JP4131870B2 - Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass - Google Patents

Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass Download PDF

Info

Publication number
JP4131870B2
JP4131870B2 JP2006513685A JP2006513685A JP4131870B2 JP 4131870 B2 JP4131870 B2 JP 4131870B2 JP 2006513685 A JP2006513685 A JP 2006513685A JP 2006513685 A JP2006513685 A JP 2006513685A JP 4131870 B2 JP4131870 B2 JP 4131870B2
Authority
JP
Japan
Prior art keywords
particles
abrasive
polishing
abrasive particles
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006513685A
Other languages
Japanese (ja)
Other versions
JPWO2005114177A1 (en
Inventor
広嗣 小宮
哲也 一杉
隆廣 篠塚
一明 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Original Assignee
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, AGC Seimi Chemical Ltd filed Critical Seimi Chemical Co Ltd
Publication of JPWO2005114177A1 publication Critical patent/JPWO2005114177A1/en
Application granted granted Critical
Publication of JP4131870B2 publication Critical patent/JP4131870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/40Grinding-materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、ガラス研磨用研磨材に関し、さらに詳しくは各種ガラス材料の仕上げ研磨に好適であり、特に酸化セリウムを含む希土類酸化物を主成分とするガラス研磨用研磨材の高研磨速度を維持するとともに研磨するガラスに発生する傷、特に潜傷を従来にない程度まで減少させたガラス研磨用研磨材及びその品質の評価方法に関する。  The present invention relates to a polishing material for glass polishing, and more particularly, is suitable for finish polishing of various glass materials, and in particular, maintains a high polishing rate of a polishing material for glass polishing mainly containing a rare earth oxide containing cerium oxide. In addition, the present invention relates to a polishing material for glass polishing in which scratches, particularly latent scratches, generated in the glass to be polished are reduced to an unprecedented level and a method for evaluating the quality.

近年、様々な用途にガラス材料が用いられており、光学レンズ等光学用途用ガラス材料だけでなく、液晶用ガラス基板、磁気ディスク、光ディスク等の記録媒体用ガラス基板、LSIフォトマスク用ガラス基板などの電子回路製造用といった分野にも使用され、いずれも、基本的に高精度に表面研磨することが要求される。
従来より、これらのガラス基板の表面研磨に用いられている研磨材としては、希土類酸化物、特に酸化セリウムを主成分とする研磨材が用いられている。これは、研磨砥粒として酸化セリウムは、酸化ジルコニウムや二酸化ケイ素に比べてガラスの研磨効率が数倍優れているという利点からである。しかして、近年、いわゆるデジタル家電製品等の生産が急速に伸びていることを受けて、その基幹デバイスである例えば液晶ディスプレーなどのFPDでは、表示画面がますます大型化し、または、携帯端末のような小型のパネルも、カラーの画像イメージ等を鮮明に表示する必要があって、更に高細精のものが要求されている。
また、磁気ディスク等HDDも、例えばDVDレコーダーに組み込まれる場合は、テレビ番組等を長時間録画するため、100〜200ギガ程度の高密度記録対応のものが標準となっており、ディスク用ガラス基板の表面精度は、ますます高精度に表面研磨して高平滑なものとすることが要求されている。この点からも研磨材の研磨能力としては、より一層高品質のものが求められている。
なお、後述するように、ガラス研磨用の酸化セリウムを主成分とする研磨材は、研磨性能が向上するという理由から、フッ素分を含有していることが、一般的である。
これら酸化セリウムを主成分とする研磨材においては、例えば研磨材粒子の粒径が、研磨速度、平均粗さ(表面平滑度)、及びスクラッチや傷(顕傷及び潜傷)などの発生等の研磨性能に影響を及ぼすことが知られている。
例えば、特開2000−273443号においては、特定の粗大粒子(6μm以上)を300ppm以下とすることにより潜傷の数を減少させうることが記載されている。また、特開2001−72962号には、ほぼ純セリウムからなる研磨砥粒のゾル粒子に関する場合、その1次粒子の凝集体である平均2次粒子径(メディアン径)を小さく(0.1〜0.5μm程度)とすることにより、研磨速度を保持しつつ表面粗さを小さくしうることが開示されている。
さらにまた、特開2003−261861号には、乾燥状態の研磨材粒子の凝集度の低いものは、分散性がよいものであることに着目して、その凝集状態を評価する指標が提案されている。すなわち、研磨材粒子について、BET法により測定される研磨材粒子の粒子径(D)(1次粒子の粒径に相当する。)と空気透過法により測定される研磨材粒子の粒子径(D)(凝集粒子の粒径に近似される。)の比率が1<=D/D<=10なる関係が成立する研磨材粒子は、凝集が少なく、水性媒体中での分散性が良好で、安定した研磨特性が得られるとされている。
しかしながら、上記研磨材粒子の粒径や凝集特性を評価する方法のうち、特開2000−273443号においては、対象とする粗大粒子が1次粒子の粒径なのか凝集体粒子の粒径なのか全く区別されておらず、また特開2001−72962号においては、凝集体粒子の粒径(2次粒子径)を規定しているが、前記凝集体と同様に、当該凝集体粒子が水性媒体中でどの程度1次粒子に再分散しうるものであるかについては検討されていない。現実的観点からすれば、研磨材粒子が乾燥状態においてある程度凝集体粒子を含有していたとしても、当該凝集体が容易に水性媒体中で分散(または解砕)しうるものであれば、これをわざわざ苦労して必要以上に除こうとすることは無意味である。経済的合理性からは、必要最小限の処理により、最大の効果を得ることが好ましい。
さらに特開2003−261861号において記載されている凝集を示す指標は、乾燥状態における研磨材粒子の凝集の程度の大小(凝集の大きさ)を示すものに過ぎない。したがって、当該粒子を水性媒体に分散させた場合の分散のし易さ又は分散し難さ(分散性)を、直接示すものではない。
基本的に、ガラス研磨用の研磨材は、研磨材粒子(研磨砥粒)を、使用時に水性媒体に分散せしめた研磨材組成物(「研磨材スラリー」とも称される。)とする。その場合、高い研磨速度及びその研磨速度の維持・持続性という研磨工程の生産性の向上だけでなく、研磨面の高い品質レベルの保持という、生産性及び品質の両者についてより高いレベルを求められている。しかしながら、研磨速度の向上と高品質の保持は、むしろ矛盾する要請であって、両立しがたいものである。例えば、研磨材砥粒の粗粒の量を多くすれば、研磨速度は高くなるが、研磨面のスクラッチ等の傷が増加しやすくなることは容易に理解されるところであろう。
研磨面の品質において、特に重要な評価の対象なる研磨面の微細な傷については、従来は、顕傷(乾燥された研磨面を可視光線を照射下で、顕微鏡で観察して認められる傷)の数の多少で、研磨面の傷の多少を評価することで充分であった。しかしながら、上記したように、例えば液晶モニターなど高細精かつ大画面化しつつある電子産業の進歩発展の現状に対応して、液晶用ガラス基板やハードディスク用ガラス基板等についての品質要求のレベルは従来に比較して予想もしえないレベルまで、格段に高くなりつつある。
かかる研磨面の更なる高品質要求に伴い、研磨面の微細な傷の評価法も、顕傷が無いことは当然であって、さらに潜傷の数についても、厳しく評価することが要請されることになった。ここで、「潜傷」とは、上記の顕傷の評価法では見つけにくい微細な傷を、研磨面を希薄なフッ酸水溶液でエッチングし、乾燥後に研磨面の傷を明確化させて、研磨面を顕微鏡(例えばオリンパス社製、システム金属顕微鏡、BHT型など)で観察してはじめて認められる傷である。このようにして、現在、潜傷の数の多少で評価する、より厳しい研磨面の品質評価方法が要請されるようになっているのである。
従来の酸化セリウムを主成分とする乾燥粉末である研磨材(研磨材粒子)については、粗粒径や凝集体粒子量を上記公開特許公報で提案されているような望ましい範囲のものとした場合においても、なお、ガラスの研磨において高い研磨速度を継続・維持しつつ、潜傷の数まで考慮した研磨面の高品質達成という面からいえば、必ずしも、満足のいくものではなかった。
本発明の目的は、ガラス研磨用研磨材、特に酸化セリウムを含む希土類酸化物を主成分とするガラス研磨用研磨材において、高研磨速度を維持するとともに研磨するガラスに発生する傷、特に潜傷を、従来にない程度まで減少させたガラス研磨用研磨材を提供すること、及び、研磨材粒子において、特に潜傷に関する品質を、粉末について評価する品質評価方法を提供することである。
In recent years, glass materials have been used for various applications. Not only glass materials for optical applications such as optical lenses, but also glass substrates for liquid crystals, recording disks such as magnetic disks and optical disks, glass substrates for LSI photomasks, etc. These are also used in the field of manufacturing electronic circuits, and all of them basically require surface polishing with high accuracy.
Conventionally, as a polishing material used for surface polishing of these glass substrates, a polishing material mainly containing a rare earth oxide, particularly cerium oxide, has been used. This is because cerium oxide as an abrasive grain is advantageous in that the polishing efficiency of glass is several times better than that of zirconium oxide or silicon dioxide. In recent years, in response to the rapid growth of so-called digital home appliances, the display screen of an FPD such as a liquid crystal display, which is a key device, is becoming increasingly larger, or like a portable terminal. Such a small panel is also required to display a color image and the like clearly, and a higher-definition panel is required.
In addition, when an HDD such as a magnetic disk is incorporated in a DVD recorder, for example, a TV program or the like is compatible with high-density recording of about 100 to 200 gigabytes for recording TV programs and the like for a long time. As for the surface accuracy, it is required that the surface be polished with higher accuracy to be highly smooth. Also from this point, the polishing ability of the abrasive is required to be higher quality.
In addition, as will be described later, it is general that an abrasive mainly composed of cerium oxide for glass polishing contains a fluorine component for the reason that the polishing performance is improved.
In these abrasives mainly composed of cerium oxide, for example, the particle size of the abrasive particles is the polishing rate, the average roughness (surface smoothness), and the occurrence of scratches and scratches (scratches and latent scratches). It is known to affect polishing performance.
For example, Japanese Patent Application Laid-Open No. 2000-273443 describes that the number of latent scratches can be reduced by setting specific coarse particles (6 μm or more) to 300 ppm or less. Further, in JP-A No. 2001-72962, in the case of sol particles of abrasive grains substantially composed of pure cerium, the average secondary particle diameter (median diameter) that is an aggregate of the primary particles is reduced (0.1 to 0.1). It is disclosed that the surface roughness can be reduced while maintaining the polishing rate.
Furthermore, JP-A No. 2003-261861 proposes an index for evaluating the aggregation state, focusing on the fact that the dry particles having a low degree of aggregation have good dispersibility. Yes. That is, for the abrasive particles, the particle diameter (D N ) of the abrasive particles measured by the BET method (corresponding to the particle size of the primary particles) and the particle diameter of the abrasive particles measured by the air permeation method ( D A ) (approximate to the particle size of the aggregated particles), the abrasive particles satisfying the relationship of 1 <= D A / D N <= 10 have little aggregation and dispersibility in an aqueous medium. It is said that stable polishing characteristics can be obtained.
However, among the methods for evaluating the particle size and agglomeration characteristics of the abrasive particles, in Japanese Patent Application Laid-Open No. 2000-273443, whether the target coarse particles are the particle sizes of primary particles or aggregate particles. No distinction is made, and in JP-A No. 2001-72962, the particle diameter (secondary particle diameter) of the aggregate particles is defined. The degree to which the particles can be redispersed into primary particles is not studied. From a practical point of view, even if the abrasive particles contain some aggregate particles in a dry state, if the aggregate can be easily dispersed (or crushed) in an aqueous medium, There is no point in trying to remove it more than necessary. From the economic rationality, it is preferable to obtain the maximum effect by the minimum necessary processing.
Furthermore, the index indicating aggregation described in Japanese Patent Application Laid-Open No. 2003-261861 is merely a measure of the degree of aggregation of the abrasive particles in a dry state (magnification size). Therefore, it does not directly indicate the ease of dispersion or the difficulty of dispersion (dispersibility) when the particles are dispersed in an aqueous medium.
Basically, the abrasive for polishing glass is an abrasive composition (also referred to as “abrasive slurry”) in which abrasive particles (abrasive grains) are dispersed in an aqueous medium at the time of use. In that case, not only the improvement of the productivity of the polishing process, that is, the high polishing rate and the maintenance and sustainability of the polishing rate, but also the higher level of both the productivity and the quality of maintaining the high quality level of the polished surface is required. ing. However, the improvement of the polishing rate and the maintenance of high quality are rather contradictory requests and are incompatible. For example, if the amount of coarse abrasive grains is increased, the polishing rate will be increased, but it will be readily understood that scratches such as scratches on the polished surface tend to increase.
In the past, fine scratches on the polished surface, which are particularly important for the quality of the polished surface, have been conventionally observed (scratches observed by observing the dried polished surface with a microscope under visible light). It was sufficient to evaluate the number of scratches on the polished surface. However, as described above, the level of quality requirements for liquid crystal glass substrates, hard disk glass substrates, etc. has hitherto been high in response to the progress of the development and development of the electronics industry, such as liquid crystal monitors. Compared to, it is becoming much higher than expected.
With the demand for higher quality of the polished surface, it is natural that the evaluation method for fine scratches on the polished surface is free from obvious scratches, and the number of latent scratches is also required to be strictly evaluated. is what happened. Here, the term “latent scratch” refers to a fine scratch that is difficult to find with the above-described evaluation method for stigmatism, by polishing the polished surface with a dilute hydrofluoric acid solution and clarifying the scratch on the polished surface after drying. It is a scratch that is recognized only when the surface is observed with a microscope (for example, Olympus, system metal microscope, BHT type, etc.). Thus, there is now a demand for a more rigorous polished surface quality evaluation method that evaluates by the number of latent scratches.
For conventional abrasives (abrasive particles) that are dry powders mainly composed of cerium oxide, the coarse particle size and the amount of aggregate particles are in the desired range as proposed in the above-mentioned published patent publication. However, in terms of achieving a high quality polished surface considering the number of latent scratches while maintaining and maintaining a high polishing rate in glass polishing, it was not always satisfactory.
An object of the present invention is to provide a glass polishing abrasive, particularly a glass polishing abrasive mainly composed of a rare earth oxide containing cerium oxide. It is to provide a polishing material for glass polishing that is reduced to an unprecedented level, and to provide a quality evaluation method for evaluating the quality of the abrasive particles, particularly with respect to latent scratches, with respect to powder.

