プラセオジム、ネオジム、サマリウム及びユウロピウムから選ばれる少なくとも1種類含まれていればよく、目的とする研磨材の性能に合わせて適宜数種類の元素を含めてもよい。
 研磨材粒子に含まれるセリウムとランタン、プラセオジム、ネオジム、サマリウム及びユウロピウムから選ばれる少なくとも1種類の元素との、含有量の合計が81mol%以上であり、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、19mol%以下であり、研磨材粒子の粒子径の単分散度が、30%以下であることで、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量を抑制しながら、高い研磨性能を示す研磨材を得ることができる。
The abrasive particles always contain cerium, and need only contain at least one kind selected from lanthanum, praseodymium, neodymium, samarium and europium, and several kinds of elements are appropriately selected according to the performance of the intended abrasive. May be included.
The total content of cerium and at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium contained in the abrasive particles is 81 mol% or more, and yttrium, gadolinium, terbium, dysprosium, holmium, erbium In addition, the content of at least one element selected from thulium, ytterbium and lutetium is 19 mol% or less, and the monodispersity of the particle diameter of the abrasive particles is 30% or less, so that yttrium, gadolinium, terbium An abrasive exhibiting high polishing performance can be obtained while suppressing the content of at least one element selected from dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
 (研磨材粒子中の希土類元素の平均含有率(mol%)の測定)
 研磨材に含有されている研磨材粒子の各希土類元素の含有量は、元素分析により求めることができる。例えば、1gを硝酸水溶液10mlと過酸化水素水1.0mlの混合溶液に溶解させ、エスアイアイナノテクノロジー社製のICP発光分光プラズマ装置(ICP-AES)を使用して元素分析を行う。研磨材粒子の各希土類元素の含有量から組成比(mol%)として求めることができる。
 なお、研磨材粒子の組成分布については、研磨材粒子の断面の元素分析を行うことにより求めてもよい。例えば、研磨材粒子について、日立ハイテクノロジーズ製 集束イオンビーム(FB-2000A)により断面加工を行い、粒子中心付近を通る面を切り出す。そして、切断面より、日立ハイテクノロジーズ製 STEM-EDX(HD-2000)を使用して元素分析を行い、研磨材粒子の各希土類元素の組成分布を求めることもできる。
(Measurement of average content (mol%) of rare earth elements in abrasive particles)
The content of each rare earth element in the abrasive particles contained in the abrasive can be determined by elemental analysis. For example, 1 g is dissolved in a mixed solution of 10 ml of nitric acid aqueous solution and 1.0 ml of hydrogen peroxide solution, and elemental analysis is performed using an ICP emission spectral plasma apparatus (ICP-AES) manufactured by SII Nano Technology. The composition ratio (mol%) can be determined from the content of each rare earth element in the abrasive particles.
The composition distribution of the abrasive particles may be determined by performing an elemental analysis of the cross section of the abrasive particles. For example, the abrasive particles are subjected to cross-section processing using a focused ion beam (FB-2000A) manufactured by Hitachi High-Technologies, and a surface passing through the vicinity of the particle center is cut out. From the cut surface, elemental analysis can be performed using STEM-EDX (HD-2000) manufactured by Hitachi High-Technologies to determine the composition distribution of each rare earth element in the abrasive particles.
 (単分散度)
 本発明においては、本発明に係る研磨材粒子の粒子径の単分散度が30%以下であることが特徴の一つであり、単分散度として好ましくは20%以下であり、特に好ましくは10%以下である。
(Monodispersity)
In the present invention, it is one of the characteristics that the monodispersity of the particle diameter of the abrasive particles according to the present invention is 30% or less, and the monodispersity is preferably 20% or less, particularly preferably 10%. % Or less.
 ここで、単分散度は、所定の個数の研磨材粒子の走査型顕微鏡写真(SEM像)から求めることができる粒子径分布の変動係数により規定することができる。
 例えば、研磨材粒子100個のSEM像から粒子径分布の変動係数(「単分散度」ともいう。)を求め、単分散性を評価することができる。なお、粒子径は、各粒子の写真画像の面積に基づき、面積円相当粒子径を求め、これを各粒子の粒子径とする。
 粒子径分布変動係数は下記の式で求める。
 変動係数(%)=(粒子径分布の標準偏差/平均粒子径)×100
 なお、上記粒子径、分布等の測定は、画像処理測定装置(例えば、ルーゼックス AP;株式会社ニレコ製)を用いて行うことができる。
Here, the monodispersity can be defined by a variation coefficient of a particle diameter distribution that can be obtained from a scanning micrograph (SEM image) of a predetermined number of abrasive particles.
For example, the coefficient of variation (also referred to as “monodispersity”) of the particle size distribution can be obtained from an SEM image of 100 abrasive particles, and the monodispersity can be evaluated. The particle diameter is determined based on the area of the photographic image of each particle, and the equivalent particle diameter is determined as the particle diameter of each particle.
The particle size distribution variation coefficient is obtained by the following formula.
Coefficient of variation (%) = (standard deviation of particle size distribution / average particle size) × 100
In addition, the measurement of the said particle diameter, distribution, etc. can be performed using an image processing measuring device (for example, Luzex AP; Nireco Corporation make).
 また、本発明の研磨材粒子は、球形状であることが好ましい。
 ここで、球形状とは、研磨材粒子の走査型顕微鏡写真(SEM像)に基づいて規定する。
 具体的には、研磨材粒子について、走査型顕微鏡写真の撮影を行い、研磨材粒子100個を無作為に選択する。選択された研磨材粒子の長径をa、短径をbとするとき、a/bの値の平均値をアスペクト比として求める。なお、各粒子について外接する長方形(「外接長方形」という。)を描いたとき、外接長方形の短辺及び長辺うち、最短の短辺の長さを短径とし、最長の長辺の長さを長径とする。
 アスペクト比が、1.00~1.15の範囲内、より好ましくは1.00~1.05の範囲内である場合に球形状として分類する。1.00~1.15の範囲外である場合は不定形として分類する。
The abrasive particles of the present invention are preferably spherical.
Here, the spherical shape is defined based on a scanning micrograph (SEM image) of the abrasive particles.
Specifically, a scanning micrograph is taken of the abrasive particles, and 100 abrasive particles are randomly selected. When the major axis of the selected abrasive particles is a and the minor axis is b, an average value of a / b is obtained as an aspect ratio. In addition, when drawing a circumscribing rectangle for each particle (referred to as “the circumscribing rectangle”), the shortest short side of the circumscribed rectangle is the shortest length, and the longest long side is the length. Is the major axis.
When the aspect ratio is in the range of 1.00 to 1.15, more preferably in the range of 1.00 to 1.05, it is classified as a spherical shape. If it is out of the range of 1.00 to 1.15, it is classified as indefinite.
 アスペクト比が1に近づくほど、球形度が高いことを表している。高い球形度を有する本発明に係る研磨材粒子を含有する研磨材は、精密研磨に適しており、研磨速度も速いため、生産性も高い点で優れている。本発明に係る研磨材粒子の走査型顕微鏡写真(拡大率1000倍)を図1に示す。また、図1のSEM像をさらに拡大した、拡大率30000倍にものを図2に示す。球形状であり、高い単分散度であることがわかる。 ¡The closer the aspect ratio is to 1, the higher the sphericity. The abrasive containing the abrasive particles according to the present invention having high sphericity is suitable for precision polishing and has a high polishing rate, and is excellent in terms of high productivity. A scanning photomicrograph (magnification 1000 times) of the abrasive particles according to the present invention is shown in FIG. Further, FIG. 2 shows the SEM image of FIG. It can be seen that it is spherical and has a high degree of monodispersity.
 (研磨材粒子の平均粒子径D50
 本発明においては、本発明に係る研磨材粒子の平均粒子径D50が、0.5~0.9μmの範囲内であることが好ましい態様の一つである。
(Average particle diameter D 50 of abrasive particles)
In the present invention, it is one of the preferred embodiments that the average particle diameter D 50 of the abrasive particles according to the present invention is in the range of 0.5 to 0.9 μm.
 平均粒子径D50とは、研磨材粒子の粒子径の測定値の全体を100%累積曲線(積分曲線)として求め、累積曲線が50%となるときの粒子径を平均粒子径D50と定義する。 Definition the average particle diameter D 50, determined as a whole by 100% cumulative curve of the measured value of the particle size of the abrasive particles (integral curve), the particle diameter when the cumulative curve becomes 50% and the average particle diameter D 50 To do.
 粒子径を求める方法としては、上記のようなSEM(走査型電子顕微鏡)を用いて200個の粒径を測定し、度数分布を求める方法を用いることができる。その他には、動的光散乱法、レーザ回折法、遠心沈降法、FFF法(フィールドフローフラクション法)、電気的検知体法などを用いて求めることが可能である。 As a method of obtaining the particle diameter, a method of measuring 200 particle diameters using the above SEM (scanning electron microscope) and obtaining a frequency distribution can be used. In addition, it can be obtained by using a dynamic light scattering method, a laser diffraction method, a centrifugal sedimentation method, an FFF method (field flow fraction method), an electrical detector method, or the like.
 さらに、本発明に係る研磨材粒子は、セリウムの含有量が、90mol%以上であり、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、10mol%以下である球形状の研磨材粒子であることが好ましい。
 これにより、セリウムとともに含有されるイットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量を抑制することで、球形状を維持しながら生産コストを抑えることができる。
Furthermore, the abrasive particles according to the present invention have a cerium content of 90 mol% or more, and contain at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. Spherical abrasive particles having an amount of 10 mol% or less are preferred.
This suppresses the content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained together with cerium, thereby maintaining the production cost while maintaining the spherical shape. Can be suppressed.
 また、本発明に係る研磨材粒子は、セリウムの含有量が、95~100mol%の範囲内である球形状であることを特徴とする。
 セリウムの含有量が、95~100mol%の範囲内である球形状の研磨材粒子を含有する研磨材は、セリウムの割合が高いため、速い研磨速度が得られる。
 ここで、研磨速度は、研磨材粒子を含有する研磨材の粉体を水等の溶媒に分散させた研磨材スラリーを、研磨機の研磨対象面に供給しながら、研磨対象面を研磨布で研磨することで測定できる。
 研磨速度は、例えば、研磨材スラリーを研磨機に循環供給させて研磨加工を行うことにより測定することができる。研磨前後の厚さをNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出し、研磨速度とすることができる。
The abrasive particles according to the present invention are characterized by having a spherical shape with a cerium content in the range of 95 to 100 mol%.
An abrasive containing spherical abrasive particles having a cerium content in the range of 95 to 100 mol% has a high cerium content, so that a high polishing rate can be obtained.
Here, the polishing speed is determined by supplying the abrasive slurry in which the abrasive powder containing the abrasive particles is dispersed in a solvent such as water to the surface to be polished of the polishing machine while the surface to be polished is polished with a polishing cloth. It can be measured by polishing.
The polishing rate can be measured by, for example, circulating the abrasive slurry to a polishing machine and performing polishing. The thickness before and after polishing is measured by Nikon Digimicro (MF501), and the polishing amount (μm) per minute can be calculated from the thickness displacement to obtain the polishing rate.
 また、本発明に係る研磨材粒子の粒子径の単分散度が、20.0%以下であることが好ましい。
 高い単分散度を示す研磨材粒子を含有する研磨材は、キズ(傷)が発生しにくく、精密研磨に適している。
 ここで、傷の発生については、ガラス基板の表面状態を評価することにより求めることができる。
 例えば、ガラス基板表面の表面状態(表面粗さRa)について、30分間研磨加工を行ったガラス基板を、光波干渉式表面粗さ計(Zygo社製Dual-channel ZeMapper)により表面粗さ評価を行うことができる。なお、Raとは、JIS B0601-2001における算術平均粗さを表している。
Moreover, it is preferable that the monodispersity of the particle diameter of the abrasive particles according to the present invention is 20.0% or less.
An abrasive containing abrasive particles exhibiting a high degree of monodispersity is less susceptible to scratches and is suitable for precision polishing.
Here, the occurrence of scratches can be determined by evaluating the surface state of the glass substrate.
For example, with respect to the surface state (surface roughness Ra) of the glass substrate surface, the surface roughness of a glass substrate that has been polished for 30 minutes is evaluated with a light wave interference type surface roughness meter (Dual-channel ZeMapper manufactured by Zygo). be able to. Ra represents the arithmetic average roughness in JIS B0601-2001.
 (研磨材粒子におけるフッ素元素の含有率)
 本発明に係る研磨材粒子は、フッ素元素が混入していないことを特徴とする。本発明でいうフッ素元素が混入していないとは、研磨材粒子を構成する元素のうち、フッ素元素の平均含有率(mol%)が1.0mol%以下であり、好ましくは0.1mol%以下である。
(Content of fluorine element in abrasive particles)
The abrasive particles according to the present invention are characterized in that no fluorine element is mixed therein. In the present invention, the term “no fluorine element” means that the average content (mol%) of the fluorine element is 1.0 mol% or less, preferably 0.1 mol% or less, among the elements constituting the abrasive particles. It is.
 本発明において、研磨材粒子中におけるフッ素元素含有率の測定方法としては、例えば、研磨材粒子1gを、硝酸水溶液10mlと過酸化水素水1.0mlの混合溶液に溶解させ、エスアイアイナノテクノロジー社製のICP発光分光プラズマ装置(ICP-AES)を使用して元素分析を行った。研磨材粒子中のフッ素元素の含有率の平均値を組成比(mol%)として求めた。 In the present invention, as a method for measuring the fluorine element content in the abrasive particles, for example, 1 g of abrasive particles is dissolved in a mixed solution of 10 ml of nitric acid aqueous solution and 1.0 ml of hydrogen peroxide solution, and SII Nanotechnology Inc. Elemental analysis was performed using an ICP emission spectral plasma apparatus (ICP-AES). The average value of the content of fluorine element in the abrasive particles was determined as the composition ratio (mol%).
 (結晶子径)
 本発明に係る研磨材粒子においては、平均結晶子径が420~500Åの範囲内にあることが好ましい。
(Crystallite diameter)
In the abrasive particles according to the present invention, the average crystallite diameter is preferably in the range of 420 to 500 mm.
 本発明に係る「結晶子」とは、多結晶粒子中において完全な単結晶として存在する微小結晶の最大の領域をいう。具体的には、図3に示すように、本発明に係る研磨材粒子1は、複数の結晶子2により形成されている。焼成の温度及び時間によって、結晶子2の成長速度が変化するため、本発明においては、例えば、1050~1500℃の範囲内で焼成することにより、研磨材として適した平均結晶子径Aが420~500Åの範囲内にある研磨材粒子1を含有する研磨材を得ることができるものと考えられる。図3に示す3は、研磨材粒子1の粒子径である。 The “crystallite” according to the present invention refers to the largest region of microcrystals present as a complete single crystal in a polycrystalline particle. Specifically, as shown in FIG. 3, the abrasive particle 1 according to the present invention is formed of a plurality of crystallites 2. Since the growth rate of the crystallite 2 varies depending on the firing temperature and time, in the present invention, for example, by firing within a range of 1050 to 1500 ° C., an average crystallite diameter A suitable as an abrasive is 420. It is considered that an abrasive containing abrasive particles 1 in the range of ˜500 mm can be obtained. 3 shown in FIG. 3 is the particle diameter of the abrasive particles 1.
 一般に、得られた平均結晶子径Aは、結晶粒子中で同一方向に成長している結晶の大きさを表している。平均結晶子径Aが小さいということは、結晶粒子中において、特定の同一方向に成長している結晶子2が小さいということである。一方、適切な焼成温度で適切な時間焼成することで、結晶子2が成長するため、平均結晶子径Aが大きい結晶粒子ができる。 Generally, the obtained average crystallite diameter A represents the size of a crystal growing in the same direction in a crystal grain. The fact that the average crystallite diameter A is small means that the crystallite 2 growing in the same specific direction in the crystal grain is small. On the other hand, since the crystallite 2 grows by baking at an appropriate baking temperature for an appropriate time, crystal grains having a large average crystallite diameter A can be formed.
 したがって、結晶子径Aが大きい場合、同一方向の成長が大きく、研磨材粒子1が硬くなる。また、結晶子径Aが小さい場合、同一方向の成長が小さく、研磨材粒子1がやわらかくなる。 Therefore, when the crystallite diameter A is large, the growth in the same direction is large and the abrasive particles 1 become hard. In addition, when the crystallite diameter A is small, the growth in the same direction is small and the abrasive particles 1 are soft.
 本発明に係る平均結晶子径Aは、XRD(X-ray diffraction)測定により、下式に示すシェラー(Scherrer)の式を用いて計算することができる。
   A=Kλ/βcosθ
 上記式において、Kはシェラー定数であり、λはX線波長である。βは、回折線の半値幅である。θは回折線に関するブラッグ角である。
The average crystallite diameter A according to the present invention can be calculated by the XRD (X-ray diffraction) measurement using the Scherrer equation shown below.
A = Kλ / βcosθ
In the above equation, K is the Scherrer constant and λ is the X-ray wavelength. β is the half width of the diffraction line. θ is the Bragg angle with respect to the diffraction line.
 また、図4には、本発明に係る結晶子を有する酸化セリウム粒子の走査型電子顕微鏡写真を示す。 FIG. 4 shows a scanning electron micrograph of cerium oxide particles having crystallites according to the present invention.
 本発明に係る平均結晶子径Aを、420~500Åの範囲内とする手段としての制限はないが、特には、焼成工程における焼成温度を1050~1500℃の範囲内に制御することが好ましい手段である。 There is no limitation on the means for setting the average crystallite diameter A according to the present invention within the range of 420 to 500 mm, but in particular, it is preferable to control the firing temperature in the range of 1050 to 1500 ° C. in particular. It is.
 本発明に係る研磨材粒子においては、平均結晶子径を420~500Åの範囲内とすることにより、連続研磨を行った際にも、初期の高い研磨速度を維持することができる。 In the abrasive particles according to the present invention, by setting the average crystallite diameter within the range of 420 to 500 mm, the initial high polishing rate can be maintained even when continuous polishing is performed.
 <研磨材粒子を含有する研磨材の製造方法>
 以下に好ましい研磨材の製造方法1~4を示す。
<Method for Producing Abrasive Material Containing Abrasive Particles>
The preferred abrasive production methods 1 to 4 are shown below.
 《研磨材の製造方法1》
 本発明の研磨材の製造方法においては、研磨材が含有する研磨材粒子が、少なくとも酸化セリウムを主成分とする研磨材粒子前駆体を焼成処理することにより製造され、当該焼成処理が、焼成温度が1050~1500℃の範囲内で処理する工程であることが好ましい。
<< Abrasive Material Production Method 1 >>
In the abrasive production method of the present invention, the abrasive particles contained in the abrasive are produced by firing an abrasive particle precursor containing at least cerium oxide as a main component, and the firing treatment is performed at a firing temperature. Is preferably a step of treating within a range of 1050 to 1500 ° C.
 本発明においては、研磨材粒子は湿式合成法により調製されることが好ましい。
 本発明でいう湿式合成法とは、溶液媒体中で硝酸セリウム、塩酸セリウムまたは硫酸セリウムを含む希土類水溶液と、尿素系化合物の水溶液とを混合して、研磨材粒子前駆体を調製した後、焼成処理により、研磨材粒子を形成する方法である。
In the present invention, the abrasive particles are preferably prepared by a wet synthesis method.
The wet synthesis method referred to in the present invention is a mixture of a rare earth aqueous solution containing cerium nitrate, cerium hydrochloride or cerium sulfate in a solution medium and an aqueous solution of a urea compound to prepare an abrasive particle precursor, followed by firing. This is a method of forming abrasive particles by treatment.
 本発明でいう研磨材粒子前駆体において、酸化セリウムを主成分とするとは、酸化セリウムの含有率が55mol%以上であることを意味し、好ましくは81mol%以上であり、更に好ましくは90mol%以上であり、特に好ましくは、95mol%以上である。 In the abrasive particle precursor referred to in the present invention, cerium oxide as a main component means that the content of cerium oxide is 55 mol% or more, preferably 81 mol% or more, more preferably 90 mol% or more. Especially preferably, it is 95 mol% or more.
 本発明の研磨材の製造方法は、湿式合成法により調製されることが好ましく、より詳しくは、図5に示すように、主には、研磨材粒子前駆体の形成工程(I-A)、固液分離工程(I-B)及び焼成工程(I-C)から構成される製造方法であることが好ましい。 The method for producing an abrasive according to the present invention is preferably prepared by a wet synthesis method. More specifically, as shown in FIG. 5, mainly, the abrasive particle precursor forming step (IA), A production method comprising a solid-liquid separation step (IB) and a firing step (IC) is preferred.
 (1)研磨材粒子前駆体の形成工程
 フッ素化合物を含まない研磨材粒子の前駆体の形成工程は、湿式合成法で調製され、フッ素化合物を含有しない状態で、Ce、又はCeとY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる少なくとも1種の元素との塩を含有する水溶液に、予め、その一部を加熱分解した尿素系化合物を添加して、前記Ce、又はCeとY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる少なくとも1種の元素との塩の塩基性炭酸塩を分散させる分散溶液を調製する。なお、前記Ce、又はCeとY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる少なくとも1種の元素との塩としては、硝酸塩、塩酸塩、硫酸塩等を用いることができるが、その中でも硝酸塩を使用することが好ましい。
(1) Abrasive Particle Precursor Forming Step Abrasive particle precursor forming step that does not contain a fluorine compound is prepared by a wet synthesis method and contains Ce, or Ce and Y, La, without containing a fluorine compound. , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and a part of the solution was previously thermally decomposed into an aqueous solution containing a salt with at least one element selected from Lu A urea compound is added, and said Ce or Ce and at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; A dispersion solution is prepared in which a basic carbonate of the salt is dispersed. In addition, as the salt of Ce or Ce and at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, nitrate is used. Hydrochloride, sulfate and the like can be used, and among them, nitrate is preferable.
 また、尿素系化合物として、尿素、尿素の塩(例えば、硝酸塩、塩酸塩等)、N,N′-ジメチルアセチル尿素、N,N′-ジベンゾイル尿素、ベンゼンスルホニル尿素、p-トルエンスルホニル尿素、トリメチル尿素、テトラエチル尿素、テトラメチル尿素、トリフェニル尿素、テトラフェニル尿素、N-ベンゾイル尿素、メチルイソ尿素、エチルイソ尿素等が挙げられるが、好ましくは、尿素である。なお、以下の実施例において、尿素を用いて塩基性炭酸塩を形成させる場合について示すが、一例であって、これに限定されるものではない。 Urea compounds such as urea, urea salts (eg, nitrates, hydrochlorides, etc.), N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, trimethyl Urea, tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea and the like can be mentioned, and urea is preferred. In addition, in the following examples, although it shows about the case where basic carbonate is formed using urea, it is an example and it is not limited to this.
 研磨材粒子の前駆体の形成においては、Ce、又はCeとY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる少なくとも1種の元素との塩の水溶液中でのイオン濃度は、0.001~0.1mol/Lの範囲内で、尿素は前記イオン濃度の5~50倍の範囲内の濃度が好ましい。これは、前記Ce、又はCeとY、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる少なくとも1種の元素との塩の水溶液中でのイオン濃度及び尿素のイオン濃度を、上記で規定する範囲内とすることで、単分散性を示す球状の研磨材粒子を合成することができるためである。
 そして、混合された水溶液は、80℃以上で加熱撹拌され、水溶液中に分散する塩基性炭酸塩を成長させる。なお、加熱撹拌の際には、十分な撹拌効率を得られれば、特に撹拌機の形状等は指定しないが、より高い撹拌効率を得るためには、ローター・ステータータイプの撹拌機を使用することが好ましい。
In the formation of the precursor of abrasive particles, Ce or Ce and at least one selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu The ion concentration in the aqueous solution of the salt with the element is preferably in the range of 0.001 to 0.1 mol / L, and urea is preferably in the range of 5 to 50 times the ion concentration. This is in an aqueous solution of the above-mentioned Ce or Ce and at least one element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. This is because it is possible to synthesize spherical abrasive particles exhibiting monodispersity by setting the ion concentration in and the ion concentration of urea within the ranges specified above.
The mixed aqueous solution is heated and stirred at 80 ° C. or higher to grow a basic carbonate dispersed in the aqueous solution. In the case of heating and stirring, the shape of the stirrer is not particularly specified if sufficient stirring efficiency can be obtained, but in order to obtain higher stirring efficiency, a rotor / stator type stirrer should be used. Is preferred.
 本発明に係る研磨材粒子においては、構成する上記金属から構成される金属酸化物のうち、酸化セリウムの占める比率(含有率)が、81mol%以上であることが、高い研磨速度を得ることができる観点から好ましい。 In the abrasive particle according to the present invention, a high polishing rate can be obtained when the ratio (content ratio) of cerium oxide in the metal oxide composed of the above-described metal is 81 mol% or more. From the viewpoint of being able to.
 (2)固液分離工程
 固液分離工程は、(1)前駆体粒子形成工程により得られた研磨材粒子前駆体を含む分散溶液から、形成された研磨材粒子前駆体を、固液分離の操作により回収し、研磨材粒子前駆体を得る工程である。
(2) Solid-liquid separation step In the solid-liquid separation step, the formed abrasive particle precursor is subjected to solid-liquid separation from the dispersion solution containing the abrasive particle precursor obtained in (1) precursor particle forming step. It is a step of collecting abrasive particles to obtain an abrasive particle precursor.
