JP2014101488A - Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method - Google Patents

Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method Download PDF

Info

Publication number
JP2014101488A
JP2014101488A JP2013075021A JP2013075021A JP2014101488A JP 2014101488 A JP2014101488 A JP 2014101488A JP 2013075021 A JP2013075021 A JP 2013075021A JP 2013075021 A JP2013075021 A JP 2013075021A JP 2014101488 A JP2014101488 A JP 2014101488A
Authority
JP
Japan
Prior art keywords
polishing
manganese oxide
abrasive
abrasive grains
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013075021A
Other languages
Japanese (ja)
Inventor
Masato Uchida
雅人 内田
Masanori Abe
昌則 阿部
Shuji Takato
修二 高東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2013075021A priority Critical patent/JP2014101488A/en
Publication of JP2014101488A publication Critical patent/JP2014101488A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive polishing agent for manganese oxide loose abrasives polishing having a high polishing speed for glass, a stable polishing speed, not generating scratches due to polishing, and excellent in washability.SOLUTION: A polishing agent for manganese oxide loose abrasives polishing containing MnOas a major crystal phase and Al of 1 to 30 atom% based on Mn, having a BET specific surface area at firing of 1 to 4 m/g, D50 diameter, which is a 50% diameter of secondary particles of MnOparticles, of 1 to 3 μm, and containing no MnOparticles having a secondary particle diameter of 10 μm or more, is excellent in polishing performance because it has a stably high polishing speed for glass and generates no scratches due to polishing.

Description

本発明は、液晶パネル用や磁気ディスク、光学用ガラスなどを研磨するために使用する遊離砥粒研磨用研磨剤及び遊離砥粒研磨用研磨剤の製造方法に関する。   The present invention relates to a free abrasive polishing abrasive used for polishing liquid crystal panels, magnetic disks, optical glass, and the like, and a method for producing a free abrasive polishing abrasive.

液晶テレビやコンピューターの普及により、液晶パネルのマザーガラスやフォトマスク用石英ガラス、ハードディスク用強化ガラスなどのガラス材料の使用量が増大している。また、光学レンズにもガラスが用いられている。これらガラス材料の表面は、鏡面化することや平坦化させることが必要であることから、研磨が必須とされる。   With the spread of liquid crystal televisions and computers, the amount of glass materials such as mother glass for liquid crystal panels, quartz glass for photomasks, and tempered glass for hard disks is increasing. Glass is also used for the optical lens. Since the surface of these glass materials needs to be mirror-finished or flattened, polishing is essential.

ガラス材料の研磨には、機械的研磨作用ばかりでなく化学的研磨作用も発現することで大きい研磨速度を得ることができ、且つ研磨後の表面にスクラッチ等の傷が発生しにくいことから、近年は酸化セリウムが用いられるようになってきている。   In polishing glass materials, it is possible to obtain a large polishing rate by expressing not only mechanical polishing action but also chemical polishing action, and scratches such as scratches are hardly generated on the surface after polishing. Cerium oxide has been used.

例えば、液晶用フォトマスク基板である石英ガラスの研磨では、研磨工具にウレタン製研磨パッドを張り付け、酸化セリウム砥粒を水で分散させたスラリーを供給しながら研磨する方式が用いられている。   For example, in the polishing of quartz glass, which is a photomask substrate for liquid crystal, a polishing method is used in which a polishing pad made of urethane is attached to a polishing tool and a slurry in which cerium oxide abrasive grains are dispersed in water is supplied.

このように一般的にガラスの研磨に用いられている酸化セリウムであるが、酸化セリウムは高価な希土類酸化物であり、その価格も安定しないことから、酸化セリウムの代替となる研磨砥粒が求められていた。   Thus, cerium oxide is commonly used for polishing glass, but cerium oxide is an expensive rare earth oxide and its price is not stable, so there is a need for abrasive grains that can replace cerium oxide. It was done.

半導体基板上の層間絶縁膜の平坦化に用いられる化学的機械的研磨技術(CMP)用途として、安価な酸化マンガン砥粒が知られている。酸化マンガンの砥粒としては、例えばMnイオンを含む電解質溶液を電気分解して陽極上に析出した二酸化マンガンの塊を500℃〜900℃で加熱し、形成されたMnを粉砕し、その粒子を研磨砥粒とする方法(例えば、特許文献1参照)や、酸化マンガンソースとしてMnを用い、熱処理してMnとし、これを粉砕又は解砕することで研磨砥粒を製造する方法が提案されている(例えば、特許文献2参照)。しかしながら、これらの先行技術では研磨速度の安定性については何ら考慮されていない。 Inexpensive manganese oxide abrasive grains are known for chemical mechanical polishing (CMP) applications used for planarization of an interlayer insulating film on a semiconductor substrate. As the abrasive grains of manganese oxide, for example, a manganese dioxide lump deposited on the anode by electrolyzing an electrolyte solution containing Mn ions is heated at 500 ° C. to 900 ° C., and the formed Mn 2 O 3 is pulverized. A method of using the particles as abrasive grains (for example, see Patent Document 1), or using Mn 3 O 4 as a manganese oxide source, heat-treating to Mn 2 O 3, and grinding or crushing this to polish abrasives A method for producing grains has been proposed (see, for example, Patent Document 2). However, in these prior arts, no consideration is given to the stability of the polishing rate.

特開平10−60415号公報Japanese Patent Laid-Open No. 10-60415 特開2006−128395号公報JP 2006-128395 A

本発明は、研磨加工において高い研磨速度と研磨速度の安定性に優れ、経済的に有利なマンガン酸化物遊離砥粒研磨用研磨剤及び遊離砥粒研磨用研磨剤の製造方法を提供することを目的とする。   An object of the present invention is to provide a manganese oxide free abrasive polishing agent that is excellent in high polishing rate and polishing rate stability in polishing processing, and an economically advantageous method for producing a free abrasive polishing agent. Objective.

本発明者は、鋭意検討を行った結果、Mn粉末を主成分とする遊離砥粒研磨用酸化マンガン研磨剤において、Mn中にAlを所定量含有させることで十分な研磨速度と研磨安定性が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventor found that a sufficient amount of Al was contained in Mn 2 O 3 in a manganese oxide abrasive for polishing free abrasive grains mainly composed of Mn 2 O 3 powder. The inventors have found that speed and polishing stability can be obtained, and have completed the present invention.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

本発明は、Mn粉末を主成分とする遊離砥粒研磨用酸化マンガン研磨剤であって、研磨剤中のAl含有量がMnとAlの合計を100としたとき1〜30atom%であることを特徴とする遊離砥粒研磨用研磨剤である。なお、遊離砥粒とは個々の研磨剤粒子が遊離状態になっているものを言う。 The present invention is a manganese oxide abrasive for polishing free abrasive grains mainly composed of Mn 2 O 3 powder, and the Al content in the abrasive is 1 to 30 atom% when the total of Mn and Al is 100. There is a polishing agent for polishing free abrasive grains. The loose abrasive grains are those in which individual abrasive particles are in a free state.