本発明によれば、以下の発明が提供される。
〔1〕 ガラス研磨用研磨材粒子の水性媒体中における分散性を評価する方法であって、水性媒体に被測定対象の研磨材粒子を添加してなる研磨材粒子の水性媒体分散液を準備し、当該分散液に超音波を照射し、式(1)で表される、当該超音波照射前の特定粒径α(μm)以上の粒子の存在量に対する、超音波照射後の上記α(μm)以上の粒子の超音波照射作用により消失する割合(分散率(ξ)と定義する。)を測定することを特徴とするガラス研磨用研磨材粒子の水性媒体中での分散性に関する品質評価方法。
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
〔2〕 ガラスを研磨材粒子で研磨する方法であって、
水性媒体に被測定対象の研磨材粒子を添加してなる研磨材粒子の水性媒体分散液を準備し、当該分散液に超音波を照射し、式(1)で表される、当該超音波照射前の特定粒径α(μm)以上の粒子の存在量に対する、超音波照射後の上記α(μm)以上の粒子の超音波照射作用により消失する割合(分散率(ξ)と定義する。)を測定し、
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
式(1)の方法により測定した分散率ξが、特定の値ξ(%)以上の研磨材粒子を、調整、選択又は判別し、
当該特定した研磨材粒子によりガラス研磨を行うことを特徴とするガラス研磨方法。
〔3〕 ξが30(%)である〔2〕に記載のガラス研磨方法。
〔4〕 研磨材粒子を含むガラス研磨用研磨材組成物において、
当該研磨材粒子は、
水性媒体に当該研磨材粒子を添加してなる研磨材粒子の水性媒体分散液に超音波を照射し、式(1)で表される、当該超音波照射前の特定粒径α(μm)以上の粒子の存在量に対する、超音波照射後の上記α(μm)以上の粒子の超音波照射作用により消失する割合(分散率(ξ)と定義する。)を測定し、
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
式(1)の方法により測定した分散率ξが、特定の値ξ(%)以上の研磨材粒子を水性媒体中に分散させたものであることを特徴とするガラス研磨用研磨材組成物。
〔5〕 ξが30(%)である〔4〕に記載のガラス研磨用研磨材組成物。
〔6〕 酸化セリウムを含む希土類酸化物を主成分とする研磨材粒子において、当該研磨材中のSO換算の金属硫酸塩の量が、0.070(モル/Kg)以下であり、かつ、当該研磨材粒子は、
水性媒体に当該研磨材粒子を添加してなる研磨材粒子の水性媒体分散液に超音波を照射し、式(1)で表される、当該超音波照射前の特定粒径α(μm)以上の粒子の存在量に対する、超音波照射後の上記α(μm)以上の粒子の超音波照射作用により消失する割合(分散率(ξ)と定義する。)を測定し、
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
式(1)の方法により測定した分散率ξが、特定の値ξ(%)以上の研磨材粒子であることを特徴とする高分散性ガラス研磨用の研磨材粒子。
〔7〕 ξが30(5%)である〔6〕に記載の高分散性ガラス研磨用の研磨材粒子。
〔8〕 フッ素化合物を含有する〔6〕又は〔7〕に記載の研磨材粒子。
〔9〕 少なくとも水性媒体と、〔6〕〜〔8〕のいずれかに記載の研磨材粒子からなるガラス研磨用研磨材組成物。
〔10〕 〔9〕に記載のガラス研磨用研磨材組成物を使用するガラスの研磨方法。
According to the present invention, the following inventions are provided.
[1] A method for evaluating the dispersibility of abrasive particles for polishing glass in an aqueous medium, comprising preparing an aqueous medium dispersion of abrasive particles obtained by adding abrasive particles to be measured to an aqueous medium. , irradiated with ultrasonic waves in the dispersion liquid, the formula (1), for the presence of the ultrasonic particular particle size before irradiation alpha 0 ([mu] m) or more particles, said after ultrasonic irradiation alpha 0 Quality related to dispersibility of abrasive particles for glass polishing in an aqueous medium, characterized by measuring the proportion of particles (μm) or more disappearing by the action of ultrasonic irradiation (defined as dispersion ratio (ξ)) Evaluation methods.
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle diameter α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
[2] A method of polishing glass with abrasive particles,
An aqueous medium dispersion of abrasive particles obtained by adding abrasive particles to be measured to an aqueous medium is prepared, and the dispersion is irradiated with ultrasonic waves. The ultrasonic irradiation represented by the formula (1) It is defined as the ratio (dispersion rate (ξ)) that disappears due to the ultrasonic irradiation effect of the particles of α 0 (μm) or more after the ultrasonic irradiation with respect to the existing amount of particles of the specific particle diameter α 0 (μm) or more. )
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle diameter α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
Adjusting, selecting or discriminating abrasive particles having a dispersion ratio ξ measured by the method of formula (1) equal to or higher than a specific value ξ 0 (%);
A glass polishing method comprising performing glass polishing with the specified abrasive particles.
[3] The glass polishing method according to [2], wherein ξ 0 is 30 (%).
[4] In an abrasive composition for polishing glass comprising abrasive particles,
The abrasive particles are
An aqueous medium dispersion of abrasive particles obtained by adding the abrasive particles to an aqueous medium is irradiated with ultrasonic waves, and the specific particle diameter α 0 (μm) before the ultrasonic irradiation represented by the formula (1) The ratio (defined as the dispersion ratio (ξ)) of the above-mentioned particle abundance disappearing due to the ultrasonic irradiation action of the particles of α 0 (μm) or more after ultrasonic irradiation is measured.
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle diameter α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
Abrasive composition for glass polishing, wherein abrasive particles having a dispersion ratio ξ measured by the method of formula (1) of a specific value ξ 0 (%) or more are dispersed in an aqueous medium .
[5] The abrasive composition for polishing glass according to [4], wherein ξ 0 is 30 (%).
[6] In the abrasive particles mainly composed of a rare earth oxide containing cerium oxide, the amount of SO 4 equivalent metal sulfate in the abrasive is 0.070 (mol / Kg) or less, and The abrasive particles are
An aqueous medium dispersion of abrasive particles obtained by adding the abrasive particles to an aqueous medium is irradiated with ultrasonic waves, and the specific particle diameter α 0 (μm) before the ultrasonic irradiation represented by the formula (1) The ratio (defined as the dispersion ratio (ξ)) of the above-mentioned particle abundance disappearing due to the ultrasonic irradiation action of the particles of α 0 (μm) or more after ultrasonic irradiation is measured.
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle diameter α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
An abrasive particle for polishing highly dispersible glass, wherein the dispersion particle ξ measured by the method of formula (1) is an abrasive particle having a specific value ξ 0 (%) or more.
[7] The abrasive particles for polishing highly dispersible glass according to [6], wherein ξ 0 is 30 (5%).
[8] The abrasive particle according to [6] or [7], which contains a fluorine compound.
[9] An abrasive composition for polishing glass comprising at least an aqueous medium and the abrasive particles according to any one of [6] to [8].
[10] A glass polishing method using the glass polishing abrasive composition according to [9].