 固液分離方法としては、強制的な分離手段は適用せずに、自然沈降による固液分離を行う方法を適用することができる。例えば、研磨材粒子前駆体を含む分散溶液を静置し、上澄み液と、下部に沈殿した研磨材粒子前駆体に分離した後、デカンテーション法、例えば、釜を傾斜させて、上澄み液を排液する方法、あるいは、排液パイプを分離した釜内の上澄み液と濃縮物の界面近くまで挿入し、上澄み液のみを、釜外に排出して、研磨材粒子前駆体を得る方法を挙げることができる。あるいは、フィルター等を用いて、固液分離を行って、研磨材粒子前駆体を分離しても良い。 As the solid-liquid separation method, a method of performing solid-liquid separation by natural sedimentation can be applied without applying forced separation means. For example, the dispersion solution containing the abrasive particle precursor is allowed to stand and separated into a supernatant liquid and an abrasive particle precursor precipitated at the bottom, and then the decantation method, for example, tilting the kettle to drain the supernatant liquid. Or a method of inserting the drainage pipe to the vicinity of the interface between the supernatant and concentrate in the separated pot and discharging only the supernatant to the outside of the pot to obtain an abrasive particle precursor. Can do. Alternatively, the abrasive particle precursor may be separated by solid-liquid separation using a filter or the like.
 なお、固液分離工程において、得られた研磨材粒子前駆体を水及びアルコール等で洗浄、乾燥した後に、下記の(3)焼成工程へ移行してもよい。 In the solid-liquid separation step, the obtained abrasive particle precursor may be washed with water and alcohol and dried and then transferred to the following (3) firing step.
 (3)焼成工程
 焼成工程は、固液分離により得られた塩基性炭酸塩の研磨材粒子の前駆体を空気中もしくは酸化性雰囲気中で、400℃以上、本発明においては好ましくは1050~1500℃の焼成温度で、1~5時間の範囲内で焼成処理を行う。研磨材粒子の前駆体は、焼成されることにより二酸化炭素が脱離するため、塩基性炭酸塩から酸化物となり、目的の平均結晶子径が420~500Åの範囲内にある研磨材粒子が得られる。
(3) Firing step In the calcining step, the precursor of the basic carbonate abrasive particles obtained by solid-liquid separation is 400 ° C. or higher in the air or in an oxidizing atmosphere, and preferably 1050 to 1500 in the present invention. The calcination is carried out at a calcination temperature of 0 ° C. within a range of 1 to 5 hours. Since the precursor of the abrasive particles is desorbed with carbon dioxide when fired, the basic carbonate is converted to an oxide, and the desired average particle size in the range of 420 to 500 mm is obtained. It is done.
 研磨材粒子の前駆体に対し、上記の温度範囲及び焼成時間範囲で焼成処理を施すことにより、研磨材として高い研磨速度を実現することができる420~500Åの範囲内にある平均結晶子径を持つ研磨材粒子が成長し、研磨の際に十分な硬さを持った研磨材粒子が得られるものと考えられる。 By subjecting the precursor of the abrasive particles to a firing treatment in the above temperature range and firing time range, an average crystallite diameter in the range of 420 to 500 mm capable of realizing a high polishing rate as an abrasive. It is considered that the abrasive particles possessed grow and the abrasive particles having sufficient hardness are obtained during polishing.
 本発明において、研磨材粒子の前駆体を焼成する具体的な焼成装置としては、公知のローラーハースキルン又はロータリーキルンであることが好ましい。これにより、研磨材粒子の前駆体に対して均一に熱が加わることとなり、均一な構造を備えた研磨材粒子を得ることができる観点から好ましい。 In the present invention, a specific firing apparatus for firing the precursor of the abrasive particles is preferably a known roller hearth kiln or rotary kiln. Thereby, heat is uniformly applied to the precursor of the abrasive particles, which is preferable from the viewpoint of obtaining abrasive particles having a uniform structure.
 一般的なローラーハースキルンとしては、例えば、炉内に複数のローラーが設置され、原料をローラーに載せて搬送するので、炉内の領域を仮焼成、焼成、冷却と温度に合わせてわけることもできる。また、一般的なロータリーキルンとしては、例えば、略円筒状で、キルン内では原料はゆっくり回転しながら徐々に送られる。 As a general roller hearth kiln, for example, a plurality of rollers are installed in the furnace, and the raw material is carried on the roller, so that the area in the furnace can be adjusted according to the temperature such as pre-baking, baking, cooling. it can. Moreover, as a general rotary kiln, for example, it is substantially cylindrical, and the raw material is gradually fed while slowly rotating in the kiln.
 また、固液分離工程の後であって、焼成工程の前に仮焼成を行うこともできる。具体的には、仮焼成は、焼成温度が300~490℃の範囲内で、1~5時間の範囲内で行うことが好ましい。当該条件で仮焼成を行うことで、結晶子が十分に成長し、研磨の際の圧力に対する耐久性が高い研磨材粒子を含有する研磨材が得られると考えられる。特に、300~400℃の範囲内で、2~3時間の範囲内で仮焼成を行うことが、結晶子が十分に成長する点で好ましい。
 なお、仮焼成においても焼成工程と同様に、公知のローラーハースキルン又はロータリーキルンを用いることができる。
Moreover, after the solid-liquid separation process and before the baking process, temporary baking can also be performed. Specifically, the preliminary calcination is preferably performed within a range of a calcination temperature of 300 to 490 ° C. and a range of 1 to 5 hours. By pre-baking under the conditions, it is considered that an abrasive containing abrasive particles having sufficient crystallite growth and high durability against pressure during polishing can be obtained. In particular, it is preferable to perform preliminary firing within a range of 300 to 400 ° C. within a range of 2 to 3 hours from the viewpoint of sufficient crystallite growth.
In addition, also in temporary baking, a well-known roller hearth kiln or rotary kiln can be used similarly to a baking process.
 さらに、焼成工程における温度を20~50℃/minの範囲内の昇温速度で昇温することが好ましい。これにより、セリウムを多く含有する結晶子が安定して成長すると考えられる。 Furthermore, it is preferable to raise the temperature in the firing step at a rate of temperature rise in the range of 20 to 50 ° C./min. Thereby, it is considered that crystallites containing a large amount of cerium grow stably.
 また、焼成工程の後、500℃から室温(25℃)までの温度を1~20℃/minの範囲内の降温速度で降温することが好ましい。これにより、研磨材粒子における微小なクラックの発生を抑制することができ、研磨の際の圧力に強く、最表面の凹凸が少ない研磨材粒子を形成させることができると考えられる。 Further, after the firing step, it is preferable to lower the temperature from 500 ° C. to room temperature (25 ° C.) at a temperature lowering rate within the range of 1 to 20 ° C./min. Thereby, it is considered that the generation of minute cracks in the abrasive particles can be suppressed, and it is possible to form abrasive particles that are strong against pressure during polishing and have few unevenness on the outermost surface.
 《研磨材の製造方法2》
 研磨材の製造方法2はおおむね以下の五つの工程からなる(図6参照)。
<< Production Method 2 of Abrasive Material >>
The abrasive manufacturing method 2 generally comprises the following five steps (see FIG. 6).
 1.尿素水溶液調製工程II-A
 尿素水溶液調製工程II-Aは、所定の濃度の尿素水溶液を調製し、密閉容器内で加熱することにより、添加する尿素水溶液を調製する。
 例えば、5.0mol/Lの尿素水溶液を0.5L調製(室温)(II-A1)し、密閉容器内で100℃、6時間加熱(II-A2、II-A3)する。その後、20℃まで冷ました尿素水溶液(II-A4)を添加する尿素水溶液(II-A5)とすることができる。
 尿素水溶液を密閉容器内で加熱することにより、溶媒を保持したまま加水分解を進めることができる。これにより、当該尿素水溶液中には、尿素の加水分解により生じた二酸化炭素及びアンモニアに加え、尿素の三成分が溶存している。
 なお、尿素水溶液の代わりに、尿素の塩(例えば、硝酸塩、塩酸塩等)、N,N′-ジメチルアセチル尿素、N,N′-ジベンゾイル尿素、ベンゼンスルホニル尿素、p-トルエンスルホニル尿素、トリメチル尿素、テトラエチル尿素、テトラメチル尿素、トリフェニル尿素、テトラフェニル尿素、N-ベンゾイル尿素、メチルイソ尿素、エチルイソ尿素等を使用することもできる。なお、以下の実施例において、尿素水溶液を用いて塩基性炭酸塩を形成させる場合について示すが、一例であって、これに限定されるものではない。
1. Urea aqueous solution preparation process II-A
In the urea aqueous solution preparation step II-A, a urea aqueous solution having a predetermined concentration is prepared and heated in a sealed container to prepare a urea aqueous solution to be added.
For example, 0.5 L of a 5.0 mol / L urea aqueous solution is prepared (room temperature) (II-A1) and heated in a sealed container at 100 ° C. for 6 hours (II-A2, II-A3). Thereafter, a urea aqueous solution (II-A5) to which a urea aqueous solution (II-A4) cooled to 20 ° C. is added can be obtained.
By heating the aqueous urea solution in a sealed container, the hydrolysis can proceed while retaining the solvent. Thereby, in addition to the carbon dioxide and ammonia produced by the hydrolysis of urea, the three components of urea are dissolved in the urea aqueous solution.
Instead of urea aqueous solution, urea salt (eg, nitrate, hydrochloride, etc.), N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, trimethylurea Tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea and the like can also be used. In addition, in the following Examples, although it shows about the case where basic carbonate is formed using urea aqueous solution, it is an example and it is not limited to this.
 2.希土類水溶液調製工程II-B
 希土類水溶液調製工程II-Bは、セリウムの含有量が95~100mol%である水溶液又はセリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種の元素を含有する水溶液を調製する。
 セリウムの含有量が95~100mol%である水溶液又はセリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種の元素を含有する水溶液中でのイオン濃度は、0.001mol/Lから0.1mol/Lで、尿素は前記イオン濃度の5~50倍の濃度が好ましい。
 これは、セリウムのみ、又はセリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種の元素の水溶液中でのイオン濃度及び尿素のイオン濃度を、当該範囲内とすることで、単分散性を示す球状の研磨材粒子を合成することができると考えられるためである。
 当該水溶液を調製するために用いることができるこれらの元素の塩として、硝酸塩、塩酸塩、硫酸塩等を用いることができるが、硝酸塩を使用することが好ましい。これにより、不純物の少ない研磨材を製造することができる。
2. Rare earth aqueous solution preparation process II-B
The rare earth aqueous solution preparation step II-B necessarily contains an aqueous solution or cerium having a cerium content of 95 to 100 mol%, and includes lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, and thulium. An aqueous solution containing at least one element selected from ytterbium and lutetium is prepared.
An aqueous solution or cerium having a cerium content of 95 to 100 mol% is necessarily contained, and at least one selected from lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium The ion concentration in the aqueous solution containing the seed element is 0.001 mol / L to 0.1 mol / L, and urea is preferably 5 to 50 times the ion concentration.
This is cerium alone or in an aqueous solution of at least one element selected from lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. This is because it is considered that the spherical abrasive particles exhibiting monodispersity can be synthesized by setting the ion concentration in and the ion concentration of urea within the above ranges.
As salts of these elements that can be used for preparing the aqueous solution, nitrates, hydrochlorides, sulfates and the like can be used, but it is preferable to use nitrates. Thereby, an abrasive with few impurities can be manufactured.
 3.尿素水溶液の添加・加熱撹拌工程II-C
 尿素水溶液調製工程II-Aで調製した尿素水溶液(II-A5)を希土類水溶液調製工程II-Bで、希土類水溶液(室温)(II-B1)を加熱(II-B2)した溶液(II-B3)に添加する(II-C1)。そして、当該混合した溶液を加熱しながら撹拌する(II-C2)。
 尿素水溶液と希土類水溶液を混合することで、研磨材粒子の核が生成し、当該混合溶液に分散する。研磨材粒子の核が分散する混合溶液を加熱撹拌することにより、当該研磨材の核が成長し、研磨材粒子の前駆体が得られる。
 ここでの、尿素水溶液の添加は、添加速度が速い方が好ましい。具体的には、尿素水溶液の添加速度が、0.5mL/min以上が好ましく、特に1.0mL/min以上が好ましい。尿素水溶液の添加速度を速めることで、尿素水溶液により生成した研磨材粒子の核が異方成長することなく球形状に成長することができると考えられる。
3. Addition of urea aqueous solution and heating and stirring process II-C
The urea aqueous solution (II-A5) prepared in the urea aqueous solution preparation step II-A is heated in the rare earth aqueous solution (room temperature) (II-B1) in the rare earth aqueous solution preparation step II-B (II-B2) (II-B3) (II-C1). Then, the mixed solution is stirred while being heated (II-C2).
By mixing the urea aqueous solution and the rare earth aqueous solution, nuclei of abrasive particles are generated and dispersed in the mixed solution. By heating and stirring the mixed solution in which the nuclei of the abrasive particles are dispersed, the nuclei of the abrasive grow and the precursor of the abrasive particles is obtained.
Here, the addition of the urea aqueous solution is preferably performed at a higher addition rate. Specifically, the addition rate of the urea aqueous solution is preferably 0.5 mL / min or more, and particularly preferably 1.0 mL / min or more. By increasing the addition rate of the aqueous urea solution, it is considered that the nuclei of the abrasive particles generated by the aqueous urea solution can grow in a spherical shape without anisotropic growth.
 当該研磨材粒子の前駆体は、希土類水溶液と尿素水溶液とが反応することで、塩基性炭酸塩として生成する(II-C3)。
 加熱する際の加熱温度は、80℃以上が好ましく、90℃以上が特に好ましい。また、撹拌時間は1時間以上10時間以下が好ましく、1時間以上3時間以下が特に好ましい。なお、加熱温度及び撹拌時間は、目的とする粒子径に合わせて適宜調整することができる。
 また、加熱撹拌の際には、十分な撹拌効率を得られれば、特に撹拌機の形状等は指定しないが、より高い撹拌効率を得るためには、ローター・ステータータイプの撹拌機を使用することが好ましい。
The precursor of the abrasive particles is produced as a basic carbonate by reacting the rare earth aqueous solution and the urea aqueous solution (II-C3).
The heating temperature for heating is preferably 80 ° C. or higher, particularly preferably 90 ° C. or higher. The stirring time is preferably 1 hour or more and 10 hours or less, and particularly preferably 1 hour or more and 3 hours or less. In addition, heating temperature and stirring time can be suitably adjusted according to the target particle diameter.
Also, when sufficient stirring efficiency is obtained during heating and stirring, the shape of the stirrer is not specified, but in order to obtain higher stirring efficiency, a rotor / stator type stirrer should be used. Is preferred.
 4.固液分離工程II-D
 加熱撹拌した後、生成した沈殿(研磨材微粒子の前駆体)を溶液と分離する固液分離を行う。固液分離の方法は、一般的な方法でよく、例えば、フィルター等を使用して濾過により研磨材粒子の前駆体を得ることができる。
4). Solid-liquid separation process II-D
After heating and stirring, solid-liquid separation is performed to separate the generated precipitate (precursor of abrasive fine particles) from the solution. The solid-liquid separation method may be a general method. For example, a precursor of abrasive particles can be obtained by filtration using a filter or the like.
 5.焼成工程II-E
 焼成工程II-Eは、固液分離工程II-Dにより得られた研磨材粒子の前駆体を空気中若しくは酸化性雰囲気中で、400℃以上で焼成する。焼成された研磨材粒子の前駆体は、酸化物となり、酸化セリウムを含有する研磨材粒子となる。
 なお、必要に応じて焼成する前に水又はアルコール等で洗浄、乾燥を行ってから焼成してもよい。
 焼成を経て冷却することにより、研磨材粒子を安定させた後、当該研磨材粒子を含有する研磨材として回収することができる。
 当該研磨材の製造方法を使用して研磨材を製造することで、異方成長した研磨材粒子をほとんど含まない、球形状の研磨材粒子を含有する研磨材を得ることができる。
 本発明の研磨材は、当該研磨材粒子を50質量%以上含有し、好ましくは70質量%以上含有し、90質量%以上含有することが特に好ましい。これにより、研磨による表面粗さが小さい研磨材を得ることができる。
5. Firing step II-E
In the firing step II-E, the precursor of the abrasive particles obtained in the solid-liquid separation step II-D is fired at 400 ° C. or higher in air or in an oxidizing atmosphere. The precursor of the baked abrasive particle becomes an oxide and becomes an abrasive particle containing cerium oxide.
In addition, you may bake, after washing | cleaning and drying with water or alcohol before baking as needed.
By cooling after firing, the abrasive particles can be stabilized and then recovered as an abrasive containing the abrasive particles.
By producing an abrasive using the abrasive production method, an abrasive containing spherical abrasive particles that hardly contains anisotropically grown abrasive particles can be obtained.
The abrasive of the present invention contains 50% by mass or more of the abrasive particles, preferably 70% by mass or more, and particularly preferably 90% by mass or more. Thereby, the abrasive | polishing material with the small surface roughness by grinding | polishing can be obtained.
 《研磨材の製造方法3》
 以下に研磨材の製造方法3を示す。
 当該研磨材の製造方法は、少なくとも下記工程1~工程5を含み、かつ少なくとも下記工程2~工程3までの間、下記水溶液又は反応液に炭酸ガスを連続的若しくは断続的に導入することが好ましい。
 工程1:セリウム(Ce)を含有する水溶液を調製し加熱する工程
 工程2:前記工程1において加熱された前記水溶液に沈殿剤を添加して反応液を調製する工程
 工程3:前記反応液を加熱撹拌して研磨材粒子前駆体を生成させる工程
 工程4:前記工程3において生成した研磨材粒子前駆体を反応液から分離する工程
 工程5:前記工程4で分離して得られた前記研磨材粒子前駆体を酸化性雰囲気中で焼成して研磨材粒子を形成させる工程
<< Abrasive Material Production Method 3 >>
The abrasive production method 3 is shown below.
The method for producing the abrasive preferably includes at least the following steps 1 to 5 and introduces carbon dioxide gas continuously or intermittently into the following aqueous solution or reaction solution at least during the following steps 2 to 3. .
Step 1: Step of preparing and heating an aqueous solution containing cerium (Ce) Step 2: Step of preparing a reaction solution by adding a precipitant to the aqueous solution heated in Step 1 Step 3: Heating the reaction solution Step of stirring to generate abrasive particle precursor Step 4: Separating the abrasive particle precursor generated in Step 3 from the reaction solution Step 5: The abrasive particle obtained by separating in Step 4 A step of firing the precursor in an oxidizing atmosphere to form abrasive particles
 本発明の研磨材の製造方法はおおむね以下の五つの工程1(III-A)~工程5(III-E)からなる(図7参照)。炭酸ガスの導入(III-C1)は、工程1(III-A)~工程4(III-D)までの間、連続的若しくは断続的に導入してもよく、少なくとも工程2(III-B)~工程3(III-C)までの間導入することを特徴とする。
 炭酸ガスを連続的若しくは断続的に水溶液又は反応液に導入することで、炭酸イオン濃度を所望の範囲内に制御することができる。
 ここで、連続的とは、炭酸ガスの導入を開始から終了までの間、一定の流量及び圧力で反応液に導入することをいう。
 一方、断続的とは、炭酸ガスの導入を開始から終了までの間、所定の流量及び圧力で間隔をあけて反応液に導入することをいう。なお、当該間隔は、流量及び圧力に合わせて適宜設定することができる。
 具体的には、工程2(III-B)で沈殿剤を添加する直前の、水溶液又は反応液中の炭酸イオン濃度が、50~1600mg/Lの範囲内であることが、反応液に十分な量の炭酸ガスを導入することができ、炭酸ガスの供給量を制御できる点で好ましい。
The method for producing an abrasive of the present invention generally comprises the following five steps 1 (III-A) to 5 (III-E) (see FIG. 7). Carbon dioxide gas (III-C1) may be introduced continuously or intermittently from step 1 (III-A) to step 4 (III-D), and at least step 2 (III-B) It is characterized in that it is introduced for up to Step 3 (III-C).
By introducing carbon dioxide gas continuously or intermittently into the aqueous solution or reaction solution, the carbonate ion concentration can be controlled within a desired range.
Here, “continuous” means introducing carbon dioxide into the reaction solution at a constant flow rate and pressure from the start to the end.
On the other hand, intermittent means that the introduction of carbon dioxide gas is introduced into the reaction solution at a predetermined flow rate and pressure from the start to the end. In addition, the said space | interval can be suitably set according to a flow volume and a pressure.
Specifically, it is sufficient that the carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in Step 2 (III-B) is in the range of 50 to 1600 mg / L. An amount of carbon dioxide gas can be introduced, which is preferable in that the supply amount of carbon dioxide gas can be controlled.
 また、工程2(III-B)で沈殿剤を添加する直前の、水溶液又は反応液中の炭酸イオン濃度が、58~1569mg/Lの範囲内であることが、本発明の効果をより顕著にするために好ましい。 Further, it is more prominent that the carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in Step 2 (III-B) is in the range of 58 to 1569 mg / L. This is preferable.
 1.工程1(希土類水溶液調製工程III-A)
 工程1(希土類水溶液調製工程III-A)は、セリウム(Ce)を含有する水溶液(III-A1)を調製し、加熱(III-A2)し、90℃の希土類水溶液(III-A3)を得る。
 具体的には、まず、セリウムを含有する水溶液を調製する。
 例えば、セリウムの含有量が、水溶液に含有される希土類元素の全体量に対して、95~100mol%である水溶液又はセリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムからなる14種類の希土類元素のうちから選ばれる少なくとも1種の元素を含有する水溶液を調製する。
1. Step 1 (rare earth aqueous solution preparation step III-A)
In step 1 (rare earth aqueous solution preparation step III-A), an aqueous solution (III-A1) containing cerium (Ce) is prepared and heated (III-A2) to obtain a rare earth aqueous solution (III-A3) at 90 ° C. .
Specifically, first, an aqueous solution containing cerium is prepared.
For example, an aqueous solution or cerium in which the cerium content is 95 to 100 mol% with respect to the total amount of rare earth elements contained in the aqueous solution, and lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium An aqueous solution containing at least one element selected from 14 kinds of rare earth elements consisting of dysprosium, holmium, erbium, thulium, ytterbium and lutetium is prepared.
 工程1(希土類水溶液調製工程III-A)により調製される水溶液は、下記要件1a~要件3aを満たすことが、速い研磨速度と傷の発生が起こりにくい球形状の研磨材粒子を作製できる点で好ましい。
 要件1a:前記水溶液が、前記セリウムに加えて、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムからなる14種類の希土類元素のうちから選ばれる少なくとも1種類の元素を含有する。
 要件2a:前記水溶液に含有されるセリウムと、当該水溶液に含有される、ランタン、プラセオジム、ネオジム、サマリウム及びユウロピウムから選ばれる少なくとも1種類の元素との含有量の合計が、前記水溶液に含有される希土類元素の全体量に対して、81mol%以上である。
 要件3a:前記水溶液に含有される、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、前記水溶液に含有される希土類元素の全体量に対して、19mol%以下である。
The aqueous solution prepared by the step 1 (rare earth aqueous solution preparation step III-A) satisfies the following requirements 1a to 3a in that it can produce spherical abrasive particles with a high polishing rate and less scratches. preferable.
Requirement 1a: In addition to cerium, the aqueous solution is selected from the 14 rare earth elements consisting of lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. Contains at least one element selected.
Requirement 2a: The total content of cerium contained in the aqueous solution and at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium contained in the aqueous solution is contained in the aqueous solution. It is 81 mol% or more with respect to the whole quantity of rare earth elements.
Requirement 3a: The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the whole of the rare earth elements contained in the aqueous solution It is 19 mol% or less with respect to quantity.
 また、工程1(希土類水溶液調製工程III-A)により調製される水溶液は、下記要件1b~要件3bを満たすことが、セリウムの含有量が多く、研磨性能が優れた球形状の研磨材粒子を作製することができる点で好ましい。
 要件1b:前記水溶液が、前記セリウムに加えて、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムからなる9種類の希土類元素のうちから選ばれる少なくとも1種類の元素を含有する。
 要件2b:前記水溶液のセリウムの含有量が、前記水溶液に含有される希土類元素の全体量に対して、81mol%以上である。
 要件3b:前記水溶液に含有される、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、前記水溶液に含有される希土類元素の全体量に対して、19mol%以下である。
In addition, the aqueous solution prepared by Step 1 (rare earth aqueous solution preparation step III-A) satisfies the following requirements 1b to 3b, so that spherical abrasive particles having a high cerium content and excellent polishing performance are obtained. It is preferable in that it can be manufactured.
Requirement 1b: In addition to the cerium, the aqueous solution contains at least one element selected from nine kinds of rare earth elements consisting of yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. .
Requirement 2b: The content of cerium in the aqueous solution is 81 mol% or more with respect to the total amount of rare earth elements contained in the aqueous solution.
Requirement 3b: The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the entire rare earth element contained in the aqueous solution It is 19 mol% or less with respect to quantity.
 また、工程1(希土類水溶液調製工程III-A)により調製される水溶液は、下記要件1c~要件3cを満たすことが、セリウムの含有量がさらに多く、研磨性能がより優れた球形状の研磨材粒子を作製することができる点で好ましい。
 要件1c:前記水溶液が、前記セリウムに加えて、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムからなる9種類の希土類元素のうちから選ばれる少なくとも1種類の元素を含有する。
 要件2c:前記水溶液のセリウムの含有量が、前記水溶液に含有される希土類元素の全体量に対して、90mol%以上である。
 要件3c:前記水溶液に含有される、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、前記水溶液に含有される希土類元素の全体量に対して、10mol%以下である。
In addition, the aqueous solution prepared in Step 1 (rare earth aqueous solution preparation step III-A) satisfies the following requirements 1c to 3c, and has a spherical content with a higher cerium content and better polishing performance. It is preferable at the point which can produce particle | grains.