本発明の遊離砥粒研磨用研磨剤は、主成分であるMn砥粒と分散媒とを含んでなる。分散媒としては、蒸留水、イオン交換水、アルコール等を挙げることができるが、取り扱い上、水系であることが好ましい。また、必要に応じて本発明の遊離砥粒研磨用酸化マンガン研磨剤には分散剤等の添加、pH調整を行うこともできる。 The abrasive for polishing free abrasive grains of the present invention comprises Mn 2 O 3 abrasive grains as main components and a dispersion medium. Examples of the dispersion medium include distilled water, ion exchange water, alcohol, and the like, but an aqueous system is preferable for handling. Further, if necessary, a dispersant or the like can be added to the manganese oxide abrasive for polishing free abrasive grains of the present invention, and the pH can be adjusted.

通常、マンガン酸化物の研磨剤でガラス基板を連続的に研磨すると研磨剤の電位であるゼータ電位は徐々に低下し、最終的に大きな負の値を示す。これは、ガラス研磨では、負の電荷を帯びるガラスが研磨屑として混入するためと思われるが、研磨剤である酸化マンガンに対して、アルミニウムを含有することで、研磨剤のゼータ電位が上昇すると共に、連続研磨後のゼータ電位の低下も抑制される。研磨剤のゼータ電位が大きく負となると、同じく負であるガラス基板との反発が発生し、ガラス基板に研磨剤が近づきにくくなるため、連続研磨では研磨速度の低下等が発生して安定化しないものと考えられる。Mn中のAl含有量がMnとAlの合計を100としたとき、1〜30atom%とすることで、研磨剤のゼータ電位が上昇し、連続研磨を行っても研磨速度が安定化する。また、初回の研磨であっても、研磨中にガラス研磨屑によるゼータ電位低下が引き起こされると考えれば、初期研磨速度の向上にも寄与すると考えられる。上記の効果を得るためには、Al含有量の下限としては5atom%が好ましく、10atom%がより好ましい。 Normally, when a glass substrate is continuously polished with a manganese oxide abrasive, the zeta potential, which is the potential of the abrasive, gradually decreases and finally shows a large negative value. This seems to be because, in glass polishing, negatively charged glass is mixed as polishing waste, but the inclusion of aluminum in the polishing agent manganese oxide increases the zeta potential of the polishing agent. At the same time, the decrease in zeta potential after continuous polishing is also suppressed. If the zeta potential of the polishing agent becomes large and negative, repulsion with the glass substrate that is also negative occurs, and it becomes difficult for the polishing agent to approach the glass substrate. It is considered a thing. When the total Al content in Mn 2 O 3 is 100, the zeta potential of the abrasive is increased by 1-30 atom%, and the polishing rate is stabilized even when continuous polishing is performed. To do. Moreover, even if it is the first polishing, if it is considered that the zeta potential decrease due to glass polishing scraps is caused during polishing, it is considered that it contributes to the improvement of the initial polishing rate. In order to obtain the above effect, the lower limit of the Al content is preferably 5 atom%, and more preferably 10 atom%.

また、Al以外でも、研磨剤のゼータ電位を上昇するものを含有させても良い。ゼータ電位を上昇するものとしては、ゼータ電位が0となるpHである等電点pHが8よりも高いもの、例えば、酸化鉄、酸化マグネシウム、水酸化マグネシウム、酸化ランタン、水酸化ランタン等を挙げることが出来る。   Moreover, you may contain what raises the zeta potential of an abrasive | polishing agent besides Al. Examples of those that increase the zeta potential include those having an isoelectric point pH higher than 8 at which the zeta potential is 0, such as iron oxide, magnesium oxide, magnesium hydroxide, lanthanum oxide, and lanthanum hydroxide. I can do it.

さらに、研磨剤にF(フッ素)をAlに対して組成比で1/2乃至3倍量添加してもよい。負に帯電しやすいFを含むことで、負に帯電するガラスと反発し研磨後のガラス基板の洗浄性が向上するためである。   Further, F (fluorine) may be added to the abrasive in a composition ratio of 1/2 to 3 times that of Al. This is because the inclusion of F which is easily negatively charged repels negatively charged glass and improves the cleanability of the polished glass substrate.

主成分であるMn粉末は、ガラスに対する研磨速度が向上するため、Mnの炭酸塩または水酸化物を焼成、または、Mn粉末を焼成して得られるMn粉末が好ましい。この原因については定かではないが、ガラスの構成分子であるSiOとMnとの間で何らかの化学的相互作用が働いていると思われる。焼成後の粉末がMnとなっていることは、X線回折法等を用いることで確認することができる。Mn以外での結晶相として、添加したAlの化合物であるMnAl(ガラクサイト)やAl等が微量含まれることがある。Fを添加した場合、AlOFやAlFなどの酸化フッ化アルミニウムやフッ化アルミニウム等が含まれることがある。 Since Mn 2 O 3 powder as the main component improves the polishing rate for glass, Mn 2 O 3 powder obtained by baking Mn carbonate or hydroxide or Mn 3 O 4 powder is used. preferable. Not clear about this reason it is believed that some chemical interaction between the SiO 2 and Mn is a constituent molecule of the glass is working. It can be confirmed by using an X-ray diffraction method that the powder after firing is Mn 2 O 3 . As a crystal phase other than Mn 2 O 3 , MnAl 2 O 4 (galaxite), Al 2 O 3 or the like which is a compound of added Al may be contained in a trace amount. When F is added, aluminum oxyfluoride or aluminum fluoride such as AlOF or AlF 3 may be contained.

また、本発明の遊離砥粒研磨用研磨剤は、焼成時のBET法による比表面積が1〜4m/gであることが好ましい。比表面積が1〜4m/gであることで、砥粒の粒子内部に気孔が少なくなり、粒子強度が向上し、研磨速度が高くなる。4m/gより大きいと、粒子が小さく、粒子強度が弱くなるため、研磨速度が低下することがある。 Moreover, it is preferable that the specific surface area by the BET method at the time of baking of the abrasive | polishing agent for free abrasive grains of this invention is 1-4 m < 2 > / g. When the specific surface area is 1 to 4 m 2 / g, pores are reduced inside the abrasive grains, the particle strength is improved, and the polishing rate is increased. When it is larger than 4 m 2 / g, the particles are small and the particle strength becomes weak, so that the polishing rate may decrease.

砥粒として用いるMn粒子は、2次粒子の50%径であるD50径が1〜3μmであることが好ましい。D50径が1μmよりも小さいとガラスに対する研磨速度が低くなり、3μmよりも大きいと研磨加工時に被加工物の表面に傷が発生することがあるからである。D50径の測定方法としては、レーザー回折法や走査型電子顕微鏡による画像解析法がある。 The Mn 2 O 3 particles used as abrasive grains preferably have a D50 diameter of 1 to 3 μm, which is a 50% diameter of secondary particles. This is because if the D50 diameter is smaller than 1 μm, the polishing rate for glass is low, and if it is larger than 3 μm, scratches may occur on the surface of the workpiece during polishing. As a method for measuring the D50 diameter, there are a laser diffraction method and an image analysis method using a scanning electron microscope.