以下、本発明を実施するための最良の形態を詳細に説明する。
(水性媒体中における粗粒子量及び凝集の強弱の評価)
本発明においては、ガラス研磨用研磨材粒子の水性媒体中での分散性に関する品質評価を、以下のようにして、超音波照射によって研磨材粒子の凝集の強弱、さらには凝集体からなる粗粒子量を評価することにより、行うものである。
すなわち、被測定対象の研磨粒子を、水性媒体に添加した研磨材水性媒体分散液を準備し、当該水性媒体分散液に、超音波を照射し、式(1)で表される、当該超音波照射前の特定粒径α(μm)以上の粒子の存在量に対する、超音波照射後の上記α(μm)以上の粒子の超音波照射作用により消失する割合(分散率(ξ)と定義する。)を測定するものである。
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
上記(1)式の技術的意義は次のとおりである。すなわち、酸化セリウムを含む希土類酸化物を主成分とする研磨材粒子は、その1次粒子(ここに云う1次粒子とは単結晶ではなく実質的に多結晶体粒子からなるものをいう。以下同じ。)が凝集した凝集体粒子を構成していることが、一般的に知られている。また、当該研磨材粒子は、水性媒体中の組成物においても粒子径分布を有しているものであるが、本発明者らは詳細な検討の結果、研磨面への傷(顕傷及び潜傷)に大きく影響する因子としては、水性媒体中の研磨材粒子の中の粒子径がある一定値(α)以上の粗大な粒子(例えば、粒子径α=10μm以上の粒子)の極く微量(数ppm〜数百ppm)の存在量が、重要な因子であることを見出した。
通常、ガラス研磨用の研磨材粒子について、一般的に平均粒子径は、0.3〜3μm程度であり、このような粒子径10μm以上、特に粒子径10〜50μm程度の粗大粒子(粗粒子)の存在量は、極く微量である。
なお、αの値は、一般的には、使用する研磨材粒子の種類、平均粒径、及び目的とする研磨品質等によって実験的に定められる値であるが、本発明で使用する研磨材粒子においては、後記実施例に示されているように、α=10μmと設定すれば充分な結果が得られる。
しかしながら、ここで注意すべきは、粗大粒子とは、1次粒子自体が粗大である場合以外に、1次粒子が凝集した凝集体粒子が粗大である場合もありうることである。そして、本発明者らがさらに詳細に検討したところ、粉体状態において粗大な凝集体粒子を形成しているもののうち、水性媒体中では、容易に構成粒子である1次粒子まで分解するものと、凝集が強固で、水性媒体中においても、実質的に当該粗大な凝集体粒子の状態を保持し、容易には、1次粒子に分散しないものがありうることを見出した。すなわち、重要な点は、上記の粗大粒子の凝集体粒子の粒径または存在量ではなく、その凝集の強弱の程度(水性媒体中での凝集体の1次粒子へのほぐれやすさの程度、または、ほぐれ難さの程度)が、研磨面の品質(顕傷及び潜傷)に強く影響することになるのであり、これを評価する必要があることを見出したのである。
このようにして、本発明者らの知見によれば、上記した各特許公開公報に記載のように、単に1次粒子が粗粒の場合や、乾燥状態における凝集体粒子の粒径や量を規定するだけでは、研磨材粒子の品質を、潜傷のレベルについてまで評価するためには、全く不十分なのである。
(研磨材粒子中の粗粒子の分離・濃縮方法)
本発明においては、水性媒体中の研磨材粒子中の粗粒子の凝集の強弱を評価するにあたり、まず、研磨材粒子中に微量に存在する粗粒子を分離・濃縮して、得られた粗粒子について、凝集の強弱の評価を行う。
研磨材粒子中の微量の粗粒子の分離・濃縮方法としては、水中での研磨材粒子の粒子径ごとの沈降速度の差を利用して行う。具体的方法の例を以下に述べる。すなわち、
120(mg/L)のピロリン酸ナトリウム(分散剤)を含有する水10Lに研磨材粒子200gを添加し、撹拌して分散させる。30分間静置後、上澄み液を静かに抜き出す。次に元の液体容量になるまで120(mg/L)のピロリン酸ナトリウムを含有する水を、新たに添加して同様な操作を、5回繰り返す。最終的に容器の底部に堆積した粗粒子を、回収して乾燥粉末とする。この粗粒子の粒子径は、おおよそ10μm(=α)以上である。
この粗粒子の質量を、最初の研磨材粒子の質量で割れば、研磨材粒子中の粗粒子(ここではおよそ10μm以上)の存在比率が算出されるのである。
(分離・濃縮された粗粒子の凝集の強弱の評価方法及びξの算出)
本発明における凝集体粒子(ここでは、粒子径10μmのもの。)は、以下のようにして超音波照射を行い、照射前後の当該粒子径の粒子の存在割合の変化より分散率ξを以下のようにして算出する。すなわち、
50mLの水を入れたビーカーに、上記の分離・濃縮された粗粒子50mgを、添加する。次いで、2.6Lの容量を有する超音波照射浴に、1.8Lの水を入れ、そこに、上記の水50mL及び粗粒子50mgを格納したビーカーを浸漬する。周波数38KHz、出力190Wの超音波(アズワン社製、商品名:超音波洗浄機US−2使用)を、10分間照射する。超音波照射前後の粒子について、粒子径分布(体積基準)をレーザー散乱測定器(例えば日機装社製、商品名:マイクロトラック、9320−X100型)により、レーザー散乱法で測定して、粒子径10μm以上の粒子の超音波照射による分散率ξが、式(1)により算出されるのである。
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
本発明において分散率ξは、後記実施例に示すように、少なくとも30(%)以上、好ましくは50(%)以上、より好ましくは70(%)以上、最も好ましくは80(%)以上である。
したがって、式(1)の方法により測定した分散率ξが、特定の値ξ(%)、例えば30(%)以上の研磨材粒子を、調整、選択又は判別してガラス研磨に使用することにより、潜傷の少ない条件でガラスの研磨を実施することができる。
(研磨材粒子)
本発明における研磨材粒子の主要な成分の組成を酸化物換算質量%で示すと、例えば、CeO50〜65%、La25〜35%、Pr115〜6.5%、Nd0.3〜15%程度のものが好ましい。すなわち、いわゆる混合酸化希土の粒子からなるものである。
本発明における研磨材粒子中のフッ素分(F)の含有量は、3〜9質量%が好ましく、より好ましくは5〜8質量%である。一般的にフッ素分(F)の含有量が少な過ぎると、塩基性の強い、酸化ランタンを充分フッ化ランタンに変化・固定化することができないため、研磨速度が遅くなる。一方、フッ素分(F)が多すぎると、過剰のフッ化希土が焼成中に焼結を起こしてしまうため望ましくない。
本発明における研磨材粒子の平均粒子径(d50)は、0.3〜3μmが好ましく、0.5〜2μmがより好ましく、0.5〜1.5μmがさらに好ましい。この、当該平均粒子径は、レーザー散乱法(例えば、日機装社製、レーザー散乱法、商品名:マイクロトラック、型式:9320−X100型使用)により測定する。
さらに、研磨材粒子の粒子径分布については、累積粒度分布において、小粒子径から10%、90%の粒子径(μm)を、それぞれd10、d90とした場合のd90/d10が、15以下であるものが好ましく、10以下がさらに好ましく、5以下であるものが最も好ましい。
研磨材粒子の結晶学的物性については、CuKα線を用いた粉末X線回折分析による結晶ピークにおいて、2θが、28.3deg付近に、立方晶複合酸化希土の最大ピーク(A)と、2θが、26.6deg付近に、酸フッ化希土のピーク(B)が現れるが、それら二つのピークのB/Aのピーク高さの比率が、0.2〜0.8が好ましく、0.3〜0.6がより好ましい。
なお、ここで「ピーク高さ」とは、ピーク曲線のベースラインからピーク頂点までの高さを示すものである(以下、同じ。)。
さらにセリウムを主成分とする酸化希土についてその他の物性は、以下のとおりである。
結晶子径(Scherrer法による)については、150〜300Åが好ましく、170〜250Åがより好ましい。
研磨材粒子の細孔構造については、BET法による比表面積(例えば、島津製作所社製、装置名:Micro Meritics Flow SorbII 2300などで測定)として、1〜10(m/g)が好ましく、1.5〜6(m/g)がより好ましい。
(金属硫酸塩含有量)
本発明における研磨材粒子中のSO換算の金属硫酸塩の含有量としては、0.070(モル/Kg)以下が好ましく、0.050(モル/Kg)以下がより好ましく、0.035(モル/Kg)以下が最も好ましい。
なお、本発明においてSOの分析方法は、研磨材粒子を硝酸及び過酸化水素を含有する水溶液で溶解し、誘導結合型プラズマ発光分光分析装置(ICP)で、Sを分析する方法によるものである。
金属硫酸塩の金属元素としては、カルシウム、マグネシウム、バリウムなどのアルカリ土類金属や、軽希土元素中のランタンなどが主なものであるが、これらの元素の硫酸塩は、後記する研磨材粒子の製造工程中の焼成工程においても、完全には熱分解しないで、硫酸塩の形で残る。
本発明者らの見いだしたところによれば、SO換算の金属硫酸塩の量は、研磨材凝集体粒子のほぐれ易さに極めて相関を有するものである。
これは、上記焼成工程で、これらの元素の硫酸塩が、上記した特定の量以上存在すると、焼成処理された凝集体粒子が、弱い焼結を起こすため、凝集粒子の凝集の強さが増加するものと考えられる。また、当該硫酸塩が特定の量以上であると、凝集体粒子の機械的強度が、増加するため、研磨材の凝集粒子を水性媒体中に分散して使用した場合に、研磨に際して凝集粒子に加わる通常の剪断力などの機械的な力では、解砕や分散されにくくなるため、当該凝集体は、現象としてほぐれにくくなると考えられる。なお、SO換算の金属硫酸塩の量は、上記観点からは少ない方がよいが、これを完全に除去する必要はなく、上記数値以下の含量に調整すれば、本発明の目的を達成する点からは充分である。
そして、後記実施例示すように、例えば金属硫酸塩の量を0.070(モル/Kg)以下とすることにより、分散率ξ=30(%)以上を確保することができ、さらに、金属硫酸塩の量を0.050(モル/Kg)以下とすることにより、分散率ξ=50(%)以上を確保することができる。
(研磨材粒子の製造)
本発明における研磨材、特に分散率(ξ)が本発明で規定する範囲にある研磨材粒子は、以下のごとき方法で製造される。
本発明における酸化セリウムを主成分とする研磨材の原料は、主に、バストネサイト、モナザイト、ゼノタイム、中国複雑鉱等の希土類含有鉱石から製造されるが、もちろん、これらに限定されるものではない。
まず、これらの希土類含有鉱石を選鉱した後、バストネサイト精鉱、モナザイト精鉱、中国複雑精鉱などの希土類精鉱を得、得られた希土類精鉱に、放射性元素等の不要な鉱物を取り除くための化学処理、及び必要により溶媒抽出をした後、沈殿ろ過、さらには焼成等の従来から用いられている工程を組み合わせることにより、酸化セリウムを主成分とする研磨材の原料である、炭酸希土、酸化希土、水酸化希土、フッ化希土等の研磨材の原料を得るのである。
なお、フッ化希土の場合は、塩化希土の水溶液へフッ酸を添加して、フッ化希土の沈殿を生成させて製造する方法が一般的である。
本発明における望ましい研磨材粒子の製造方法の一例は、これに限定されるものではないが、炭酸希土を加熱分解して得られる酸化希土とフッ化希土とを出発原料とする方法である。すなわち、
上記の原鉱石から得られる炭酸希土を、酸素含有雰囲気下で、まず、400〜840℃において、30分〜48時間、好ましくは1〜24時間程度焼成(仮焼)して、加熱分解せしめて酸化希土とする。このように、炭酸希土を、いきなり焼成(本焼成)するのでなく、後記する本焼成温度よりも低い温度で仮焼して酸化希土とすることが好ましい工程の一つである。なお、この酸化希土には、炭酸希土が一部残存していてもよい。
ここで、炭酸希土を焼成(仮焼)して、得られる酸化希土と炭酸希土との混合物としては、酸化物換算全希土(TREO)が、50〜97質量%のものが好ましく、70〜95質量%のものがより好ましく、80〜93質量%のものがさらに好ましい。
一方、フッ化希土については、上記したごとく塩化希土の水溶液へフッ酸を添加して、フッ化希土の沈殿を生成させて製造する一般的な製法で得られるものを使用することが好ましいが、もちろんこれに限定されるものではない。
仮焼した酸化希土については、通常、以下のとおり、フッ化希土添加、原料混合スラリー化、湿式粉砕、乾燥、焼成、解砕、分級などの工程が行われる。
まず、上記の仮焼して得られた酸化希土にフッ化希土を添加する。フッ化希土の添加量は、最終的に得られる研磨材粒子中の含有量が、すでに述べたように、(F)換算量として、3〜9質量%となるようにすることが好ましく、5〜8質量%がより好ましい(フッ化希土添加工程)。
かくして酸化希土にフッ化希土を添加した後、水を加えて混合し、固形分濃度30〜60質量%のスラリーとし、当該スラリーを、1〜10時間程度湿式粉砕して、粒子径0.2〜10μm程度の粒子からなるスラリーとする(原料混合スラリー化、湿式粉砕工程)。
次に、当該湿式粉砕したスラリーを乾燥した後、酸素含有雰囲気下で焼成する。この焼成は、前記した仮焼に対し、本焼成とも称すべきものであって、焼成条件としては、加熱温度500℃以上の昇温速度を、0.3〜5(℃/min)、保持する高温度としては、850〜1100℃、及び当該高温度範囲での保持時間を、0.5〜6時間とすることが好ましい。
さらに、焼成条件としては、加熱温度500℃以上の昇温速度を、0.5〜3.5(℃/min)、保持する高温度としては、900〜1000℃、及び当該高温度範囲での保持時間を、2〜5時間とすることがより好ましい。
仮焼又は本焼成を実施するための焼成装置としては、上記粉砕・乾燥原料を収容し、ここで規定する温度で昇温し、かつ、当該高温を保持して焼成しうるものであれば、如何なる形式の炉であってもよく、例えば、回分式あるいは連続式の、箱型炉、回転炉、トンネル炉等を適用することができ、また、加熱の方法としては、電気加熱式、直火式(燃料はガスまたは燃料油など)のいずれも適用できる(乾燥、焼成工程)。
かくして、焼成後は、解砕し、所望により分級して、所定粒子径の範囲を有する研磨材粒子が得られる(解砕、分級工程)。
なお、上記のごとく酸化希土とフッ化希土を別々に調製して混合する代わりに、炭酸希土を原料として用い、この一部をフッ酸水溶液で部分フッ素化させる方法を採用することも可能である。この製法の場合には、炭酸希土に水を添加してスラリー化し、これにフッ化水素を添加して部分的にフッ素化し、これを上記と同様にして、湿式粉砕、乾燥、焼成、解砕、分級などの工程を行えばよい。
(金属硫酸塩含有量の調整)
本発明においては、すでに述べたように、研磨材粒子中に存在するSO換算の金属硫酸塩の含有量としては、0.070(モル/Kg)以下、好ましくは0.050(モル/Kg)以下、更に好ましくは0.035(モル/Kg)以下が望ましい。
研磨材粒子中に存在するSO換算の金属硫酸塩の含有量を上記の範囲とするには、特に限定するものではないが、例えば以下の方法が採用できる。すなわち、一つは、上記規定の範囲になるように、原料として用いる軽希土原料の純度を調節して、得られる研磨材中のSO換算含有量を、上記の好ましい範囲に入れることである。あるいは、原料として用いる軽希土原料でSO換算含有量の小さな原料を得た後に、添加量を調整したアルカリ土類金属などの金属硫酸塩(例えば、硫酸カルシウム、硫酸マグネシウムなど)を、研磨材粒子を製造する途中の工程で、予め配合・共存させておき、すでに述べた製造工程を適用して、研磨材粒子中に存在するSO換算含有量を、上記の好ましい範囲になるように調整する手段を採用してもよい。
(研磨材組成、スラリーのpH等)
本発明においては、研磨材粒子を水スラリーとして使用するが、当該水スラリーのpHについては、固形分濃度10質量%の水スラリーの室温におけるpHは、6.0〜9.0が好ましく、6.2〜8.0がより好ましく、6.5〜7.5が最も好ましい。
なお、本発明における研磨材スラリーにおける、水性媒体中には、粒子の分散性をよくするために、例えば高分子ポリカルボン酸アンモニウム塩や高分子ポリスルホン酸アンモニウムなど有機高分子系の分散剤を添加して使用してもよい。なお、SOの分析方法は、すでに説明したように、研磨材粒子を硝酸及び過酸化水素を含有する水溶液で溶解し、誘導結合型プラズマ発光分光分析装置(ICP)で、S(発光線波長:180.731nm)を分析する方法によった。
(発明の効果)
本発明によれば、ガラス研磨用研磨材、特に酸化セリウムを含む希土類酸化物を主成分とするガラス研磨用研磨材において、高研磨速度を維持するとともに、研磨するガラスに発生する傷、特に潜傷を、従来にない程度まで減少させたガラス研磨用研磨材が提供される。また、本発明によれば、研磨材粒子において、特に潜傷に関する品質を、粉末について的確に評価することができる品質評価方法が提供される。
なお、実際の研磨プラントにおいて、本発明の研磨材組成物は、研磨材水性媒体分散液(いわゆる研磨材スラリー)として使用されるが、当該研磨材スラリーを使用した場合、従来問題となっていたスラリー流路における沈降による堆積が大幅に低減するという予想されざる効果を伴うことが確認された。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
(Evaluation of coarse particle amount and aggregation strength in aqueous medium)
In the present invention, the quality evaluation regarding the dispersibility of abrasive particles for polishing glass in an aqueous medium is as follows. The intensity of the aggregation of abrasive particles by ultrasonic irradiation, and the coarse particles comprising aggregates are as follows. This is done by evaluating the amount.
That is, an abrasive aqueous medium dispersion in which abrasive particles to be measured are added to an aqueous medium is prepared, and the aqueous medium dispersion is irradiated with ultrasonic waves, and the ultrasonic wave represented by the formula (1). Ratio of disappearance due to ultrasonic irradiation action of particles of α 0 (μm) or more after ultrasonic irradiation with respect to the abundance of particles having a specific particle diameter α 0 (μm) or more before irradiation (defined as dispersion rate (ξ)) )).
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle diameter α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
The technical significance of the above formula (1) is as follows. That is, the abrasive particles mainly composed of a rare earth oxide containing cerium oxide are primary particles thereof (the primary particles referred to here are not single crystals but are substantially composed of polycrystalline particles). It is generally known that the same)) constitutes aggregated aggregate particles. Further, although the abrasive particles have a particle size distribution even in the composition in the aqueous medium, as a result of detailed studies, the present inventors have made scratches (scratches and latent defects) on the polished surface. As a factor that greatly affects (scratches), the extreme of coarse particles (for example, particles having a particle diameter α 0 = 10 μm or more) having a particle diameter in the abrasive particles in the aqueous medium having a certain value (α 0 ) or more. It has been found that the abundance (several ppm to several hundred ppm) is an important factor.
Usually, the average particle size of abrasive particles for glass polishing is generally about 0.3 to 3 μm, and such particles with a particle size of 10 μm or more, particularly about 10 to 50 μm, are coarse particles (coarse particles). The abundance of is very small.
The value of α 0 is generally a value experimentally determined depending on the type of abrasive particles used, the average particle size, the target polishing quality, and the like. In the case of particles, sufficient results can be obtained if α 0 = 10 μm is set, as will be shown in Examples below.
However, it should be noted here that the coarse particles may mean that the aggregate particles obtained by aggregating the primary particles may be coarse in addition to the case where the primary particles themselves are coarse. And when the present inventors examined in more detail, in the aqueous | water-based medium among what is forming the coarse aggregate particle in a powder state, it decomposes | disassembles easily to the primary particle which is a constituent particle. The present inventors have found that the agglomeration is strong, and even in an aqueous medium, the state of the coarse aggregate particles can be substantially maintained and the particles are not easily dispersed in the primary particles. That is, the important point is not the particle size or abundance of the aggregate particles of the coarse particles, but the degree of aggregation (the degree of ease of loosening of the aggregates into primary particles in an aqueous medium, It was also found that the degree of difficulty in unraveling) strongly affects the quality (scratch and latent scratch) of the polished surface, and this needs to be evaluated.
Thus, according to the knowledge of the present inventors, as described in each of the above patent publications, when the primary particles are simply coarse particles, the particle size and amount of the aggregate particles in the dry state are determined. Simply defining it is quite insufficient to assess the quality of the abrasive particles to the level of latent scratches.
(Method for separating and concentrating coarse particles in abrasive particles)
In the present invention, in evaluating the strength of aggregation of the coarse particles in the abrasive particles in the aqueous medium, first, the coarse particles obtained by separating and concentrating the coarse particles present in a trace amount in the abrasive particles are obtained. Is evaluated for the strength of aggregation.
As a method for separating and concentrating a small amount of coarse particles in the abrasive particles, the method is performed by utilizing the difference in the sedimentation rate for each particle size of the abrasive particles in water. Examples of specific methods are described below. That is,
200 g of abrasive particles are added to 10 L of water containing 120 (mg / L) sodium pyrophosphate (dispersant), and dispersed by stirring. After standing for 30 minutes, the supernatant is gently extracted. Next, water containing 120 (mg / L) sodium pyrophosphate is newly added until the original liquid volume is reached, and the same operation is repeated 5 times. Coarse particles finally deposited on the bottom of the container are collected to form a dry powder. The particle diameter of the coarse particles is approximately 10 μm (= α 0 ) or more.
By dividing the mass of the coarse particles by the mass of the first abrasive particles, the abundance ratio of the coarse particles (here, about 10 μm or more) in the abrasive particles is calculated.
(Evaluation method of flocculation of separated and concentrated coarse particles and calculation of ξ)
Aggregate particles in the present invention (here, those having a particle diameter of 10 μm) are irradiated with ultrasonic waves as follows, and the dispersion ratio ξ is set to Thus, the calculation is performed. That is,
Into a beaker containing 50 mL of water, 50 mg of the separated and concentrated coarse particles are added. Next, 1.8 L of water is put into an ultrasonic irradiation bath having a volume of 2.6 L, and a beaker containing 50 mL of the water and 50 mg of coarse particles is immersed therein. An ultrasonic wave with a frequency of 38 KHz and an output of 190 W (manufactured by AS ONE, trade name: use of ultrasonic cleaner US-2) is irradiated for 10 minutes. The particle size distribution (volume basis) of the particles before and after the ultrasonic irradiation was measured by a laser scattering method with a laser scattering measuring instrument (for example, Nikkiso Co., Ltd., trade name: Microtrack, Model 9320-X100), and the particle diameter was 10 μm. The dispersion ratio ξ of the above particles by ultrasonic irradiation is calculated by the equation (1).