Requirement 1c: In addition to the cerium, the aqueous solution contains at least one element selected from nine kinds of rare earth elements consisting of yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. .
Requirement 2c: The content of cerium in the aqueous solution is 90 mol% or more with respect to the total amount of rare earth elements contained in the aqueous solution.
Requirement 3c: The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the whole of the rare earth elements contained in the aqueous solution It is 10 mol% or less with respect to the quantity.
 さらに、水溶液のセリウムの含有量は、水溶液に含有される希土類元素の全体量に対して、95~100mol%の範囲内であることが、セリウムの含有量が高く、他の元素を含まないことから、少ない生産工程で研磨材を作製することができる点で好ましい。 Furthermore, the cerium content of the aqueous solution should be within the range of 95 to 100 mol% with respect to the total amount of rare earth elements contained in the aqueous solution, and the cerium content should be high and other elements should not be included. Therefore, it is preferable in that the abrasive can be produced with a small number of production steps.
 また、セリウムの含有量が、水溶液に含有される希土類元素の全体量に対して、95~100mol%である水溶液又はセリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種の元素を含有する水溶液中でのイオン濃度は、0.001mol/Lから0.1mol/Lで、尿素は前記イオン濃度の5~50倍の濃度が好ましい。
 これは、セリウムのみ、又はセリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種の元素の水溶液中でのイオン濃度及び尿素のイオン濃度を、当該範囲内とすることで、単分散性を示す球状の研磨材粒子を合成することができると考えられるためである。
 当該水溶液を調製するために用いることができるこれらの元素の塩として、硝酸塩、塩酸塩、硫酸塩等を用いることができるが、硝酸塩を使用することが好ましい。これにより、不純物の少ない研磨材を製造することができる。
In addition, the cerium content always includes an aqueous solution or cerium that is 95 to 100 mol% with respect to the total amount of rare earth elements contained in the aqueous solution, and includes lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium. The ion concentration in the aqueous solution containing at least one element selected from dysprosium, holmium, erbium, thulium, ytterbium and lutetium is 0.001 mol / L to 0.1 mol / L, and urea has the above ion concentration. A concentration of 5 to 50 times is preferable.
This is cerium alone or in an aqueous solution of at least one element selected from lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. This is because it is considered that the spherical abrasive particles exhibiting monodispersity can be synthesized by setting the ion concentration in and the ion concentration of urea within the above ranges.
As salts of these elements that can be used for preparing the aqueous solution, nitrates, hydrochlorides, sulfates and the like can be used, but it is preferable to use nitrates. Thereby, an abrasive with few impurities can be manufactured.
 2.工程2(沈殿剤添加工程III-B)
 工程2(沈殿剤添加工程III-B)では、工程1(III-A)において加熱された水溶液(III-A3)に沈殿剤(III-B3)を添加して反応液を調製する。
 沈殿剤は、尿素又は尿素系化合物であることが、加水分解反応により二酸化炭素とアンモニアを供給できる点で好ましい。
 具体的には、工程2(沈殿剤添加工程III-B)では、例えば、所定の濃度の尿素水溶液をあらかじめ室温で調製し(III-B1)、当該尿素水溶液を加熱(III-B2)して添加する。
 例えば、5.0mol/Lの尿素水溶液を0.5L調製し、60℃まで加熱する(III-B3)。
 60℃以下で加熱することにより、尿素を加水分解することなく保持することができ、かつ、工程1において加熱された水溶液に添加する際に反応液の温度を極端に低下させることなく反応を進めることができる。
2. Step 2 (Precipitating agent addition step III-B)
In step 2 (precipitating agent adding step III-B), a precipitating agent (III-B3) is added to the aqueous solution (III-A3) heated in step 1 (III-A) to prepare a reaction solution.
The precipitating agent is preferably urea or a urea-based compound in that carbon dioxide and ammonia can be supplied by a hydrolysis reaction.
Specifically, in step 2 (precipitating agent adding step III-B), for example, a urea aqueous solution having a predetermined concentration is prepared in advance at room temperature (III-B1), and the urea aqueous solution is heated (III-B2). Added.
For example, 0.5 L of a 5.0 mol / L urea aqueous solution is prepared and heated to 60 ° C. (III-B3).
By heating at 60 ° C. or lower, urea can be maintained without hydrolysis, and the reaction proceeds without drastically reducing the temperature of the reaction liquid when added to the heated aqueous solution in Step 1. be able to.
 なお、尿素水溶液の代わりに、尿素の塩(例えば、硝酸塩、塩酸塩等)、N,N′-ジメチルアセチル尿素、N,N′-ジベンゾイル尿素、ベンゼンスルホニル尿素、p-トルエンスルホニル尿素、トリメチル尿素、テトラエチル尿素、テトラメチル尿素、トリフェニル尿素、テトラフェニル尿素、N-ベンゾイル尿素、メチルイソ尿素、エチルイソ尿素、炭酸水素アンモニウム等の尿素系化合物により調製する水溶液を使用することもできる。なお、以下の実施例において、尿素水溶液を用いて塩基性炭酸塩を形成させる場合について示すが、一例であって、これに限定されるものではない。
 ここでの、尿素水溶液の添加は、添加速度が速い方が好ましい。具体的には、前記尿素水溶液の添加速度が、0.5L/min以上が好ましく、特に1.0L/min以上が好ましい。尿素水溶液の添加速度を速めることで、尿素水溶液により生成した研磨材粒子の核が異方成長することなく球形状に成長することができると考えられる。
Instead of urea aqueous solution, urea salt (eg, nitrate, hydrochloride, etc.), N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, trimethylurea An aqueous solution prepared from a urea-based compound such as tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea, ammonium hydrogencarbonate, or the like can also be used. In addition, in the following Examples, although it shows about the case where basic carbonate is formed using urea aqueous solution, it is an example and it is not limited to this.
Here, the addition of the urea aqueous solution is preferably performed at a higher addition rate. Specifically, the addition rate of the urea aqueous solution is preferably 0.5 L / min or more, and particularly preferably 1.0 L / min or more. By increasing the addition rate of the aqueous urea solution, it is considered that the nuclei of the abrasive particles generated by the aqueous urea solution can grow in a spherical shape without anisotropic growth.
 3.工程3(研磨材粒子前駆体生成工程III-C)
 工程3(研磨材粒子前駆体生成工程III-C)では、反応液を加熱撹拌(III-C2)して研磨材粒子前駆体を生成させる。
 具体的には、当該混合した溶液を加熱しながら撹拌する。
 尿素水溶液と希土類水溶液を混合することで、研磨材粒子の核が生成し、当該混合溶液に分散する。研磨材粒子の核が分散する混合溶液を加熱撹拌することにより、当該研磨材の核が成長し、研磨材粒子の前駆体が得られる。
3. Step 3 (Abrasive Particle Precursor Generation Step III-C)
In Step 3 (Abrasive Particle Precursor Generation Step III-C), the reaction liquid is heated and stirred (III-C2) to generate an abrasive particle precursor.
Specifically, the mixed solution is stirred while being heated.
By mixing the urea aqueous solution and the rare earth aqueous solution, nuclei of abrasive particles are generated and dispersed in the mixed solution. By heating and stirring the mixed solution in which the nuclei of the abrasive particles are dispersed, the nuclei of the abrasive grow and the precursor of the abrasive particles is obtained.
 当該研磨材粒子の前駆体は、希土類水溶液と尿素水溶液とが反応することで、塩基性炭酸塩として生成する(III-C3)。
 加熱する際の加熱温度は、80℃以上が好ましく、90℃以上が特に好ましい。また、撹拌時間は1時間以上10時間以下が好ましく、1時間以上3時間以下が特に好ましい。なお、加熱温度及び撹拌時間は、目的とする粒子径に合わせて適宜調整することができる。
 また、加熱撹拌の際(III-C2)には、十分な撹拌効率を得られれば、特に撹拌機の形状等は指定しないが、より高い撹拌効率を得るためには、ローター・ステータータイプの撹拌機を使用することが好ましい。
The precursor of the abrasive particles is produced as a basic carbonate by reacting a rare earth aqueous solution and a urea aqueous solution (III-C3).
The heating temperature for heating is preferably 80 ° C. or higher, particularly preferably 90 ° C. or higher. The stirring time is preferably 1 hour or more and 10 hours or less, and particularly preferably 1 hour or more and 3 hours or less. In addition, heating temperature and stirring time can be suitably adjusted according to the target particle diameter.
In addition, during heating and stirring (III-C2), if sufficient stirring efficiency can be obtained, the shape of the stirrer is not particularly specified, but in order to obtain higher stirring efficiency, a rotor / stator type stirring is performed. It is preferable to use a machine.
 4.工程4(固液分離工程III-D)
 工程4(固液分離工程III-D)では、加熱撹拌した後、生成した沈殿(研磨材微粒子の前駆体)を反応液と分離する固液分離操作を行う。固液分離操作の方法は、一般的な方法でよく、例えば、フィルター等を使用して濾過により研磨材粒子の前駆体を得ることができる。
4). Step 4 (Solid-liquid separation step III-D)
In step 4 (solid-liquid separation step III-D), after stirring with heating, a solid-liquid separation operation is performed to separate the produced precipitate (precursor of abrasive fine particles) from the reaction solution. The method of solid-liquid separation operation may be a general method. For example, a precursor of abrasive particles can be obtained by filtration using a filter or the like.
 5.工程5(焼成工程III-E)
 工程5(焼成工程III-E)では、工程4(固液分離工程III-D)により得られた研磨材粒子の前駆体を酸化性雰囲気中で、400℃以上で焼成する。焼成された研磨材粒子の前駆体は、酸化物となり、酸化セリウムを含有する研磨材粒子となる。
 なお、必要に応じて焼成する前に水又はアルコール等で洗浄、乾燥を行ってから焼成してもよい。
 焼成を経て冷却することにより、研磨材粒子を安定させた後、当該研磨材粒子を含有する研磨材として回収することができる。
 当該研磨材の製造方法を使用して研磨材を製造することで、異方成長した研磨材粒子をほとんど含まない、球形状の研磨材粒子を含有する研磨材を得ることができる。
 本発明の研磨材は、当該研磨材粒子を50質量%以上含有し、好ましくは70質量%以上含有し、90質量%以上含有することが特に好ましい。これにより、研磨による表面粗さが小さい研磨材を得ることができる。
5. Step 5 (Firing Step III-E)
In step 5 (firing step III-E), the precursor of the abrasive particles obtained in step 4 (solid-liquid separation step III-D) is fired at 400 ° C. or higher in an oxidizing atmosphere. The precursor of the baked abrasive particle becomes an oxide and becomes an abrasive particle containing cerium oxide.
In addition, you may bake, after washing | cleaning and drying with water or alcohol before baking as needed.
By cooling after firing, the abrasive particles can be stabilized and then recovered as an abrasive containing the abrasive particles.
By producing an abrasive using the abrasive production method, an abrasive containing spherical abrasive particles that hardly contains anisotropically grown abrasive particles can be obtained.
The abrasive of the present invention contains 50% by mass or more of the abrasive particles, preferably 70% by mass or more, and particularly preferably 90% by mass or more. Thereby, the abrasive | polishing material with the small surface roughness by grinding | polishing can be obtained.
 《研磨材の製造方法4》
 本発明の球状研磨材粒子の製造方法は、酸化セリウムを含有する球状研磨材粒子の製造方法であって、
 セリウムを含む希土類元素含有化合物の水溶液中に尿素類水溶液を添加して研磨材前駆体粒子を形成する工程と、
 当該研磨材前駆体粒子を焼成する工程とを少なくとも有し、かつ
 前記研磨材前駆体粒子を形成する工程における反応初期の粒子の核形成過程において加熱分解した尿素類水溶液を添加し、
 前記核形成過程の後の粒子の成長過程において尿素類水溶液又は加熱分解した尿素類水溶液を添加することを特徴とする。
<< Abrasive Material Production Method 4 >>
The method for producing spherical abrasive particles of the present invention is a method for producing spherical abrasive particles containing cerium oxide,
Adding an aqueous urea solution to an aqueous solution of a rare earth element-containing compound containing cerium to form abrasive precursor particles;
Adding at least a step of firing the abrasive precursor particles, and adding an aqueous urea solution that is thermally decomposed in the nucleation process of the particles in the initial stage of the reaction in the step of forming the abrasive precursor particles,
In the grain growth process after the nucleation process, a urea aqueous solution or a thermally decomposed urea aqueous solution is added.
 本発明は、半導体デバイスやガラスの研磨加工において、高精度に平坦性を維持しつつ、十分な研磨速度を得るために物理的な作用と化学的な作用の両方で研磨を行う、化学機械研磨(CMP;Chemical Mechanical Polishing)が可能な酸化セリウムを含有する球状研磨材粒子の製造方法である。 The present invention is a chemical mechanical polishing method for polishing semiconductor devices and glass, in which polishing is performed by both physical action and chemical action in order to obtain a sufficient polishing rate while maintaining flatness with high accuracy. This is a method for producing spherical abrasive particles containing cerium oxide capable of being subjected to CMP (Chemical Mechanical Polishing).
 本発明において、球状研磨材粒子は、希土類塩水溶液と尿素類水溶液を混合・加熱することにより反応液中に生成する研磨材前駆体粒子を焼成して得られる。なお本発明において反応液とは、希土類塩水溶液と尿素類水溶液を混合した液をいう。 In the present invention, the spherical abrasive particles are obtained by firing the abrasive precursor particles generated in the reaction liquid by mixing and heating the rare earth salt aqueous solution and the urea aqueous solution. In the present invention, the reaction liquid refers to a liquid obtained by mixing a rare earth salt aqueous solution and a urea aqueous solution.
 本発明の球状研磨材粒子の製造方法は、少なくとも希土類塩水溶液中に尿素類水溶液を添加して研磨材前駆体粒子を形成する工程と当該研磨材前駆体粒子を焼成する工程とを有するが、以下の5つの工程(1.尿素類水溶液調製工程IV-A、2.希土類塩水溶液調製工程IV-B、3.研磨材前駆体粒子を形成する工程IV-C、4.固液分離工程IV-D、5.焼成する工程IV-E(図8参照。))からなることが好ましい。 The method for producing spherical abrasive particles of the present invention includes a step of adding an aqueous urea solution in at least a rare earth salt aqueous solution to form abrasive precursor particles and a step of firing the abrasive precursor particles. The following five steps (1. Urea aqueous solution preparation step IV-A, 2. Rare earth salt aqueous solution preparation step IV-B, 3. Forming abrasive precursor particles IV-C, 4. Solid-liquid separation step IV -D, 5. The step IV-E of firing (see FIG. 8)) is preferable.
 1.尿素類水溶液調製工程IV-A
 尿素類水溶液調製工程IV-Aは、所定の濃度の尿素類水溶液(IV-A1a)を調製する、又は、密閉容器内で加熱することにより、添加する加熱分解した尿素類水溶液(分解尿素類水溶液IV-A1b)を調製する工程である。
 例えば、尿素水溶液を密閉容器内で加熱することにより、溶媒を保持したまま加水分解を進めることができる。これにより、当該尿素水溶液中には、尿素の加水分解により生じた二酸化炭素及びアンモニアに加え、尿素の三成分が溶存している。
 二酸化炭素は、溶液中炭酸イオンとして存在し、後述する塩基性炭酸塩である研磨材前駆体粒子の原料となる。
 本発明において「加熱分解した尿素類水溶液」とは、尿素類が加熱により加水分解し炭酸イオンを含む尿素類水溶液をいう。
1. Urea aqueous solution preparation process IV-A
In the urea aqueous solution preparation step IV-A, a urea aqueous solution (IV-A1a) having a predetermined concentration is prepared or heated by being heated in a sealed container to add a thermally decomposed urea aqueous solution (decomposed urea aqueous solution). This is a step for preparing IV-A1b).
For example, by heating an aqueous urea solution in a hermetically sealed container, hydrolysis can proceed while retaining the solvent. Thereby, in addition to the carbon dioxide and ammonia produced by the hydrolysis of urea, the three components of urea are dissolved in the urea aqueous solution.
Carbon dioxide exists as carbonate ions in the solution and becomes a raw material for abrasive precursor particles, which are basic carbonates described later.
In the present invention, “thermally decomposed urea aqueous solution” refers to an aqueous urea solution containing carbonate ions as a result of hydrolysis of urea by heating.
 炭酸イオンは、水溶液中に炭酸イオン濃度として2.5~50mmol/L含まれることが好ましい。より好ましくは10~30mmol/Lの範囲内である。
 例えば、5.0mol/Lの尿素類水溶液を0.5L調製し、密閉容器内で100℃、6時間加熱する。その後、20℃まで冷ました尿素類水溶液を添加する尿素類水溶液とすることができる。
 加水分解の程度は、密閉容器内で加熱する温度と時間等で制御することができる。
 本発明においては、このような尿素類が加水分解し炭酸イオンを含む水溶液を「分解尿素類液」ともいう。
Carbonate ions are preferably contained in the aqueous solution at a carbonate ion concentration of 2.5 to 50 mmol / L. More preferably, it is in the range of 10 to 30 mmol / L.
For example, 0.5 L of a 5.0 mol / L urea aqueous solution is prepared and heated in a sealed container at 100 ° C. for 6 hours. Then, it can be set as the urea aqueous solution which adds the urea aqueous solution cooled to 20 degreeC.
The degree of hydrolysis can be controlled by the temperature and time of heating in the sealed container.
In the present invention, such an aqueous solution in which ureas are hydrolyzed and contains carbonate ions is also referred to as “decomposed urea liquid”.
 尿素類としては、尿素の他に、尿素の塩(例えば、硝酸塩、塩酸塩等)、N,N′-ジメチルアセチル尿素、N,N′-ジベンゾイル尿素、ベンゼンスルホニル尿素、p-トルエンスルホニル尿素、トリメチル尿素、テトラエチル尿素、テトラメチル尿素、トリフェニル尿素、テトラフェニル尿素、N-ベンゾイル尿素、メチルイソ尿素、エチルイソ尿素、炭酸アンモニウム、炭酸水素アンモニウム等を挙げることができる。この中では尿素が好ましい。なお、以下の実施例において、尿素水溶液を用いて塩基性炭酸塩を形成させる場合について示すが、一例であって、これに限定されるものではない。 As ureas, in addition to urea, salts of urea (eg, nitrates, hydrochlorides, etc.), N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, Examples thereof include trimethylurea, tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea, ammonium carbonate, and ammonium bicarbonate. Of these, urea is preferred. In addition, in the following Examples, although it shows about the case where basic carbonate is formed using urea aqueous solution, it is an example and it is not limited to this.
 なお、分解尿素類液中の炭酸イオン濃度は、室温(25℃)で測定した値である。炭酸イオン濃度はイオンクロマトグラフィー法で測定することができる。例えば、DIONEX社製イオンクロマトグラフ、DX500等を用いて測定することができる。 The carbonate ion concentration in the decomposed urea solution is a value measured at room temperature (25 ° C.). The carbonate ion concentration can be measured by an ion chromatography method. For example, it can be measured using an ion chromatograph manufactured by DIONEX, DX500 or the like.
 2.希土類塩水溶液調製工程IV-B
 希土類塩水溶液調製工程IV-Bは、セリウムを含む希土類元素含有化合物の水溶液(希土類塩水溶液)を調製する工程である。室温の希土類塩水溶液(IV-B1)を加熱し(IV-B2)、90℃の希土類塩水溶液を調整する(IV-B3)。
2. Rare earth salt aqueous solution preparation process IV-B
The rare earth salt aqueous solution preparation step IV-B is a step of preparing an aqueous solution of a rare earth element-containing compound containing cerium (rare earth salt aqueous solution). The aqueous rare earth salt solution (IV-B1) at room temperature is heated (IV-B2) to prepare a rare earth salt aqueous solution at 90 ° C. (IV-B3).
 具体的には、希土類塩水溶液は、セリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム及びユウロピウムから選ばれる少なくとも1種類の元素との、含有量の合計が、81mol%以上であり、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、19mol%以下となるような組成の水溶液を調製することが好ましい。 Specifically, the rare earth salt aqueous solution always contains cerium, and the total content of at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium is 81 mol% or more, and yttrium, gadolinium. It is preferable to prepare an aqueous solution having such a composition that the content of at least one element selected from terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium is 19 mol% or less.
 具体的には、希土類塩水溶液は、セリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム及びユウロピウムから選ばれる少なくとも1種類の元素との、含有量の合計が全希土類元素に対して、81mol%以上であり、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、全希土類元素に対して19mol%以下である組成の水溶液であることが好ましい。 Specifically, the rare earth salt aqueous solution always contains cerium, and the total content of at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium is 81 mol% or more based on the total rare earth elements. And an aqueous solution having a composition in which the content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium is 19 mol% or less with respect to the total rare earth elements Is preferred.
 これらの液の水溶液中でのイオン濃度は、0.001~50mol/Lであり、尿素類は前記イオン濃度の5~50倍の濃度が好ましい。 The ion concentration of these solutions in an aqueous solution is 0.001 to 50 mol / L, and ureas are preferably 5 to 50 times the ion concentration.
 これは、セリウムのみ、又はセリウムを必ず含み、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種の元素の水溶液中でのイオン濃度及び尿素類のイオン濃度を、当該範囲内とすることで、単分散性を示す球状の研磨材粒子を合成することができると考えられるためである。 This is cerium alone or in an aqueous solution of at least one element selected from lanthanum, praseodymium, neodymium, samarium, europium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. This is because it is considered that spherical abrasive particles exhibiting monodispersity can be synthesized by setting the ion concentration in the above and the ion concentration of urea within the above range.
 当該水溶液を調製するために用いることができるこれらの元素の塩として、硝酸塩、塩酸塩、硫酸塩等を用いることができるが、硝酸塩を使用することが好ましい。これにより、不純物の少ない研磨材を製造することができる。 As salts of these elements that can be used for preparing the aqueous solution, nitrates, hydrochlorides, sulfates and the like can be used, but it is preferable to use nitrates. Thereby, an abrasive with few impurities can be manufactured.
 3.研磨材前駆体粒子を形成する工程IV-C
 研磨材前駆体粒子を形成する工程IV-Cは、セリウムを含む希土類元素含有化合物の水溶液(希土類塩水溶液IV-B3)中に尿素類水溶液等を添加して研磨材前駆体粒子を形成する工程である。
3. Step IV-C for forming abrasive precursor particles
Step IV-C of forming abrasive precursor particles is a step of forming abrasive precursor particles by adding an aqueous urea solution or the like to an aqueous solution of a rare earth element-containing compound containing cerium (rare earth salt aqueous solution IV-B3). It is.
 本発明において、研磨材前駆体粒子を形成する工程IV-Cでは、反応初期の粒子の核形成過程(IV-C1a)において加熱分解した尿素類水溶液を希土類塩水溶液の添加し、核形成過程(IV-C1a)の後の粒子の成長過程(IV-C1b)において尿素類水溶液又は加熱分解した尿素類水溶液を添加することを特徴としている。 In the present invention, in the step IV-C of forming abrasive precursor particles, the aqueous urea solution decomposed in the nucleation step (IV-C1a) of the initial reaction particles is added to the rare earth salt solution, and the nucleation step ( In the grain growth process (IV-C1b) after IV-C1a), an aqueous urea solution or an aqueous urea solution decomposed by heat decomposition is added.
 本発明者は、球形状研磨材粒子の形状と粒子成長の関係等について検討した結果、研磨材前駆体粒子を形成する工程を反応初期の核形成工程(IV-C1a)と生成した核を成長させる粒子の成長過程(IV-C1b)に分け、核形成過程(IV-C1a)において研磨材前駆体粒子の原料となる加熱分解した尿素類の水溶液を、希土類塩水溶液に添加し、研磨材前駆体粒子形成の早い段階で核を形成しそれを成長させることが、球形度が高く単分散性に優れた球状研磨材粒子を製造する上で重要であることを見出し本発明に至った。 As a result of studying the relationship between the shape of spherical abrasive particles and particle growth, etc., the present inventor has developed a process for forming abrasive precursor particles as a nucleation step (IV-C1a) at the initial stage of reaction and a grown nucleus. In the nucleation process (IV-C1a), the thermally decomposed aqueous solution of ureas, which is the raw material of the abrasive precursor particles, is added to the rare earth salt aqueous solution. The inventors have found that it is important to form nuclei and grow them at an early stage of body particle formation in order to produce spherical abrasive particles having high sphericity and excellent monodispersibility.
 本発明の効果発現の作用機構については、明確にはなっていないが、球状の研磨材前駆体粒子を形成する際、核形成に必要な量の尿素類水溶液を反応のはじめにセリウムを含む希土類塩水溶液に添加することにより、粒径分布の揃った核粒子が生成すると考えられる。引き続き原料となる尿素類水溶液を添加することにより、粒径分布を維持しつつ単分散に優れた球状研磨材前駆体粒子が得られるようになったと考えられる。 Although the mechanism of action of the present invention is not clarified, when forming spherical abrasive precursor particles, a rare earth salt containing cerium is added at the beginning of the reaction with an aqueous urea solution in an amount necessary for nucleation. By adding to the aqueous solution, it is considered that core particles having a uniform particle size distribution are generated. It is considered that spherical abrasive precursor particles excellent in monodispersion can be obtained while maintaining the particle size distribution by subsequently adding the urea aqueous solution as a raw material.