なお、前記砥粒の2次粒子形状は、球状又は等軸状であることが好ましい。形状が球状又は等軸状であることで、研磨粉末の強度が高くなり、高い研磨速度を得ることができると考える。また、鋭利な部分が少ないため研磨加工時に被加工物の表面に傷が発生しにくくなるからである。   The secondary particle shape of the abrasive grains is preferably spherical or equiaxed. When the shape is spherical or equiaxed, it is considered that the strength of the polishing powder is increased and a high polishing rate can be obtained. Moreover, since there are few sharp parts, it becomes difficult to generate | occur | produce a damage | wound on the surface of a workpiece at the time of grinding | polishing.

また、本発明の遊離砥粒研磨用研磨剤には、2次粒子径10μm以上のMn粒子が含まれていないことが好ましい。研磨剤の中に2次粒子径10μm以上のMn粒子が存在すると、研磨加工時に被加工物の表面に傷が発生しやすくなるからである。 In addition, it is preferable that the abrasive for polishing free abrasive grains of the present invention does not contain Mn 2 O 3 particles having a secondary particle diameter of 10 μm or more. This is because if Mn 2 O 3 particles having a secondary particle diameter of 10 μm or more are present in the abrasive, scratches are likely to occur on the surface of the workpiece during polishing.

次に、本発明の遊離砥粒研磨用研磨剤の製造方法について説明する。   Next, the manufacturing method of the abrasive | polishing agent for loose abrasive polishing of this invention is demonstrated.

本発明の遊離砥粒研磨用研磨剤は、Al含有量がMnとAlの合計を100としたとき1〜30atom%である、MnとAlを含んでなる前駆体(以下、単に前駆体と言う場合がある)を主要な結晶相がMnとなるように焼成を行い、得られたMnを分散媒に加えることで製造することができる。 The abrasive for polishing free abrasive grains of the present invention has a precursor containing Mn and Al (hereinafter, simply referred to as a precursor) having an Al content of 1 to 30 atom% when the total of Mn and Al is 100. In some cases, it is fired so that the main crystal phase is Mn 2 O 3 , and the obtained Mn 2 O 3 is added to the dispersion medium.

前駆体としては、MnとAlの炭酸塩や水酸化物、Alを含んだMn粉末等を挙げることができる。 Examples of the precursor include carbonates and hydroxides of Mn and Al, Mn 3 O 4 powder containing Al, and the like.

前駆体の製造方法としては、MnとAlの炭酸塩や水酸化物を晶析させる方法や、Mn粉末の合成時にAl源となる化合物を添加する方法などが挙げられる。具体的には、硫酸マンガンや硝酸マンガンなどのマンガン塩水溶液と、硫酸アルミニウムなどのアルミニウム塩水溶液との混合液に炭酸ナトリウムなどのアルカリ炭酸塩を用いて中和する方法で得ることができるが、これに限定されない。上記のような湿式合成法は、合成時にAl化合物を添加することで、MnとAlが均一に混合でき、焼成後のAlの分散にも優れるため、好ましい。 Examples of the method for producing the precursor include a method of crystallizing carbonates and hydroxides of Mn and Al, a method of adding a compound that becomes an Al source during the synthesis of Mn 3 O 4 powder, and the like. Specifically, it can be obtained by a method of neutralizing a mixed solution of a manganese salt aqueous solution such as manganese sulfate or manganese nitrate and an aluminum salt aqueous solution such as aluminum sulfate using an alkali carbonate such as sodium carbonate, It is not limited to this. The wet synthesis method as described above is preferable because Mn and Al can be uniformly mixed by adding an Al compound during synthesis, and the dispersion of Al after firing is excellent.

前駆体の原料となるMn粉末は、例えば金属マンガンの加水分解反応で生成する水酸化マンガンを酸化して得る方法や、硫酸マンガン塩を塩基性水溶液で中和、酸化する方法で得ることができるが、これに限定されない。 The precursor Mn 3 O 4 powder is obtained by, for example, a method obtained by oxidizing manganese hydroxide generated by a hydrolysis reaction of manganese metal, or a method of neutralizing and oxidizing a manganese sulfate salt with a basic aqueous solution. However, the present invention is not limited to this.

また、Al源となる化合物としては、酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、炭酸アルミニウム、フッ化アルミニウム、リン酸アルミニウム、酢酸アルミニウム、シュウ酸アルミニウム、乳酸アルミニウム、ステアリン酸アルミニウム、アクリル酸アルミニウムからなる群より選ばれる1種類以上を使用することが好ましい。これらのアルミニウム化合物は、混合時の分散媒、溶媒である水に対して溶解するか、スラリー状となり分散するため、酸化マンガンとの均一な混合が可能となる。中でも、水に対して溶解するものや、BET法による比表面積が50m/g以上のアルミニウム化合物を使用すると、酸化マンガンとの混合・分散が促進されるため、焼成時にアルミニウムが拡散する点から好ましい。 In addition, as a compound serving as an Al source, aluminum oxide, aluminum hydroxide, aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum carbonate, aluminum fluoride, aluminum phosphate, aluminum acetate, aluminum oxalate, aluminum lactate, aluminum stearate It is preferable to use one or more selected from the group consisting of aluminum acrylate. Since these aluminum compounds are dissolved in a dispersion medium and water as a solvent during mixing, or are dispersed in a slurry state, uniform mixing with manganese oxide becomes possible. Above all, when an aluminum compound that dissolves in water or an aluminum compound having a specific surface area of 50 m 2 / g or more by the BET method is used, mixing and dispersion with manganese oxide are promoted, so that aluminum diffuses during firing. preferable.

前駆体にFを添加する場合は、MnとAlの炭酸塩や水酸化物を晶析させるときに同時に添加する方法、前駆体の原料であるMn粉末の合成時に添加する方法、前駆体の焼成前にF化合物を添加する方法などを用いることができる。また、F源としてはフッ化ナトリウムやフッ化アルミニウムなどが例示できる。特にフッ化ナトリウムなどの水に対して溶解するフッ化物を用いる方法はFのより均一な混合が可能となるため好ましいが、フッ化アルミニウムなどの水に対して難溶解性のフッ化物であってもスラリー化によって均一な混合が可能となるため特に問題ない。 When F is added to the precursor, a method of simultaneously adding Mn and Al carbonates and hydroxides to crystallize, a method of adding Mn 3 O 4 powder as a precursor raw material, a precursor, A method of adding an F compound before firing the body can be used. Examples of the F source include sodium fluoride and aluminum fluoride. In particular, a method using a fluoride that dissolves in water, such as sodium fluoride, is preferable because it allows more uniform mixing of F. However, it is a fluoride that is hardly soluble in water, such as aluminum fluoride. However, there is no particular problem because uniform mixing is possible by slurrying.