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle diameter α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
In the present invention, the dispersion ratio ξ is at least 30 (%) or more, preferably 50 (%) or more, more preferably 70 (%) or more, and most preferably 80 (%) or more, as shown in the Examples below. .
Accordingly, abrasive particles having a dispersion ratio ξ measured by the method of formula (1) having a specific value ξ 0 (%), for example, 30 (%) or more, are adjusted, selected or discriminated and used for glass polishing. Thus, it is possible to polish the glass under conditions with few latent scratches.
(Abrasive particles)
When the composition of the main component of the abrasive particles in the present invention is expressed in terms of mass% in terms of oxide, for example, CeO 2 50 to 65%, La 2 O 3 25 to 35%, Pr 6 O 11 5 to 6.5%. Nd 2 O 3 is preferably about 0.3 to 15%. That is, it is made of so-called mixed oxide rare earth particles.
3-9 mass% is preferable, and, as for content of the fluorine content (F) in the abrasive particle in this invention, More preferably, it is 5-8 mass%. In general, when the content of fluorine (F) is too small, lanthanum oxide, which is strongly basic, cannot be sufficiently changed or fixed to lanthanum fluoride, so that the polishing rate becomes slow. On the other hand, when the fluorine content (F) is too large, excess rare earth fluoride causes sintering during firing, which is not desirable.
The average particle diameter (d 50 ) of the abrasive particles in the present invention is preferably 0.3 to 3 μm, more preferably 0.5 to 2 μm, and even more preferably 0.5 to 1.5 μm. The average particle diameter is measured by a laser scattering method (for example, manufactured by Nikkiso Co., Ltd., laser scattering method, trade name: Microtrac, model: 9320-X100 type used).
Further, regarding the particle size distribution of the abrasive particles, in the cumulative particle size distribution, d 90 / d 10 when the particle sizes (μm) of 10% and 90% from the small particle size are d 10 and d 90 , respectively. , 15 or less is preferable, 10 or less is more preferable, and 5 or less is most preferable.
Regarding the crystallographic physical properties of the abrasive particles, 2θ is the maximum peak (A) of the cubic complex oxide rare earth and 2θ in the vicinity of 28.3 deg in the crystal peak by powder X-ray diffraction analysis using CuKα ray. However, although the peak (B) of rare earth oxyfluoride appears in the vicinity of 26.6 deg, the ratio of the peak height of B / A of these two peaks is preferably 0.2 to 0.8. 3-0.6 are more preferable.
Here, the “peak height” indicates the height from the baseline of the peak curve to the peak apex (the same applies hereinafter).
Furthermore, the other physical properties of the rare earth oxide mainly composed of cerium are as follows.
The crystallite diameter (by the Scherrer method) is preferably 150 to 300 mm, more preferably 170 to 250 mm.
The pore structure of the abrasive particles is preferably 1 to 10 (m 2 / g) as the specific surface area by the BET method (for example, manufactured by Shimadzu Corporation, apparatus name: measured by Micro Merits Flow SorbII 2300). More preferably, 5-6 (m < 2 > / g).
(Metal sulfate content)
The content of the metal sulfate in terms of SO 4 in the abrasive particles in the present invention is preferably 0.070 (mol / Kg) or less, more preferably 0.050 (mol / Kg) or less, and 0.035 ( Mol / Kg) or less is most preferred.
In the present invention, the SO 4 analysis method is based on a method in which abrasive particles are dissolved in an aqueous solution containing nitric acid and hydrogen peroxide, and S is analyzed by an inductively coupled plasma emission spectrometer (ICP). is there.
The metal elements of metal sulfates are mainly alkaline earth metals such as calcium, magnesium, and barium, and lanthanum in light rare earth elements. The sulfates of these elements are abrasives described later. Even in the calcination step during the production process of the particles, it is not completely pyrolyzed and remains in the form of sulfate.
According to the finding of the present inventors, the amount of metal sulfate in terms of SO 4 has a great correlation with the ease of loosening of the abrasive aggregate particles.
This is because, in the above firing step, when the sulfates of these elements are present in a specific amount or more as described above, the aggregated particles subjected to the firing treatment cause weak sintering, so the aggregation strength of the aggregated particles increases. It is thought to do. Further, when the sulfate is above a specific amount, the mechanical strength of the aggregate particles increases. Therefore, when the aggregate particles of the abrasive are dispersed in an aqueous medium, The mechanical force such as a normal shearing force that is applied makes it difficult to disintegrate or disperse, so that the aggregate is considered to be difficult to loosen as a phenomenon. The amount of the metal sulfate in terms of SO 4 is preferably small from the above viewpoint, but it is not necessary to completely remove it, and the object of the present invention can be achieved by adjusting the content to the numerical value or less. It is enough from a point.
Then, as shown in Examples below, for example, by setting the amount of metal sulfate to 0.070 (mol / Kg) or less, the dispersion ratio ξ = 30 (%) or more can be secured, and further, metal sulfate. By setting the amount of salt to 0.050 (mol / Kg) or less, the dispersion ratio ξ = 50 (%) or more can be secured.
(Manufacture of abrasive particles)
The abrasive in the present invention, particularly the abrasive particles having a dispersion ratio (ξ) in the range specified in the present invention, is produced by the following method.
The raw material of the abrasive mainly composed of cerium oxide in the present invention is mainly produced from rare earth-containing ores such as bastonite, monazite, xenotime, Chinese complex ore, of course, but is not limited thereto. Absent.
First, after selecting these rare earth-containing ores, rare earth concentrates such as bastonite concentrate, monazite concentrate, and China complex concentrate are obtained, and the obtained rare earth concentrate is filled with unnecessary minerals such as radioactive elements. Carbon dioxide, which is a raw material for abrasives mainly composed of cerium oxide, is combined with conventional processes such as precipitation filtration and further firing after chemical treatment for removal and, if necessary, solvent extraction. A raw material for an abrasive material such as rare earth, rare earth oxide, rare earth hydroxide, rare earth fluoride and the like is obtained.
In the case of rare earth fluoride, a method is generally used in which hydrofluoric acid is added to an aqueous solution of rare earth chloride to produce a precipitate of rare earth fluoride.
An example of a preferable method for producing abrasive particles in the present invention is not limited to this, but a method using a rare earth oxide and a rare earth fluoride obtained by thermally decomposing a rare earth carbonate as a starting material. is there. That is,
First, the rare earth carbonate obtained from the above ore is fired (calcined) in an oxygen-containing atmosphere at 400 to 840 ° C. for 30 minutes to 48 hours, preferably about 1 to 24 hours, and thermally decomposed. Use oxidized rare earth. As described above, it is one of the preferable steps that the rare earth carbonate is not fired suddenly (main firing) but is calcined at a temperature lower than the main firing temperature described later to obtain oxidized rare earth. Note that a part of the rare earth carbonate may remain in the rare earth oxide.
Here, as a mixture of oxidized rare earth and rare earth carbonate obtained by calcining rare earth carbonate (preliminary firing), oxide-converted total rare earth (TREO) is preferably 50 to 97% by mass. 70 to 95% by mass is more preferable, and 80 to 93% by mass is even more preferable.
On the other hand, as described above, it is possible to use a fluorinated rare earth obtained by a general production method in which a hydrofluoric acid is added to a rare earth chloride aqueous solution to produce a precipitate of the fluorinated rare earth. Although it is preferable, of course, it is not limited to this.
The calcined oxidized rare earth is usually subjected to steps such as rare earth fluoride addition, raw material mixture slurrying, wet grinding, drying, firing, crushing, and classification as follows.
First, a rare earth fluoride is added to the rare earth oxide obtained by the above calcination. The addition amount of the rare earth fluoride is preferably such that the content in the abrasive particles finally obtained is 3 to 9% by mass as (F) conversion amount, as already described, 5-8 mass% is more preferable (fluorinated rare earth addition process).
Thus, after adding the rare earth fluoride to the rare earth oxide, water is added and mixed to obtain a slurry having a solid content concentration of 30 to 60% by mass. The slurry is wet pulverized for about 1 to 10 hours to obtain a particle size of 0. The slurry is made of particles of about 2 to 10 μm (raw material mixing slurry, wet pulverization step).
Next, the wet pulverized slurry is dried and then fired in an oxygen-containing atmosphere. This calcination should be referred to as main calcination with respect to the above-mentioned calcination, and as a calcination condition, a heating rate of 500 ° C. or higher is maintained at 0.3 to 5 (° C./min). As high temperature, it is preferable that the holding time in 850-1100 degreeC and the said high temperature range shall be 0.5 to 6 hours.
Furthermore, as firing conditions, a heating rate of 500 ° C. or higher is 0.5 to 3.5 (° C./min), and a high temperature to be held is 900 to 1000 ° C. and in the high temperature range. The holding time is more preferably 2 to 5 hours.
As a baking apparatus for carrying out calcination or main baking, if the above-mentioned pulverized / dried raw materials are accommodated, the temperature is raised at the temperature specified here, and the high temperature can be held and baked, Any type of furnace may be used. For example, a batch type or continuous type box furnace, rotary furnace, tunnel furnace or the like can be applied. Any of the formulas (fuel is gas or fuel oil, etc.) can be applied (drying and firing steps).
Thus, after firing, it is crushed and classified as desired to obtain abrasive particles having a predetermined particle diameter range (pulverization and classification step).
Instead of separately preparing and mixing rare earth oxides and rare earth fluorides as described above, it is also possible to employ a method in which a rare earth carbonate is used as a raw material and a part thereof is partially fluorinated with an aqueous hydrofluoric acid solution. Is possible. In the case of this production method, water is added to a rare earth carbonate to form a slurry, and hydrogen fluoride is added to this to partially fluorinate it. What is necessary is just to perform processes, such as crushing and classification.
(Adjustment of metal sulfate content)
In the present invention, as already described, the content of the metal sulfate in terms of SO 4 present in the abrasive particles is 0.070 (mol / Kg) or less, preferably 0.050 (mol / Kg). ), More preferably 0.035 (mol / Kg) or less.
To the content of SO 4 Conversion metal sulfate present in the abrasive particles in the above range is not particularly limited, for example, the following method can be adopted. That is, one is to adjust the purity of the light rare earth material used as the raw material so that it falls within the above specified range, and to put the SO 4 equivalent content in the obtained abrasive material in the above preferred range. is there. Alternatively, after obtaining a light rare earth material used as a raw material with a small SO 4 equivalent content, polishing a metal sulfate (eg, calcium sulfate, magnesium sulfate, etc.) such as an alkaline earth metal with an added amount adjusted. Mixing and coexisting in advance in the process of manufacturing the material particles, applying the manufacturing process described above so that the SO 4 equivalent content present in the abrasive particles is in the above preferred range You may employ | adopt the means to adjust.
(Abrasive composition, pH of slurry, etc.)
In the present invention, the abrasive particles are used as a water slurry. Regarding the pH of the water slurry, the pH of the water slurry having a solid concentration of 10% by mass at room temperature is preferably 6.0 to 9.0. 2 to 8.0 is more preferable, and 6.5 to 7.5 is most preferable.
In the abrasive slurry in the present invention, an organic polymer dispersant such as a polymer polycarboxylic acid ammonium salt or a polymer polysulfonate ammonium is added to the aqueous medium to improve the dispersibility of the particles. May be used. As already described, the SO 4 analysis method involves dissolving abrasive particles in an aqueous solution containing nitric acid and hydrogen peroxide, and using an inductively coupled plasma emission spectrometer (ICP), S (emission line wavelength). : 180.731 nm).
(The invention's effect)
According to the present invention, in a glass polishing abrasive, particularly a glass polishing abrasive mainly composed of a rare earth oxide containing cerium oxide, while maintaining a high polishing rate, scratches generated on the glass to be polished, particularly latent There is provided an abrasive for polishing glass, in which scratches are reduced to an unprecedented level. In addition, according to the present invention, there is provided a quality evaluation method capable of accurately evaluating the quality of the abrasive particles, particularly with respect to latent scratches, with respect to the powder.
In an actual polishing plant, the abrasive composition of the present invention is used as an abrasive aqueous medium dispersion (so-called abrasive slurry). However, when the abrasive slurry is used, it has been a problem in the past. It was confirmed that there was an unexpected effect that deposition due to sedimentation in the slurry flow path was significantly reduced.