 (i)核形成過程(IV-C1a)
 核形成過程(IV-C1a)では、尿素類が加水分解できる加熱した希土類塩水溶液に分解尿素類液(IV-A1a)を添加する。研磨材前駆体粒子形成の反応初期の粒子の核形成過程(IV-C1a)において、原料となる炭酸イオンを多く含有する分解尿素類液を添加して核形成することにより、短時間で核形成を行うことができる。このため従来の希土類塩水溶液と分解尿素類液を混合して、その後加熱することにより研磨材前駆体粒子を形成する場合に比べて、生成した核の粒径分布を従来より狭くできると考えられる。
(I) Nucleation process (IV-C1a)
In the nucleation process (IV-C1a), the decomposed urea solution (IV-A1a) is added to a heated rare earth salt aqueous solution capable of hydrolyzing ureas. Nucleation takes place in a short time by adding a decomposed urea solution containing a large amount of carbonate ions as a raw material in the particle nucleation process (IV-C1a) at the initial stage of the reaction for forming abrasive precursor particles. It can be performed. For this reason, it is considered that the particle size distribution of the produced nuclei can be made narrower than before, compared with the case where the abrasive precursor particles are formed by mixing a conventional rare earth salt aqueous solution and a decomposed urea solution and then heating the mixture. .
 核の大きさは10~300nm程度が好ましい。希土類塩水溶液と分解尿素類液の濃度、反応温度、分解尿素類液の分解の程度、分解尿素類液の添加速度及び添加量等を適宜制御することで行うことができる。核が形成したことは反応液が青色~白色に着色ないし濁ってくることから確認できる。粒子径が小さいときは青色に、大きくなるにつれ白色に観察される。
 核形成過程(IV-C1a)において添加する加熱分解した尿素類水溶液の添加速度は、加熱分解前の尿素類濃度に換算して反応液1Lに対して1分当たり0.01~50molの範囲内であることが好ましい。より好ましくは、添加速度が0.10~30molの範囲内である。
 添加速度は早いほうが生成した核の粒径分布が狭くなるが、早すぎると生成した核が凝集したり、また局所的な濃度分布が大きくなるため核が異方成長し、核の粒径分布が大きくなる場合があるためである。
 添加時間としては10分以内が好ましい。より好ましくは5分以内である。さらに好ましくは1分以内である。
The size of the nucleus is preferably about 10 to 300 nm. It can be carried out by appropriately controlling the concentration of the rare earth salt aqueous solution and the decomposed urea solution, the reaction temperature, the degree of decomposition of the decomposed urea solution, the addition rate and the added amount of the decomposed urea solution. The formation of nuclei can be confirmed by the reaction solution becoming colored or cloudy from blue to white. When the particle size is small, it is observed in blue, and as it increases, it is observed in white.
The addition rate of the thermally decomposed urea aqueous solution added in the nucleation process (IV-C1a) is within a range of 0.01 to 50 mol per minute per 1 liter of the reaction solution in terms of the urea concentration before the thermal decomposition. It is preferable that More preferably, the addition rate is in the range of 0.10 to 30 mol.
The faster the rate of addition, the narrower the particle size distribution of the produced nuclei, but if it is too early, the produced nuclei will aggregate or the local concentration distribution will become larger, causing the nuclei to grow anisotropically, resulting in a nuclear particle size distribution. This is because may increase.
The addition time is preferably within 10 minutes. More preferably, it is within 5 minutes. More preferably, it is within 1 minute.
 また、添加する加熱分解した尿素類水溶液の炭酸イオン濃度は、2.5~50mmol/Lの範囲内であることが好ましい。
 分解尿素類液中の尿素類の分解度は、0.5%以上であることが好ましい。さらには3%以上が好ましい。
 希土類塩水溶液と分解尿素類液が混合した反応液の温度は、尿素類が加水分解できる温度であることが好ましい。具体的には反応液の温度は75~100℃、好ましくは80~100℃、より好ましくは90~100℃の範囲内である。
Further, the carbonate ion concentration of the thermally decomposed aqueous urea solution to be added is preferably in the range of 2.5 to 50 mmol / L.
The degree of decomposition of ureas in the decomposed urea liquid is preferably 0.5% or more. Furthermore, 3% or more is preferable.
The temperature of the reaction solution in which the rare earth salt aqueous solution and the decomposed urea solution are mixed is preferably a temperature at which ureas can be hydrolyzed. Specifically, the temperature of the reaction solution is in the range of 75 to 100 ° C., preferably 80 to 100 ° C., more preferably 90 to 100 ° C.
 (ii)粒子の成長過程(IV-C1b)
 粒子の成長過程(IV-C1b)では、核形成過程(IV-C1a)で形成した核粒子をより大きな研磨材前駆体粒子に成長させる工程である。粒子成長過程(IV-C1a)は、核形成過程(IV-C1a)のあとに行われる。核形成過程(IV-C1a)で添加した分解尿素類水溶液(IV-A1a)の添加終了後、反応液が青色~白色に着色ないし濁ったあと、尿素類水溶液又は加熱分解した尿素類水溶液(IV-A1b)を添加することで粒子の成長過程を開始する。
(Ii) Particle growth process (IV-C1b)
The particle growth process (IV-C1b) is a process for growing the core particles formed in the nucleation process (IV-C1a) into larger abrasive precursor particles. The grain growth process (IV-C1a) is performed after the nucleation process (IV-C1a). After completion of the addition of the decomposed urea aqueous solution (IV-A1a) added in the nucleation process (IV-C1a), the reaction solution turns blue to white or becomes cloudy, and then the urea aqueous solution or the thermally decomposed urea aqueous solution (IV The grain growth process is started by adding -A1b).
 具体的には、分解尿素類水溶液(IV-A1a)の添加終了後、反応液が青色~白色に着色ないし濁ったことを確認したあと、約10分以内に、尿素類水溶液調製工程IV-Aで調製した尿素類水溶液又は加熱分解した尿素類水溶液を、希土類塩水溶液調製工程IV-Bで調製した希土類塩水溶液に添加する。当該混合した溶液を加熱しながら撹拌する。尿素水溶液と希土類塩水溶液を混合することで、当該研磨材の核が成長し、研磨材粒子の前駆体(希土類塩基性炭酸塩)が得られる(IV-C2)。 Specifically, after the addition of the decomposed urea aqueous solution (IV-A1a) is completed, after confirming that the reaction solution is colored or cloudy from blue to white, within about 10 minutes, the urea aqueous solution preparation step IV-A is performed. The urea aqueous solution prepared in step 1 or the thermally decomposed urea aqueous solution is added to the rare earth salt aqueous solution prepared in the rare earth salt aqueous solution preparation step IV-B. The mixed solution is stirred while heating. By mixing the urea aqueous solution and the rare earth salt aqueous solution, the core of the abrasive grows, and the precursor of the abrasive particles (rare earth basic carbonate) is obtained (IV-C2).
 粒子の成長過程(IV-C1b)では、新たな核を生成することは研磨材前駆体粒子の粒径分布を大きくすることになるので好ましくない。
 成長過程において添加する尿素類水溶液の濃度は、0.05~10mol/Lの範囲内であることが好ましい。
 また粒子の成長過程においてに添加する前記加熱分解した尿素類水溶液の炭酸イオン濃度が0.01~30mol/Lの範囲内であることが成長中の研磨材前駆体粒子の粒径分布を大きくしない観点から好ましい。
In the particle growth process (IV-C1b), it is not preferable to generate new nuclei because the particle size distribution of the abrasive precursor particles is increased.
The concentration of the aqueous urea solution added during the growth process is preferably in the range of 0.05 to 10 mol / L.
Further, the carbonate ion concentration of the thermally decomposed urea aqueous solution added during the particle growth process is in the range of 0.01 to 30 mol / L, so that the particle size distribution of the growing abrasive precursor particles is not increased. It is preferable from the viewpoint.
 希土類塩水溶液と分解尿素類水溶液が混合した反応液の温度は、尿素類が加水分解できる温度であることが好ましい。具体的には反応液の温度は75~100℃、好ましくは80~100℃、より好ましくは90~100℃の範囲内である。
 また、撹拌時間は1時間以上10時間以下が好ましく、1時間以上3時間以下が特に好ましい。なお、加熱温度及び撹拌時間は、目的とする粒子径に合わせて適宜調整することができる。
 なお、研磨材前駆体粒子を形成する工程における加熱撹拌の際には、十分な撹拌効率を得られれば、特に撹拌機の形状等は指定しないが、より高い撹拌効率を得るためには、ローター・ステータータイプの撹拌機を使用することが好ましい。
The temperature of the reaction solution in which the rare earth salt aqueous solution and the decomposed urea aqueous solution are mixed is preferably a temperature at which ureas can be hydrolyzed. Specifically, the temperature of the reaction solution is in the range of 75 to 100 ° C., preferably 80 to 100 ° C., more preferably 90 to 100 ° C.
The stirring time is preferably 1 hour or more and 10 hours or less, and particularly preferably 1 hour or more and 3 hours or less. In addition, heating temperature and stirring time can be suitably adjusted according to the target particle diameter.
In the case of heating and stirring in the step of forming abrasive precursor particles, the shape of the stirrer is not particularly specified as long as sufficient stirring efficiency is obtained, but in order to obtain higher stirring efficiency, the rotor It is preferable to use a stator type stirrer.
 4.固液分離工程IV-D
 加熱撹拌した後、生成した沈殿(研磨材微粒子の前駆体)を溶液と分離する固液分離を行う。固液分離の方法は、一般的な方法でよく、例えば、フィルター等を使用して濾過により研磨材粒子の前駆体を得ることができる。
4). Solid-liquid separation process IV-D
After heating and stirring, solid-liquid separation is performed to separate the generated precipitate (precursor of abrasive fine particles) from the solution. The solid-liquid separation method may be a general method. For example, a precursor of abrasive particles can be obtained by filtration using a filter or the like.
 5.焼成する工程IV-E
 焼成する工程IV-E(焼成工程ともいう。)は、固液分離工程IV-Dにより得られた研磨材粒子の前駆体を空気中若しくは酸化性雰囲気中で、400℃以上で焼成する。焼成された研磨材粒子の前駆体は、酸化物となり、酸化セリウムを含有する研磨材粒子となる。
5. Firing step IV-E
In the firing step IV-E (also referred to as firing step), the precursor of the abrasive particles obtained in the solid-liquid separation step IV-D is fired at 400 ° C. or higher in air or in an oxidizing atmosphere. The precursor of the baked abrasive particle becomes an oxide and becomes an abrasive particle containing cerium oxide.
 なお、必要に応じて焼成する前に水又はアルコール等で洗浄、乾燥を行ってから焼成してもよい。 In addition, before baking as needed, you may wash | clean and dry with water or alcohol etc., and you may bake.
 焼成を経て冷却することにより、研磨材粒子を安定させた後、当該研磨材粒子を含有する研磨材として回収することができる。 By cooling after firing, the abrasive particles can be stabilized and then recovered as an abrasive containing the abrasive particles.
 当該研磨材の製造方法を使用して研磨材を製造することで、異方成長した研磨材粒子をほとんど含まない、球形状の研磨材粒子を含有する研磨材を得ることができる。 By producing an abrasive using the method for producing an abrasive, an abrasive containing spherical abrasive particles that hardly contains anisotropically grown abrasive particles can be obtained.
 本発明の製造方法で製造した球状研磨材粒子を含有する研磨材は、当該球状研磨材粒子を50質量%以上含有し、好ましくは70質量%以上含有し、90質量%以上含有することが特に好ましい。これにより、研磨による表面粗さが小さい研磨材を得ることができる。 The abrasive containing spherical abrasive particles produced by the production method of the present invention contains 50% by mass or more of the spherical abrasive particles, preferably 70% by mass or more, and particularly 90% by mass or more. preferable. Thereby, the abrasive | polishing material with the small surface roughness by grinding | polishing can be obtained.
 《研磨材の使用方法》
 ガラス基板の研磨加工を例にとり、本発明の研磨材の使用方法の一例について説明する。
《How to use abrasives》
An example of a method for using the abrasive of the present invention will be described by taking a polishing process of a glass substrate as an example.
 1.研磨材スラリーの調製
 本発明に係る研磨材粒子を含む本発明の研磨材の粉体を水等の溶媒に添加し、研磨材スラリーを調製する。研磨材スラリーには、分散剤等を添加することで、凝集を防止するとともに、撹拌機等を用いて常時撹拌し、分散状態を維持する。研磨材スラリーは供給用ポンプを利用して、研磨機に循環供給される。
1. Preparation of Abrasive Slurry Powder of the abrasive of the present invention containing abrasive particles according to the present invention is added to a solvent such as water to prepare an abrasive slurry. By adding a dispersant or the like to the abrasive slurry, aggregation is prevented, and the slurry is constantly stirred using a stirrer or the like to maintain a dispersed state. The abrasive slurry is circulated and supplied to the polishing machine using a supply pump.
 2.研磨工程
 研磨パット(研磨布)が貼られた研磨機の上下定盤にガラス基板を接触させ、接触面に対して研磨材スラリーを供給しながら、加圧条件下でパットとガラスを相対運動させることで、ガラス基板が研磨される。
2. Polishing process The glass substrate is brought into contact with the upper and lower surface plates of the polishing machine to which the polishing pad (polishing cloth) is applied, and the pad and the glass are moved relative to each other under pressure while supplying the abrasive slurry to the contact surface. Thus, the glass substrate is polished.
 3.研磨材の劣化
 研磨材は、上記研磨工程にあるように、加圧条件下で使用される。このため、研磨材に含まれる研磨材粒子は、研磨時間が経過するにつれて、徐々に崩壊し微小化してしまう。研磨材粒子の微小化は研磨速度の減少を引き起こすので、研磨前後で粒子径分布の変化が小さい研磨材粒子が望まれる。
3. Abrasive Degradation The abrasive is used under pressure as in the polishing step. For this reason, the abrasive particles contained in the abrasive gradually collapse and become finer as the polishing time elapses. Since miniaturization of the abrasive particles causes a decrease in the polishing rate, an abrasive particle having a small change in particle size distribution before and after polishing is desired.
 本発明に係る平均結晶子径が420~500Åの範囲内にあり、かつ単分散度が30%以下である研磨材粒子を含有する研磨材は、その高い研磨速度から、平滑性・研磨均一性が求められる二次研磨工程よりも、研磨速度が重要とされる粗研磨工程(一次研磨工程)において、その特徴を十分に発揮することができる。 The abrasive containing abrasive particles having an average crystallite diameter in the range of 420 to 500 mm and a monodispersity of 30% or less according to the present invention has smoothness and polishing uniformity due to its high polishing rate. In the rough polishing step (primary polishing step) in which the polishing rate is more important than the secondary polishing step in which the above is required, the characteristics can be sufficiently exhibited.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 [実施例I-1]
 《研磨材の調製》
 <研磨材101の調製>
 (ステップ1)
 5.0mol/Lの尿素水溶液の0.5Lを準備し、この尿素水溶液を容器に移して、容器を密閉した後、100℃で6時間の加熱処理を施して、尿素を高温で分解させた後、尿素水溶液を20℃まで冷却して、分解により生成した二酸化炭素ガスの飛散を抑制し、尿素水溶液中への溶存量を高めた。
[Example I-1]
<Preparation of abrasive>
<Preparation of abrasive 101>
(Step 1)
After preparing 0.5 L of 5.0 mol / L urea aqueous solution, this urea aqueous solution was transferred to a container, the container was sealed, and then heat treatment was performed at 100 ° C. for 6 hours to decompose urea at high temperature. Thereafter, the urea aqueous solution was cooled to 20 ° C. to suppress scattering of carbon dioxide gas generated by the decomposition, and the amount dissolved in the urea aqueous solution was increased.
 (ステップ2)
 1.0mol/Lの硝酸セリウム水溶液を140mLと、1.0mol/Lの硝酸ランタン水溶液の60mol/Lとを混合した後、純水で9.5Lに仕上げて、希土類水溶液(セリウム:ランタン=70:30(原子数比率))を調製し、この希土類水溶液を90℃に加熱した。
(Step 2)
After mixing 140 mL of a 1.0 mol / L cerium nitrate aqueous solution and 60 mol / L of a 1.0 mol / L lanthanum nitrate aqueous solution, it is finished to 9.5 L with pure water, and a rare earth aqueous solution (cerium: lanthanum = 70 30 (atomic ratio)), and this rare earth aqueous solution was heated to 90 ° C.
 (ステップ3)
 この90℃の希土類水溶液9.5Lを、軸流撹拌機を具備した混合釜に移動し、撹拌しながら、ステップ1で調製した20℃の尿素水溶液を添加し、90℃で120分間撹拌を行い、塩基性炭酸塩の研磨材粒子前駆体分散液を調製した。
(Step 3)
Transfer 9.5 L of this 90 ° C. rare earth aqueous solution to a mixing kettle equipped with an axial flow stirrer, add the 20 ° C. urea aqueous solution prepared in Step 1 and stir at 90 ° C. for 120 minutes while stirring. An abrasive particle precursor dispersion of basic carbonate was prepared.
 (ステップ4:固液分離工程)
 上記調製した塩基性炭酸塩の研磨材粒子前駆体分散液から、塩基性炭酸塩の研磨材粒子前駆体をメンブランフィルターで分離した。
(Step 4: Solid-liquid separation process)
The basic carbonate abrasive particle precursor was separated from the prepared basic carbonate abrasive particle precursor dispersion with a membrane filter.
 (ステップ5:焼成工程)
 次いで、分離した塩基性炭酸塩の研磨材前駆体を、市販のローラーハースキルンを用いて、温度1050℃で、1時間の焼成処理を施して、平均粒子径が1.3μmで、フッ素化合物を含有しない、酸化セリウムの平均含有率が70mol%、酸化ランタンの平均含有率が30mol%からなる研磨材粒子101を含む研磨材101を調製した。研磨材101が含有する研磨材粒子の単分散度は、後述の方法で測定した結果、24%であった。また、研磨材101が含有する上記組成の酸化セリウムの含有率は、100質量%であった。
(Step 5: Firing process)
Next, the separated basic carbonate abrasive precursor was subjected to a baking treatment at a temperature of 1050 ° C. for 1 hour using a commercially available roller hearth kiln, an average particle diameter of 1.3 μm, and a fluorine compound. An abrasive 101 containing abrasive particles 101 having an average content of cerium oxide of 70 mol% and an average content of lanthanum oxide of 30 mol% was prepared. The monodispersity of the abrasive particles contained in the abrasive 101 was 24% as a result of measurement by the method described below. Moreover, the content rate of the cerium oxide of the said composition which the abrasive | polishing material 101 contains was 100 mass%.
 <研磨材102~108の調製>
 上記研磨材101の調製において、ステップ5の焼成工程における焼成温度を、表1に記載の条件に変更した以外は同様にして、酸化セリウムが70mol%、酸化ランタンが30mol%からなる研磨材粒子102~108を含有する研磨材102~108を調製した。
<Preparation of abrasives 102-108>
In the preparation of the abrasive 101, except that the firing temperature in the firing step of Step 5 was changed to the conditions shown in Table 1, abrasive particles 102 comprising 70 mol% cerium oxide and 30 mol% lanthanum oxide were used. Abrasive materials 102 to 108 containing ˜108 were prepared.
 <研磨材109~111の調製>
 上記研磨材101の調製において、ステップ3の塩基性炭酸塩の研磨材粒子前駆体形成時の希土類水溶液への尿素水溶液の添加速度、撹拌効率、液温度及び形成時間を適宜調整して、単分散度がそれぞれ18%、35%、42%の研磨材109~111を調製した。
<Preparation of abrasives 109-111>
In the preparation of the abrasive 101, monodispersion was carried out by appropriately adjusting the addition rate, stirring efficiency, liquid temperature and formation time of the urea aqueous solution to the rare earth aqueous solution during the formation of the basic carbonate abrasive particle precursor in Step 3. Abrasive materials 109 to 111 having degrees of 18%, 35%, and 42%, respectively, were prepared.
 <研磨材112の調製>
 特許第3949147号公報の段落(0070)~(0078)の実施例1に記載の方法に従って、塩基性炭酸塩の研磨材粒子前駆体分散液に対し、フッ素含有率が27質量%となるようにフッ酸を加え、これを静置した後、デカンテーション法によりイオン交換水で3回洗浄を行って、研磨材(酸化セリウム)フッ素化物前駆体を調製した。
<Preparation of abrasive 112>
According to the method described in Example 1 of paragraphs (0070) to (0078) of Japanese Patent No. 3949147, the fluorine content is 27% by mass with respect to the basic carbonate abrasive particle precursor dispersion. After adding hydrofluoric acid and allowing it to stand, it was washed with ion-exchanged water three times by a decantation method to prepare an abrasive (cerium oxide) fluoride precursor.
 次いで、上記研磨材101の調製に用いた塩基性炭酸塩の研磨材粒子前駆体と、上記調製した研磨材(酸化セリウム)フッ素化物前駆体を76:24の質量比で混合した後、ステップ5の焼成処理工程で、温度1050℃で、1時間の焼成処理を施して、平均粒子径が1.3μmで、フッ素化合物を含有し、酸化セリウムが70mol%、酸化ランタンが30mol%からなる研磨材粒子112を含む研磨材112を調製した。 Next, the basic carbonate abrasive particle precursor used in the preparation of the abrasive 101 and the prepared abrasive (cerium oxide) fluoride precursor were mixed at a mass ratio of 76:24, and then Step 5 In this baking treatment step, the abrasive is subjected to a baking treatment at a temperature of 1050 ° C. for 1 hour, an average particle diameter is 1.3 μm, contains a fluorine compound, cerium oxide is 70 mol%, and lanthanum oxide is 30 mol%. An abrasive 112 containing particles 112 was prepared.
 《研磨材の評価》
 上記調製した各研磨材及び構成している各研磨材粒子について、下記の特性値の測定及び評価を行った。
《Abrasive evaluation》
The following characteristic values were measured and evaluated for each of the prepared abrasives and the constituent abrasive particles.
 〔フッ素元素の有無の確認〕
 研磨材粒子中におけるフッ素元素含有率の測定方法としては、研磨材粒子1gを、硝酸水溶液10mlと過酸化水素水1.0mlの混合溶液に溶解させ、エスアイアイナノテクノロジー社製のICP発光分光プラズマ装置(ICP-AES)を使用して元素分析を行った。研磨材粒子中のフッ素元素の含有率の平均値を組成比(mol%)として求めた。フッ素元素の含有率が1.1mol%以上であれば「有」、1.0mol%以下であれば「無」と判定した。本発明の研磨材においては、全て、フッ素元素の含有率が0.1mol%以下であった。
[Confirmation of the presence or absence of elemental fluorine]
As a method for measuring the fluorine element content in the abrasive particles, 1 g of abrasive particles are dissolved in a mixed solution of 10 ml of aqueous nitric acid and 1.0 ml of hydrogen peroxide solution, and ICP emission spectral plasma manufactured by SII Nanotechnology Inc. Elemental analysis was performed using an instrument (ICP-AES). The average value of the content of fluorine element in the abrasive particles was determined as the composition ratio (mol%). If the fluorine element content was 1.1 mol% or more, it was judged as “present”, and if it was 1.0 mol% or less, it was judged as “absent”. In the abrasives of the present invention, the fluorine element content was 0.1 mol% or less.
 〔研磨材粒子中のセリウム含有量の測定〕
 研磨材粒子中のセリウム含有量の測定は、得られた研磨材粒子1gを硝酸水溶液10mlと過酸化水素水1.0mlの混合溶液に溶解させ、エスアイアイナノテクノロジー社製のICP発光分光プラズマ装置(ICP-AES)を使用して元素分析を行い、研磨材粒子中のセリウム、ランタン、イットリウム等の希土類元素の総原子数を求め、この希土類元素の総原子数に対するセリウムの比率(mol%)を求め、これを研磨材粒子中におけるセリウムの平均含有率(mol%)とした。
[Measurement of cerium content in abrasive particles]
The cerium content in the abrasive particles is measured by dissolving 1 g of the obtained abrasive particles in a mixed solution of 10 ml of nitric acid aqueous solution and 1.0 ml of hydrogen peroxide solution, and an ICP emission spectral plasma apparatus manufactured by SII Nano Technology. Elemental analysis is performed using (ICP-AES) to determine the total number of rare earth elements such as cerium, lanthanum, and yttrium in the abrasive particles, and the ratio of cerium to the total number of rare earth elements (mol%) This was taken as the average cerium content (mol%) in the abrasive particles.
 〔平均結晶子径の測定〕
 各研磨材が含有している研磨材粒子について、粉末X線回折装置(リガク社製、MiniFlexII)を用いて、平均結晶子径を測定した。X線源としては、CuKα線を使用し、平均結晶子径は、X線回折のメインピーク((111)面)を用いて、下式のシェラーの式により算出した。
   D=Kλ/βcosθ
 上記式において、Kはシェラー定数であり、λはX線波長である。βは、回折線の半値幅である。θは回折線に関するブラッグ角である。
[Measurement of average crystallite size]
About the abrasive | polishing material particle which each abrasive | polishing material contains, the average crystallite diameter was measured using the powder X-ray-diffraction apparatus (the Rigaku company make, MiniFlexII). As the X-ray source, CuKα ray was used, and the average crystallite diameter was calculated by the following Scherrer equation using the main peak ((111) plane) of X-ray diffraction.
D = Kλ / βcos θ
In the above equation, K is the Scherrer constant and λ is the X-ray wavelength. β is the half width of the diffraction line. θ is the Bragg angle with respect to the diffraction line.