前駆体粉末の大きさとしては、1次粒子径は0.001〜3μm、2次粒子のD50径で1〜5μmのものが好ましい。2次粒子のD50径が1μmより小さいと、焼成後の主要な結晶相がMnである粒子の粒径が小さいため、研磨速度が低くなる。2次粒子のD50径が5μmより大きいと、焼成後の主要な結晶相がMn粒子の2次粒子のD50径が大きくなり、研磨加工時に被加工物の表面に傷が発生しやすくなる。2次粒子のD50径の測定方法としては、レーザー回折法や走査型電子顕微鏡による画像解析法がある。 As the size of the precursor powder, the primary particle diameter is preferably 0.001 to 3 μm, and the D50 diameter of the secondary particles is preferably 1 to 5 μm. If the D50 diameter of the secondary particles is smaller than 1 μm, the particle size of the particles whose main crystal phase after firing is Mn 2 O 3 is small, so the polishing rate is low. If the D50 diameter of the secondary particles is larger than 5 μm, the D50 diameter of the secondary particles of the Mn 2 O 3 particles is the main crystal phase after firing, and the surface of the workpiece is likely to be damaged during polishing. Become. As a method for measuring the D50 diameter of the secondary particles, there are a laser diffraction method and an image analysis method using a scanning electron microscope.

前駆体粉末の2次粒子のD50径を1〜5μmとするために、造粒しても良い。特に、均一に1〜5μmを作成する方法として、例えば前駆体粉末をスラリー化してスプレードライする方法が挙げられる。   In order to set the D50 diameter of the secondary particles of the precursor powder to 1 to 5 μm, granulation may be performed. In particular, as a method for uniformly forming 1 to 5 μm, for example, a method of slurrying the precursor powder and spray drying can be mentioned.

スプレードライをする際に前駆体粉末の凝集粒子がある場合は、事前にボールミルやビーズミルを行うことが好ましい。粉砕メディアとしては、アルミナ、ジルコニア等のセラミックスが粉砕効率の高さから好ましい。また、アルミニウム化合物を添加する際にも、均一に混合するため、ボールミルやビーズミルを行うことが好ましい。   When there are aggregated particles of the precursor powder during spray drying, it is preferable to perform ball milling or bead milling in advance. As the grinding media, ceramics such as alumina and zirconia are preferable because of high grinding efficiency. Moreover, when adding an aluminum compound, in order to mix uniformly, it is preferable to perform a ball mill and bead mill.

1次粒径の小さい前駆体粉末をスラリー化してスプレードライ法にて造粒する場合、スラリー内の物質が良く分散された状態でスプレードライすることが好ましい。分散媒としては、イオン交換水、蒸留水、アルコール等が挙げられる。分散したスラリーをスプレードライすることで、造粒粉末内の構成粒子が偏りなく均等に配置されるため、その後の焼成時にMn粒子の粒径が均一になる。 When a precursor powder having a small primary particle size is made into a slurry and granulated by a spray drying method, it is preferable to perform spray drying in a state where substances in the slurry are well dispersed. Examples of the dispersion medium include ion exchange water, distilled water, alcohol and the like. By spray-drying the dispersed slurry, the constituent particles in the granulated powder are evenly arranged without unevenness, so that the particle size of the Mn 2 O 3 particles becomes uniform during subsequent firing.

スプレードライの方式については、特に限定されることはないが、平均粒子径1〜5μmの造粒粒子を作成するため、超音波ノズル方式や圧縮空気によりスラリーを噴射する多流体ノズルを用いたスプレードライヤーを使用することが好ましい。圧縮空気によりスラリーを噴射する多流体ノズルとは、例えば2流体ノズルや3流体ノズル、4流体ノズルを挙げる事ができる。   The spray drying method is not particularly limited, but in order to produce granulated particles having an average particle size of 1 to 5 μm, a spray using an ultrasonic nozzle method or a multi-fluid nozzle that ejects slurry by compressed air. It is preferable to use a dryer. Examples of the multi-fluid nozzle for injecting slurry with compressed air include a two-fluid nozzle, a three-fluid nozzle, and a four-fluid nozzle.

次に、前駆体粉末を焼成することで主要な結晶相がMn粉末とする。焼成温度は750℃以上950℃以下、焼成時間は3時間以上50時間以下が好ましい。焼成温度を750℃以上950℃以下、焼成時間を3時間以上50時間以下とすることで、主要な結晶相がMnとなるような酸化が促されると同時に造粒粒子又は2次粒子内の焼結が促進されることで焼成後のBET比表面積が1〜4m/gとなり、粒子強度が向上し、研磨速度が向上する。焼成温度が750℃より低い、あるいは焼成時間が3時間よりも短いと、粒子同士はネッキングされた状態であり、あまり焼結されていないため、気孔が多いことから粒子の強度も低く、研磨速度が低くなる傾向にある。 Next, the main crystal phase is made into Mn 2 O 3 powder by firing the precursor powder. The firing temperature is preferably from 750 ° C. to 950 ° C., and the firing time is preferably from 3 hours to 50 hours. By setting the firing temperature to 750 ° C. or more and 950 ° C. or less and the firing time to 3 hours or more and 50 hours or less, oxidation is promoted so that the main crystal phase becomes Mn 2 O 3 and simultaneously granulated particles or secondary particles By promoting the inner sintering, the BET specific surface area after firing becomes 1 to 4 m 2 / g, the particle strength is improved, and the polishing rate is improved. If the firing temperature is lower than 750 ° C. or the firing time is shorter than 3 hours, the particles are in a necked state and are not sintered so much, so there are many pores, so the strength of the particles is low, and the polishing rate Tend to be lower.

焼成する雰囲気としては、酸化される雰囲気、例えば大気中や空気流通の雰囲気、酸素ガス流通の雰囲気が挙げられる。還元性雰囲気は、Mnへの酸化反応が発生しないため、好ましくない。 As an atmosphere to be baked, an atmosphere to be oxidized, for example, an atmosphere in air, an air circulation atmosphere, or an oxygen gas circulation atmosphere can be given. A reducing atmosphere is not preferable because an oxidation reaction to Mn 2 O 3 does not occur.

前駆体粒子を焼成する方法としては、特に限定されることはないが、箱形炉や環状炉、ロータリーキルンを使用することが挙げられる。特に粉末にかかる温度の均一化や焼成による2次粒子同士の凝集を防ぐことができるため、ロータリーキルンが好ましい。   Although it does not specifically limit as a method of baking precursor particle | grains, Using a box furnace, a ring furnace, and a rotary kiln is mentioned. In particular, a rotary kiln is preferred because it can prevent the temperature applied to the powder from being uniform and aggregation of secondary particles due to firing.

焼成することで得られる主要な結晶相がMnの粒子は粒子同士が凝集している場合があるため、凝集された粒子を2次粒子のD50径を1〜3μmとするため、焼成された主要な結晶相がMnの粒子をさらに粉砕及び/又は解砕することが好ましい。 Since particles having Mn 2 O 3 as the main crystal phase obtained by firing may be aggregated, the aggregated particles are sintered in order to make the D50 diameter of secondary particles 1 to 3 μm. It is preferable to further pulverize and / or pulverize particles whose main crystal phase is Mn 2 O 3 .

粉砕及び/又は解砕する方法としては、ボールミルやビーズミルを挙げることができる。粉砕メディアとしては、アルミナ、ジルコニア等のセラミックスが粉砕効率の高さから好ましい。   Examples of the pulverization and / or pulverization method include a ball mill and a bead mill. As the grinding media, ceramics such as alumina and zirconia are preferable because of high grinding efficiency.