以下、実施例により本発明を説明する。ただし、これらは単なる実施の態様の一例であり、本発明の技術的範囲がこれらによりなんら限定的に解釈されるものではない。なお、%とあるものは、とくに断りなき限り、質量%である。
〔実施例1〕(研磨材粒子中のSO含有量0.015(モル/Kg)(=0.144質量%))
(研磨材粒子の調製)
(i)原料として中国産の炭酸希土〔酸化物換算全希土(TREO)42質量%、CeO/TREO 60質量%、SO含有量0.063質量%〕45kgを、サヤ容器(ムライト製)に入れ、空気雰囲気下で、加熱温度750℃、2時間焼成(仮焼)し、酸化物換算全希土(TREO)90.5質量%、SO含有量0.063質量%の酸化希土焼成品を得た。
(ii)次いで、上記焼成品16kgと中国産のフッ化希土〔酸化物換算全希土(TREO)83質量%、CeO/TREO 61質量%、F含有量 25質量%、SO含有量0.125質量%、平均粒子径10μm〕5.0kgを秤り取り、両方を、水27.2kgを入れた撹拌槽に投入し、撹拌してスラリーとした。次に、当該スラリーを、粉砕媒体ボールを用いた湿式粉砕機に循環供給して、約5時間湿式粉砕し、粒子径を0.2〜6μmに粉砕した。
(iii)湿式粉砕後のスラリーは、バットに入れ、箱型乾燥機で、120℃で、20時間乾燥した。乾燥後の粉体は、サヤ容器(ムライト製)に入れ、空気雰囲気下で、焼成を行った。すなわち、加熱温度500℃以上の昇温速度を、2.3(℃/min)、保持する高温度としては、950℃で、上記温度での保持時間は、3.0時間という条件で焼成した。焼成後の粉体は、解砕機で解砕した後、風力分級機を用いて分級し、研磨材粒子14.0kgを得た。
(粒子の組成及び諸物性値)
(i)この研磨材粒子の組成を酸化物換算質量%で示すと、
TREO(=CeO+La+Nd+Pr11)95.3質量%、TREOに対する上記各酸化物の質量比率は、CeO 62.1%、La 30.4%、Pr11 6.5%、Nd 1.0%、及びフッ素分(F)の含有量は、5.7%であった。また、SO含有量は、0.015(モル/Kg)(=0.14.4質量%)であった。
(ii)平均粒子径(d50)は、0.95μmであった(レーザー散乱測定装置(日機装社製、商品名:マイクロトラック、9320−X100型)により、レーザー散乱法で測定)。なお、粒子径分布の測定は、以下の実施例及び比較例で同様にして行った。
また、粒子径分布については、累積粒度分布において、小粒子径から10%、90%の粒子径(μm)を、それぞれd10、d90とした場合のd90/d10は、3.2であった。
(iii)当該粒子の、粉末X線回装置(リガク社製、CuKα線、Rint−2000型、以下の実施例及び比較例で同じ)を用いてのX線回折スペクトル分析結果は、以下のとおりである。
2θが28.3deg付近に、立方晶複合酸化希土の最大ピーク(A)が、2θが26.6deg付近に、酸フッ化希土のピーク(B)が現れる(なお、以下の実施例、比較例において、二つのピーク出現2θは、ほぼ同じであった。)。ピーク高さ(A)に対するピーク高さ(B)のピーク高さの比率(B/A)は、0.49であった。
なお、X線回折分析測定では、フッ化セリウムの結晶ピークは全く認められなかった。
(iv)また、当該粒子のその他の物性は以下のとおりである。
a)結晶子径(Scherrer法)は、197Åであった。
b)粒子のBET法による比表面積(島津製作所製、装置名Micro Meritics Flow SorbII 2300による測定、以下の実施例及び比較例で同じ)は、2.8(m/g)であった。
c)当該粒子の水スラリー(固形濃度10質量%、以下の実施例及び比較例で同じ)のpHは、7.0であった。
d)ガラスの研磨面の傷に特に影響を及ぼす粒子径10μm(=α)以上の粒子についての凝集性の強弱を評価するにあたり、以下の方法により、研磨材粒子中の粗粒子を分離・濃縮し、当該粗粒子を水中に分散させて超音波を照射して、超音波照射により解砕・分散される分散率ξを、超音波照射前後の粒子径分布(体積基準)の変化から(1)式により求めた。
ここで、研磨材粒子中の粗粒子の分離濃縮は、すでに説明した方法に従って、以下のようにして行った(以下の実施例、比較例において同じ)。すなわち、120(mg/L)のピロリン酸ナトリウム(分散剤)を含有する水10Lに研磨材粒子200gを添加し、撹拌して分散させ、30分間静置後、上澄み液を静かに抜き出す。次に元の液体容量になるまで120(mg/L)のピロリン酸ナトリウムを含有する水を、新たに添加して同様な操作を、5回繰り返す。最終的に容器の底部に堆積した粗粒子を、回収して乾燥粉末とした。
この分離・濃縮された粗粒子50mgを、50mLの水を入れたビーカーに、添加する。次いで、2.6Lの容量を有する超音波照射浴に、1.8Lの水を入れ、そこに、上記のビーカーを浸漬する。超音波洗浄機(アズワン社製、商品名:超音波洗浄機US−2)により、周波数38KHz、出力190Wの超音波を、10分間照射する。
超音波照射前後の粒子について、粒子径分布(体積基準)をレーザー散乱測定機(例えば、日機装社製、商品名:マイクロトラック、9320−X100型)により、レーザー散乱法で測定して、粒子径10μm以上の粒子の超音波照射による分散率ξを、式(1)により求めた。
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の粒径α(=10μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(=10μm)以上の粒子の存在量(累積容積)を示す。)
上記方法で求めた10μm以上の粒子の超音波照射による分散率ξは、78%であった。
(研磨試験)
研磨試験は、以下の方法・条件で行った(以下の実施例及び比較例で同じ)。研磨試験機は、ワールドラップ社製、両面研磨機WS−6PB型を用いた。試験に用いた被研磨ガラス板は、旭硝子社製の無アルカリ硝子(商品名:AN−100、ガラス組成中のSiO含有量約60質量%、試験板寸法(正方形):70mm/70mm/0.7mmという寸法のもの)を用いた。
研磨パッドは、発泡ポリウレタン製を用い、研磨圧力は、92(g/cm)で、下定盤回転数70rpmを、固定し上定盤と下定盤の回転数比率を、1:3で、研磨試験を実施した。研磨材スラリー中の研磨材の濃度は、20質量%とした。
(研磨面の傷(潜傷)の評価方法)
研磨された後のガラス表面の微細な傷の評価方法は、以下の方法で行った(以下の実施例及び比較例で同じ)。
樹脂製バット中に入れた濃度0.1質量%のHF水溶液に、研磨後のガラスを、30秒間浸漬する。ガラス板をピンセットで引き上げて直ちに、純水で十分に洗浄した後、ガラス板を乾燥する。
次に、ガラスの研磨された表面を、暗視野顕微鏡(オリンパス社製、システム金属顕微鏡、BHT型、100倍)で、観察評価した。
研磨後のガラス面には、以下の3段階評価による評価において、潜傷に関し、大きな傷、微細な傷ともなく、好適であった。
潜傷の評価:以下の3段階で評価(実施例及び比較例で同じ)
:大きな傷、微細な傷とも全く認められず、従来にないレベルのものであり、研磨材としてきわめて好適と判断される。
:大きな傷は、認められず、微細な傷が極くわずかにある状態で、かなりのレベルのものであり、研磨材として好適と判断される。
×:大きな傷は、殆どないが、多数の微細な傷があり、研磨材としては不適なものと判断される。
(試験結果)
研磨材中のSO換算含有量、超音波照射による分散率ξ、研磨試験後のガラス表面の評価結果を表1に示した。
〔実施例2〕(研磨材粒子中のSO含有量0.021(モル/Kg)(=0.202質量%))
(研磨材粒子の調製)
(i)原料として中国産の炭酸希土〔酸化物換算全希土(TREO)42質量%、CeO/TREO 60質量%、SO含有量0.089質量%〕45kgを、サヤ容器(ムライト製)に入れ、空気雰囲気下で、加熱温度750℃、2時間焼成(仮焼)し、酸化物換算全希土(TREO)90.8質量%、SO含有量0.192質量%の酸化希土焼成品を得た。
(ii)次いで、上記焼成品16kgと中国産のフッ化希土〔酸化物換算全希土(TREO)83質量%、CeO/TREO 61質量%、F含有量 25質量%、SO含有量0.175質量%、平均粒子径10μm〕5.0Kgを秤り取り、両方を、水27.2kgを入れた撹拌槽に投入し、撹拌してスラリーとした。次に、当該スラリーを、粉砕媒体ボールを用いた湿式粉砕機に循環供給して、約5時間湿式粉砕し、粒子径を0.2〜6μmに粉砕した。
(iii)湿式粉砕後のスラリーは、バットに入れ、箱型乾燥機で、120℃で、20時間乾燥した。乾燥後の粉体は、サヤ容器(ムライト製)に入れ、空気雰囲気下で、焼成を行った。すなわち、加熱温度500℃以上の昇温速度を、2.3(℃/min)、保持する高温度としては、950℃で、上記温度での保持時間は、3.0時間という条件で焼成した。焼成後の粉体は、解砕機で解砕した後、風力分級機を用いて分級し、研磨材粒子13.8kgを得た。
(粒子の組成及び諸物性値)
(i)この研磨材粒子の組成を酸化物換算質量%で示すと、
TREO(=CeO+La+Nd+Pr11)95.7質量%、TREOに対する上記各酸化物の質量比率は、CeO 62.1%、La 30.4%、Pr11 6.5%、Nd 1.0%、及びフッ素分(F)の含有量は、5.9%であった。また、SO含有量は、0.021(モル/Kg)(=0.202質量%)であった。
(ii)平均粒子径(d50)は、0.93μmであった。
また、粒子径分布については、d90/d10は、3.8であった。
(iii)ピーク高さ(A)に対するピーク高さ(B)のピーク高さの比率(B/A)は、0.50であった。
なお、X線回折分析測定では、フッ化セリウムの結晶ピークは全く認められなかった。
(iv)また、当該粒子のその他の物性は以下のとおりである。
a)結晶子径(Scherrer法)は、200Åであった。
b)粒子のBET法による比表面積は、3.0(m/g)であった。
c)当該粒子の水スラリーのpHは、7.1であった。
10μm以上の粒子の超音波照射による分散率ξは、実施例1と同じ方法で評価した。
ガラスの研磨試験及び研磨後のガラス表面の評価は、実施例1と同じ方法で評価した。研磨材中のSO換算含有量、超音波照射による分散率ξ、研磨試験後のガラス表面の評価結果を表1に示した。
〔実施例3〕(研磨材粒子中のSO含有量0.045(モル/Kg)(=0.432質量%))
(研磨材粒子の調製)
(i)原料として中国産の炭酸希土〔酸化物換算全希土(TREO)42質量%、CeO/TREO 60質量%、SO含有量0.190質量%〕45kgを、サヤ容器(ムライト製)に入れ、空気雰囲気下で、加熱温度750℃、2時間焼成(仮焼)し、酸化物換算全希土(TREO)90.8質量%、SO含有量0.192質量%の酸化希土焼成品を得た。
(ii)次いで、上記焼成品16kgと中国産のフッ化希土〔酸化物換算全希土(TREO)83質量%、CeO/TREO 61質量%、F含有量 25質量%、SO含有量0.375質量%、平均粒子径10μm〕5.0kgを秤り取り、両方を、水27.2kgを入れた撹拌槽に投入し、撹拌してスラリーとした。次に、当該スラリーを、粉砕媒体ボールを用いた湿式粉砕機に循環供給して、約5時間湿式粉砕し、粒子径を0.2〜6μmに粉砕した。
(iii)湿式粉砕後のスラリーは、バットに入れ、箱型乾燥機で、120℃で、20時間乾燥した。乾燥後の粉体は、サヤ容器(ムライト製)に入れ、空気雰囲気下で、焼成を行った。すなわち、加熱温度500℃以上の昇温速度を、2.3(℃/min)、保持する高温度としては、950℃で、上記温度での保持時間は、3.0時間という条件で焼成した。焼成後の粉体は、解砕機で解砕した後、風力分級機を用いて分級し、研磨材粒子14.1kgを得た。
(粒子の組成及び諸物性値)
(i)この研磨材粒子の組成を酸化物換算質量%で示すと、
TREO(=CeO+La+Nd+Pr11)95.5質量%、TREOに対する上記各酸化物の質量比率は、CeO 61.2%、La 31.9%、Pr11 6.0%、Nd 0.9%、及びフッ素分(F)の含有量は、5.7%であった。また、SO含有量は、0.045(モル/Kg)(=0.432質量%)であった。
(ii)平均粒子径(d50)は、0.95μmであった。
また、粒子径分布については、d90/d10は、4.2であった。
(iii)ピーク高さ(A)に対するピーク高さ(B)のピーク高さの比率(B/A)は、0.45であった。
なお、X線回折分析測定では、フッ化セリウムの結晶ピークは全く認められなかった。
(iv)また、当該粒子のその他の物性は以下のとおりである。
a)結晶子径(Scherrer法)は、205Åであった。
b)粒子のBET法による比表面積は、2.8(m/g)であった。
c)当該粒子の水スラリーのpHは、7.0であった。
研磨材中のSO換算含有量、超音波照射による分散率ξ、研磨試験後のガラス表面の評価結果を表1に示した。
〔実施例4〕(研磨材粒子中のSO含有量0.010(モル/Kg)(=0.096質量%))
(研磨材粒子の調製)
(i)原料として中国産の炭酸希土〔酸化物換算全希土(TREO)42質量%、CeO/TREO 60質量%、SO含有量0.042質量%〕45kgを、サヤ容器(ムライト製)に入れ、空気雰囲気下で、加熱温度750℃、2時間焼成(仮焼)し、酸化物換算全希土(TREO)90.8質量%、SO含有量0.192質量%の酸化希土焼成品を得た。
(ii)次いで、上記焼成品16kgと中国産のフッ化希土〔酸化物換算全希土(TREO)83質量%、CeO/TREO 61質量%、F含有量 25質量%、SO含有量0.083質量%、平均粒子径10μm〕5.0kgを秤り取り、両方を、水27.2kgを入れた撹拌槽に投入し、撹拌してスラリーとした。次に、当該スラリーを、粉砕媒体ボールを用いた湿式粉砕機に循環供給して、約5時間湿式粉砕し、粒子径を0.2〜6μmに粉砕した。
(iii)湿式粉砕後のスラリーは、バットに入れ、箱型乾燥機で、120℃で、20時間乾燥した。乾燥後の粉体は、サヤ容器(ムライト製)に入れ、空気雰囲気下で、焼成を行った。すなわち、加熱温度500℃以上の昇温速度を、2.3(℃/min)、保持する高温度としては、950℃で、上記温度での保持時間は、3.0時間という条件で焼成した。焼成後の粉体は、解砕機で解砕した後、風力分級機を用いて分級し、研磨材粒子13.9kgを得た。
(粒子の組成及び諸物性値)
(i)この研磨材粒子の組成を酸化物換算質量%で示すと、
TREO(=CeO+La+Nd+Pr11)95.5質量%、TREOに対する上記各酸化物の質量比率は、CeO 61.2%、La 31.9%、Pr11 6.0%、Nd 0.9%、及びフッ素分(F)の含有量は、5.7%であった。また、SO含有量は、0.010(モル/Kg)(=0.096質量%)であった。
(ii)平均粒子径(d50)は、0.93μmであった。
また、粒子径分布については、d90/d10は、5.0であった。
(iii)ピーク高さ(A)に対するピーク高さ(B)のピーク高さの比率(B/A)は、0.44であった。
なお、X線回折分析測定では、フッ化セリウムの結晶ピークは全く認められなかった。
(iv)また、当該粒子のその他の物性は以下のとおりである。
a)結晶子径(Scherrer法)は、203Åであった。
b)粒子のBET法による比表面積は、2.7(m/g)であった。
c)当該粒子の水スラリーのpHは、7.1であった。
研磨材中のSO換算含有量、超音波照射による分散率ξ、研磨試験後のガラス表面の評価結果を表1に示した。
〔実施例5〕(研磨材粒子中のSO含有量0.003(モル/Kg)(=0.029質量%))
(研磨材粒子の調製)
(i)原料として中国産の炭酸希土〔酸化物換算全希土(TREO)42質量%、CeO/TREO 60質量%、SO含有量0.013質量%〕45kgを、サヤ容器(ムライト製)に入れ、空気雰囲気下で、加熱温度750℃、2時間焼成(仮焼)し、酸化物換算全希土(TREO)90.8質量%、SO含有量0.192質量%の酸化希土焼成品を得た。
(ii)次いで、上記焼成品16kgと中国産のフッ化希土〔酸化物換算全希土(TREO)83質量%、CeO/TREO 61質量%、F含有量 25質量%、SO含有量0.025質量%、平均粒子径10μm〕5.0kgを秤り取り、両方を、水27.2kgを入れた撹拌槽に投入し、撹拌してスラリーとした。次に、当該スラリーを、粉砕媒体ボールを用いた湿式粉砕機に循環供給して、約5時間湿式粉砕し、粒子径を0.2〜6μmに粉砕した。
(iii)湿式粉砕後のスラリーは、バットに入れ、箱型乾燥機で、120℃で、20時間乾燥した。乾燥後の粉体は、サヤ容器(ムライト製)に入れ、空気雰囲気下で、焼成を行った。すなわち、加熱温度500℃以上の昇温速度を、2.3(℃/min)、保持する高温度としては、950℃で、上記温度での保持時間は、3.0時間という条件で焼成した。焼成後の粉体は、解砕機で解砕した後、風力分級機を用いて分級し、研磨材粒子14.0kgを得た。
(粒子の組成及び諸物性値)
(i)この研磨材粒子の組成を酸化物換算質量%で示すと、
TREO(=CeO+La+Nd+Pr11)95.4質量%、TREOに対する上記各酸化物の質量比率は、CeO 61.1%、La 31.9%、Pr11 6.0%、Nd 1.0%、及びフッ素分(F)の含有量は、5.6%であった。また、SO含有量は、0.003(モル/Kg)(=0.029質量%)であった。
(ii)平均粒子径(d50)は、0.93μmであった。
また、粒子径分布については、d90/d10は、3.5であった。
(iii)ピーク高さ(A)に対するピーク高さ(B)のピーク高さの比率(B/A)は、0.44であった。
なお、X線回折分析測定では、フッ化セリウムの結晶ピークは全く認められなかった。
(iv)また、当該粒子のその他の物性は以下のとおりである。
a)結晶子径(Scherrer法)は、195Åであった。
b)また粒子のBET法による比表面積は、2.9(m/g)であった。
c)当該粒子の水スラリーのpHは、7.1であった。
研磨材中のSO換算含有量、超音波照射による分散率ξ、研磨試験後のガラス表面の評価結果を表1に示した。
〔実施例6〕(研磨材粒子中のSO含有量0.070(モル/Kg)(=0.672質量%))
(研磨材粒子の調製)
(i)原料として中国産の炭酸希土〔酸化物換算全希土(TREO)42質量%、CeO/TREO 60質量%、SO含有量0.296質量%〕45kgを、サヤ容器(ムライト製)に入れ、空気雰囲気下で、加熱温度750℃、2時間焼成(仮焼)し、酸化物換算全希土(TREO)90.8質量%、SO含有量0.640質量%の酸化希土焼成品を得た。
(ii)次いで、上記焼成品16kgと中国産のフッ化希土〔酸化物換算全希土(TREO)83質量%、CeO/TREO 61質量%、F含有量 25質量%、SO含有量0.584質量%、平均粒子径10μm〕5.0kgを秤り取り、両方を、水27.2kgを入れた撹拌槽に投入し、撹拌してスラリーとした。次に、当該スラリーを、粉砕媒体ボールを用いた湿式粉砕機に循環供給して、約5時間湿式粉砕し、粒子径を0.2〜6μmに粉砕した。
(iii)湿式粉砕後のスラリーは、バットに入れ、箱型乾燥機で、120℃で、20時間乾燥した。乾燥後の粉体は、サヤ容器(ムライト製)に入れ、空気雰囲気下で、焼成を行った。すなわち、加熱温度500℃以上の昇温速度を、2.3(℃/min)、保持する高温度としては、950℃で、上記温度での保持時間は、3.0時間という条件で焼成した。焼成後の粉体は、解砕機で解砕した後、風力分級機を用いて分級し、研磨材粒子14.1kgを得た。
(粒子の組成及び諸物性値)
(i)この研磨材粒子の組成を酸化物換算質量%で示すと、
TREO(=CeO+La+Nd+Pr11)95.7質量%、TREOに対する上記各酸化物の質量比率は、CeO 63.0%、La 29.9%、Pr11 6.0%、Nd 1.1%、及びフッ素分(F)の含有量は、5.6%であった。また、SO含有量は、0.070(モル/Kg)(=0.672質量%)であった。
(ii)平均粒子径(d50)は、0.93μmであった。
また、粒子径分布については、d90/d10は、3.8であった。
(iii)ピーク高さ(A)に対するピーク高さ(B)のピーク高さの比率(B/A)は、0.47であった。
なお、X線回折分析測定では、フッ化セリウムの結晶ピークは全く認められなかった。
(iv)また、当該粒子のその他の物性は以下のとおりである。
a)結晶子径(Scherrer法)は、208Åであった。
b)粒子のBET法による比表面積は、2.7(m/g)であった。
c)当該粒子の水スラリーのpHは、7.1であった。
研磨材中のSO換算含有量、超音波照射による分散率ξ、研磨試験後のガラス表面の評価結果を表1に示した。
〔比較例1〕(研磨材粒子中のSO含有量0.085(モル/Kg)(=0.816質量%))
(研磨材粒子の調製)
(i)原料として中国産の炭酸希土〔酸化物換算全希土(TREO)42質量%、CeO/TREO 60質量%、SO含有量0.359質量%〕45kgを、サヤ容器(ムライト製)に入れ、空気雰囲気下で、加熱温度750℃、2時間焼成(仮焼)し、酸化物換算全希土(TREO)90.5質量%、SO含有量0.774質量%の酸化希土焼成品を得た。
(ii)次いで、上記焼成品16kgと中国産のフッ化希土〔酸化物換算全希土(TREO)83質量%、CeO/TREO 61質量%、F含有量 25質量%、SO含有量0.709質量%、平均粒子径10μm〕5.0kgを秤り取り、両方を、水27.2kgを入れた撹拌槽に投入し、撹拌してスラリーとした。次に、当該スラリーを、粉砕媒体ボールを用いた湿式粉砕機に循環供給して、約5時間湿式粉砕し、粒子径を0.2〜6μmに粉砕した。
(iii)湿式粉砕後のスラリーは、バットに入れ、箱型乾燥機で、120℃で、20時間乾燥した。乾燥後の粉体は、サヤ容器(ムライト製)に入れ、空気雰囲気下で、焼成を行った。すなわち、加熱温度500℃以上の昇温速度を、2.3(℃/min)、保持する高温度としては、950℃で、上記温度での保持時間は、3.0時間という条件で焼成した。焼成後の粉体は、解砕機で解砕した後、風力分級機を用いて分級し、研磨材粒子13.9kgを得た。
(粒子の組成及び諸物性値)
(i)この研磨材粒子の組成を酸化物換算質量%で示すと、
TREO(=CeO+La+Nd+Pr11)95.6質量%、TREOに対する上記各酸化物の質量比率は、CeO 63.0%、La 29.8%、Pr11 6.1%、Nd 1.1%、及びフッ素分(F)の含有量は、5.6%であった。また、SO含有量は、0.085(モル/Kg)(=0.816質量%)であった。
(ii)平均粒子径(d50)は、0.93μmであった。
また、粒子径分布については、d90/d10は、4.0であった。
(iii)ピーク高さ(A)に対するピーク高さ(B)のピーク高さの比率(B/A)は、0.47であった。
なお、X線回折分析測定では、フッ化セリウムの結晶ピークは全く認められなかった。
(iv)また、当該粒子のその他の物性は以下のとおりである。
a)結晶子径(Scherrer法)は、208Åであった。
b)粒子のBET法による比表面積は、2.9(m/g)であった。
c)当該粒子の水スラリーのpHは、7.0であった。
研磨材中のSO換算含有量、超音波照射による分散率ξ、研磨試験後のガラス表面の評価結果を表1に示した。
〔比較例2〕(研磨材粒子中のSO含有量0.160(モル/Kg)(=1.536質量%))
(研磨材粒子の調製)
(i)原料として中国産の炭酸希土〔酸化物換算全希土(TREO)42質量%、CeO/TREO 60質量%、SO含有量0.676質量%〕45kgを、サヤ容器(ムライト製)に入れ、空気雰囲気下で、加熱温度750℃、2時間焼成(仮焼)し、酸化物換算全希土(TREO)90.8質量%、SO含有量1.461質量%の酸化希土焼成品を得た。
(ii)次いで、上記焼成品16kgと中国産のフッ化希土〔酸化物換算全希土(TREO)83質量%、CeO/TREO 61質量%、F含有量 25質量%、SO含有量1.335質量%、平均粒子径10μm〕5.0kgを秤り取り、両方を、水27.2kgを入れた撹拌槽に投入し、撹拌してスラリーとした。次に、当該スラリーを、粉砕媒体ボールを用いた湿式粉砕機に循環供給して、約5時間湿式粉砕し、粒子径を0.2〜6μmに粉砕した。
(iii)湿式粉砕後のスラリーは、バットに入れ、箱型乾燥機で、120℃で、20時間乾燥した。乾燥後の粉体は、サヤ容器(ムライト製)に入れ、空気雰囲気下で、焼成を行った。すなわち、加熱温度500℃以上の昇温速度を、2.3(℃/min)、保持する高温度としては、950℃で、上記温度での保持時間は、3.0時間という条件で焼成した。焼成後の粉体は、解砕機で解砕した後、風力分級機を用いて分級し、研磨材粒子14.0kgを得た。
(粒子の組成及び諸物性値)
(i)この研磨材粒子の組成を酸化物換算質量%で示すと、
TREO(=CeO+La+Nd+Pr11)95.3質量%、TREOに対する上記各酸化物の質量比率は、CeO 62.0%、La 30.5%、Pr11 6.5%、Nd 1.0%、及びフッ素分(F)の含有量は、5.6%であった。また、SO含有量は、0.160(モル/Kg)(=1.536質量%)であった。
(ii)平均粒子径(d50)は、0.93μmであった。
また、粒子径分布については、d90/d10は、3.8であった。
(iii)ピーク高さ(A)に対するピーク高さ(B)のピーク高さの比率(B/A)は、0.50であった。
なお、X線回折分析測定では、フッ化セリウムの結晶ピークは全く認められなかった。
(iv)また、当該粒子のその他の物性は以下のとおりである。
a)結晶子径(Scherrer法)は、210Åであった。
b)粒子のBET法による比表面積は、2.8(m/g)であった。
c)当該粒子の水スラリーのpHは、7.0であった。
研磨材中のSO換算含有量、超音波照射による分散率ξ、研磨試験後のガラス表面の評価結果を表1に示した。