 〔研磨材粒子の平均粒子径D50の測定〕
 各研磨材を構成する研磨材粒子について、TEM(透過型電子顕微鏡)を用いて100個の粒径を測定し、研磨材粒子の粒子径の測定値の全体を100%累積曲線(積分曲線)として求め、累積曲線が50%となるときの粒子径を求め、これを平均粒子径D50(μm)とした。なお、粒径は、TEM(透過型電子顕微鏡)で撮影した研磨材粒子画像と等しい面積を有する円の直径を、その研磨材粒子の粒子径として求めた。
Measurement of the average particle diameter D 50 of the abrasive particles]
About the abrasive particle which comprises each abrasive | polishing material, 100 particle diameters are measured using TEM (transmission electron microscope), and the whole measured value of the particle diameter of an abrasive particle is a 100% accumulation curve (integral curve). The particle diameter when the cumulative curve is 50% was determined, and this was defined as the average particle diameter D 50 (μm). In addition, the particle diameter calculated | required the diameter of the circle | round | yen which has an area equal to the abrasive particle image image | photographed with TEM (transmission electron microscope) as the particle diameter of the abrasive particle.
 〔研磨材の単分散度の測定〕
 各研磨材を構成する研磨材粒子について、TEM(透過型電子顕微鏡)を用いて各粒子を撮影し、撮影した研磨材粒子画像と等しい面積を有する円の直径をその研磨材粒子の粒子径として求め、この方法で、200個のランダムに選択した研磨材粒子の粒子径を測定し、その平均値を研磨材粒子の平均粒子径として求めた。標準偏差は、測定した平均粒子径に対する個々の研磨材粒子の粒子径との差より求めた。
(Measurement of monodispersity of abrasive)
The abrasive particles constituting each abrasive are photographed using a TEM (transmission electron microscope), and the diameter of a circle having the same area as the photographed abrasive particle image is defined as the particle diameter of the abrasive particles. In this method, the particle size of 200 randomly selected abrasive particles was measured, and the average value was obtained as the average particle size of the abrasive particles. The standard deviation was determined from the difference between the measured average particle size and the particle size of the individual abrasive particles.
 次いで、上記測定した平均粒子径及び標準偏差より、下式に従って単分散度を求めた。
   単分散度(%)=(研磨材粒子の粒子径の標準偏差)/(研磨材粒子の平均粒子径)×100
Next, the monodispersity was determined from the measured average particle size and standard deviation according to the following formula.
Monodispersity (%) = (standard deviation of particle diameter of abrasive particles) / (average particle diameter of abrasive particles) × 100
 〔研磨速度及び研磨速度持続性の評価〕
 研磨速度の評価に用いた研磨機は、研磨材粒子を含む研磨材を、溶媒に分散して調製した研磨材スラリーを、研磨対象面に供給しながら、研磨対象面を研磨布で研磨する方式の研磨機を用いた。
[Evaluation of polishing rate and polishing rate sustainability]
The polishing machine used for the evaluation of the polishing rate is a method of polishing the polishing target surface with a polishing cloth while supplying the polishing slurry prepared by dispersing the polishing material containing abrasive particles in a solvent to the polishing target surface. A polishing machine was used.
 研磨材スラリーは、研磨材粒子を分散媒として水のみを用いて分散して調製し、粒子濃度は100g/Lとした。 The abrasive slurry was prepared by dispersing abrasive particles as a dispersion medium using only water, and the particle concentration was 100 g / L.
 研磨速度の測定は、研磨材スラリーを10L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、65mmφのガラス基板を使用し、研磨布は、ポリウレタン製の研磨布を使用した。研磨面に対する研磨時の圧力は、9.8kPa(100g/cm)とし、研磨試験機の回転速度は50min-1(rpm)に設定し、30分間研磨加工を行った。 The polishing rate was measured by circulating and supplying abrasive slurry at a flow rate of 10 L / min. A 65 mmφ glass substrate was used as the object to be polished, and a polishing cloth made of polyurethane was used as the polishing cloth. The polishing pressure on the polishing surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 50 min −1 (rpm), and polishing was performed for 30 minutes.
 次いで、研磨前と30分研磨後のガラス基板の厚さを、Nikon Digimicro(MF501)を用いて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出し、これを1バッチ目の研磨速度1(μm/min)とした。 Next, the thickness of the glass substrate before polishing and after polishing for 30 minutes was measured using Nikon Digimicro (MF501), and the polishing amount (μm) per minute was calculated from the thickness displacement. The polishing rate was 1 (μm / min).
 次いで、上記30分間の研磨操作を10回繰り返し、10バッチ目における研磨速度2(μm/min)を測定した。
 上記測定した研磨速度1及び研磨速度2について、下記の基準で研磨速度を判定した。研磨速度1のランクにより、研磨材の研磨速度を判定し、研磨速度1に対する研磨速度2の判定ランクの変化で、研磨速度持続性を評価した。ランクの変化が小さいほど、研磨速度持続性に優れていることを表す。B以上のランクであれば、実用上好ましい範囲である。
Next, the polishing operation for 30 minutes was repeated 10 times, and the polishing rate 2 (μm / min) in the 10th batch was measured.
Regarding the measured polishing rate 1 and polishing rate 2, the polishing rate was determined according to the following criteria. The polishing rate of the abrasive was determined by the rank of the polishing rate 1, and the polishing rate durability was evaluated by the change in the determination rank of the polishing rate 2 with respect to the polishing rate 1. The smaller the change in rank, the better the polishing rate durability. A rank of B or higher is a practically preferable range.
 S:研磨速度が、0.90μm/min以上である
 A:研磨速度が、0.70μm/min以上、0.90μm/min未満である
 B:研磨速度が、0.50μm/min以上、0.70μm/min未満である
 C:研磨速度が、0.50μm/min未満である
 以上により得られた結果を、表1に示す。
S: The polishing rate is 0.90 μm / min or more. A: The polishing rate is 0.70 μm / min or more and less than 0.90 μm / min. B: The polishing rate is 0.50 μm / min or more. Less than 70 μm / min C: Polishing rate is less than 0.50 μm / min Table 1 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に記載の結果より明らかなように、平均結晶子径が420~500Åの範囲内にあり、かつ単分散度が30%以下である研磨材粒子を含有する本発明の研磨材101~107は、比較例に対し、連続研磨を行った後でも研磨速度の低下幅が小さく、研磨速度依存性に優れていることが分かる。 As apparent from the results shown in Table 1, the abrasives 101 to 107 of the present invention containing abrasive particles having an average crystallite diameter in the range of 420 to 500 mm and a monodispersity of 30% or less. Compared with the comparative example, it can be seen that the decrease rate of the polishing rate is small even after continuous polishing, and the dependency on the polishing rate is excellent.
 これに対し、比較例である研磨材108が含有する研磨材粒子は、平均結晶子径が本発明で規定する条件以下であり、研磨時に研磨材粒子自体が圧力に対する耐性が低く、研磨操作の進行に伴い、研磨材粒子の割れが起こり、研磨速度に寄与する粒子が減少し、研磨速度持続性に劣る結果となった。 On the other hand, the abrasive particles contained in the abrasive 108 as a comparative example have an average crystallite diameter that is equal to or less than the conditions specified in the present invention. As the process progressed, the abrasive particles cracked, and the number of particles contributing to the polishing rate decreased, resulting in poor polishing rate sustainability.
 また、比較例である研磨材109が含有する研磨材粒子は、平均結晶子径が本発明で規定する条件を越えるサイズであり、硬い粒子となり、粒子としての安定性が高くなり、ガラス基板との化学反応性が弱まり、研磨速度の低下が起こったと推測される。 Further, the abrasive particles contained in the abrasive 109 as a comparative example have a size that exceeds the conditions specified by the present invention in the average crystallite diameter, become hard particles, and have high stability as particles, It is presumed that the chemical reactivity of this was weakened and the polishing rate was lowered.
 また、単分散度が30%を超える研磨材粒子を含有する研磨材110及び111は、研磨速度が低く、更に、研磨速度持続性も劣る結果となった。 In addition, the abrasives 110 and 111 containing abrasive particles having a monodispersity of more than 30% had a low polishing rate and a poor polishing rate sustainability.
 また、研磨材中にフッ素化合物を含有する研磨材112も、研磨速度が低く、更に、研磨速度持続性も劣る結果となった。 Further, the polishing material 112 containing a fluorine compound in the polishing material also had a low polishing rate and inferior polishing rate sustainability.
 [実施例I-2]
 《研磨材の調製》
 <研磨材113~117の調製>
 実施例I-1に記載の研磨材102の調製において、ステップ3における希土類水溶液と尿素水溶液との90℃における反応時間を90分から適宜短縮して、含有する研磨材粒子の平均粒子径D50を、表2に記載の条件(平均粒子径D50=0.3~1.1μm)に変更した以外は同様にして、研磨材113~117を調製した。
[Example I-2]
<Preparation of abrasive>
<Preparation of abrasives 113 to 117>
In the preparation of the abrasive 102 described in Example I-1, the reaction time of the rare earth aqueous solution and the urea aqueous solution in Step 3 at 90 ° C. was appropriately shortened from 90 minutes, so that the average particle diameter D 50 of the abrasive particles contained was reduced. Abrasive materials 113 to 117 were prepared in the same manner except that the conditions described in Table 2 (average particle diameter D 50 = 0.3 to 1.1 μm) were changed.
 《研磨材の評価》
 上記調製した各研磨材と、実施例I-1で調製した研磨材102について、実施例I-1に記載の方法と同様にして、研磨材粒子の平均結晶子径、平均粒子径D50の測定と、研磨材の単分散度の測定及び研磨速度と研磨速度持続性の評価を行い、得られた結果を表2に示す。
《Abrasive evaluation》
For each of the above-prepared abrasives and the abrasive 102 prepared in Example I-1, the average crystallite diameter and average particle diameter D 50 of the abrasive particles are the same as in the method described in Example I-1. Measurement, measurement of the monodispersity of the abrasive, evaluation of the polishing rate and polishing rate sustainability, and the results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2に記載の結果より明らかなように、平均粒子径D50の範囲を0.5~0.9μmの範囲内とすることにより、研磨工程で研磨に寄与する砥粒子数が増加し、研磨初期より高い研磨速度を発現し、かつ研磨速度持続性にも優れていることがわかる。 As is clear from the results shown in Table 2, the number of abrasive particles contributing to polishing in the polishing step is increased by setting the range of the average particle diameter D 50 within the range of 0.5 to 0.9 μm. It can be seen that the polishing rate is higher than the initial level, and the polishing rate sustainability is also excellent.
 なお、平均粒子径D50の範囲が0.5μm未満である研磨材117では、研磨初期における研磨速度は高いが、研磨操作の進行に伴い、研磨材粒子表面が研磨屑で覆われやすくなり、研磨速度持続性という観点からは若干の低下が見られた。 In the mean particle diameter D abrasive 117 range is less than 0.5μm of 50, although the polishing rate is high in the initial stage of the polishing, with the progress of the polishing operation, it is the abrasive particle surface easily covered with polishing debris, A slight decrease was observed from the viewpoint of sustaining the polishing rate.
 [実施例I-3]
 《研磨材の調製》
 <研磨材118~120の調製>
 実施例I-2に記載の研磨材114の調製において、研磨材粒子中の酸化セリウム含有量を表3に記載の条件に変更した以外は同様にして、研磨材118~120を調製した。なお、酸化セリウム含有量の増加に伴い、酸化ランタンの含有量を調整した。
[Example I-3]
<Preparation of abrasive>
<Preparation of abrasives 118-120>
Abrasive materials 118 to 120 were prepared in the same manner as in the preparation of the abrasive material 114 described in Example I-2, except that the cerium oxide content in the abrasive particles was changed to the conditions described in Table 3. The lanthanum oxide content was adjusted as the cerium oxide content increased.
 《研磨材の評価》
 上記調製した各研磨材と、実施例I-2で調製した研磨材114について、実施例I-1に記載の方法と同様にして、研磨速度と研磨速度持続性の評価を行い、得られた結果を表3に示す。
《Abrasive evaluation》
For each of the above-prepared abrasives and the abrasive 114 prepared in Example I-2, the polishing rate and polishing rate durability were evaluated in the same manner as described in Example I-1, and obtained. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表3に記載の結果より明らかなように、酸化セリウム含有量の増加に伴い、化学作用による研磨が支配的となり、形成される研磨材粒子も形状が保ちやすくなり、研磨速度継続性がより向上していることが分かる。 As is clear from the results shown in Table 3, with the increase in the cerium oxide content, the polishing by chemical action becomes dominant, and the formed abrasive particles are easily maintained in shape, and the polishing rate continuity is further improved. You can see that
 [実施例II]
 以下、実施例及び比較例を挙げて研磨材の製造方法を具体的に説明するが、本発明はこれらに限定されるものではない。なお、表4中の添加元素1は、硝酸セリウム水溶液に他の希土類水溶液を添加する場合に、当該水溶液に含まれる希土類元素を表し、当該元素を含有する水溶液の添加量を添加元素1添加量として表す。同様に、添加元素2は、添加元素1に加え、更に他の種類の希土類水溶液を添加する場合の水溶液に含まれる希土類元素を表し、当該元素を含有する水溶液の添加量を添加元素2添加量として表す。
 また、図3に示す研磨材の製造方法のうち、研磨材粒子の合成方法について、あらかじめ加熱した尿素水溶液を、あらかじめ加熱した希土類水溶液に添加する実施例の合成方法を、「分解尿素」による合成方法とする。一方、尿素水溶液と希土類水溶液を混合した後に加熱する比較例の合成方法を、「加熱尿素」による合成方法とする。
Example II
Hereinafter, although an Example and a comparative example are given and the manufacturing method of an abrasive | polishing material is demonstrated concretely, this invention is not limited to these. The additive element 1 in Table 4 represents a rare earth element contained in the aqueous solution when another rare earth aqueous solution is added to the cerium nitrate aqueous solution, and the addition amount of the aqueous solution containing the element is the addition element 1 addition amount. Represent as Similarly, additive element 2 represents a rare earth element contained in an aqueous solution in the case of adding another kind of rare earth aqueous solution in addition to additive element 1, and the addition amount of the aqueous solution containing the element is the addition element 2 addition amount. Represent as
Also, among the abrasive manufacturing methods shown in FIG. 3, the synthesis method of the abrasive particles is the synthesis method of the embodiment in which the preheated urea aqueous solution is added to the preheated rare earth aqueous solution. The method. On the other hand, the synthesis method of the comparative example in which the urea aqueous solution and the rare earth aqueous solution are mixed and then heated is referred to as a synthesis method using “heated urea”.
 <研磨材201:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、密閉容器内で、100℃で6時間加熱した。その後、当該尿素水溶液を室温まで冷却した。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) (2)で90℃に加熱した硝酸セリウム水溶液に(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(4) (3)で硝酸セリウム水溶液に尿素水溶液を添加した混合液を90℃で2時間加熱撹拌した。
(5) (4)で加熱撹拌した混合液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(6) (5)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 201: Example>
(1) 0.5 L of a 5.0 mol / L urea aqueous solution was prepared and heated at 100 ° C. for 6 hours in a sealed container. Thereafter, the urea aqueous solution was cooled to room temperature.
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) The urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated to 90 ° C. in (2) at an addition rate of 1 L / min.
(4) The mixture obtained by adding the urea aqueous solution to the cerium nitrate aqueous solution in (3) was heated and stirred at 90 ° C. for 2 hours.
(5) The precursor of the abrasive particles precipitated in the mixed solution heated and stirred in (4) was separated by a membrane filter.
(6) The precursor of abrasive particles separated in (5) was baked at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材202:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、密閉容器内で、100℃で6時間加熱した。その後、当該尿素水溶液を室温まで冷却した。
(2) 1.0mol/Lの硝酸セリウム水溶液180mLと、1.0mol/Lの硝酸イットリウム水溶液20mLとを混合した後、純水を加えて9.5Lとし、この混合水溶液を90℃に加熱した。
(3) (2)で90℃に加熱した混合水溶液に(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(4) (3)で調製した混合水溶液に尿素水溶液を添加した混合液を90℃で2時間加熱撹拌した。
(5) (4)で加熱撹拌した混合液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(6) (5)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 202: Example>
(1) 0.5 L of a 5.0 mol / L urea aqueous solution was prepared and heated at 100 ° C. for 6 hours in a sealed container. Thereafter, the urea aqueous solution was cooled to room temperature.
(2) After mixing 180 mL of 1.0 mol / L cerium nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution, pure water was added to make 9.5 L, and this mixed aqueous solution was heated to 90 ° C. .
(3) The urea aqueous solution prepared in (1) was added to the mixed aqueous solution heated to 90 ° C. in (2) at an addition rate of 1 L / min.
(4) A mixed solution obtained by adding an aqueous urea solution to the mixed aqueous solution prepared in (3) was stirred at 90 ° C. for 2 hours.
(5) The precursor of the abrasive particles precipitated in the mixed solution heated and stirred in (4) was separated by a membrane filter.
(6) The precursor of abrasive particles separated in (5) was baked at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材203~211:実施例>
 研磨材203~211の製造方法は、研磨材2の製造方法の(2)で混合した硝酸イットリウム水溶液を、それぞれ、硝酸ガドリニウム水溶液、硝酸テルビウム水溶液、硝酸ジスプロシウム水溶液、硝酸ホルミウム水溶液、硝酸エルビウム水溶液、硝酸ツリウム水溶液、硝酸イッテルビウム水溶液、硝酸ルテチウム水溶液、塩化イットリウム水溶液に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasives 203-211: Examples>
Abrasive materials 203 to 211 are produced by mixing the yttrium nitrate aqueous solution mixed in (2) of the abrasive material 2 production method with gadolinium nitrate aqueous solution, terbium nitrate aqueous solution, dysprosium nitrate aqueous solution, holmium nitrate aqueous solution, erbium nitrate aqueous solution, respectively. An abrasive was obtained by the same procedure except that the aqueous solution was changed to a thulium nitrate aqueous solution, an ytterbium nitrate aqueous solution, a lutetium nitrate aqueous solution, or an yttrium chloride aqueous solution.
 <研磨材212:実施例>
 研磨材212の製造方法は、研磨材202の製造方法の(2)の手順を、1.0mol/Lの硝酸セリウム水溶液180mLと、1.0mol/Lの硝酸イットリウム水溶液10mLと、1.0mol/Lの硝酸ガドリニウム水溶液10mLとの混合に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 212: Example>
The manufacturing method of the abrasive 212 is the same as the procedure (2) of the manufacturing method of the abrasive 202 except that 180 mL of a 1.0 mol / L cerium nitrate aqueous solution, 10 mL of a 1.0 mol / L yttrium nitrate aqueous solution, and 1.0 mol / L. A polishing material was obtained by the same procedure except that the mixture was mixed with 10 mL of L gadolinium nitrate aqueous solution.
 <研磨材213及び214:実施例>
 研磨材213及び214の製造方法は、研磨材202の製造方法の(2)の手順を、1.0mol/Lの硝酸セリウム水溶液162mLと、1.0mol/Lの硝酸イットリウム水溶液38mLとの混合に変更、又は1.0mol/Lの硝酸セリウム水溶液162mLと、1.0mol/Lの硝酸ガドリニウム水溶液38mLとの混合に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasives 213 and 214: Examples>
The manufacturing method of the abrasives 213 and 214 is the same as the procedure (2) of the manufacturing method of the abrasive 202 by mixing 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution. A polishing material was obtained in the same manner except that it was changed or mixed with 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L gadolinium nitrate aqueous solution.
 <研磨材215:実施例>
 研磨材215の製造方法は、研磨材212の製造方法の(2)の手順を、1.0mol/Lの硝酸セリウム水溶液162mLと、1.0mol/Lの硝酸イットリウム水溶液20mLと、1.0mol/Lの硝酸ガドリニウム水溶液18mLとの混合に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 215: Example>
The manufacturing method of the abrasive 215 is the same as the procedure (2) of the manufacturing method of the abrasive 212 except that 162 mL of a 1.0 mol / L cerium nitrate aqueous solution, 20 mL of a 1.0 mol / L yttrium nitrate aqueous solution, and 1.0 mol / L. A polishing material was obtained by the same procedure except that the mixture was mixed with 18 mL of L gadolinium nitrate aqueous solution.
 <研磨材216:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、密閉容器内で、100℃で6時間加熱した。その後、当該尿素水溶液を室温まで冷却した。
(2) 1.0mol/Lの硝酸セリウム水溶液140mLと、1.0mol/Lの硝酸ランタン水溶液60mLを混合した後、純水を加えて9.5Lとし、この混合水溶液を90℃に加熱した。
(3) (2)で90℃に加熱した混合水溶液に(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(4) (3)で調製した混合水溶液に尿素水溶液を添加した混合液を90℃で2時間加熱撹拌した。
(5) (4)で加熱撹拌した混合液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(6) (5)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 216: Example>
(1) 0.5 L of a 5.0 mol / L urea aqueous solution was prepared and heated at 100 ° C. for 6 hours in a sealed container. Thereafter, the urea aqueous solution was cooled to room temperature.
(2) After mixing 140 mL of 1.0 mol / L cerium nitrate aqueous solution and 60 mL of 1.0 mol / L lanthanum nitrate aqueous solution, pure water was added to make 9.5 L, and this mixed aqueous solution was heated to 90 ° C.
(3) The urea aqueous solution prepared in (1) was added to the mixed aqueous solution heated to 90 ° C. in (2) at an addition rate of 1 L / min.
(4) A mixed solution obtained by adding an aqueous urea solution to the mixed aqueous solution prepared in (3) was stirred at 90 ° C. for 2 hours.
(5) The precursor of the abrasive particles precipitated in the mixed solution heated and stirred in (4) was separated by a membrane filter.
(6) The precursor of abrasive particles separated in (5) was baked at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材217~220:実施例>
 研磨材217~220の製造方法は、研磨材216の製造方法の(2)で混合した硝酸ランタン水溶液を、それぞれ、硝酸プラセオジム水溶液、硝酸ネオジム水溶液、硝酸サマリウム水溶液、硝酸ユウロピウム水溶液に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasives 217 to 220: Examples>
The manufacturing method of the abrasives 217 to 220 is that the lanthanum nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 216 is changed to a praseodymium nitrate aqueous solution, a neodymium nitrate aqueous solution, a samarium nitrate aqueous solution, and a europium nitrate aqueous solution, respectively. The same procedure was followed to obtain an abrasive.
 <研磨材221:実施例>
 研磨材221の製造方法は、研磨材216の製造方法の(2)で混合した1.0mol/Lの硝酸ランタン水溶液60mLを、1.0mol/Lの硝酸ランタン水溶液40mLと1.0mol/Lの硝酸プラセオジム水溶液20mLに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 221: Examples>
The manufacturing method of the abrasive 221 is that 60 mL of a 1.0 mol / L lanthanum nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 216 is replaced with 40 mL of 1.0 mol / L lanthanum nitrate aqueous solution and 1.0 mol / L of lanthanum nitrate aqueous solution. Except having changed to 20 mL of praseodymium nitrate aqueous solution, it prepared in the same procedure and obtained the abrasive | polishing material.
 <研磨材222:実施例>
 研磨材222の製造方法は、研磨材221の製造方法の(2)で混合した1.0mol/Lの硝酸ランタン水溶液40mLと1.0mol/Lの硝酸プラセオジム水溶液20mLを、1.0mol/Lの硝酸ランタン水溶液40mLと1.0mol/Lの硝酸イットリウム水溶液20mLに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive material 222: Example>
The manufacturing method of the abrasives 222 is 40 mL of a 1.0 mol / L lanthanum nitrate aqueous solution and 20 mL of a 1.0 mol / L praseodymium nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 221. A polishing material was obtained by the same procedure except that the aqueous solution was changed to 40 mL of lanthanum nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution.
 <研磨材223:実施例>
 研磨材223の製造方法は、研磨材222の製造方法の(2)で混合した1.0mol/Lの硝酸ランタン水溶液40mLと1.0mol/Lの硝酸イットリウム水溶液20mLを、1.0mol/Lの硝酸ランタン水溶液22mLと1.0mol/Lの硝酸イットリウム水溶液38mLに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 223: Example>
The manufacturing method of the abrasive 223 is that 1.0 mL / L of the 1.0 mol / L lanthanum nitrate aqueous solution and 20 mL of the 1.0 mol / L yttrium nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 222 are changed to 1.0 mol / L. A polishing material was obtained by the same procedure except that the solution was changed to 22 mL of a lanthanum nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution.
 <研磨材224:実施例>
 研磨材224の製造方法は、研磨材201の製造方法の(3)で添加する尿素水溶液の添加速度を0.5L/minに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 224: Example>
The manufacturing method of the abrasive 224 was prepared in the same procedure except that the addition rate of the aqueous urea solution added in (3) of the manufacturing method of the abrasive 201 was changed to 0.5 L / min. It was.
 <研磨材225:実施例>
 研磨材225の製造方法は、研磨材202の製造方法の(3)で添加する尿素水溶液の添加速度を0.5L/minに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 225: Example>
The manufacturing method of the abrasive 225 was prepared in the same procedure except that the addition rate of the urea aqueous solution added in (3) of the manufacturing method of the abrasive 202 was changed to 0.5 L / min. It was.
 <研磨材226:実施例>
 研磨材226の製造方法は、研磨材213の製造方法の(3)で添加する尿素水溶液の添加速度を0.5L/minに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 226: Example>
The manufacturing method of the abrasive 226 is prepared in the same procedure except that the addition rate of the urea aqueous solution added in (3) of the manufacturing method of the abrasive 213 is changed to 0.5 L / min. It was.
 <研磨材227:実施例>
 研磨材227の製造方法は、研磨材216の製造方法の(3)で添加する尿素水溶液の添加速度を0.5L/minに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 227: Example>
The manufacturing method of the abrasive 227 was prepared in the same procedure except that the addition rate of the urea aqueous solution added in (3) of the manufacturing method of the abrasive 216 was changed to 0.5 L / min. It was.