本発明の遊離砥粒研磨用研磨剤は、十分な研磨速度を有し、研磨加工時に被加工物の表面に傷が発生しにくいことから様々な材料の研磨工程に用いることができるが、特にマザーガラスやフォトマスク用石英ガラス、ハードディスク用強化ガラスなどのガラス材料に対して好適に用いることができる。   The abrasive for polishing free abrasive grains of the present invention has a sufficient polishing rate, and can be used for polishing various materials because it hardly causes scratches on the surface of the workpiece during polishing. It can be suitably used for glass materials such as mother glass, quartz glass for photomasks and tempered glass for hard disks.

本発明のマンガン酸化物遊離砥粒研磨用研磨剤は、十分な研磨速度と研磨安定性を有し、研磨加工時に被加工物の表面に傷が発生しにくいことから様々な材料の研磨工程に用いることができ、しかも安価に製造することができる。   The manganese oxide loose abrasive polishing slurry of the present invention has a sufficient polishing rate and polishing stability, and is difficult to cause scratches on the surface of the workpiece during polishing, so that it can be used for polishing various materials. It can be used and can be manufactured at low cost.

Alを添加したものと添加していないマンガン酸化物遊離砥粒研磨用研磨剤の研磨バッチごとの研磨速度の推移を示したものである。The transition of the polishing rate for every polishing batch of the abrasive | polishing agent for manganese oxide free abrasive | polishing abrasive | polishing abrasive | polishing agent which has not added Al and what added Al is shown. Alを添加したものと添加していないマンガン酸化物遊離砥粒研磨用研磨剤の研磨バッチごとのゼータ電位の推移を示したものである。It shows the transition of the zeta potential for each polishing batch of an abrasive for polishing manganese oxide free abrasive grains with and without adding Al.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to these Examples at all.

(実施例1)
Mn粉末として、東ソー製のブラウノックス(一次粒径0.08μm)を、Al源として、γ型の酸化アルミニウムである大明化学製タイミクロンTM−300D(BET比表面積200m/g)を用いた。γ型酸化アルミニウムをMn量に対してAlが10atom%となるようにMn粉末に添加した。γ型酸化アルミニウムとMnの混合粉末に対してイオン交換した蒸留水をスラリー濃度が45%になるように投入し、アニオン系分散剤として花王製の商品名ポイズ530をMn粉末量に対して1.5wt%添加した。直径10mmのアルミナボールを使用して24時間のボールミルを実施し、Alを添加したMnスラリーを作成した。
Example 1
As Mn 3 O 4 powder, Tosoh's Brownox (primary particle size 0.08 μm) is used as an Al source, and Taymicron TM-300D (BET specific surface area 200 m 2 / g) is a γ-type aluminum oxide. Was used. γ-type aluminum oxide was added to the Mn 3 O 4 powder so that Al was 10 atom% with respect to the amount of Mn. Distilled water ion-exchanged with respect to the mixed powder of γ-type aluminum oxide and Mn 3 O 4 was added so as to have a slurry concentration of 45%, and Kao-made Poise 530 as an anionic dispersant was used as Mn 3 O 4. 1.5 wt% was added to the amount of powder. Ball milling for 24 hours was performed using alumina balls having a diameter of 10 mm to prepare an Mn 3 O 4 slurry to which Al was added.

前記スラリーを4流体ノズル方式であるスプレードライヤー(藤崎電機製、商品名「MDL−050M」)を用いて入口温度200℃、風量1.00m/minの条件で造粒・乾燥を行ない、アルミニウム添加Mn造粒品を得た。粒度分布計(島津製作所製、商品名「SALD−7100」)により測定した2次粒子のD50径は3.5μmであった。 The slurry is granulated and dried under the conditions of an inlet temperature of 200 ° C. and an air volume of 1.00 m 3 / min using a spray dryer (trade name “MDL-050M” manufactured by Fujisaki Electric Co., Ltd.), which is a four-fluid nozzle system, and aluminum. An additive Mn 3 O 4 granulated product was obtained. The D50 diameter of the secondary particles measured by a particle size distribution meter (manufactured by Shimadzu Corporation, trade name “SALD-7100”) was 3.5 μm.

Al添加Mn造粒品に対し、箱形電気炉を用いて900℃で24時間の焼成を行った。焼成の雰囲気は大気とした。焼成で得られた粉末をX線回折装置(理学電機製、商品名「RINT UltimaIII」)によって構成相の同定を行い、主要な結晶相がMnであることを確認した。この焼成後の粉末のBET法による比表面積は1.5m/gであった。 The Al-added Mn 3 O 4 granulated product was baked at 900 ° C. for 24 hours using a box-type electric furnace. The atmosphere for firing was air. The powder obtained by baking was identified by a X-ray diffractometer (trade name “RINT Ultimate III”, manufactured by Rigaku Corporation), and it was confirmed that the main crystal phase was Mn 2 O 3 . The specific surface area of the calcined powder according to the BET method was 1.5 m 2 / g.

焼成して得られた主要な結晶相がMn粉末に対してSCミル(三井鉱山社製、商品名「SC150」)を用い、イオン交換した蒸留水とφ1mmのジルコニアビーズを粉砕メディアとして使用して湿式のビーズミルを実施した。粉砕時間は固形分1kg当り10分とした。得られたスラリーを粒度分布径(島津製作所製、商品名「SALD−7100」)で測定した結果、2次粒子のD50径は1.0μmであり、10μm以上の砥粒は無かった。また、研磨用スラリーを乾燥した砥粒に対してICP発光分析法によるAl含有量測定とBET測定装置(湯浅アイオニクス社製、商品名「MONOSORB」)によるBET比表面積を測定し、Al含有量は10atom%、BET比表面積は、6.9m/gであった。 The main crystal phase obtained by firing is SC mill (trade name “SC150” manufactured by Mitsui Mining Co., Ltd.) for Mn 2 O 3 powder, and ion-exchanged distilled water and φ1 mm zirconia beads are used as grinding media. A wet bead mill was used. The grinding time was 10 minutes per kg of solid content. As a result of measuring the obtained slurry with a particle size distribution diameter (manufactured by Shimadzu Corporation, trade name “SALD-7100”), the D50 diameter of the secondary particles was 1.0 μm, and there were no abrasive grains of 10 μm or more. In addition, Al content measurement by ICP emission analysis method and BET specific surface area by BET measuring device (trade name “MONOSORB” manufactured by Yuasa Ionics Co., Ltd.) are measured for abrasive grains dried from the polishing slurry, and Al content is measured. Was 10 atom%, and the BET specific surface area was 6.9 m 2 / g.

(実施例2)
γ型酸化アルミニウムの添加量がMn量に対してAlが20atom%となるように添加した以外は実施例1と同様の条件でスラリーを作成した。前記スラリーを実施例1と同様の条件で造粒・乾燥を行ない、実施例1と同様の条件で焼成を行った。焼成後の粉末のBET法による比表面積は1.7m/gであった。
(Example 2)
A slurry was prepared under the same conditions as in Example 1 except that the amount of γ-type aluminum oxide added was 20 atom% with respect to the amount of Mn. The slurry was granulated and dried under the same conditions as in Example 1 and fired under the same conditions as in Example 1. The specific surface area of the powder after baking according to the BET method was 1.7 m 2 / g.