Figure 0004131870
なお、表1における比較例1の研磨材の研磨速度のレベルは、セイミケミカル社製の高速度レート対応品(商品名:ルミノックスTE−303)に準じたレベルに設定してあり、表において実施例1〜6、比較例2の研磨速度は、すべて比較例1を基準としてこれとほぼ同等の高いレベルを維持している。  Hereinafter, the present invention will be described by way of examples. However, these are merely examples of embodiments, and the technical scope of the present invention is not construed as being limited thereto. Unless otherwise specified, “%” means “% by mass”.
[Example 1] (SO in abrasive particles4Content 0.015 (mol / Kg) (= 0.144 mass%))
(Preparation of abrasive particles)
(I) As a raw material, carbonic acid rare earth from China [total rare earth oxide (TREO) 42 mass%, CeO2/ TREO 60% by mass, SO4Content: 0.063% by mass] 45 kg is put in a Saya container (made of mullite), heated in an air atmosphere at a heating temperature of 750 ° C. for 2 hours (calcined), and converted to oxide-reduced all rare earth (TREO) 90. 5% by mass, SO4An oxidized rare earth fired product having a content of 0.063% by mass was obtained.
(Ii) Next, 16 kg of the calcined product and a rare earth fluoride from China [total rare earth oxide (TREO) 83 mass%, CeO2/ TREO 61% by mass, F content 25% by mass, SO4Content: 0.125% by mass, average particle size: 10 μm] 5.0 kg was weighed and both were put into a stirring tank containing 27.2 kg of water and stirred to form a slurry. Next, the slurry was circulated and supplied to a wet pulverizer using a pulverization medium ball, and wet pulverized for about 5 hours, and the particle size was pulverized to 0.2 to 6 μm.
(Iii) The slurry after wet pulverization was put into a vat and dried at 120 ° C. for 20 hours with a box-type dryer. The dried powder was put in a Saya container (Mullite) and fired in an air atmosphere. That is, firing was performed under the conditions of a heating rate of 500 ° C. or higher at 2.3 (° C./min), a high temperature to be held at 950 ° C., and a holding time at the above temperature of 3.0 hours. . The fired powder was pulverized by a pulverizer and then classified using an air classifier to obtain 14.0 kg of abrasive particles.
(Particle composition and various physical properties)
(I) When the composition of the abrasive particles is expressed in terms of oxide mass%,
TREO (= CeO2+ La2O3+ Nd2O3+ Pr6O11) 95.3% by mass, and the mass ratio of each oxide to TREO is CeO2  62.1%, La2O3  30.4%, Pr6O11  6.5%, Nd2O3  The content of 1.0% and fluorine content (F) was 5.7%. Also, SO4The content was 0.015 (mol / Kg) (= 0.14.4% by mass).
(Ii) Average particle diameter (d50) Was 0.95 μm (measured by a laser scattering method using a laser scattering measuring device (manufactured by Nikkiso Co., Ltd., trade name: Microtrack, model 9320-X100)). The particle size distribution was measured in the same manner in the following examples and comparative examples.
Regarding the particle size distribution, in the cumulative particle size distribution, the particle sizes (μm) of 10% and 90% from the small particle size are d, respectively.10, D90D90/ D10Was 3.2.
(Iii) X-ray diffraction spectrum analysis results of the particles using a powder X-ray diffraction device (manufactured by Rigaku Corporation, CuKα ray, Rint-2000 type, the same in the following examples and comparative examples) are as follows: It is.
  The maximum peak (A) of the cubic complex oxide rare earth appears at 2θ near 28.3 deg, and the peak (B) of the oxyfluoride rare earth appears at 2θ near 26.6 deg (in the following examples, In the comparative example, the two peak appearances 2θ were substantially the same). The ratio of the peak height (B) to the peak height (A) (B / A) was 0.49.
In the X-ray diffraction analysis measurement, no crystal peak of cerium fluoride was observed.
(Iv) Other physical properties of the particles are as follows.
a) The crystallite diameter (Scherrer method) was 197 mm.
b) Specific surface area of particles by the BET method (Shimadzu Corporation, measurement by apparatus name Micro Merits Flow SorbII 2300, the same in the following Examples and Comparative Examples) is 2.8 (m2/ G).
c) The pH of the aqueous slurry of the particles (solid concentration: 10% by mass, the same in the following Examples and Comparative Examples) was 7.0.
d) Particle size of 10 μm (= α) that particularly affects the scratches on the polished surface of glass.0) In evaluating the cohesive strength of the above particles, the coarse particles in the abrasive particles are separated and concentrated by the following method, and the coarse particles are dispersed in water and irradiated with ultrasonic waves. The dispersion ratio ξ to be crushed and dispersed by sonication was determined from the change in the particle size distribution (volume basis) before and after the sonication by Equation (1).
  Here, the separation and concentration of the coarse particles in the abrasive particles were performed as follows (the same applies to the following examples and comparative examples) according to the method described above. That is, 200 g of abrasive particles are added to 10 L of water containing 120 (mg / L) sodium pyrophosphate (dispersing agent), stirred and dispersed, allowed to stand for 30 minutes, and then the supernatant is gently extracted. Next, water containing 120 (mg / L) sodium pyrophosphate is newly added until the original liquid volume is reached, and the same operation is repeated 5 times. Coarse particles finally deposited on the bottom of the container were collected to obtain a dry powder.
50 mg of the separated and concentrated coarse particles are added to a beaker containing 50 mL of water. Next, 1.8 L of water is put into an ultrasonic irradiation bath having a volume of 2.6 L, and the above beaker is immersed therein. Using an ultrasonic cleaner (manufactured by ASONE, trade name: ultrasonic cleaner US-2), ultrasonic waves with a frequency of 38 KHz and an output of 190 W are irradiated for 10 minutes.
  The particle size distribution (volume basis) of the particles before and after the ultrasonic irradiation is measured by a laser scattering method using a laser scattering measuring machine (for example, Nikkiso Co., Ltd., trade name: Microtrac, 9320-X100 type). The dispersion ratio ξ by ultrasonic irradiation of particles having a size of 10 μm or more was determined by the equation (1).
  ξ = [(V0-Vt) / V0] X 100 (%) (1)
(Where V0Is the particle size α before ultrasonic irradiation0Abundance of particles (= 10 μm) or more (cumulative volume), VtIs the above α after ultrasonic irradiation0The abundance of particles (= 10 μm) or more (cumulative volume) is shown. )
The dispersion ratio ξ by ultrasonic irradiation of particles of 10 μm or more determined by the above method was 78%.
(Polishing test)
  The polishing test was performed by the following method and conditions (the same applies to the following examples and comparative examples). As a polishing test machine, a double-side polishing machine WS-6PB manufactured by World Wrap Co., Ltd. was used. The glass plate to be polished used for the test was non-alkali glass (trade name: AN-100, SiO in glass composition) manufactured by Asahi Glass Co., Ltd.2A content of about 60% by mass and a test plate size (square): 70 mm / 70 mm / 0.7 mm in size) were used.
  The polishing pad is made of polyurethane foam, and the polishing pressure is 92 (g / cm2Then, the polishing test was carried out with the lower surface plate rotation speed of 70 rpm fixed and the rotation speed ratio of the upper surface plate and the lower surface plate being 1: 3. The concentration of the abrasive in the abrasive slurry was 20% by mass.
(Evaluation method for scratches (latent scratches) on the polished surface)
  The method for evaluating fine scratches on the glass surface after being polished was carried out by the following method (the same applies to the following examples and comparative examples).
  The polished glass is immersed for 30 seconds in a HF aqueous solution having a concentration of 0.1% by mass placed in a resin vat. The glass plate is pulled up with tweezers and immediately washed thoroughly with pure water, and then the glass plate is dried.
  Next, the polished surface of the glass was observed and evaluated with a dark field microscope (manufactured by Olympus, system metal microscope, BHT type, 100 times).
The polished glass surface was suitable for evaluation of latent scratches with no large scratches or fine scratches in the following three-stage evaluation.
Evaluation of latent injury: Evaluation in the following three stages (same in Examples and Comparative Examples)
: Neither a big crack nor a fine crack is recognized at all, it is an unprecedented level, and is judged to be extremely suitable as an abrasive.
: Large scratches are not recognized, and there are very few fine scratches, which is a considerable level, and is judged to be suitable as an abrasive.
X: There are almost no large scratches, but there are a large number of fine scratches, and it is judged to be unsuitable as an abrasive.
(Test results)
  SO in abrasive4Table 1 shows the converted content, the dispersion ratio ξ by ultrasonic irradiation, and the evaluation results of the glass surface after the polishing test.
[Example 2] (SO in abrasive particles4Content 0.021 (mol / Kg) (= 0.202 mass%))
(Preparation of abrasive particles)
(I) As a raw material, carbonic acid rare earth from China [total rare earth oxide (TREO) 42 mass%, CeO2/ TREO 60% by mass, SO4Content: 0.089% by mass] 45 kg is put in a Saya container (Mullite), heated in an air atmosphere at a heating temperature of 750 ° C. for 2 hours (calcined), and oxide-converted all rare earth (TREO) 90. 8% by mass, SO4An oxidized rare earth fired product having a content of 0.192% by mass was obtained.
(Ii) Next, 16 kg of the calcined product and a rare earth fluoride from China [total rare earth oxide (TREO) 83 mass%, CeO2/ TREO 61% by mass, F content 25% by mass, SO4Content: 0.175% by mass, average particle size: 10 μm] 5.0 kg was weighed and both were put into a stirring tank containing 27.2 kg of water and stirred to form a slurry. Next, the slurry was circulated and supplied to a wet pulverizer using a pulverization medium ball, and wet pulverized for about 5 hours, and the particle size was pulverized to 0.2 to 6 μm.
(Iii) The slurry after wet pulverization was put into a vat and dried at 120 ° C. for 20 hours with a box-type dryer. The dried powder was put in a Saya container (Mullite) and fired in an air atmosphere. That is, firing was performed under the conditions of a heating rate of 500 ° C. or higher at 2.3 (° C./min), a high temperature to be held at 950 ° C., and a holding time at the above temperature of 3.0 hours. . The fired powder was pulverized with a pulverizer and then classified with an air classifier to obtain 13.8 kg of abrasive particles.
(Particle composition and various physical properties)
(I) When the composition of the abrasive particles is expressed in terms of oxide mass%,
TREO (= CeO2+ La2O3+ Nd2O3+ Pr6O11) 95.7% by mass, the mass ratio of each of the above oxides to TREO is CeO2  62.1%, La2O3  30.4%, Pr6O11  6.5%, Nd2O3  The content of 1.0% and fluorine content (F) was 5.9%. Also, SO4The content was 0.021 (mol / Kg) (= 0.02 mass%).
(Ii) Average particle diameter (d50) Was 0.93 μm.
For the particle size distribution, d90/ D10Was 3.8.
(Iii) The ratio of the peak height (B) to the peak height (A) (B / A) was 0.50.
In the X-ray diffraction analysis measurement, no crystal peak of cerium fluoride was observed.
(Iv) Other physical properties of the particles are as follows.
a) The crystallite diameter (Scherrer method) was 200 mm.
b) The specific surface area of the particles by the BET method is 3.0 (m2/ G).
c) The pH of the water slurry of the particles was 7.1.
  The dispersion ratio ξ by ultrasonic irradiation of particles of 10 μm or more was evaluated by the same method as in Example 1.
  The glass polishing test and the evaluation of the glass surface after polishing were evaluated in the same manner as in Example 1. SO in abrasive4Table 1 shows the converted content, the dispersion ratio ξ by ultrasonic irradiation, and the evaluation results of the glass surface after the polishing test.
[Example 3] (SO in abrasive particles4Content 0.045 (mol / Kg) (= 0.432 mass%))
(Preparation of abrasive particles)
(I) As a raw material, carbonic acid rare earth from China [total rare earth oxide (TREO) 42 mass%, CeO2/ TREO 60% by mass, SO4Content: 0.190% by mass] 45 kg is put in a Saya container (made of mullite), heated in an air atmosphere at a heating temperature of 750 ° C. for 2 hours (calcined), and converted into oxide-reduced all rare earth (TREO) 90. 8% by mass, SO4An oxidized rare earth fired product having a content of 0.192% by mass was obtained.
(Ii) Next, 16 kg of the calcined product and a rare earth fluoride from China [total rare earth oxide (TREO) 83 mass%, CeO2/ TREO 61% by mass, F content 25% by mass, SO4Content 0.375% by mass, average particle size 10 μm] 5.0 kg was weighed, and both were put into a stirring tank containing 27.2 kg of water and stirred to form a slurry. Next, the slurry was circulated and supplied to a wet pulverizer using a pulverization medium ball, and wet pulverized for about 5 hours, and the particle size was pulverized to 0.2 to 6 μm.
(Iii) The slurry after wet pulverization was put into a vat and dried at 120 ° C. for 20 hours with a box-type dryer. The dried powder was put in a Saya container (Mullite) and fired in an air atmosphere. That is, firing was performed under the conditions of a heating rate of 500 ° C. or higher at 2.3 (° C./min), a high temperature to be held at 950 ° C., and a holding time at the above temperature of 3.0 hours. . The fired powder was pulverized with a pulverizer and then classified with an air classifier to obtain 14.1 kg of abrasive particles.
(Particle composition and various physical properties)
(I) When the composition of the abrasive particles is expressed in terms of oxide mass%,
TREO (= CeO2+ La2O3+ Nd2O3+ Pr6O11) 95.5 mass%, the mass ratio of each of the above oxides relative to TREO is CeO2  61.2%, La2O3  31.9%, Pr6O11  6.0%, Nd2O3  The content of 0.9% and fluorine content (F) was 5.7%. Also, SO4The content was 0.045 (mol / Kg) (= 0.432 mass%).
(Ii) Average particle diameter (d50) Was 0.95 μm.
For the particle size distribution, d90/ D10Was 4.2.
(Iii) The peak height ratio (B / A) of the peak height (B) to the peak height (A) was 0.45.
In the X-ray diffraction analysis measurement, no crystal peak of cerium fluoride was observed.
(Iv) Other physical properties of the particles are as follows.
a) The crystallite diameter (Scherrer method) was 205 mm.
b) The specific surface area of the particles by the BET method is 2.8 (m2/ G).
c) The pH of the water slurry of the particles was 7.0.
SO in abrasive4Table 1 shows the converted content, the dispersion ratio ξ by ultrasonic irradiation, and the evaluation results of the glass surface after the polishing test.
[Example 4] (SO in abrasive particles4Content 0.010 (mol / Kg) (= 0.096 mass%))
(Preparation of abrasive particles)
(I) As a raw material, carbonic acid rare earth from China [total rare earth oxide (TREO) 42 mass%, CeO2/ TREO 60% by mass, SO4Content of 0.042% by mass] 45 kg is put in a Saya container (made of mullite), heated in an air atmosphere at a heating temperature of 750 ° C. for 2 hours (calcined), and converted to oxide-reduced all rare earth (TREO) 90. 8% by mass, SO4An oxidized rare earth fired product having a content of 0.192% by mass was obtained.
(Ii) Next, 16 kg of the calcined product and a rare earth fluoride from China [total rare earth oxide (TREO) 83 mass%, CeO2/ TREO 61% by mass, F content 25% by mass, SO4Content: 0.083% by mass, average particle size: 10 μm] 5.0 kg was weighed, and both were put into a stirring tank containing 27.2 kg of water and stirred to form a slurry. Next, the slurry was circulated and supplied to a wet pulverizer using a pulverization medium ball, and wet pulverized for about 5 hours, and the particle size was pulverized to 0.2 to 6 μm.
(Iii) The slurry after wet pulverization was put into a vat and dried at 120 ° C. for 20 hours with a box-type dryer. The dried powder was put in a Saya container (Mullite) and fired in an air atmosphere. That is, firing was performed under the conditions of a heating rate of 500 ° C. or higher at 2.3 (° C./min), a high temperature to be held at 950 ° C., and a holding time at the above temperature of 3.0 hours. . The fired powder was pulverized by a pulverizer and then classified using an air classifier to obtain 13.9 kg of abrasive particles.
(Particle composition and various physical properties)
(I) When the composition of the abrasive particles is expressed in terms of oxide mass%,
TREO (= CeO2+ La2O3+ Nd2O3+ Pr6O11) 95.5 mass%, the mass ratio of each of the above oxides relative to TREO is CeO2  61.2%, La2O3  31.9%, Pr6O11  6.0%, Nd2O3  The content of 0.9% and fluorine content (F) was 5.7%. Also, SO4The content was 0.010 (mol / Kg) (= 0.096 mass%).
(Ii) Average particle diameter (d50) Was 0.93 μm.
For the particle size distribution, d90/ D10Was 5.0.
(Iii) The ratio of the peak height (B) to the peak height (A) (B / A) was 0.44.
In the X-ray diffraction analysis measurement, no crystal peak of cerium fluoride was observed.
(Iv) Other physical properties of the particles are as follows.
a) The crystallite diameter (Scherrer method) was 203 mm.
b) Specific surface area of the particles by BET method is 2.7 (m2/ G).
c) The pH of the water slurry of the particles was 7.1.
SO in abrasive4Table 1 shows the converted content, the dispersion ratio ξ by ultrasonic irradiation, and the evaluation results of the glass surface after the polishing test.
[Example 5] (SO in abrasive particles4Content 0.003 (mol / Kg) (= 0.029 mass%))
(Preparation of abrasive particles)
(I) As a raw material, carbonic acid rare earth from China [total rare earth oxide (TREO) 42 mass%, CeO2/ TREO 60% by mass, SO4Content 0.013 mass%] 45 kg is put in a Saya container (made of mullite), heated in an air atmosphere at a heating temperature of 750 ° C. for 2 hours (calcination), and converted into an oxide-converted all rare earth (TREO) 90. 8% by mass, SO4An oxidized rare earth fired product having a content of 0.192% by mass was obtained.
(Ii) Next, 16 kg of the calcined product and a rare earth fluoride from China [total rare earth oxide (TREO) 83 mass%, CeO2/ TREO 61% by mass, F content 25% by mass, SO4Content: 0.025% by mass, average particle size 10 μm] 5.0 kg was weighed, and both were put into a stirring tank containing 27.2 kg of water and stirred to form a slurry. Next, the slurry was circulated and supplied to a wet pulverizer using a pulverization medium ball, and wet pulverized for about 5 hours, and the particle size was pulverized to 0.2 to 6 μm.
(Iii) The slurry after wet pulverization was put into a vat and dried at 120 ° C. for 20 hours with a box-type dryer. The dried powder was put in a Saya container (Mullite) and fired in an air atmosphere. That is, firing was performed under the conditions of a heating rate of 500 ° C. or higher at 2.3 (° C./min), a high temperature to be held at 950 ° C., and a holding time at the above temperature of 3.0 hours. . The fired powder was pulverized by a pulverizer and then classified using an air classifier to obtain 14.0 kg of abrasive particles.
(Particle composition and various physical properties)
(I) When the composition of the abrasive particles is expressed in terms of oxide mass%,
TREO (= CeO2+ La2O3+ Nd2O3+ Pr6O11) 95.4 mass%, the mass ratio of each of the above oxides relative to TREO is CeO2  61.1%, La2O3  31.9%, Pr6O11  6.0%, Nd2O3  The content of 1.0% and fluorine content (F) was 5.6%. Also, SO4The content was 0.003 (mol / Kg) (= 0.029% by mass).
(Ii) Average particle diameter (d50) Was 0.93 μm.
For the particle size distribution, d90/ D10Was 3.5.
(Iii) The ratio of the peak height (B) to the peak height (A) (B / A) was 0.44.
In the X-ray diffraction analysis measurement, no crystal peak of cerium fluoride was observed.
(Iv) Other physical properties of the particles are as follows.
a) The crystallite diameter (Scherrer method) was 195 mm.
b) The specific surface area of the particles by the BET method is 2.9 (m2/ G).
c) The pH of the water slurry of the particles was 7.1.
SO in abrasive4Table 1 shows the converted content, the dispersion ratio ξ by ultrasonic irradiation, and the evaluation results of the glass surface after the polishing test.
[Example 6] (SO in abrasive particles4Content 0.070 (mol / Kg) (= 0.672 mass%))
(Preparation of abrasive particles)
(I) As a raw material, carbonic acid rare earth from China [total rare earth oxide (TREO) 42 mass%, CeO2/ TREO 60% by mass, SO4Content: 0.296% by mass] 45 kg is put in a Saya container (made of mullite), heated in an air atmosphere at a heating temperature of 750 ° C. for 2 hours (calcined), and converted into oxide-reduced all rare earth (TREO) 90. 8% by mass, SO4An oxidized rare earth fired product having a content of 0.640% by mass was obtained.
(Ii) Next, 16 kg of the calcined product and a rare earth fluoride from China [total rare earth oxide (TREO) 83 mass%, CeO2/ TREO 61% by mass, F content 25% by mass, SO4Content: 0.584% by mass, average particle size: 10 μm] 5.0 kg was weighed, and both were put into a stirring tank containing 27.2 kg of water and stirred to form a slurry. Next, the slurry was circulated and supplied to a wet pulverizer using a pulverization medium ball, and wet pulverized for about 5 hours, and the particle size was pulverized to 0.2 to 6 μm.
(Iii) The slurry after wet pulverization was put into a vat and dried at 120 ° C. for 20 hours with a box-type dryer. The dried powder was put in a Saya container (Mullite) and fired in an air atmosphere. That is, firing was performed under the conditions of a heating rate of 500 ° C. or higher at 2.3 (° C./min), a high temperature to be held at 950 ° C., and a holding time at the above temperature of 3.0 hours. . The fired powder was pulverized with a pulverizer and then classified with an air classifier to obtain 14.1 kg of abrasive particles.
(Particle composition and various physical properties)
(I) When the composition of the abrasive particles is expressed in terms of oxide mass%,
TREO (= CeO2+ La2O3+ Nd2O3+ Pr6O11) 95.7% by mass, the mass ratio of each of the above oxides to TREO is CeO2  63.0%, La2O3  29.9%, Pr6O11  6.0%, Nd2O3  The content of 1.1% and fluorine content (F) was 5.6%. Also, SO4The content was 0.070 (mol / Kg) (= 0.672 mass%).
(Ii) Average particle diameter (d50) Was 0.93 μm.
For the particle size distribution, d90/ D10Was 3.8.
(Iii) The ratio of the peak height (B) to the peak height (A) (B / A) was 0.47.
In the X-ray diffraction analysis measurement, no crystal peak of cerium fluoride was observed.
(Iv) Other physical properties of the particles are as follows.
a) The crystallite size (Scherrer method) was 208 mm.
b) Specific surface area of the particles by BET method is 2.7 (m2/ G).
c) The pH of the water slurry of the particles was 7.1.
SO in abrasive4Table 1 shows the converted content, the dispersion ratio ξ by ultrasonic irradiation, and the evaluation results of the glass surface after the polishing test.
[Comparative Example 1] (SO in abrasive particles4Content 0.085 (mol / Kg) (= 0.816% by mass))
(Preparation of abrasive particles)
(I) As a raw material, carbonic acid rare earth from China [total rare earth oxide (TREO) 42 mass%, CeO2/ TREO 60% by mass, SO4Content: 0.359% by mass] 45 kg is put in a Saya container (Mullite), heated in an air atmosphere at a heating temperature of 750 ° C. for 2 hours (calcined), and converted into an oxide-converted all rare earth (TREO) 90. 5% by mass, SO4An oxidized rare earth fired product having a content of 0.774% by mass was obtained.
(Ii) Next, 16 kg of the calcined product and a rare earth fluoride from China [total rare earth oxide (TREO) 83 mass%, CeO2/ TREO 61% by mass, F content 25% by mass, SO4Content: 0.709% by mass, average particle size: 10 μm] 5.0 kg was weighed, and both were put into a stirring tank containing 27.2 kg of water and stirred to form a slurry. Next, the slurry was circulated and supplied to a wet pulverizer using a pulverization medium ball, and wet pulverized for about 5 hours, and the particle size was pulverized to 0.2 to 6 μm.
(Iii) The slurry after wet pulverization was put into a vat and dried at 120 ° C. for 20 hours with a box-type dryer. The dried powder was put in a Saya container (Mullite) and fired in an air atmosphere. That is, firing was performed under the conditions of a heating rate of 500 ° C. or higher at 2.3 (° C./min), a high temperature to be held at 950 ° C., and a holding time at the above temperature of 3.0 hours. . The fired powder was pulverized by a pulverizer and then classified using an air classifier to obtain 13.9 kg of abrasive particles.
(Particle composition and various physical properties)
(I) When the composition of the abrasive particles is expressed in terms of oxide mass%,
TREO (= CeO2+ La2O3+ Nd2O3+ Pr6O11) 95.6% by mass, and the mass ratio of each oxide to TREO is2  63.0%, La2O3  29.8%, Pr6O11  6.1%, Nd2O3  The content of 1.1% and fluorine content (F) was 5.6%. Also, SO4The content was 0.085 (mol / Kg) (= 0.816% by mass).
(Ii) Average particle diameter (d50) Was 0.93 μm.
For the particle size distribution, d90/ D10Was 4.0.
(Iii) The ratio of the peak height (B) to the peak height (A) (B / A) was 0.47.
In the X-ray diffraction analysis measurement, no crystal peak of cerium fluoride was observed.
(Iv) Other physical properties of the particles are as follows.
a) The crystallite size (Scherrer method) was 208 mm.
b) The specific surface area of the particles by the BET method is 2.9 (m2/ G).
c) The pH of the water slurry of the particles was 7.0.
SO in abrasive4Table 1 shows the converted content, the dispersion ratio ξ by ultrasonic irradiation, and the evaluation results of the glass surface after the polishing test.
[Comparative Example 2] (SO in abrasive particles4Content 0.160 (mol / Kg) (= 1.536 mass%))
(Preparation of abrasive particles)
(I) As a raw material, carbonic acid rare earth from China [total rare earth oxide (TREO) 42 mass%, CeO2/ TREO 60% by mass, SO4Content 0.676% by mass] 45 kg is put in a Saya container (made of mullite), heated in an air atmosphere at a heating temperature of 750 ° C. for 2 hours (calcined), and converted into oxide-reduced all rare earth (TREO) 90. 8% by mass, SO4An oxidized rare earth fired product having a content of 1.461% by mass was obtained.
(Ii) Next, 16 kg of the calcined product and a rare earth fluoride from China [total rare earth oxide (TREO) 83 mass%, CeO2/ TREO 61% by mass, F content 25% by mass, SO4Content 1.335% by mass, average particle size 10 μm] 5.0 kg was weighed and both were put into a stirring tank containing 27.2 kg of water and stirred to form a slurry. Next, the slurry was circulated and supplied to a wet pulverizer using a pulverization medium ball, and wet pulverized for about 5 hours, and the particle size was pulverized to 0.2 to 6 μm.
(Iii) The slurry after wet pulverization was put into a vat and dried at 120 ° C. for 20 hours with a box-type dryer. The dried powder was put in a Saya container (Mullite) and fired in an air atmosphere. That is, firing was performed under the conditions of a heating rate of 500 ° C. or higher at 2.3 (° C./min), a high temperature to be held at 950 ° C., and a holding time at the above temperature of 3.0 hours. . The fired powder was pulverized by a pulverizer and then classified using an air classifier to obtain 14.0 kg of abrasive particles.
(Particle composition and various physical properties)
(I) When the composition of the abrasive particles is expressed in terms of oxide mass%,
TREO (= CeO2+ La2O3+ Nd2O3+ Pr6O11) 95.3% by mass, and the mass ratio of each oxide to TREO is CeO2  62.0%, La2O3  30.5%, Pr6O11  6.5%, Nd2O3  The content of 1.0% and fluorine content (F) was 5.6%. Also, SO4The content was 0.160 (mol / Kg) (= 1.536 mass%).
(Ii) Average particle diameter (d50) Was 0.93 μm.
For the particle size distribution, d90/ D10Was 3.8.
(Iii) The ratio of the peak height (B) to the peak height (A) (B / A) was 0.50.
In the X-ray diffraction analysis measurement, no crystal peak of cerium fluoride was observed.
(Iv) Other physical properties of the particles are as follows.
a) The crystallite diameter (Scherrer method) was 210 mm.
b) The specific surface area of the particles by the BET method is 2.8 (m2/ G).
c) The pH of the water slurry of the particles was 7.0.
SO in abrasive4Table 1 shows the converted content, the dispersion ratio ξ by ultrasonic irradiation, and the evaluation results of the glass surface after the polishing test.
Figure 0004131870
  In addition, the level of the polishing rate of the abrasive of Comparative Example 1 in Table 1 is set to a level according to a high speed rate product (trade name: Luminox TE-303) manufactured by Seimi Chemical Co., Ltd. The polishing rates of Examples 1 to 6 and Comparative Example 2 are all maintained at a high level substantially equivalent to that of Comparative Example 1 as a reference.