 <研磨材228:実施例>
 研磨材228の製造方法は、研磨材222の製造方法の(3)で添加する尿素水溶液の添加速度を0.5L/minに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 228: Example>
The manufacturing method of the abrasive 228 was prepared in the same procedure except that the addition rate of the urea aqueous solution added in (3) of the manufacturing method of the abrasive 222 was changed to 0.5 L / min. It was.
 <研磨材229:比較例>
(1) 2.5mol/Lの尿素水溶液を1.0L用意した。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.0Lとした。
(3) (2)で調製した硝酸セリウム水溶液に、(1)で用意した尿素水溶液を添加し、10分間撹拌した。
(4) (3)で撹拌した混合液を90℃まで加熱し、2時間加熱撹拌した。
(5) (4)で加熱撹拌した混合液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(6) (5)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 229: Comparative Example>
(1) 1.0 L of 2.5 mol / L urea aqueous solution was prepared.
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L.
(3) The urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution prepared in (2) and stirred for 10 minutes.
(4) The mixed solution stirred in (3) was heated to 90 ° C. and heated and stirred for 2 hours.
(5) The precursor of the abrasive particles precipitated in the mixed solution heated and stirred in (4) was separated by a membrane filter.
(6) The precursor of abrasive particles separated in (5) was baked at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材230:比較例>
 研磨材230の製造方法は、研磨材229の製造方法の(2)で、1.0mol/Lの硝酸セリウム水溶液200mLに代えて、1.0mol/Lの硝酸セリウム水溶液162mLと、1.0mol/Lの硝酸イットリウム水溶液38mLとを混合した後、純水を加えて9.0Lとした以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive material 230: Comparative example>
The manufacturing method of the abrasive 230 is (2) of the manufacturing method of the abrasive 229. Instead of 200 mL of the 1.0 mol / L cerium nitrate aqueous solution, 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 1.0 mol / L After mixing with 38 mL of an aqueous solution of L yttrium nitrate, preparation was performed in the same procedure except that pure water was added to make 9.0 L to obtain an abrasive.
 <研磨材231:比較例>
 研磨材231の製造方法は、研磨材230の製造方法の(2)で、1.0mol/Lの硝酸セリウム水溶液162mLと、1.0mol/Lの硝酸イットリウム水溶液38mLを、1.0mol/Lの硝酸セリウム水溶液140mLと、1.0mol/Lの硝酸ランタン水溶液60mLに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 231: Comparative Example>
The manufacturing method of the abrasive 231 is (2) of the manufacturing method of the abrasive 230, and 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution are mixed with 1.0 mol / L. A polishing material was obtained by the same procedure except that the solution was changed to 140 mL of a cerium nitrate aqueous solution and 60 mL of a 1.0 mol / L lanthanum nitrate aqueous solution.
 <研磨材232:比較例>
 研磨材232の製造方法は、研磨材230の製造方法の(2)で、1.0mol/Lの硝酸セリウム水溶液162mLと、1.0mol/Lの硝酸イットリウム水溶液38mLを、1.0mol/Lの硝酸セリウム水溶液140mLと、1.0mol/Lの硝酸ランタン水溶液22mLと、1.0mol/Lの硝酸イットリウム水溶液38mLとに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 232: Comparative Example>
The manufacturing method of the abrasive 232 is (2) of the manufacturing method of the abrasive 230, and 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution are mixed with 1.0 mol / L. A polishing material was obtained in the same manner except that 140 mL of an aqueous cerium nitrate solution, 22 mL of a 1.0 mol / L lanthanum nitrate aqueous solution, and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution were used.
 以上により、得られた研磨材201~232の合成条件を表4に示す。 Table 4 shows the synthesis conditions of the abrasives 201 to 232 thus obtained.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 <研磨材の評価>
 研磨材201から232について、以下の方法に従って、その組成、形状及び研磨性能の評価を行った。
<Evaluation of abrasive>
About the abrasives 201 to 232, the composition, shape, and polishing performance were evaluated according to the following methods.
 1.元素分析
 得られた研磨材201~232に含有されている研磨材粒子1gを硝酸水溶液10mlと過酸化水素水1.0mlの混合溶液に溶解させ、エスアイアイナノテクノロジー社製のICP発光分光プラズマ装置(ICP-AES)を使用して元素分析を行った。研磨材に含有される研磨材粒子の各希土類元素の平均含有量を組成比(mol%)として求めた。結果を表5に示す。
1. Elemental Analysis 1 g of abrasive particles contained in the obtained abrasives 201 to 232 are dissolved in a mixed solution of 10 ml of nitric acid aqueous solution and 1.0 ml of hydrogen peroxide solution, and an ICP emission spectroscopic plasma device manufactured by SII Nano Technology Co., Ltd. Elemental analysis was performed using (ICP-AES). The average content of each rare earth element in the abrasive particles contained in the abrasive was determined as a composition ratio (mol%). The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 2.粒子形状・アスペクト比
 研磨材粒子について、走査型顕微鏡写真(SEM像)の撮影を行い、粒子100個を無作為に選択し、その長径をa、短径をbとするとき、a/bの値の平均値をアスペクト比として求めた。なお、各粒子について外接する長方形(「外接長方形」という。)を描いたとき、外接長方形の短辺及び長辺うち、最短の短辺の長さを短径とし、最長の長辺の長さを長径とする。
 アスペクト比が、1.00~1.15の範囲内、より好ましくは1.00~1.05の範囲内である場合に球形状として分類する。1.00~1.15の範囲外である場合は不定形として分類した。
2. Particle shape / aspect ratio For abrasive particles, a scanning micrograph (SEM image) was taken, 100 particles were randomly selected, and the major axis was a and the minor axis was b. The average value was obtained as the aspect ratio. In addition, when drawing a circumscribing rectangle for each particle (referred to as “the circumscribing rectangle”), the shortest short side of the circumscribed rectangle is the shortest length, and the longest long side is the length. Is the major axis.
When the aspect ratio is in the range of 1.00 to 1.15, more preferably in the range of 1.00 to 1.05, it is classified as a spherical shape. When it was outside the range of 1.00 to 1.15, it was classified as an indeterminate form.
 3.粒子径変動係数(CV値)
 研磨材粒子100個の走査型顕微鏡写真(SEM像)から粒子径分布の変動係数(「単分散度」ともいう。)を求め、単分散性を評価した。なお、粒子径は、各粒子の写真画像の面積に基づき、面積円相当粒子径を求め、これを各粒子の粒子径とする。
 粒子径分布変動係数は下記の式で求めた。
 変動係数(%)=(粒子径分布の標準偏差/平均粒子径)×100
3. Particle size variation coefficient (CV value)
The coefficient of variation (also referred to as “monodispersity”) of the particle size distribution was determined from a scanning micrograph (SEM image) of 100 abrasive particles, and the monodispersity was evaluated. The particle diameter is determined based on the area of the photographic image of each particle, and the equivalent particle diameter is determined as the particle diameter of each particle.
The particle size distribution variation coefficient was determined by the following formula.
Coefficient of variation (%) = (standard deviation of particle size distribution / average particle size) × 100
 4.研磨速度
 研磨速度は、研磨材粒子を用いた研磨材の粉体を水等の溶媒に分散させた研磨材スラリーを、研磨機の研磨対象面に供給しながら、研磨対象面を研磨布で研磨することで測定した。研磨材スラリーは分散媒を水のみとして、濃度は100g/Lとし、孔径5μmのフィルターに通した。研磨試験においては、研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、65mmΦのガラス基板を使用し、研磨布は、ポリウレタン製の物を使用した。研磨面に対する研磨時の圧力は、9.8kPa(100g/cm)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行った。研磨前後の厚さをNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出し、研磨速度とした。
4). Polishing speed The polishing speed is determined by polishing the surface to be polished with a polishing cloth while supplying abrasive slurry in which abrasive powder using abrasive particles is dispersed in a solvent such as water to the surface to be polished of the polishing machine. Was measured. The abrasive slurry was passed through a filter having a pore size of 5 μm with a dispersion medium of only water and a concentration of 100 g / L. In the polishing test, polishing was performed by circulatingly supplying an abrasive slurry at a flow rate of 5 L / min. A 65 mmφ glass substrate was used as the object to be polished, and a polyurethane cloth was used as the polishing cloth. The polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min −1 (rpm), and polishing was performed for 30 minutes. The thickness before and after polishing was measured with Nikon Digimicro (MF501), and the polishing amount per minute (μm) was calculated from the thickness displacement, and was used as the polishing rate.
 5.表面粗さ
 ガラス基板表面の表面状態(表面粗さRa)については、「4.研磨速度」の測定において、30分間研磨加工を行ったガラス基板を、光波干渉式表面粗さ計(Zygo社製Dual-channel ZeMapper)により表面粗さ評価を行った。なお、Raとは、JIS B0601-2001における算術平均粗さを表している。
5. Surface Roughness Regarding the surface condition (surface roughness Ra) of the glass substrate surface, a glass substrate that had been polished for 30 minutes in the measurement of “4. Polishing speed” was used as a light wave interference type surface roughness meter (manufactured by Zygo). Surface roughness was evaluated using a Dual-channel ZeMapper. Ra represents the arithmetic average roughness in JIS B0601-2001.
 <研磨材の形状・研磨性能の評価>
 以上の評価により得られた結果を表6にまとめた。
<Evaluation of abrasive shape and polishing performance>
The results obtained from the above evaluation are summarized in Table 6.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 表5より、各研磨材に含有される研磨材粒子の各希土類元素の組成比(mol%)は、各研磨材の製造工程で混合した水溶液の濃度及び量に対応する値となっていることがわかった。また、表6より、水溶液を混合した後に加熱撹拌した比較例の研磨材よりも、希土類水溶液及び尿素水溶液をあらかじめ加熱した後に混合した実施例の研磨材の方が、球形度(粒子形状・アスペクト比)及び粒子径変動係数(CV値)が小さく、研磨速度が速いことがわかった。また、比較例の研磨材よりも実施例の研磨材の方が、表面粗さも小さく、傷が発生しにくいことがわかった。 From Table 5, the composition ratio (mol%) of each rare earth element of the abrasive particles contained in each abrasive is a value corresponding to the concentration and amount of the aqueous solution mixed in the manufacturing process of each abrasive. I understood. Also, from Table 6, the abrasives of the examples in which the rare earth aqueous solution and the urea aqueous solution were mixed in advance after being heated in advance were mixed with the sphericity (particle shape / aspect ratio) rather than the comparative abrasive in which the aqueous solution was mixed and heated and stirred. Ratio) and particle diameter variation coefficient (CV value) were small, and it was found that the polishing rate was high. Moreover, it turned out that the surface roughness of the abrasive | polishing material of an Example is smaller than the abrasive | polishing material of a comparative example, and a damage | wound is hard to generate | occur | produce.
 [実施例III]
 以下、実施例及び比較例を挙げて研磨材の製造方法を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において、「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 また、表7中の添加元素1は、硝酸セリウム水溶液に他の希土類水溶液を添加する場合に、当該水溶液に含まれる希土類元素を表し、当該元素を含有する水溶液の添加量を添加元素1添加量として表す。
 同様に、添加元素2は、添加元素1に加え、更に他の種類の希土類水溶液を添加する場合の水溶液に含まれる希土類元素を表し、当該元素を含有する水溶液の添加量を添加元素2添加量として表す。
Example III
Hereinafter, although an Example and a comparative example are given and the manufacturing method of an abrasive | polishing material is demonstrated concretely, this invention is not limited to these. In the examples, the display of “part” or “%” is used, but “part by mass” or “% by mass” is expressed unless otherwise specified.
In addition, additive element 1 in Table 7 represents a rare earth element contained in the aqueous solution when another rare earth aqueous solution is added to the cerium nitrate aqueous solution, and the addition amount of the aqueous solution containing the element is the addition element 1 addition amount. Represent as
Similarly, additive element 2 represents a rare earth element contained in an aqueous solution in the case of adding another kind of rare earth aqueous solution in addition to additive element 1, and the addition amount of the aqueous solution containing the element is the addition element 2 addition amount. Represent as
 また、表7に示す炭酸ガスの導入方法として、開放系とは、炭酸ガス導入開始から終了まで所定の圧力、流量で一定の期間、連続的若しくは断続的に、容器等を密閉しないで水溶液又は反応液中に炭酸ガスを気泡として吹き出し、溶解させる方法をいう。一方、密閉系とは、炭酸ガス導入開始から終了まで所定の圧力、流量で一定の期間、連続的若しくは断続的に、密閉した容器等の水溶液又は反応液中に炭酸ガスを気泡として吹き出し、溶解させる方法をいう。
 なお、研磨材301~331では、セリウムを含有する水溶液を加熱した後、反応液を加熱撹拌している間に炭酸ガスを導入しているが、一例であって、尿素水溶液を加熱する前から炭酸ガスを導入してもよく、セリウムを含有する水溶液を加熱する前から炭酸ガスを導入してもよい。
 また、表7に示す炭酸イオン濃度は、各研磨材の調製過程の尿素水溶液を添加する直前に測定した90℃における炭酸イオン濃度を表す。具体的には、液中の炭酸イオン濃度は、尿素水溶液を添加する直前の反応液を採取し、DIONEX社製イオンクロマトグラフ、DX500を用いて測定した。
 また、表7に示す尿素添加開始時間は、炭酸ガスを水溶液又は反応液中に導入を開始してから尿素水溶液を添加するまでの時間を表している。
In addition, as an introduction method of carbon dioxide gas shown in Table 7, an open system is an aqueous solution or an aqueous solution without sealing a container or the like continuously or intermittently at a predetermined pressure and flow rate for a certain period from the start to the end of carbon dioxide introduction. It refers to a method in which carbon dioxide gas is blown out and dissolved in the reaction solution. The closed system, on the other hand, blows and dissolves carbon dioxide as bubbles in an aqueous solution or reaction solution in a sealed container or the like continuously or intermittently at a predetermined pressure and flow rate for a certain period from the start to the end of carbon dioxide introduction. The method of letting you say.
In the abrasives 301 to 331, after heating the aqueous solution containing cerium, carbon dioxide gas is introduced while the reaction solution is heated and stirred, but this is an example, before the aqueous urea solution is heated. Carbon dioxide gas may be introduced, or carbon dioxide gas may be introduced before the aqueous solution containing cerium is heated.
Further, the carbonate ion concentration shown in Table 7 represents the carbonate ion concentration at 90 ° C. measured immediately before adding the urea aqueous solution in the preparation process of each abrasive. Specifically, the carbonate ion concentration in the liquid was measured by collecting the reaction liquid immediately before the addition of the urea aqueous solution and using an ion chromatograph DX500 manufactured by DIONEX.
The urea addition start time shown in Table 7 represents the time from the start of introduction of carbon dioxide gas into the aqueous solution or reaction solution until the urea aqueous solution is added.
 <研磨材301:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから15分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した溶液(以下、反応液という。)を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 301: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) 15 minutes after the start of the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C. in (3) and added to the aqueous cerium nitrate solution supplied with carbon dioxide gas. The aqueous solution was added at an addition rate of 1 L / min.
(5) A solution obtained by adding an aqueous urea solution to an aqueous cerium nitrate solution in the above (4) (hereinafter referred to as reaction solution) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材302:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) 1.0mol/Lの硝酸セリウム水溶液180mLと、1.0mol/Lの硝酸イットリウム水溶液20mLとを混合した後、純水を加えて9.5Lとし、この混合水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した混合水溶液に炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから15分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した反応液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 302: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) After mixing 180 mL of 1.0 mol / L cerium nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution, pure water was added to make 9.5 L, and this mixed aqueous solution was heated to 90 ° C. .
(3) Carbon dioxide was supplied to the mixed aqueous solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) 15 minutes after the start of the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C. in (3) and added to the aqueous cerium nitrate solution supplied with carbon dioxide gas. The aqueous solution was added at an addition rate of 1 L / min.
(5) The reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材303~311:実施例>
 研磨材303~311の製造方法は、研磨材302の製造方法の(2)で混合した硝酸イットリウム水溶液を、それぞれ、硝酸ガドリニウム水溶液、硝酸テルビウム水溶液、硝酸ジスプロシウム水溶液、硝酸ホルミウム水溶液、硝酸エルビウム水溶液、硝酸ツリウム水溶液、硝酸イッテルビウム水溶液、硝酸ルテチウム水溶液、塩化イットリウム水溶液に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasives 303-311: Examples>
The manufacturing method of the abrasives 303 to 311 includes the aqueous solution of yttrium nitrate mixed in (2) of the manufacturing method of the abrasive 302, respectively, an aqueous solution of gadolinium nitrate, an aqueous solution of terbium nitrate, an aqueous solution of dysprosium nitrate, an aqueous solution of holmium nitrate, an aqueous solution of erbium nitrate, An abrasive was obtained by the same procedure except that the aqueous solution was changed to a thulium nitrate aqueous solution, an ytterbium nitrate aqueous solution, a lutetium nitrate aqueous solution, or an yttrium chloride aqueous solution.
 <研磨材312:実施例>
 研磨材312の製造方法は、研磨材302の製造方法の(2)の手順を、1.0mol/Lの硝酸セリウム水溶液180mLと、1.0mol/Lの硝酸イットリウム水溶液10mLと、1.0mol/Lの硝酸ガドリニウム水溶液10mLとの混合に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive material 312: Example>
The manufacturing method of the abrasive 312 is the same as the procedure (2) of the manufacturing method of the abrasive 302 except that 180 mL of a 1.0 mol / L cerium nitrate aqueous solution, 10 mL of a 1.0 mol / L yttrium nitrate aqueous solution, and 1.0 mol / L. A polishing material was obtained by the same procedure except that the mixture was mixed with 10 mL of L gadolinium nitrate aqueous solution.
 <研磨材313及び314:実施例>
 研磨材313及び314の製造方法は、研磨材302の製造方法の(2)の手順を、1.0mol/Lの硝酸セリウム水溶液162mLと、1.0mol/Lの硝酸イットリウム水溶液38mLとの混合に変更、又は1.0mol/Lの硝酸セリウム水溶液162mLと、1.0mol/Lの硝酸ガドリニウム水溶液38mLとの混合に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasives 313 and 314: Examples>
The manufacturing method of the abrasives 313 and 314 is the same as the procedure (2) of the manufacturing method of the abrasive 302 by mixing 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution. A polishing material was obtained in the same manner except that it was changed or mixed with 162 mL of a 1.0 mol / L cerium nitrate aqueous solution and 38 mL of a 1.0 mol / L gadolinium nitrate aqueous solution.
 <研磨材315:実施例>
 研磨材315の製造方法は、研磨材312の製造方法の(2)の手順を、1.0mol/Lの硝酸セリウム水溶液162mLと、1.0mol/Lの硝酸イットリウム水溶液20mLと、1.0mol/Lの硝酸ガドリニウム水溶液18mLとの混合に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 315: Example>
The manufacturing method of the abrasive 315 is the same as the procedure (2) of the manufacturing method of the abrasive 312, 162 mL of a 1.0 mol / L cerium nitrate aqueous solution, 20 mL of a 1.0 mol / L yttrium nitrate aqueous solution, and 1.0 mol / L. A polishing material was obtained by the same procedure except that the mixture was mixed with 18 mL of L gadolinium nitrate aqueous solution.
 <研磨材316:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) 1.0mol/Lの硝酸セリウム水溶液140mLと、1.0mol/Lの硝酸ランタン水溶液60mLとを混合した後、純水を加えて9.5Lとし、この混合水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した混合水溶液に炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから15分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した反応液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 316: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) After mixing 140 mL of 1.0 mol / L cerium nitrate aqueous solution and 60 mL of 1.0 mol / L lanthanum nitrate aqueous solution, pure water was added to make 9.5 L, and this mixed aqueous solution was heated to 90 ° C. .
(3) Carbon dioxide was supplied to the mixed aqueous solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) 15 minutes after the start of the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C. in (3) and added to the aqueous cerium nitrate solution supplied with carbon dioxide gas. The aqueous solution was added at an addition rate of 1 L / min.
(5) The reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材317~320:実施例>
 研磨材317~320の製造方法は、研磨材316の製造方法の(2)で混合した硝酸ランタン水溶液を、それぞれ、硝酸プラセオジム水溶液、硝酸ネオジム水溶液、硝酸サマリウム水溶液、硝酸ユウロピウム水溶液に変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasives 317 to 320: Examples>
The manufacturing method of the abrasives 317 to 320 was changed except that the lanthanum nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 316 was changed to a praseodymium nitrate aqueous solution, a neodymium nitrate aqueous solution, a samarium nitrate aqueous solution, and a europium nitrate aqueous solution, respectively. The same procedure was followed to obtain an abrasive.
 <研磨材321:実施例>
 研磨材321の製造方法は、研磨材316の製造方法の(2)で混合した1.0mol/Lの硝酸ランタン水溶液60mLを、1.0mol/Lの硝酸ランタン水溶液40mLと1.0mol/Lの硝酸プラセオジム水溶液20mLに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 321: Examples>
The manufacturing method of the abrasive 321 is that 60 mL of a 1.0 mol / L lanthanum nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 316 is replaced by 40 mL of 1.0 mol / L lanthanum nitrate aqueous solution and 1.0 mol / L of lanthanum nitrate aqueous solution. Except having changed to 20 mL of praseodymium nitrate aqueous solution, it prepared in the same procedure and obtained the abrasive | polishing material.
 <研磨材322:実施例>
 研磨材322の製造方法は、研磨材321の製造方法の(2)で混合した1.0mol/Lの硝酸ランタン水溶液40mLと1.0mol/Lの硝酸プラセオジム水溶液20mLを、1.0mol/Lの硝酸ランタン水溶液40mLと1.0mol/Lの硝酸イットリウム水溶液20mLに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 322: Example>
The manufacturing method of the abrasive 322 is obtained by adding 40 mL of a 1.0 mol / L lanthanum nitrate aqueous solution and 20 mL of a 1.0 mol / L praseodymium nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 321 to 1.0 mol / L. A polishing material was obtained by the same procedure except that the aqueous solution was changed to 40 mL of lanthanum nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution.
 <研磨材323:実施例>
 研磨材323の製造方法は、研磨材322の製造方法の(2)で混合した1.0mol/Lの硝酸ランタン水溶液40mLと1.0mol/Lの硝酸イットリウム水溶液20mLを、1.0mol/Lの硝酸ランタン水溶液22mLと1.0mol/Lの硝酸イットリウム水溶液38mLに変更した以外は、同様の手順で調製を行い、研磨材を得た。
<Abrasive 323: Example>
A manufacturing method of the abrasive 323 is obtained by adding 40 mL of 1.0 mol / L lanthanum nitrate aqueous solution and 20 mL of 1.0 mol / L yttrium nitrate aqueous solution mixed in (2) of the manufacturing method of the abrasive 322 to 1.0 mol / L. A polishing material was obtained by the same procedure except that the solution was changed to 22 mL of a lanthanum nitrate aqueous solution and 38 mL of a 1.0 mol / L yttrium nitrate aqueous solution.
 <研磨材324:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから1分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した反応液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 324: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) One minute after starting the supply of carbon dioxide gas in (3) above, the urea prepared in (1) above is heated to 90 ° C. in (3) above, and added to the aqueous cerium nitrate solution supplied with carbon dioxide gas. The aqueous solution was added at an addition rate of 1 L / min.
(5) The reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材325:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから3分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した反応液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 325: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) 3 minutes after the start of the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C. in (3) and added to the aqueous cerium nitrate solution supplied with carbon dioxide gas. The aqueous solution was added at an addition rate of 1 L / min.
(5) The reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材326:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから5分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した反応液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 326: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) Five minutes after starting the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C. in (3) and the aqueous cerium nitrate solution supplied with carbon dioxide gas is added. The aqueous solution was added at an addition rate of 1 L / min.
(5) The reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材327:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから30分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した反応液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 327: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) 30 minutes after the start of the supply of carbon dioxide gas in (3) above, the urea prepared in (1) above is heated to 90 ° C. in (3) above and is added to the cerium nitrate aqueous solution supplied with carbon dioxide gas. The aqueous solution was added at an addition rate of 1 L / min.
(5) The reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材328:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) オートクレーブを用いて、1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから10分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した反応液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 328: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Using an autoclave, pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) Ten minutes after starting the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C. in (3) and added to the aqueous cerium nitrate solution supplied with carbon dioxide gas. The aqueous solution was added at an addition rate of 1 L / min.
(5) The reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材329:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) オートクレーブを用いて、1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから20分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した反応液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 329: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Using an autoclave, pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) 20 minutes after the start of the supply of carbon dioxide gas in (3), the urea prepared in (1) above is heated to 90 ° C. in (3) and added to the aqueous cerium nitrate solution supplied with carbon dioxide gas. The aqueous solution was added at an addition rate of 1 L / min.
(5) The reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材330:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) オートクレーブを用いて、1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、供給を開始した。
(4) 前記(3)で炭酸ガスの供給を開始してから30分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した反応液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) (6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive material 330: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Using an autoclave, pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) Carbon dioxide was supplied to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) 30 minutes after the start of the supply of carbon dioxide gas in (3) above, the urea prepared in (1) above is heated to 90 ° C. in (3) above and is added to the cerium nitrate aqueous solution supplied with carbon dioxide gas. The aqueous solution was added at an addition rate of 1 L / min.
(5) The reaction solution in which the urea aqueous solution was added to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The abrasive particle precursor separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材331:実施例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、炭酸ガスを0.5L/minの流量、0.1MPaの供給圧力で、2分間の供給と停止を交互に行った。
(4) 前記(3)で炭酸ガスの供給を最初に開始してから15分後に、前記(3)で90℃に加熱し、炭酸ガスが供給された硝酸セリウム水溶液に前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(5) 前記(4)で硝酸セリウム水溶液に尿素水溶液を添加した溶液を90℃で2時間加熱撹拌した。
(6) 前記(5)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 前記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 331: Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) The cerium nitrate aqueous solution heated to 90 ° C. in the above (2) was alternately supplied and stopped for 2 minutes at a flow rate of 0.5 L / min and a supply pressure of 0.1 MPa.