焼成後の粉末を用いて、実施例1と同様にスラリーとした。2次粒子のD50径は1.7μmであり、10μm以上の砥粒は無かった。また、Al含有量は20atom%、BET比表面積は、8.8m/gであった。 A slurry was obtained in the same manner as in Example 1 using the powder after firing. The D50 diameter of the secondary particles was 1.7 μm, and there were no abrasive grains of 10 μm or more. The Al content was 20 atom%, and the BET specific surface area was 8.8 m 2 / g.

(実施例3)
実施例2と同様の条件でスラリーを作成した。前記スラリーを実施例1と同様の条件で造粒・乾燥を行ない、焼成時間を8時間とした以外は実施例2と同様の条件で焼成を行った。焼成後の粉末のBET法による比表面積は4.0m/gであった。
(Example 3)
A slurry was prepared under the same conditions as in Example 2. The slurry was granulated and dried under the same conditions as in Example 1, and calcined under the same conditions as in Example 2 except that the calcining time was 8 hours. The specific surface area of the powder after baking according to the BET method was 4.0 m 2 / g.

焼成後の粉末を用いて、実施例2と同様にスラリーとした。2次粒子のD50径は1.2μmであり、10μm以上の砥粒は無かった。また、Al含有量は20atom%、BET比表面積は、7.7m/gであった。 A slurry was prepared in the same manner as in Example 2 using the powder after firing. The D50 diameter of the secondary particles was 1.2 μm, and there were no abrasive grains of 10 μm or more. The Al content was 20 atom%, and the BET specific surface area was 7.7 m 2 / g.

(実施例4)
実施例2と同様の条件でスラリーを作成した。前記スラリーを実施例1と同様の条件で造粒・乾燥を行ない、焼成時間を48時間とした以外は実施例2と同様の条件で焼成を行った。焼成後の粉末のBET法による比表面積は1.7m/gであった。
Example 4
A slurry was prepared under the same conditions as in Example 2. The slurry was granulated and dried under the same conditions as in Example 1, and calcined under the same conditions as in Example 2 except that the calcining time was 48 hours. The specific surface area of the powder after baking according to the BET method was 1.7 m 2 / g.

焼成後の粉末を用いて、実施例2と同様にスラリーとした。2次粒子のD50径は1.1μmであり、10μm以上の砥粒は無かった。また、Al含有量は20atom%、BET比表面積は、8.0m/gであった。 A slurry was prepared in the same manner as in Example 2 using the powder after firing. The D50 diameter of the secondary particles was 1.1 μm, and there were no abrasive grains of 10 μm or more. The Al content was 20 atom%, and the BET specific surface area was 8.0 m 2 / g.

(実施例5)
50℃に加温した水酸化ナトリウム(和光純薬製)1mol/L水溶液に対し、硫酸マンガン(和光純薬製)1mol/L水溶液と硫酸アルミニウム(和光純薬製)0.5mol/L水溶液と炭酸ナトリウム(和光純薬製)1mol/L水溶液とをAlがMnに対して10atom%となるように混合したものを炭酸マンガン、水酸化アルミニウム組成となるように1L/minの条件で滴下し、酸化マンガン研磨材前駆体を合成した。ろ過後、乾燥オーブンで十分乾燥させ、解砕した粉末を箱型電気炉を用いて750℃で8時間の焼成を行った。焼成の雰囲気は大気とした。焼成で得られた粉末をX線回折装置によって構成相の同定を行い、主要な結晶相がMnであることを確認した。焼成後の粉末のBET法による比表面積は2.2m/gであった。
(Example 5)
A 1 mol / L aqueous solution of manganese sulfate (manufactured by Wako Pure Chemical Industries) and a 0.5 mol / L aqueous solution of aluminum sulfate (manufactured by Wako Pure Chemical Industries) with respect to a 1 mol / L aqueous solution of sodium hydroxide (manufactured by Wako Pure Chemical Industries) heated to 50 ° C. Sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) 1 mol / L aqueous solution mixed so that Al is 10 atom% with respect to Mn was added dropwise under the conditions of 1 L / min so as to have a manganese carbonate and aluminum hydroxide composition. Manganese oxide abrasive precursor was synthesized. After filtration, the powder was sufficiently dried in a drying oven, and the pulverized powder was baked at 750 ° C. for 8 hours using a box-type electric furnace. The atmosphere for firing was air. The constituent phase of the powder obtained by firing was identified by an X-ray diffractometer, and it was confirmed that the main crystal phase was Mn 2 O 3 . The specific surface area of the powder after baking according to the BET method was 2.2 m 2 / g.

焼成して得られた主要な結晶相がMn粉末に対してアルミナボールを用いてボールミルを実施し、得られたスラリーを粒度分布径で測定した結果、2次粒子のD50径は2.2μmであり、10μm以上の砥粒は無かった。 The main crystal phase obtained by firing was ball milled with alumina balls on Mn 2 O 3 powder, and the resulting slurry was measured by particle size distribution. As a result, the D50 diameter of the secondary particles was 2 .2 μm, and there were no abrasive grains of 10 μm or more.

(実施例6)
50℃に加温した水酸化ナトリウム(和光純薬製)1mol/L水溶液とフッ化ナトリウム(和光純薬)1mol/L水溶液を混合したものに対し、硫酸マンガン(和光純薬製)1mol/L水溶液と硫酸アルミニウム(和光純薬製)0.5mol/L水溶液と炭酸ナトリウム(和光純薬製)1mol/L水溶液とをAlがMnに対して25atom%となるように混合したものを炭酸マンガン、水酸化フッ化アルミニウム組成となるように1L/minの条件で滴下し、酸化マンガン研磨材前駆体を合成した。フッ素含有量はAlと同量になるように調整した。ろ過後、乾燥オーブンで十分乾燥させ、解砕した粉末を箱型電気炉を用いて750℃で8時間の焼成を行った。焼成の雰囲気は大気とした。焼成で得られた粉末をX線回折装置によって構成相の同定を行い、主要な結晶相がMnであることを確認した。焼成後の粉末のBET法による比表面積は1.0m/gであった。
(Example 6)
1 mol / L manganese sulfate (manufactured by Wako Pure Chemical Industries) is mixed with a 1 mol / L aqueous solution of sodium hydroxide (manufactured by Wako Pure Chemical Industries) heated to 50 ° C and a 1 mol / L aqueous solution of sodium fluoride (Wako Pure Chemical Industries). A solution obtained by mixing an aqueous solution, an aluminum sulfate (manufactured by Wako Pure Chemical Industries) 0.5 mol / L aqueous solution and an aqueous solution of sodium carbonate (manufactured by Wako Pure Chemical Industries) 1 mol / L so that Al is 25 atom% with respect to Mn, manganese carbonate, A manganese oxide abrasive precursor was synthesized by adding dropwise under conditions of 1 L / min so as to obtain an aluminum hydroxide fluoride composition. The fluorine content was adjusted to be the same as Al. After filtration, the powder was sufficiently dried in a drying oven, and the pulverized powder was baked at 750 ° C. for 8 hours using a box-type electric furnace. The atmosphere for firing was air. The constituent phase of the powder obtained by firing was identified by an X-ray diffractometer, and it was confirmed that the main crystal phase was Mn 2 O 3 . The specific surface area of the powder after firing according to the BET method was 1.0 m 2 / g.