本発明によれば、特に酸化セリウムを含む希土類酸化物を主成分とするガラス研磨用研磨材において、その研磨速度を、従来得られていた高研磨速度に匹敵するものを十分維持するとともに、研磨するガラスに発生する潜傷を、従来にない程度まで減少させたガラス研磨用研磨材が提供される。
また、本発明によれば、研磨材粒子において、特に潜傷に関する品質を、粉末について的確に評価することができる品質評価方法が提供される。
さらに本発明によれば、実際の研磨プラントにおいて、本発明の研磨材粒子をその水性媒体分散液として使用した場合、従来問題となっていたスラリー流路における沈降による堆積が大幅に低減するという予想しえない大きな効果を伴うものであり、その産業上の利用可能性はきわめて大きい。
According to the present invention, in particular, a polishing material for glass polishing mainly composed of a rare earth oxide containing cerium oxide, the polishing rate is sufficiently maintained to be comparable to a conventionally obtained high polishing rate, and polishing is performed. There is provided a polishing material for polishing a glass in which latent scratches generated in the glass to be reduced are reduced to an unprecedented level.
In addition, according to the present invention, there is provided a quality evaluation method capable of accurately evaluating the quality of the abrasive particles, particularly with respect to latent scratches, with respect to the powder.
Further, according to the present invention, when the abrasive particles of the present invention are used as an aqueous medium dispersion in an actual polishing plant, it is expected that deposition due to sedimentation in the slurry flow path, which has been a problem in the past, will be greatly reduced. It has an enormous effect, and its industrial applicability is extremely large.