(4) Fifteen minutes after the start of the supply of carbon dioxide gas in (3) above, the mixture is heated to 90 ° C. in (3), and prepared in (1) above to a cerium nitrate aqueous solution supplied with carbon dioxide gas. The urea aqueous solution was added at an addition rate of 1 L / min.
(5) The solution obtained by adding the urea aqueous solution to the cerium nitrate aqueous solution in (4) was heated and stirred at 90 ° C. for 2 hours.
(6) The precursor of the abrasive particle precipitated in the reaction liquid heated and stirred in the above (5) was separated with a membrane filter.
(7) The precursor of the abrasive particles separated in (6) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 <研磨材332:比較例>
(1) 5.0mol/Lの尿素水溶液を0.5L用意し、60℃まで加熱した。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.5Lとし、この水溶液を90℃に加熱した。
(3) 前記(2)で90℃に加熱した硝酸セリウム水溶液に、前記(1)で調製した尿素水溶液を、1L/minの添加速度で添加した。
(4) 前記(3)で硝酸セリウム水溶液に尿素水溶液を添加した反応溶液を90℃で2時間加熱撹拌した。
(5) 前記(4)で加熱撹拌した反応液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(6) 前記(5)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子を含有する研磨材を得た。
<Abrasive 332: Comparative Example>
(1) 0.5 L of 5.0 mol / L urea aqueous solution was prepared and heated to 60 ° C.
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.5 L, and this aqueous solution was heated to 90 ° C.
(3) The aqueous urea solution prepared in (1) above was added to the aqueous cerium nitrate solution heated to 90 ° C. in (2) above at an addition rate of 1 L / min.
(4) The reaction solution obtained by adding the aqueous urea solution to the aqueous cerium nitrate solution in (3) above was heated and stirred at 90 ° C. for 2 hours.
(5) The precursor of the abrasive particles precipitated in the reaction liquid heated and stirred in the above (4) was separated by a membrane filter.
(6) The abrasive particle precursor separated in (5) was fired at 600 ° C. to obtain an abrasive containing abrasive particles.
 以上により、得られた研磨材301~332の合成条件を表7に示す。 Table 7 shows the synthesis conditions of the abrasives 301 to 332 obtained as described above.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 <研磨材の評価>
 研磨材301~332について、以下の方法に従って、研磨材の形状・研磨性能の評価を行った。
<Evaluation of abrasive>
For the abrasives 301 to 332, the shape and polishing performance of the abrasive were evaluated according to the following method.
 1.粒子形状・アスペクト比
 研磨材粒子について、走査型電子顕微鏡写真(SEM像)の撮影を行い、粒子100個を無作為に選択し、その長径をa、短径をbとするとき、a/bの値の平均値をアスペクト比として求めた。なお、各粒子について外接する長方形(「外接長方形」という。)を描いたとき、外接長方形の短辺及び長辺うち、最短の短辺の長さを短径とし、最長の長辺の長さを長径とする。
 アスペクト比が、1.00~1.15の範囲内、より好ましくは1.00~1.05の範囲内である場合に球形状として分類する。1.00~1.15の範囲外である場合は不定形として分類した。
1. Particle shape / aspect ratio When an abrasive particle is photographed by scanning electron micrograph (SEM image), 100 particles are randomly selected and the major axis is a and the minor axis is b. The average value was obtained as the aspect ratio. In addition, when drawing a circumscribing rectangle for each particle (referred to as “the circumscribing rectangle”), the shortest short side of the circumscribed rectangle is the shortest length, and the longest long side is the length. Is the major axis.
When the aspect ratio is in the range of 1.00 to 1.15, more preferably in the range of 1.00 to 1.05, it is classified as a spherical shape. When it was outside the range of 1.00 to 1.15, it was classified as an indeterminate form.
 2.粒子径変動係数(CV値)
 研磨材粒子100個の走査型電子顕微鏡写真(SEM像)から粒子径分布の変動係数(「単分散度」ともいう。)を求め、単分散性を評価した。なお、粒子径は、各粒子の写真画像の面積に基づき、面積円相当粒子径を求め、これを各粒子の粒子径とする。
 粒子径分布変動係数は下記の式で求めた。
 変動係数(%)=(粒子径分布の標準偏差/平均粒子径)×100
2. Particle size variation coefficient (CV value)
The coefficient of variation (also referred to as “monodispersity”) of the particle size distribution was determined from a scanning electron micrograph (SEM image) of 100 abrasive particles, and the monodispersity was evaluated. The particle diameter is determined based on the area of the photographic image of each particle, and the equivalent particle diameter is determined as the particle diameter of each particle.
The particle size distribution variation coefficient was determined by the following formula.
Coefficient of variation (%) = (standard deviation of particle size distribution / average particle size) × 100
 3.研磨速度
 研磨速度は、研磨材粒子を用いた研磨材の粉体を水等の溶媒に分散させた研磨材スラリーを、研磨機の研磨対象面に供給しながら、研磨対象面を研磨布で研磨することで測定した。研磨材スラリーは分散媒を水のみとして、濃度は100g/Lとし、孔径5μmのフィルターに通した。研磨試験においては、研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、65mmΦのガラス基板を使用し、研磨布は、ポリウレタン製の物を使用した。研磨面に対する研磨時の圧力は、9.8kPa(100g/cm)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行った。研磨前後の厚さをNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出し、研磨速度とした。
3. Polishing speed The polishing speed is determined by polishing the surface to be polished with a polishing cloth while supplying abrasive slurry in which abrasive powder using abrasive particles is dispersed in a solvent such as water to the surface to be polished of the polishing machine. Was measured. The abrasive slurry was passed through a filter having a pore size of 5 μm with a dispersion medium of only water and a concentration of 100 g / L. In the polishing test, polishing was performed by circulatingly supplying an abrasive slurry at a flow rate of 5 L / min. A 65 mmφ glass substrate was used as the object to be polished, and a polyurethane cloth was used as the polishing cloth. The polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min −1 (rpm), and polishing was performed for 30 minutes. The thickness before and after polishing was measured with Nikon Digimicro (MF501), and the polishing amount per minute (μm) was calculated from the thickness displacement, and was used as the polishing rate.
 4.表面粗さ
 ガラス基板表面の表面状態(表面粗さRa)については、「3.研磨速度」の測定において、30分間研磨加工を行ったガラス基板を、光波干渉式表面粗さ計(Zygo社製Dual-channel ZeMapper)により表面粗さ評価を行った。なお、Raとは、JIS B0601-2001における算術平均粗さを表している。
4). Surface Roughness Regarding the surface condition (surface roughness Ra) of the glass substrate surface, a glass substrate that had been polished for 30 minutes in the measurement of “3. Polishing speed” was converted into a light wave interference type surface roughness meter (Zygo). Surface roughness was evaluated using a Dual-channel ZeMapper. Ra represents the arithmetic average roughness in JIS B0601-2001.
 5.傷
 また、ガラス基板表面の表面状態(傷の個数)について、30分間研磨加工を行ったガラス基板を、光波干渉式表面粗さ計(Zygo社製Dual-channel ZeMapper)を用いて、ガラス基板全面の凹凸を測定することにより傷の個数の評価を行った。
 具体的には、30分間研磨加工を行ったガラス基板の表面を、Zygo社製Dual-channel ZeMapperを用いて、ガラス基板5枚について、50~100μmの範囲内の傷の有無を目視で調べ、その一枚あたりの発生数の平均値で表した。
5. Scratches Further, regarding the surface state (number of scratches) on the surface of the glass substrate, the glass substrate was polished for 30 minutes using a light wave interference type surface roughness meter (Dual-channel ZeMapper manufactured by Zygo). The number of scratches was evaluated by measuring the unevenness.
Specifically, the surface of the glass substrate polished for 30 minutes was visually inspected for the presence of scratches in the range of 50 to 100 μm on five glass substrates using a Dual-channel ZeMapper manufactured by Zygo, The average number of occurrences per sheet was expressed.
 <研磨材の形状・研磨性能の評価>
 以上の評価により得られた結果を表8にまとめた。
<Evaluation of abrasive shape and polishing performance>
The results obtained from the above evaluation are summarized in Table 8.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 表8より、炭酸ガスを導入して作製した実施例の研磨材301~331は、粒子形状が球形状であるのに対し、炭酸ガスを導入しないで作製した比較例の研磨材332は、不定形となった。また、炭酸ガスを導入しない比較例の研磨材よりも、炭酸ガスを導入した実施例の研磨材の方が、粒子径変動係数(CV値)及び表面粗さが小さく、傷も少ないことがわかった。研磨速度については、研磨材の作製に用いたセリウム溶液の量にほぼ比例していることがわかった。 As shown in Table 8, the abrasives 301 to 331 of the examples prepared by introducing carbon dioxide have a spherical particle shape, whereas the abrasives 332 of the comparative example prepared without introducing carbon dioxide are not suitable. It became a fixed form. In addition, it was found that the abrasive of the example in which carbon dioxide was introduced had a smaller particle diameter variation coefficient (CV value) and surface roughness and fewer scratches than the abrasive of the comparative example in which no carbon dioxide was introduced. . It was found that the polishing rate was almost proportional to the amount of cerium solution used for the production of the abrasive.
 [実施例IV]
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
[Example IV]
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 〈尿素類水溶液の調製〉
 以下の研磨材粒子の製造に用いる、加熱分解しない尿素類水溶液A1~A5、及び加熱分解したB1~B5尿素類水溶液を調製した。
(尿素類水溶液A1の調製)
 尿素類水溶液A1:2.5mol/Lの尿素水溶液
(尿素類水溶液A2からA5の調製)
 表10に記載の濃度、すなわち0.05、0.03、10及び13mol/Lの濃度の尿素類水溶液を5Lずつ調製してそれぞれA2からA5の尿素類水溶液とした。
<Preparation of aqueous ureas>
Urea aqueous solutions A1 to A5 that were not thermally decomposed and B1 to B5 urea aqueous solutions that were thermally decomposed were used for the production of the following abrasive particles.
(Preparation of aqueous urea solution A1)
Urea aqueous solution A1: 2.5 mol / L urea aqueous solution (preparation of urea aqueous solutions A2 to A5)
5 L each of urea aqueous solutions having concentrations shown in Table 10, that is, 0.05, 0.03, 10 and 13 mol / L, were prepared as aqueous urea solutions A2 to A5, respectively.
(尿素類水溶液B1の調製)
 10mol/Lの尿素水溶液を0.5L用意し、密閉容器内で、100℃で6時間加熱した。その後、当該尿素水溶液を室温(25℃)まで冷却してB1の尿素類水溶液とした。室温(25℃)で炭酸イオン濃度を測定した結果12mmol/Lであった。
(尿素類水溶液B3~5の調製)
 尿素類水溶液B1の調製において、尿素水溶液の濃度を変化させた以外は同様の方法で分解尿素液の濃度が表10に記載の炭酸イオン濃度となるようにして尿素類水溶液B3~5を調製した液を用いた。
(尿素類水溶液B6~9の調製)
 尿素類水溶液B1の調製において、尿素の温度と加熱時間を変化させて尿素水溶液を分解し、室温(25℃)まで冷却して、分解尿素水溶液B6~9を調製した。室温(25℃)で炭酸イオン濃度を測定した結果を表10に示す。なお、尿素類水溶液B8及びB9の調製においては、耐圧容器を用いて140℃に加温して調製した。
(尿素類水溶液B10~13の調製)
 尿素類水溶液B1の調製において、分解濃度と時間、温度を表1のように変化させて尿素水溶液を分解し、室温(25℃)まで冷却して、成長過程で用いる分解尿素水溶液B10~13を調製した。室温(25℃)で炭酸イオン濃度を測定した結果を表9に示す。
(Preparation of aqueous urea solution B1)
0.5 L of 10 mol / L urea aqueous solution was prepared, and it heated at 100 degreeC for 6 hours within the airtight container. Thereafter, the urea aqueous solution was cooled to room temperature (25 ° C.) to obtain a urea aqueous solution of B1. The carbonate ion concentration measured at room temperature (25 ° C.) was 12 mmol / L.
(Preparation of aqueous urea solution B3-5)
In the preparation of the urea aqueous solution B1, urea aqueous solutions B3 to 5 were prepared in the same manner except that the concentration of the urea aqueous solution was changed so that the concentration of the decomposed urea solution became the carbonate ion concentration shown in Table 10. The liquid was used.
(Preparation of aqueous urea solutions B6-9)
In the preparation of the urea aqueous solution B1, the urea aqueous solution was decomposed by changing the temperature of the urea and the heating time, and cooled to room temperature (25 ° C.) to prepare decomposed urea aqueous solutions B6-9. Table 10 shows the results of measuring the carbonate ion concentration at room temperature (25 ° C.). In addition, in preparation of urea aqueous solution B8 and B9, it heated and prepared at 140 degreeC using the pressure | voltage resistant container.
(Preparation of aqueous urea solution B10-13)
In the preparation of the urea aqueous solution B1, the decomposition concentration, time, and temperature are changed as shown in Table 1, the urea aqueous solution is decomposed, cooled to room temperature (25 ° C.), and the decomposition urea aqueous solutions B10 to 13 used in the growth process are prepared. Prepared. Table 9 shows the results of measuring the carbonate ion concentration at room temperature (25 ° C.).
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
 炭酸イオン濃度はイオンクロマトグラフィー法で測定した。DIONEX社製イオンクロマトグラフ、DX500を用いて測定した。 Carbonate ion concentration was measured by ion chromatography. The measurement was performed using an ion chromatograph DX500 manufactured by DIONEX.
 <研磨材粒子401の製造>
 以下の手順で比較の研磨材粒子401を製造した。
(1) 2.5mol/Lの尿素水溶液を1.0L用意した(尿素類水溶液A1)。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.0Lとした。
(3) 上記(2)で調製した硝酸セリウム水溶液を90℃まで加熱した。
(4) 上記(3)で加熱した硝酸セリウム水溶液に、(1)で用意した尿素水溶液を添加し、1時間加熱撹拌した。
(5) 上記(4)で加熱撹拌した混合液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(6) 上記(5)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子401を得た。
<Manufacture of abrasive particles 401>
Comparative abrasive particles 401 were produced by the following procedure.
(1) 1.0 L of a 2.5 mol / L urea aqueous solution was prepared (urea aqueous solution A1).
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L.
(3) The cerium nitrate aqueous solution prepared in (2) above was heated to 90 ° C.
(4) The urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated in (3) above, and the mixture was heated and stirred for 1 hour.
(5) The precursor of the abrasive particle precipitated in the mixed solution heated and stirred in the above (4) was separated by a membrane filter.
(6) The abrasive particle precursors separated in (5) above were fired at 600 ° C. to obtain abrasive particles 401.
 <研磨材粒子402の製造>
 以下の手順で本発明に係る研磨材粒子402を製造した。
(1) 5.0mol/Lの分解尿素水溶液を0.5L用意した(尿素類水溶液B1)。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.0Lとした。
(3) 上記(2)で調製した硝酸セリウム水溶液を90℃まで加熱した。
(4) 上記(3)で加熱した硝酸セリウム水溶液に、(1)で用意した分解尿素水溶液を添加し、10分間加熱撹拌した(核形成過程)。
(5) 上記(4)の混合液中に0.05mol/Lの濃度の尿素類水溶液を0.5L添加し、50分間過熱撹拌した(成長過程)。
(6) 上記(5)で加熱撹拌した混合液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 上記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子402を得た。
<Manufacture of abrasive particles 402>
The abrasive particles 402 according to the present invention were manufactured by the following procedure.
(1) 0.5 L of 5.0 mol / L decomposition urea aqueous solution was prepared (urea aqueous solution B1).
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L.
(3) The cerium nitrate aqueous solution prepared in (2) above was heated to 90 ° C.
(4) The decomposed urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated in (3) above, and the mixture was heated and stirred for 10 minutes (nucleation process).
(5) 0.5 L of an aqueous urea solution having a concentration of 0.05 mol / L was added to the mixed solution of (4) above, and the mixture was stirred for 50 minutes by heating (growth process).
(6) The precursor of the abrasive particles precipitated in the mixed solution heated and stirred in the above (5) was separated with a membrane filter.
(7) The abrasive particle precursors separated in (6) above were fired at 600 ° C. to obtain abrasive particles 402.
 <研磨材粒子403~405の製造>
 研磨材粒子402の製造において、(1)で使用する分解尿素水溶液をB3~B5にかえて、研磨材粒子403~405を作製した。
<Production of abrasive particles 403 to 405>
In the production of the abrasive particles 402, the decomposed urea aqueous solution used in (1) was changed to B3 to B5 to produce abrasive particles 403 to 405.
 <研磨材粒子406~409の製造>
 研磨材粒子402の製造において、(1)で使用する分解尿素水溶液をB6~B9にかえて、研磨材粒子406~409を作製した。
<Production of abrasive particles 406 to 409>
In the production of the abrasive particles 402, the decomposed urea aqueous solution used in (1) was replaced with B6 to B9 to prepare abrasive particles 406 to 409.
 <研磨材粒子410~412の製造>
(1) 5.0mol/Lの分解尿素水溶液を0.5L用意した(尿素類水溶液B1)。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.0Lとした。
(3) 上記(2)で調製した硝酸セリウム水溶液を90℃まで加熱した。
(4) 上記(3)で加熱した硝酸セリウム水溶液に、(1)で用意した分解尿素水溶液を添加し、10分間加熱撹拌した。
(5) 上記(4)の混合液中に表10に記載の濃度の尿素類水溶液(尿素類水溶液A3~A5)を0.5L添加し、50分間加熱撹拌した。
(6) 上記(5)で加熱撹拌した混合液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 上記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子410~412を得た。
<Production of abrasive particles 410 to 412>
(1) 0.5 L of 5.0 mol / L decomposition urea aqueous solution was prepared (urea aqueous solution B1).
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L.
(3) The cerium nitrate aqueous solution prepared in (2) above was heated to 90 ° C.
(4) The decomposed urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated in (3) above, and the mixture was heated and stirred for 10 minutes.
(5) 0.5 L of an aqueous urea solution (urea aqueous solution A3 to A5) having the concentration shown in Table 10 was added to the mixed solution of (4), and the mixture was heated and stirred for 50 minutes.
(6) The precursor of the abrasive particles precipitated in the mixed solution heated and stirred in the above (5) was separated with a membrane filter.
(7) The abrasive particle precursors separated in (6) above were fired at 600 ° C. to obtain abrasive particles 410 to 412.
 <研磨材粒子413~416の製造>
(1) 5.0mol/Lの分解尿素水溶液を0.5L用意した(尿素類水溶液B1)。
(2) 1.0mol/Lの硝酸セリウム水溶液200mLに純水を加えて9.0Lとした。
(3) 上記(2)で調製した硝酸セリウム水溶液を90℃まで加熱した。
(4) 上記(3)で加熱した硝酸セリウム水溶液に、(1)で用意した分解尿素水溶液を添加し、10分間加熱撹拌した。
(5) 上記(4)の混合液中に表9に記載の濃度・分解温度・時間で分解させた尿素類水溶液(尿素類水溶液B10~B13)を0.5L添加し、50分間加熱撹拌した。
(6) 上記(5)で加熱撹拌した混合液中に析出した研磨材粒子の前駆体をメンブランフィルターで分離した。
(7) 上記(6)で分離した研磨材粒子の前駆体を600℃で焼成して研磨材粒子413~416を得た。
<Production of abrasive particles 413 to 416>
(1) 0.5 L of 5.0 mol / L decomposition urea aqueous solution was prepared (urea aqueous solution B1).
(2) Pure water was added to 200 mL of a 1.0 mol / L cerium nitrate aqueous solution to make 9.0 L.
(3) The cerium nitrate aqueous solution prepared in (2) above was heated to 90 ° C.
(4) The decomposed urea aqueous solution prepared in (1) was added to the cerium nitrate aqueous solution heated in (3) above, and the mixture was heated and stirred for 10 minutes.
(5) 0.5 L of an aqueous urea solution (urea aqueous solutions B10 to B13) decomposed at the concentration, decomposition temperature, and time shown in Table 9 was added to the mixed solution of (4) above, and the mixture was heated and stirred for 50 minutes. .
(6) The precursor of the abrasive particles precipitated in the mixed solution heated and stirred in the above (5) was separated with a membrane filter.
(7) The abrasive particle precursors separated in (6) above were fired at 600 ° C. to obtain abrasive particles 413 to 416.
 <研磨材粒子417~425の製造>
 研磨材粒子402の製造において、表9に示したように、希土類塩水溶液中の希土類元素を、総量は変えずに表に示したmol%の各々硝酸塩にかえて、及び尿素類水溶液の種類と添加速度及びその濃度さらにその炭酸イオン濃度を表10のように変えて研磨材粒子417~425を作製した。
 なお、表10中、添加速度(mol)は反応液1Lに対して1分当たりで添加する尿素類のmol数を表している。
<Production of abrasive particles 417 to 425>
In the production of the abrasive particles 402, as shown in Table 9, the rare earth elements in the rare earth salt aqueous solution were replaced with the respective mol% nitrates shown in the table without changing the total amount, and the types of urea aqueous solutions Abrasive particles 417 to 425 were prepared by changing the addition rate, concentration thereof, and carbonate ion concentration as shown in Table 10.
In Table 10, the addition rate (mol) represents the number of moles of urea added per minute with respect to 1 L of the reaction solution.
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
 《研磨材粒子の評価》
 研磨材粒子401~425について、以下の方法に従って、その組成、形状及び研磨性能の評価を行った。
<Evaluation of abrasive particles>
The composition, shape and polishing performance of the abrasive particles 401 to 425 were evaluated according to the following method.
 1.元素分析
 得られた研磨材粒子401~425の各々1gを硝酸水溶液10mlと過酸化水素水1.0mlの混合溶液に溶解させ、エスアイアイナノテクノロジー社製のICP発光分光プラズマ装置(ICP-AES)を使用して元素分析を行った。研磨材に含有される研磨材粒子の各希土類元素の平均含有量を組成比(mol%)として求めた。その結果、表10に示した処方の値と一致していることが分かった。
1. Elemental Analysis 1 g of each of the obtained abrasive particles 401 to 425 was dissolved in a mixed solution of 10 ml of nitric acid aqueous solution and 1.0 ml of hydrogen peroxide solution, and ICP emission spectral plasma apparatus (ICP-AES) manufactured by SII Nanotechnology Inc. Was used for elemental analysis. The average content of each rare earth element in the abrasive particles contained in the abrasive was determined as a composition ratio (mol%). As a result, it was found that the values agreed with the prescription values shown in Table 10.
 2.粒子形状・アスペクト比
 研磨材粒子について、走査型顕微鏡写真(SEM像)の撮影を行い、粒子100個を無作為に選択し、その長径をa、短径をbとするとき、a/bの値の平均値をアスペクト比として求めた。なお、各粒子について外接する長方形(「外接長方形」という。)を描いたとき、外接長方形の短辺及び長辺うち、最短の短辺の長さを短径とし、最長の長辺の長さを長径とする。
2. Particle shape / aspect ratio For abrasive particles, a scanning micrograph (SEM image) was taken, 100 particles were randomly selected, and the major axis was a and the minor axis was b. The average value was obtained as the aspect ratio. In addition, when drawing a circumscribing rectangle for each particle (referred to as “the circumscribing rectangle”), the shortest short side of the circumscribed rectangle is the shortest length, and the longest long side is the length. Is the major axis.
 アスペクト比が、1.00~1.15の範囲内、より好ましくは1.00~1.05の範囲内である場合に球形状として分類する。1.00~1.15の範囲外である場合は不定形として分類した。 When the aspect ratio is in the range of 1.00 to 1.15, more preferably in the range of 1.00 to 1.05, it is classified as a spherical shape. When it was outside the range of 1.00 to 1.15, it was classified as an indeterminate form.
 3.粒子径変動係数(CV値)
 研磨材粒子100個の走査型顕微鏡写真(SEM像)から粒子径分布の変動係数(「単分散度」ともいう。)を求め、単分散性を評価した。なお、粒子径は、各粒子の写真画像の面積に基づき、面積円相当粒子径を求め、これを各粒子の粒子径とする。また、各粒子の粒子径の算術平均を平均粒子径とした。
 粒子径分布変動係数は下記の式で求めた。
 変動係数(%)=(粒子径分布の標準偏差/平均粒子径)×100
3. Particle size variation coefficient (CV value)
The coefficient of variation (also referred to as “monodispersity”) of the particle size distribution was determined from a scanning micrograph (SEM image) of 100 abrasive particles, and the monodispersity was evaluated. The particle diameter is determined based on the area of the photographic image of each particle, and the equivalent particle diameter is determined as the particle diameter of each particle. Moreover, the arithmetic average of the particle diameter of each particle was made into the average particle diameter.
The particle size distribution variation coefficient was determined by the following formula.