焼成して得られた主要な結晶相がMn粉末に対してアルミナボールを用いてボールミルを実施した。得られたスラリーを粒度分布径で測定した結果、2次粒子のD50径は1.8μmであり、10μm以上の砥粒は無かった。 The main crystal phase obtained by firing was ball milled with Mn 2 O 3 powder using alumina balls. As a result of measuring the obtained slurry by the particle size distribution diameter, the D50 diameter of the secondary particles was 1.8 μm, and there were no abrasive grains of 10 μm or more.

(比較例1)
Al源を添加しない以外は実施例1と同様の条件でスラリーを作成した。前記スラリーを実施例1と同様の条件で造粒・乾燥を行ない、焼成時間を8時間とした以外は実施例1と同様の条件で焼成を行った。焼成後の粉末のBET法による比表面積は1.0m/gであった。
(Comparative Example 1)
A slurry was prepared under the same conditions as in Example 1 except that no Al source was added. The slurry was granulated and dried under the same conditions as in Example 1 and baked under the same conditions as in Example 1 except that the baking time was 8 hours. The specific surface area of the powder after firing according to the BET method was 1.0 m 2 / g.

焼成後の粉末を用いて、実施例1と同様にスラリーとした。2次粒子のD50径は1.1μmであり、10μm以上の砥粒は無かった。また、BET比表面積は、6.5m/gであった。 A slurry was obtained in the same manner as in Example 1 using the powder after firing. The D50 diameter of the secondary particles was 1.1 μm, and there were no abrasive grains of 10 μm or more. The BET specific surface area was 6.5 m 2 / g.

(比較例2)
Alを添加しない東ソー製ブラウノックスにスプレードライを行わずに箱形電気炉にて大気雰囲気で900℃、24時間の焼成を行った。焼成の雰囲気は大気とした。焼成で得られた粉末をX線回折装置によって構成相の同定を行い、主結晶相がMnであることを確認した。焼成後の粉末のBET法による比表面積は0.7m/gであった。
(Comparative Example 2)
Tosoh Brownox, to which Al was not added, was baked at 900 ° C. for 24 hours in an air atmosphere in a box-type electric furnace without spray drying. The atmosphere for firing was air. The constituent phase of the powder obtained by firing was identified by an X-ray diffractometer, and it was confirmed that the main crystal phase was Mn 2 O 3 . The specific surface area of the powder after baking according to the BET method was 0.7 m 2 / g.

焼成して得られた主要な結晶相がMnに粉末に対してφ10mmのアルミナボールを用いた湿式のボールミルを5時間行った。得られたスラリーの2次粒子のD50径は5.2μmであり、10μm以上の砥粒も存在した。また、BET比表面積は、3.0m/gであった。 Wet ball milling using alumina balls with a diameter of 10 mm as the main crystal phase obtained by firing on Mn 2 O 3 powder was performed for 5 hours. The D50 diameter of the secondary particles of the obtained slurry was 5.2 μm, and abrasive grains of 10 μm or more existed. Further, the BET specific surface area was 3.0 m 2 / g.

(研磨評価)
34mm×34mmの石英ガラス基板3枚を研磨装置(ラップマスターSFT製、商品名「LGP−15AF」)に設置し、SCミルによって得られた実施例1〜6及び比較例1のスラリーに対してイオン交換した蒸留水を添加して25%の濃度に調整し、研磨用スラリーとした。前記スラリーを使用して2時間の遊離砥粒研磨加工を5〜6バッチ実施した。研磨パッドはニッタ・ハース製IC1000を用い、研磨圧力は215g/cm、ガラスと工具の回転数は45rpmとした。実施例5,6及び比較例2のスラリーに対しては、1バッチのみ研磨を行なった。
(Polishing evaluation)
Three quartz glass substrates of 34 mm × 34 mm were set in a polishing apparatus (trade name “LGP-15AF” manufactured by LAPMASTER SFT), and the slurry of Examples 1 to 6 and Comparative Example 1 obtained by the SC mill were used. Ion-exchanged distilled water was added to adjust the concentration to 25% to obtain a polishing slurry. Using the slurry, 5 to 6 batches of 2 hours of free abrasive polishing were performed. The polishing pad was an IC1000 manufactured by Nitta Haas, the polishing pressure was 215 g / cm 2 , and the rotation speed of the glass and the tool was 45 rpm. For the slurries of Examples 5 and 6 and Comparative Example 2, only one batch was polished.

加工後のガラス基板は、研磨加工前後の重量変化から各バッチ毎の研磨速度を評価した。また、実施例1〜4及び比較例1については5〜6バッチ研磨終了後、実施例5,6及び比較例2については1バッチ終了後の基板に対して目視観察による傷の有無を評価した。また、実施例1〜4及び比較例1については、1バッチ目の研磨前と各バッチの研磨後のゼータ電位をゼータ電位計(大塚電子製ELSZ−2)で測定した。   The glass substrate after processing evaluated the polishing rate for each batch from the weight change before and after polishing. Further, for Examples 1 to 4 and Comparative Example 1, after the completion of 5 to 6 batch polishing, for Examples 5 and 6 and Comparative Example 2, the presence or absence of scratches by visual observation was evaluated on the substrate after 1 batch. . Moreover, about Examples 1-4 and the comparative example 1, the zeta potential before grinding | polishing of the 1st batch and after grinding | polishing of each batch was measured with the zeta potentiometer (ELSZ-2 by Otsuka Electronics).

砥粒特性の結果を表1に、研磨速度の推移を図1に、研磨後のゼータ電位の推移を図2に示す。実施例1〜4で作成したAl添加の研磨速度は1バッチ目で21〜27μm/hの速度であり、5〜6バッチ目の研磨速度比は1バッチ目比80%以上であった。また、ゼータ電位は当初15〜21mVであったものが、5〜6バッチ終了後は−17〜−30mVとなったが、その低下は緩やかなものであった。比較例1であるAl無添加の研磨速度は20μm/hで、Al添加と比較して低いものであり、6バッチ目の研磨速度比は1バッチ目の78%であった。また、ゼータ電位は当初7mVであり低いものであり、研磨バッチを重ねるごとに急速に低下し、−37mVまで低下した。   The results of the abrasive properties are shown in Table 1, the change in polishing rate is shown in FIG. 1, and the change in zeta potential after polishing is shown in FIG. The polishing rate of Al addition prepared in Examples 1 to 4 was 21 to 27 μm / h in the first batch, and the polishing rate ratio in the 5th to 6th batch was 80% or more compared to the first batch. Moreover, although the zeta potential was initially 15 to 21 mV, it became -17 to -30 mV after the end of 5 to 6 batches, but the decrease was gradual. The polishing rate without addition of Al, which is Comparative Example 1, is 20 μm / h, which is lower than that with addition of Al, and the polishing rate ratio of the sixth batch was 78% of the first batch. Also, the zeta potential was initially 7 mV, which was low, and decreased rapidly with each polishing batch and decreased to −37 mV.