Claims (10)

ガラス研磨用研磨材粒子の水性媒体中における分散性を評価する方法であって、水性媒体に被測定対象の研磨材粒子を添加してなる研磨材粒子の水性媒体分散液を準備し、当該分散液に超音波を照射し、式(1)で表される、当該超音波照射前の特定粒径α(μm)以上の粒子の存在量に対する、超音波照射後の上記α(μm)以上の粒子の超音波照射作用により消失する割合(分散率(ξ)と定義する。)を測定することを特徴とするガラス研磨用研磨材粒子の水性媒体中での分散性に関する品質評価方法。
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
A method for evaluating the dispersibility of abrasive particles for glass polishing in an aqueous medium, comprising preparing an aqueous medium dispersion of abrasive particles obtained by adding abrasive particles to be measured to an aqueous medium, and performing the dispersion applying ultrasonic waves to liquid, represented by the formula (1), the relative abundance of the ultrasonic particular particle size before irradiation alpha 0 ([mu] m) or more particles, the alpha 0 after ultrasonic irradiation ([mu] m) A quality evaluation method relating to the dispersibility of abrasive particles for glass polishing in an aqueous medium, characterized by measuring a rate of disappearance of the above particles by the action of ultrasonic irradiation (defined as dispersion rate (ξ)).
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle diameter α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
ガラスを研磨材粒子で研磨する方法であって、
水性媒体に被測定対象の研磨材粒子を添加してなる研磨材粒子の水性媒体分散液を準備し、当該分散液に超音波を照射し、式(1)で表される、当該超音波照射前の特定粒径α(μm)以上の粒子の存在量に対する、超音波照射後の上記α(μm)以上の粒子の超音波照射作用により消失する割合(分散率(ξ)と定義する。)を測定し、
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
式(1)の方法により測定した分散率ξが、特定の値ξ(%)以上の研磨材粒子を、調整、選択又は判別し、
当該特定した研磨材粒子によりガラス研磨を行うことを特徴とするガラス研磨方法。
A method of polishing glass with abrasive particles,
An aqueous medium dispersion of abrasive particles obtained by adding abrasive particles to be measured to an aqueous medium is prepared, and the dispersion is irradiated with ultrasonic waves. The ultrasonic irradiation represented by the formula (1) It is defined as the ratio (dispersion rate (ξ)) that disappears due to the ultrasonic irradiation effect of the particles of α 0 (μm) or more after the ultrasonic irradiation with respect to the existing amount of particles of the specific particle diameter α 0 (μm) or more. )
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle diameter α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
Adjusting, selecting or discriminating abrasive particles having a dispersion ratio ξ measured by the method of formula (1) equal to or higher than a specific value ξ 0 (%);
A glass polishing method comprising performing glass polishing with the specified abrasive particles.
ξが30(%)である請求項2に記載のガラス研磨方法。The glass polishing method according to claim 2, wherein ξ 0 is 30 (%). 研磨材粒子を含むガラス研磨用研磨材組成物において、
当該研磨材粒子は、
水性媒体に当該研磨材粒子を添加してなる研磨材粒子の水性媒体分散液に超音波を照射し、式(1)で表される、当該超音波照射前の特定粒径α(μm)以上の粒子の存在量に対する、超音波照射後の上記α(μm)以上の粒子の超音波照射作用により消失する割合(分散率(ξ)と定義する。)を測定し、
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
式(1)の方法により測定した分散率ξが、特定の値ξ(%)以上の研磨材粒子を水性媒体中に分散させたものであることを特徴とするガラス研磨用研磨材組成物。
In the abrasive composition for polishing glass comprising abrasive particles,
The abrasive particles are
An aqueous medium dispersion of abrasive particles obtained by adding the abrasive particles to an aqueous medium is irradiated with ultrasonic waves, and the specific particle diameter α 0 (μm) before the ultrasonic irradiation represented by the formula (1) The ratio (defined as the dispersion ratio (ξ)) of the above-mentioned particle abundance disappearing due to the ultrasonic irradiation action of the particles of α 0 (μm) or more after ultrasonic irradiation is measured.
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle diameter α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
Abrasive composition for glass polishing, wherein abrasive particles having a dispersion ratio ξ measured by the method of formula (1) of a specific value ξ 0 (%) or more are dispersed in an aqueous medium .
ξが30(%)である請求項4に記載のガラス研磨用研磨材組成物。The abrasive composition for polishing glass according to claim 4, wherein ξ 0 is 30 (%). 酸化セリウムを含む希土類酸化物を主成分とする研磨材粒子において、当該研磨材中のSO換算の金属硫酸塩の量が、0.070(モル/Kg)以下であり、かつ、当該研磨材粒子は、
水性媒体に当該研磨材粒子を添加してなる研磨材粒子の水性媒体分散液に超音波を照射し、式(1)で表される、当該超音波照射前の特定粒径α(μm)以上の粒子の存在量に対する、超音波照射後の上記α(μm)以上の粒子の超音波照射作用により消失する割合(分散率(ξ)と定義する。)を測定し、
ξ=〔(V−V)/V〕×100(%) (1)
(式において、Vは超音波照射前の特定粒径α(μm)以上の粒子の存在量(累積容積)、Vは超音波照射後の上記α(μm)以上の粒子の存在量(累積容積)を示す。)
式(1)の方法により測定した分散率ξが、特定の値ξ(%)以上の研磨材粒子であることを特徴とする高分散性ガラス研磨用の研磨材粒子。
In the abrasive particles mainly composed of rare earth oxide containing cerium oxide, the amount of SO 4 equivalent metal sulfate in the abrasive is 0.070 (mol / Kg) or less, and the abrasive Particles
An aqueous medium dispersion of abrasive particles obtained by adding the abrasive particles to an aqueous medium is irradiated with ultrasonic waves, and the specific particle diameter α 0 (μm) before the ultrasonic irradiation represented by the formula (1) The ratio (defined as the dispersion ratio (ξ)) of the above-mentioned particle abundance disappearing due to the ultrasonic irradiation action of the particles of α 0 (μm) or more after ultrasonic irradiation is measured.
ξ = [(V 0 −V t ) / V 0 ] × 100 (%) (1)
(In the equation, V 0 is the abundance (cumulative volume) of particles having a specific particle size α 0 (μm) or more before ultrasonic irradiation, and V t is the presence of particles having α 0 (μm) or more after ultrasonic irradiation. Indicates the amount (cumulative volume).)
An abrasive particle for polishing highly dispersible glass, wherein the dispersion particle ξ measured by the method of formula (1) is an abrasive particle having a specific value ξ 0 (%) or more.
ξが30(%)である請求項6に記載の高分散性ガラス研磨用の研磨材粒子。The abrasive particles for polishing highly dispersible glass according to claim 6, wherein ξ 0 is 30 (%). フッ素化合物を含有する請求項6又は7に記載の研磨材粒子。  The abrasive particle according to claim 6 or 7, which contains a fluorine compound. 少なくとも水性媒体と、請求項6〜8のいずれかに記載の研磨材粒子からなるガラス研磨用研磨材組成物。  An abrasive composition for polishing glass comprising at least an aqueous medium and the abrasive particles according to any one of claims 6 to 8. 請求項9に記載のガラス研磨用研磨材組成物を使用するガラスの研磨方法。  A glass polishing method using the glass polishing abrasive composition according to claim 9.
JP2006513685A 2004-05-20 2005-05-02 Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass Active JP4131870B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004150884 2004-05-20
JP2004150884 2004-05-20
PCT/JP2005/008652 WO2005114177A1 (en) 2004-05-20 2005-05-02 Method for evaluating quality of abrasive particles, method for polishing glass and abrasive composition for polishing glass

Publications (2)

Publication Number Publication Date
JPWO2005114177A1 JPWO2005114177A1 (en) 2008-03-27
JP4131870B2 true JP4131870B2 (en) 2008-08-13

Family

ID=35428486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006513685A Active JP4131870B2 (en) 2004-05-20 2005-05-02 Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass

Country Status (4)

Country Link
JP (1) JP4131870B2 (en)
CN (2) CN1957253B (en)
TW (1) TW200608012A (en)
WO (1) WO2005114177A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531140U (en) * 1991-09-27 1993-04-23 ミツミ電機株式会社 Storing AC plug structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI321503B (en) 2007-06-15 2010-03-11 Univ Nat Taiwan Science Tech The analytical method of the effective polishing frequency and number of times towards the polishing pads having different grooves and profiles
WO2013118648A1 (en) * 2012-02-06 2013-08-15 旭硝子株式会社 Method for producing glass product and method for producing magnetic disk
CN104897529B (en) * 2015-06-16 2018-01-12 神华集团有限责任公司 A kind of method for evaluating Fischer-Tropsch synthesis catalyst abrasion resistance
CN107553203A (en) * 2017-10-10 2018-01-09 无锡华美钼业有限公司 The molybdenum alloy sheet cutting machine of cutter cleaning case is set

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273443A (en) * 1999-03-23 2000-10-03 Asahi Glass Co Ltd Abrasive material for polishing glass substrate for display, polishing and evaluation of quality of abrasive material
TW528796B (en) * 2000-12-13 2003-04-21 Mitsui Mining & Amp Smelting C Cerium-based abrasive and method of evaluating the same
JP3622696B2 (en) * 2001-07-17 2005-02-23 株式会社島津製作所 Method and apparatus for measuring suspended particulate matter
CN1419955A (en) * 2001-11-15 2003-05-28 浣石 Process for dispersion of nanodiamond
JP2003261861A (en) * 2002-03-07 2003-09-19 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive material and evaluation method for dispersibility thereof
CN1203915C (en) * 2002-11-18 2005-06-01 长沙矿冶研究院 Nano-diamond deagglomeration and grading method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531140U (en) * 1991-09-27 1993-04-23 ミツミ電機株式会社 Storing AC plug structure

Also Published As

Publication number Publication date
TW200608012A (en) 2006-03-01
CN101813692B (en) 2012-08-29
CN101813692A (en) 2010-08-25
WO2005114177A1 (en) 2005-12-01
JPWO2005114177A1 (en) 2008-03-27
CN1957253A (en) 2007-05-02
CN1957253B (en) 2011-06-01
TWI297074B (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP3929481B2 (en) Cerium oxide-based abrasive, its production method and use
WO2001088056A1 (en) Cerium based abrasive material, raw material thereof and method for their preparation
KR20180042375A (en) Cerium-based abrasive and its manufacturing method
KR100560223B1 (en) Metal oxide powder for high precision polishing and preparation thereof
JP4002740B2 (en) Method for producing cerium-based abrasive
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
TWI308927B (en) Method for evaluating the quality of abrasive grains, polishing method and abrasive for polishing glass
CN111051463B (en) Method for producing raw material for cerium-based abrasive and method for producing cerium-based abrasive
JP2002371267A (en) Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP5237542B2 (en) Cerium oxide abrasive
JP2002224949A (en) Cerium-based abrasive and its manufacturing method
JP2007231158A (en) Cerium-based abrasive
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP4070180B2 (en) Method for producing cerium-based abrasive
JP3685481B2 (en) Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder
JP4394848B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP3838870B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP3838871B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP2007008809A (en) Mixed rare earth salt and raw material for cerium-based abrasive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4131870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250