Coefficient of variation (%) = (standard deviation of particle size distribution / average particle size) × 100
 4.研磨速度
 研磨速度は、研磨材粒子を用いた研磨材の粉体を水等の溶媒に分散させた研磨材スラリーを、研磨機の研磨対象面に供給しながら、研磨対象面を研磨布で研磨することで測定した。研磨材スラリーは分散媒を水のみとして、濃度は100g/Lとし、孔径5μmのフィルターに通した。研磨試験においては、研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、65mmΦのガラス基板を使用し、研磨布は、ポリウレタン製の物を使用した。研磨面に対する研磨時の圧力は、9.8kPa(100g/cm)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行った。研磨前後の厚さをNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出し、研磨速度とした。
4). Polishing speed The polishing speed is determined by polishing the surface to be polished with a polishing cloth while supplying abrasive slurry in which abrasive powder using abrasive particles is dispersed in a solvent such as water to the surface to be polished of the polishing machine. Was measured. The abrasive slurry was passed through a filter having a pore size of 5 μm with a dispersion medium of only water and a concentration of 100 g / L. In the polishing test, polishing was performed by circulatingly supplying an abrasive slurry at a flow rate of 5 L / min. A 65 mmφ glass substrate was used as the object to be polished, and a polyurethane cloth was used as the polishing cloth. The polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min −1 (rpm), and polishing was performed for 30 minutes. The thickness before and after polishing was measured with Nikon Digimicro (MF501), and the polishing amount per minute (μm) was calculated from the thickness displacement, and was used as the polishing rate.
 5.表面粗さ
 ガラス基板表面の表面状態(表面粗さRa)については、「4.研磨速度」の測定において、30分間研磨加工を行ったガラス基板を、光波干渉式表面粗さ計(Zygo社製Dual-channel ZeMapper)により表面粗さ評価を行った。なお、Raとは、JIS B0601-2001における算術平均粗さを表している。
5. Surface Roughness Regarding the surface condition (surface roughness Ra) of the glass substrate surface, a glass substrate that had been polished for 30 minutes in the measurement of “4. Polishing speed” was used as a light wave interference type surface roughness meter (manufactured by Zygo). Surface roughness was evaluated using a Dual-channel ZeMapper. Ra represents the arithmetic average roughness in JIS B0601-2001.
 <研磨材の形状・研磨性能の評価>
 以上の評価により得られた結果を表11にまとめた。
<Evaluation of abrasive shape and polishing performance>
The results obtained from the above evaluation are summarized in Table 11.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 表11より、各研磨材に含有される研磨材粒子の各希土類元素の組成比(mol%)は、各研磨材の製造工程で混合した水溶液の濃度及び量に対応する値となっていることがわかった。また、表10より、核形成過程と成長過程とを経て製造した本発明に係る研磨材粒子402~425は、比較例の研磨材粒子401に比べ、球形度(粒子形状・アスペクト比)及び粒子径変動係数(CV値)が小さく、研磨速度が速いことがわかった。また、比較例の研磨材よりも実施例の研磨材の方が、表面粗さも小さく、傷が発生しにくいことがわかった。 From Table 11, the composition ratio (mol%) of each rare earth element of the abrasive particles contained in each abrasive is a value corresponding to the concentration and amount of the aqueous solution mixed in the manufacturing process of each abrasive. I understood. Further, from Table 10, the abrasive particles 402 to 425 according to the present invention manufactured through the nucleation process and the growth process have a sphericity (particle shape / aspect ratio) and particles as compared with the abrasive particles 401 of the comparative example. It was found that the diameter variation coefficient (CV value) was small and the polishing rate was fast. Moreover, it turned out that the surface roughness of the abrasive | polishing material of an Example is smaller than the abrasive | polishing material of a comparative example, and a damage | wound is hard to generate | occur | produce.
 本発明は、ガラス製品や半導体デバイス、水晶発振子等の製造工程において、酸化セリウムを含有する研磨材により研磨する分野において利用可能性がある。 The present invention may be used in the field of polishing with an abrasive containing cerium oxide in the manufacturing process of glass products, semiconductor devices, crystal oscillators and the like.
 1 研磨材粒子
 2 結晶子
 3 粒子径
 A 平均結晶子径
 I-A 研磨材粒子前駆体形成工程
 I-B 固液分離工程
 I-C 焼成工程
 II-A 尿素水溶液調整工程
 II-A1 尿素水溶液(室温)
 II-A2 加熱
 II-A3 尿素水溶液(100℃)
 II-A4 冷却
 II-A5 尿素水溶液(20℃)
 II-B 希土類水溶液調整工程
 II-B1 希土類水溶液(室温)
 II-B2 加熱
 II-B3 希土類水溶液(90℃)
 II-C 尿素水溶液の添加・加熱撹拌工程
 II-C1 尿素水溶液添加
 II-C2 加熱撹拌
 II-C3 希土類塩基性炭酸塩生成
 II-D 固液分離工程
 II-E 焼成工程
 III-A 希土類水溶液調整工程
 III-A1 希土類水溶液(室温)
 III-A2 加熱
 III-A3 希土類水溶液(90℃)
 III-B 沈殿剤添加工程
 III-B1 尿素水溶液(室温)
 III-B2 加熱
 III-B3 尿素水溶液(60℃)
 III-C 研磨材粒子前駆体生成工程
 III-C1 炭酸ガス導入
 III-C2 加熱撹拌
 III-C3 希土類塩基性炭酸塩生成
 III-D 固液分離工程
 III-E 焼成工程
 IV-A 尿素類水溶液調整工程
 IV-A1a 分解尿素類水溶液(25℃)
 IV-A1b 分解尿素類水溶液又は分解尿素類水溶液(25℃)
 IV-B 希土塩類水溶液調整工程
 IV-B1 希土類塩水溶液(25℃)
 IV-B2 加熱
 IV-B3 希土類塩水溶液(90℃)
 IV-C 研磨材前駆体粒子を形成する工程
 IV-C1 加熱撹拌
 IV-C1a 核形成過程
 IV-C1b 成長過程
 IV-C2 希土類塩基性炭酸塩生成
 IV-D 固液分離工程
 IV-E 焼成工程
DESCRIPTION OF SYMBOLS 1 Abrasive particle 2 Crystallite 3 Particle diameter A Average crystallite diameter IA Abrasive particle precursor formation process IB Solid-liquid separation process IC Firing process II-A Urea aqueous solution adjustment process II-A1 Urea aqueous solution ( room temperature)
II-A2 Heating II-A3 Urea aqueous solution (100 ° C)
II-A4 Cooling II-A5 Aqueous urea solution (20 ° C)
II-B Rare earth aqueous solution adjustment process II-B1 Rare earth aqueous solution (room temperature)
II-B2 Heating II-B3 Rare earth solution (90 ° C)
II-C Urea aqueous solution addition and heating and stirring process II-C1 Urea aqueous solution addition II-C2 Heating and stirring II-C3 Rare earth basic carbonate formation II-D Solid-liquid separation process II-E Firing process III-A Rare earth aqueous solution adjustment process III-A1 Rare earth aqueous solution (room temperature)
III-A2 Heating III-A3 Rare earth solution (90 ° C)
III-B Precipitant addition process III-B1 Urea aqueous solution (room temperature)
III-B2 Heating III-B3 Aqueous urea solution (60 ° C)
III-C Abrasive particle precursor generation process III-C1 Carbon dioxide introduction III-C2 Heating and stirring III-C3 Rare earth basic carbonate generation III-D Solid-liquid separation process III-E Firing process IV-A Urea aqueous solution adjustment process IV-A1a Decomposed urea aqueous solution (25 ° C)
IV-A1b Decomposed urea aqueous solution or decomposed urea aqueous solution (25 ° C)
IV-B Rare earth salt aqueous solution adjustment process IV-B1 Rare earth salt aqueous solution (25 ° C)
IV-B2 Heating IV-B3 Rare earth salt aqueous solution (90 ° C)
IV-C Process for forming abrasive precursor particles IV-C1 Heating and stirring IV-C1a Nucleation process IV-C1b Growth process IV-C2 Rare earth basic carbonate generation IV-D Solid-liquid separation process IV-E Firing process

Claims (23)

  1.  セリウム(Ce)と、
     ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びユウロピウム(Eu)から選ばれる少なくとも1種類の元素との、
     含有量の合計が、81mol%以上であり、
     イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、19mol%以下である研磨材粒子を含有し、
     前記研磨材粒子の粒子径の単分散度が、30%以下であることを特徴とする研磨材。
    Cerium (Ce),
    With at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm) and europium (Eu),
    The total content is 81 mol% or more,
    At least one selected from yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) Containing abrasive particles having an elemental content of 19 mol% or less,
    An abrasive having a monodispersity of particle size of the abrasive particles of 30% or less.
  2.  前記研磨材粒子の平均結晶子径が、420~500Åの範囲内であることを特徴とする請求項1に記載の研磨材。 2. The abrasive according to claim 1, wherein an average crystallite diameter of the abrasive particles is in a range of 420 to 500 mm.
  3.  前記研磨材粒子の平均粒子径D50が、0.5~0.9μmの範囲内であることを特徴とする請求項1又は請求項2に記載の研磨材。 The average particle diameter D 50, abrasive material according to claim 1 or claim 2, characterized in that in the range of 0.5 ~ 0.9 .mu.m of the abrasive particles.
  4.  前記研磨材粒子の平均含有率が、全研磨材粒子の80質量%以上であることを特徴とする請求項1から請求項3までのいずれか一項に記載の研磨材。 The abrasive according to any one of claims 1 to 3, wherein an average content of the abrasive particles is 80% by mass or more of all abrasive particles.
  5.  セリウム(Ce)の含有量が、81mol%以上であり、
     イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、19mol%以下である研磨材粒子を含有することを特徴とする請求項1から請求項4までのいずれか一項に記載の研磨材。
    The content of cerium (Ce) is 81 mol% or more,
    At least one selected from yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) The abrasive according to any one of claims 1 to 4, wherein the abrasive contains particles of 19 mol% or less.
  6.  セリウム(Ce)の含有量が、90mol%以上であり、
     イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる少なくとも1種類の元素の含有量が、10mol%以下である研磨材粒子を含有することを特徴とする請求項1から請求項5までのいずれか一項に記載の研磨材。
    The content of cerium (Ce) is 90 mol% or more,
    At least one selected from yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) The abrasive according to any one of claims 1 to 5, wherein the abrasive contains particles having an element content of 10 mol% or less.
  7.  セリウム(Ce)の含有量が、95~100mol%の範囲内である研磨材粒子を含有し、
     前記研磨材粒子の粒子径の単分散度が、30%以下であることを特徴とする研磨材。
    Containing abrasive particles in which the content of cerium (Ce) is in the range of 95 to 100 mol%,
    An abrasive having a monodispersity of particle size of the abrasive particles of 30% or less.
  8.  前記研磨材粒子の粒子径の単分散度が、20%以下であることを特徴とする請求項7に記載の研磨材。 The abrasive according to claim 7, wherein a monodispersity of the particle diameter of the abrasive particles is 20% or less.
  9.  請求項1から請求項8までのいずれか一項に記載の研磨材を製造する製造方法であって、
     少なくとも下記工程1~工程5を含み、かつ少なくとも下記工程2~工程3までの間、下記水溶液又は反応液に炭酸ガスを連続的若しくは断続的に導入することを特徴とする研磨材粒子を含有する研磨材の製造方法。
     工程1:セリウム(Ce)を含有する水溶液を調製し加熱する工程
     工程2:前記工程1において加熱された前記水溶液に沈殿剤を添加して反応液を調製する工程
     工程3:前記反応液を加熱撹拌して研磨材粒子前駆体を生成させる工程
     工程4:前記工程3において生成した研磨材粒子前駆体を反応液から分離する工程
     工程5:前記工程4で分離して得られた前記研磨材粒子前駆体を酸化性雰囲気中で焼成して研磨材粒子を形成させる工程
    A manufacturing method for manufacturing the abrasive according to any one of claims 1 to 8,
    Contains abrasive particles characterized by including carbon dioxide gas continuously or intermittently into the following aqueous solution or reaction solution, including at least the following steps 1 to 5 and at least the following steps 2 to 3. A manufacturing method of an abrasive.
    Step 1: Step of preparing and heating an aqueous solution containing cerium (Ce) Step 2: Step of preparing a reaction solution by adding a precipitant to the aqueous solution heated in Step 1 Step 3: Heating the reaction solution Step of stirring to generate abrasive particle precursor Step 4: Separating the abrasive particle precursor generated in Step 3 from the reaction solution Step 5: The abrasive particle obtained by separating in Step 4 A step of firing the precursor in an oxidizing atmosphere to form abrasive particles
  10.  前記水溶液が、下記要件1a~要件3aを満たすことを特徴とする請求項9に記載の研磨材粒子を含有する研磨材の製造方法。
     要件1a:前記水溶液が、前記セリウムに加えて、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、イットリウム(Y)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)からなる14種類の希土類元素のうちから選ばれる少なくとも1種類の元素を含有する。
     要件2a:前記水溶液に含有されるセリウムと、当該水溶液に含有される、ランタン、プラセオジム、ネオジム、サマリウム及びユウロピウムから選ばれる少なくとも1種類の元素との含有量の合計が、前記水溶液に含有される希土類元素の全体量に対して、81mol%以上である。
     要件3a:前記水溶液に含有される、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、前記水溶液に含有される希土類元素の全体量に対して、19mol%以下である。
    The method for producing an abrasive containing abrasive particles according to claim 9, wherein the aqueous solution satisfies the following requirements 1a to 3a.
    Requirement 1a: In addition to cerium, the aqueous solution contains lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), yttrium (Y), gadolinium (Gd), terbium ( At least one element selected from 14 rare earth elements consisting of Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) contains.
    Requirement 2a: The total content of cerium contained in the aqueous solution and at least one element selected from lanthanum, praseodymium, neodymium, samarium and europium contained in the aqueous solution is contained in the aqueous solution. It is 81 mol% or more with respect to the whole quantity of rare earth elements.
    Requirement 3a: The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the whole of the rare earth elements contained in the aqueous solution It is 19 mol% or less with respect to quantity.
  11.  前記水溶液が、下記要件1b~要件3bを満たすことを特徴とする請求項10に記載の研磨材粒子を含有する研磨材の製造方法。
     要件1b:前記水溶液が、前記セリウムに加えて、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムからなる9種類の希土類元素のうちから選ばれる少なくとも1種類の元素を含有する。
     要件2b:前記水溶液のセリウムの含有量が、前記水溶液に含有される希土類元素の全体量に対して、81mol%以上である。
     要件3b:前記水溶液に含有される、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムから選ばれる少なくとも1種類の元素の含有量が、前記水溶液に含有される希土類元素の全体量に対して、19mol%以下である。
    The method for producing an abrasive containing abrasive particles according to claim 10, wherein the aqueous solution satisfies the following requirements 1b to 3b.
    Requirement 1b: In addition to the cerium, the aqueous solution contains at least one element selected from nine kinds of rare earth elements consisting of yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. .
    Requirement 2b: The content of cerium in the aqueous solution is 81 mol% or more with respect to the total amount of rare earth elements contained in the aqueous solution.
    Requirement 3b: The content of at least one element selected from yttrium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium contained in the aqueous solution is the entire rare earth element contained in the aqueous solution It is 19 mol% or less with respect to quantity.
  12.  前記水溶液のセリウムの含有量が、前記水溶液に含有される希土類元素の全体量に対して、95~100mol%の範囲内であることを特徴とする請求項9に記載の研磨材粒子を含有する研磨材の製造方法。 The abrasive particles according to claim 9, wherein the content of cerium in the aqueous solution is within a range of 95 to 100 mol% with respect to the total amount of rare earth elements contained in the aqueous solution. A manufacturing method of an abrasive.
  13.  前記工程2で沈殿剤を添加する直前の、前記水溶液又は前記反応液中の炭酸イオン濃度が、50~1600mg/Lの範囲内であることを特徴とする請求項9から請求項12までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 The carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in the step 2 is in the range of 50 to 1600 mg / L. A method for producing an abrasive containing the abrasive particles according to claim 1.
  14.  前記工程2で沈殿剤を添加する直前の、前記水溶液又は前記反応液中の炭酸イオン濃度が、58~1569mg/Lの範囲内であることを特徴とする請求項9から請求項13までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 The carbonate ion concentration in the aqueous solution or the reaction solution immediately before adding the precipitant in the step 2 is in the range of 58 to 1569 mg / L. A method for producing an abrasive containing the abrasive particles according to claim 1.
  15.  前記沈殿剤が、尿素又は尿素系化合物であることを特徴とする請求項9から請求項14までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 The method for producing an abrasive containing abrasive particles according to any one of claims 9 to 14, wherein the precipitant is urea or a urea-based compound.
  16.  請求項1から請求項8までのいずれか一項に記載の研磨材を製造する製造方法であって、
     セリウムを含む希土類元素含有化合物の水溶液中に尿素類水溶液を添加して研磨材前駆体粒子を形成する工程と、
     当該研磨材前駆体粒子を焼成する工程とを少なくとも有し、かつ
     前記研磨材前駆体粒子を形成する工程における反応初期の粒子の核形成過程において加熱分解した尿素類水溶液を添加し、
     前記核形成過程の後の粒子の成長過程において尿素類水溶液又は加熱分解した尿素類水溶液を添加することを特徴とする研磨材粒子を含有する研磨材の製造方法。
    A manufacturing method for manufacturing the abrasive according to any one of claims 1 to 8,
    Adding an aqueous urea solution to an aqueous solution of a rare earth element-containing compound containing cerium to form abrasive precursor particles;
    Adding at least a step of firing the abrasive precursor particles, and adding an aqueous urea solution that is thermally decomposed in the nucleation process of the particles in the initial stage of the reaction in the step of forming the abrasive precursor particles,
    A method for producing an abrasive containing abrasive particles, wherein an aqueous urea solution or an aqueous urea solution decomposed by heat decomposition is added in a particle growth process after the nucleation process.
  17.  前記反応初期の粒子の核形成過程において添加する加熱分解した尿素類水溶液の添加速度が、加熱分解前の尿素類濃度に換算して反応液1Lに対して1分当たり0.01~50molの範囲内であることを特徴とする請求項16に記載の研磨材粒子を含有する研磨材の製造方法。 The addition rate of the thermally decomposed urea aqueous solution added in the nucleation process of the particles at the initial stage of the reaction is in the range of 0.01 to 50 mol per minute per 1 liter of the reaction solution in terms of the urea concentration before the thermal decomposition The manufacturing method of the abrasive | polishing material containing the abrasive | polishing material particle of Claim 16 characterized by the above-mentioned.
  18.  前記反応初期の粒子の核形成過程において添加する加熱分解した尿素類水溶液の炭酸イオン濃度が、2.5~50mmol/Lの範囲内であることを特徴とする請求項16又は請求項17に記載の研磨材粒子を含有する研磨材の製造方法。 18. The carbonate ion concentration of the thermally decomposed aqueous urea solution added in the nucleation process of the particles at the initial stage of the reaction is in the range of 2.5 to 50 mmol / L. A method for producing an abrasive containing abrasive particles.
  19.  前記粒子の成長過程において添加する尿素類水溶液の濃度が、0.05~10mol/Lの範囲内であることを特徴とする請求項16から請求項18までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 The abrasive according to any one of claims 16 to 18, wherein the concentration of the aqueous urea solution added in the particle growth process is in the range of 0.05 to 10 mol / L. A method for producing an abrasive containing particles.
  20.  前記粒子の成長過程において添加する前記加熱分解した尿素類水溶液の炭酸イオン濃度が、0.1~30mmol/Lの範囲内であることを特徴とする請求項16から請求項19までのいずれか一項に記載の研磨材粒子を含有する研磨材の製造方法。 20. The carbonate ion concentration of the thermally decomposed aqueous urea solution added during the particle growth process is in the range of 0.1 to 30 mmol / L. A method for producing an abrasive containing the abrasive particles according to Item.
  21.  請求項1から請求項4までのいずれか一項に記載の研磨材を製造する製造方法であって、
     前記研磨材が含有する研磨材粒子が、少なくとも酸化セリウムを主成分とする研磨材粒子前駆体を焼成処理することにより製造され、当該焼成処理が、焼成温度が1050~1500℃の範囲内で処理する工程であることを特徴とする研磨材の製造方法。
    A manufacturing method for manufacturing the abrasive according to any one of claims 1 to 4,
    The abrasive particles contained in the abrasive are produced by firing an abrasive particle precursor containing at least cerium oxide as a main component, and the firing treatment is performed at a firing temperature of 1050 to 1500 ° C. A method for producing an abrasive material, characterized in that the method comprises:
  22.  前記焼成工程で前記研磨材粒子前駆体を焼成する焼成装置が、ローラーハースキルン又はロータリーキルンであることを特徴とする請求項21に記載の研磨材の製造方法。 The method for producing an abrasive according to claim 21, wherein the baking apparatus for baking the abrasive particle precursor in the baking step is a roller hearth kiln or a rotary kiln.
  23.  請求項1から請求項8までのいずれか一項に記載の研磨材を被研磨物の研磨加工に使用することを特徴とする研磨加工方法。 A polishing method, wherein the abrasive according to any one of claims 1 to 8 is used for polishing an object to be polished.
PCT/JP2014/065873 2013-06-27 2014-06-16 Abrasive, method for producing abrasive, and polishing method WO2014208379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015523985A JP6424818B2 (en) 2013-06-27 2014-06-16 Method of manufacturing abrasive

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013134681 2013-06-27
JP2013135033 2013-06-27
JP2013-134681 2013-06-27
JP2013-135033 2013-06-27
JP2013166313 2013-08-09
JP2013166075 2013-08-09
JP2013-166313 2013-08-09
JP2013-166075 2013-08-09

Publications (1)

Publication Number Publication Date
WO2014208379A1 true WO2014208379A1 (en) 2014-12-31

Family

ID=52141721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065873 WO2014208379A1 (en) 2013-06-27 2014-06-16 Abrasive, method for producing abrasive, and polishing method

Country Status (3)

Country Link
JP (1) JP6424818B2 (en)
TW (1) TWI523943B (en)
WO (1) WO2014208379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107674592A (en) * 2017-10-16 2018-02-09 淄博包钢灵芝稀土高科技股份有限公司 Samarium cerium mischmetal polishing powder and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020224A (en) * 2001-07-09 2003-01-24 National Institute For Materials Science Method for manufacturing ceria powder in which individual particles are separated into nanosize
JP2008515764A (en) * 2005-10-14 2008-05-15 エルジー・ケム・リミテッド Method for producing cerium oxide powder for CMP slurry and method for producing slurry composition for CMP using the same
JP2009515807A (en) * 2005-11-14 2009-04-16 エルジー・ケム・リミテッド Cerium carbonate powder, cerium oxide powder, method for producing the same, and CMP slurry containing the same
JP2010526433A (en) * 2007-05-03 2010-07-29 エルジー・ケム・リミテッド Cerium oxide powder for abrasives and CMP slurry containing the same
WO2012101871A1 (en) * 2011-01-25 2012-08-02 コニカミノルタホールディングス株式会社 Fine abrasive particles and process for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4282434B2 (en) * 2003-10-21 2009-06-24 三井金属鉱業株式会社 Cerium oxide, cerium oxide for abrasives and method for producing them
JP4294710B2 (en) * 2007-09-13 2009-07-15 三井金属鉱業株式会社 Cerium oxide and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020224A (en) * 2001-07-09 2003-01-24 National Institute For Materials Science Method for manufacturing ceria powder in which individual particles are separated into nanosize
JP2008515764A (en) * 2005-10-14 2008-05-15 エルジー・ケム・リミテッド Method for producing cerium oxide powder for CMP slurry and method for producing slurry composition for CMP using the same
JP2009515807A (en) * 2005-11-14 2009-04-16 エルジー・ケム・リミテッド Cerium carbonate powder, cerium oxide powder, method for producing the same, and CMP slurry containing the same
JP2010526433A (en) * 2007-05-03 2010-07-29 エルジー・ケム・リミテッド Cerium oxide powder for abrasives and CMP slurry containing the same
WO2012101871A1 (en) * 2011-01-25 2012-08-02 コニカミノルタホールディングス株式会社 Fine abrasive particles and process for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107674592A (en) * 2017-10-16 2018-02-09 淄博包钢灵芝稀土高科技股份有限公司 Samarium cerium mischmetal polishing powder and preparation method thereof

Also Published As

Publication number Publication date
TWI523943B (en) 2016-03-01
JP6424818B2 (en) 2018-11-21
JPWO2014208379A1 (en) 2017-02-23
TW201510198A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6493207B2 (en) Method for producing cerium oxide abrasive
JP6447499B2 (en) Abrasive manufacturing method and polishing method
JP5862578B2 (en) Abrasive fine particles and method for producing the same
JP5101626B2 (en) Method for producing cerium oxide powder using organic solvent and CMP slurry containing this powder
JP5213720B2 (en) Method for producing cerium carbonate powder
JP4917098B2 (en) Cerium carbonate powder and production method, cerium oxide powder produced therefrom and production method, and CMP slurry containing the same
TWI588250B (en) Abrasive particles, polishing slurry and method of fabricating abrasive particles
JP6191608B2 (en) Method for producing abrasive particles
JP2017507893A (en) Liquid suspension of cerium oxide particles
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
WO2014045939A1 (en) Method for producing polishing material particles
WO2014208379A1 (en) Abrasive, method for producing abrasive, and polishing method
JP6237650B2 (en) Core-shell type inorganic particles
JP2016098351A (en) Manufacturing method of abrasive agent particle, abrasion agent particle and abrasion agent slurry
JP6512096B2 (en) Abrasive material, abrasive material slurry and method of manufacturing abrasive material
JP2016092045A (en) Polishing material, polishing material slurry and polishing treatment method
JP2015140402A (en) Free abrasive grain, abrasive material for polishing free abrasive grain and manufacturing method therefor
TW202136443A (en) Liquid dispersion and powder of cerium based core-shell particles, process for producing the same and uses thereof in polishing
WO2014122978A1 (en) Method for producing abrasive
WO2014122976A1 (en) Polishing material slurry
JP2014101488A (en) Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817782

Country of ref document: EP

Kind code of ref document: A1