比較例2では、研磨速度は19μm/hと低いものであり、1バッチ研磨後のガラス表面には目視傷が存在した。   In Comparative Example 2, the polishing rate was as low as 19 μm / h, and visual scratches were present on the glass surface after one batch polishing.

研磨後の基板洗浄性は実施例1〜6で良く、フッ素が添加された実施例6は特に良かった。   The substrate cleanability after polishing was good in Examples 1 to 6, and Example 6 to which fluorine was added was particularly good.

Figure 2014101488
Figure 2014101488

Claims (10)

Mn粉末を主成分とする遊離砥粒研磨用酸化マンガン研磨剤であって、研磨剤中のAl含有量がMnとAlの合計を100としたとき、1〜30atom%であることを特徴とするマンガン酸化物遊離砥粒研磨用研磨剤。 A manganese oxide abrasive for polishing free abrasive grains mainly composed of Mn 2 O 3 powder, wherein the Al content in the abrasive is 1 to 30 atom% when the total of Mn and Al is 100. A polishing agent for polishing manganese oxide free abrasive grains. Mn粉末を焼成して得られるMn粉末を主成分とすることを特徴とする請求項1に記載のマンガン酸化物遊離砥粒研磨用研磨剤。 The polishing agent for polishing manganese oxide free abrasive grains according to claim 1, wherein the main component is Mn 2 O 3 powder obtained by firing Mn 3 O 4 powder. FをAlに対して組成比で1/2乃至3倍量含有することを特徴とする請求項1又は2に記載のマンガン酸化物遊離砥粒研磨用研磨剤。   The abrasive for polishing manganese oxide free abrasive grains according to claim 1 or 2, wherein F is contained in an amount of 1/2 to 3 times the composition ratio of Al. 研磨剤のBET比表面積が1〜4m/gであることを特徴とする請求項1〜3のいずれかに記載のマンガン酸化物遊離砥粒研磨用研磨剤。 The abrasive for polishing manganese oxide free abrasive grains according to any one of claims 1 to 3, wherein the abrasive has a BET specific surface area of 1 to 4 m 2 / g. 研磨剤の2次粒子の50%径であるD50径が1〜3μmであり、2次粒子径10μm以上のMn粒子が含まれていないことを特徴とする請求項1〜4のいずれかに記載のマンガン酸化物遊離砥粒研磨用研磨剤。 The D50 diameter which is a 50% diameter of the secondary particles of the abrasive is 1 to 3 μm, and does not contain Mn 2 O 3 particles having a secondary particle diameter of 10 μm or more. A polishing agent for polishing manganese oxide free abrasive grains according to any one of the above. Al含有量がMnとAlの合計を100としたとき、1〜30atom%である、MnとAlを含んでなる前駆体を主要な結晶相がMnとなるように焼成することを特徴とするマンガン酸化物遊離砥粒研磨用研磨材の製造方法。 A precursor containing Mn and Al, which has an Al content of 100 to 30 atom% when the total content of Mn and Al is 100, is fired so that the main crystal phase is Mn 2 O 3. A method for producing a polishing material for polishing manganese oxide free abrasive grains. 前記前駆体が、Mn及びAlの炭酸塩または水酸化物であることを特徴とする請求項6に記載のマンガン酸化物遊離砥粒研磨用研磨材の製造方法。   The method for producing an abrasive for polishing manganese oxide free abrasive grains according to claim 6, wherein the precursor is a carbonate or hydroxide of Mn and Al. 前記前駆体が、Alを含有したMn粉末であることを特徴とする請求項6に記載のマンガン酸化物遊離砥粒研磨用研磨剤の製造方法。 The method for producing an abrasive for polishing manganese oxide free abrasive grains according to claim 6, wherein the precursor is Mn 3 O 4 powder containing Al. 焼成温度を600℃以上950℃以下、焼成保持時間を3時間以上50時間以下にすることを特徴とする請求項6〜8のいずれかに記載のマンガン酸化物遊離砥粒研磨用研磨剤の製造方法。   9. The production of an abrasive for polishing manganese oxide free abrasive grains according to claim 6, wherein the firing temperature is 600 ° C. or more and 950 ° C. or less, and the firing holding time is 3 hours or more and 50 hours or less. Method. 前記前駆体を焼成前にスプレードライ法による造粒を行うことを特徴とする請求項6〜9のいずれかに記載のマンガン酸化物遊離砥粒研磨用研磨剤の製造方法。   The method for producing an abrasive for polishing manganese oxide free abrasive grains according to any one of claims 6 to 9, wherein the precursor is granulated by spray drying before firing.
JP2013075021A 2012-10-24 2013-03-29 Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method Pending JP2014101488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075021A JP2014101488A (en) 2012-10-24 2013-03-29 Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012234832 2012-10-24
JP2012234832 2012-10-24
JP2013075021A JP2014101488A (en) 2012-10-24 2013-03-29 Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2014101488A true JP2014101488A (en) 2014-06-05

Family

ID=51024285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075021A Pending JP2014101488A (en) 2012-10-24 2013-03-29 Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2014101488A (en)

Similar Documents

Publication Publication Date Title
EP2669046A1 (en) Polishing material and polishing composition
JP2020536992A (en) Compositions for performing material removal operations and methods for forming them
TWI546370B (en) Composite particles for glass grinding
JP2009508795A (en) Cerium carbonate powder and production method, cerium oxide powder produced therefrom and production method, and CMP slurry containing the same
CN108026433A (en) Cerium based abrasive material and its manufacture method
JP2008024555A (en) Zirconia fine powder, its manufacturing method and its use
WO2014038536A1 (en) Production method for polishing-material particles
JP2012011526A (en) Abrasive and manufacturing method thereof
TWI668189B (en) Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing
JP2017001927A (en) Composite particle for polishing, manufacturing method of composite particle for polishing and slurry for polishing
WO2014122982A1 (en) Polishing slurry
JP5519772B2 (en) Cerium-based particle composition and preparation thereof
JP6460090B2 (en) Method for producing composite metal oxide polishing material and composite metal oxide polishing material
JP6839767B2 (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
JP6936183B2 (en) Abrasives for synthetic quartz glass substrates and their manufacturing methods, and methods for polishing synthetic quartz glass substrates
JP2013091585A (en) Zirconia powder, method for producing the same, and its application
TWI705947B (en) Grinding method of negatively charged substrate and manufacturing method of negatively charged substrate with high surface smoothness
JP2014101488A (en) Polishing agent for manganese oxide loose abrasives polishing to which particular dissimilar metallic element is added and its manufacturing method
JP2014084420A (en) Manganese oxide polishing agent for free abrasive grain polishing, and method for producing the agent
JP2015140402A (en) Free abrasive grain, abrasive material for polishing free abrasive grain and manufacturing method therefor
JP6458554B2 (en) Method for producing composite metal oxide polishing material and composite metal oxide polishing material
JP5861277B2 (en) Zirconia abrasive
TWI523943B (en) A method for producing abrasive material, abrasive material and grinding method
TWI558802B (en) Abrasive and abrasive slurry
TWI847023B (en) Ni-based abrasive slurry stock solution and its manufacturing method, and abrasive liquid