JP3685481B2 - Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder - Google Patents

Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder Download PDF

Info

Publication number
JP3685481B2
JP3685481B2 JP2000396533A JP2000396533A JP3685481B2 JP 3685481 B2 JP3685481 B2 JP 3685481B2 JP 2000396533 A JP2000396533 A JP 2000396533A JP 2000396533 A JP2000396533 A JP 2000396533A JP 3685481 B2 JP3685481 B2 JP 3685481B2
Authority
JP
Japan
Prior art keywords
particle size
cerium
abrasive
particle powder
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000396533A
Other languages
Japanese (ja)
Other versions
JP2002194334A (en
Inventor
昭文 伊藤
直義 望月
滋 桑原
広幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000396533A priority Critical patent/JP3685481B2/en
Publication of JP2002194334A publication Critical patent/JP2002194334A/en
Application granted granted Critical
Publication of JP3685481B2 publication Critical patent/JP3685481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粒子粉末の粒度分布の幅がコントロールされており、特に精密な研摩に好適なセリウム系研摩材粒子粉末、及び該粒子粉末を含有するセリウム系研摩材スラリー、及びその製造方法に関する。
【0002】
【従来の技術】
セリウム系粒子粉末を含有する研摩材は、その優れた研摩効率と、研摩材スラリーに添加される多彩な添加剤の機能によって、その用途を急速に広げており、特に従来の光学用ガラスレンズやガラス基板のみならず、高密度磁気記録媒体用ガラス基板、高精細液晶ディスプレイ用ガラス基板、半導体基板など、特に精密を要する研摩において多用されている。
【0003】
このような電子材料関係用途では、生産性のための高い高速研摩性のみならず、最終研摩工程においても、優れた鏡面性や洗浄性が求められており、その技術要求のレベルも日々高いものとなってきている。
【0004】
セリウム系研摩材の製造に用いられる原料としては、炭酸希土、水酸化希土、シュウ酸希土等の希土原料、あるいはこれらを焼成して得られる酸化希土原料がある。これらの希土原料は、一般にバストネサイト系希土原料あるいはバストネサイト系以外のセリウム含有希土原料から、一部の希土(Nd、Pr等)及び放射性元素等を公知の化学的処理によって除去することにより製造されている。
【0005】
このような原料を用いた場合、一般的に以下の方法でセリウム系研摩材は製造される。すなわち、上記希土原料をスラリー化し、湿式粉砕し、必要に応じて鉱酸で処理した後、フッ酸やフッ化アンモニウム等で化学的処理を行う。そして、得られたスラリーをろ過、乾燥した後、焙焼する。その後、粉砕及び分級して、所望の粒径を有する研摩材粒子粉末を得ることができる。
【0006】
研摩材に求められる重要な特性として、この研摩粒子粉末の粒径が挙げられる。すなわち、研摩評価において研摩速度、いわゆる研摩値を高めたい場合、研摩材の粒子粉末を大きくすることで調整できることが知られている。また、粒径が大きすぎると、研摩速度は高くなるが、ガラス等の研摩面に傷等の欠陥が発生し、鏡面性が低下することが知られている。また、研摩後の研摩面に残留している研摩粒子粉末の洗浄性についても重要な評価特性であるが、これも粒径に大きく影響を受ける。すなわち、粒径が小さいと研摩面への粒子の付着性が強くなり、洗浄が困難となってしまう。近年特に求められている精密研摩における優れた表面性を得るために、研摩材粒子の小粒径化が進むことに起因した、研摩材粒子粉末の洗浄性や残存する研摩材粒子の存在は大きな問題となっていた。
【0007】
研摩材のこのような問題点を解決するために、近年、研摩スラリーに添加される添加剤について、さまざまな改良がなされてきた。研摩液のpHや、無機/有機系の分散剤、洗浄剤等について、さまざまな改良がなされている一方、これらの添加剤を使用することに伴う、環境への負荷も問題とされており、生分解性の高い添加剤を使用した研摩スラリーについても開発が進められている。
【0008】
一方で、酸化セリウムの粒径に関しては、例えば、フランス国特許出願公開第2583034号公報には、比表面積が10m2/g以下で、凝集体の大きさが0.2〜5.0μmであり、凝集体の平均粒径が0.5〜1.5μmである酸化第二セリウムが開示されている。また、特開平01−52610号公報には、凝集体の平均粒径が0.2〜1μmであり、凝集体の大きさの分散指数が0.3〜0.5である微細かつ狭い粒径分布を有する酸化第二セリウムが開示されている。しかしながら、これらの文献には、研摩材としての研摩特性に対して、粒度分布に起因する効果が示されておらず、また、高い研摩値を維持しつつ、優れた研摩表面および研摩後の洗浄性を有する研摩材粒子粉末としての機能については、まったく記載されていない。すなわち、フランス国特許出願公開第2583034号公報および特開平1−52610号公報における凝集体の粒度分布は、現在の研摩材に求められている研摩精度や洗浄性に関して、十分満足できるレベルに到達しているとは言いがたいものである。
【0009】
また、金属酸化物およびその製造方法として特開平7−187613号公報が挙げられ、6以上の面と有する多面体粒子よりなり、数平均粒径が0.1μm以上300μm以下であり、構成する粒子の累積粒度分布の微粒側から累積10%、累積90%の粒径をそれぞれD10、D90としたとき、D90/D10が10以下である粒度分布を有する、α−アルミナ粉末を除く金属酸化物粉末およびその製造方法が開示されている。また、粒度分布の幅が狭くなることで、凝集性が改善される旨の記載があり、その凝集性は走査型電子顕微鏡写真と累積粒度分布による凝集粒子径より求められる、とされている。同公報によれば、実施例27で試薬の硫酸第二セリウムを用い、酸化セリウムを得られることが記載されているが、工業的な原料として試薬のような純度の高い原料を使用する事は困難であり、また、セリウム及びセリウム以外の希土類を含有する研摩材としての効果、及び研摩評価に対する粒度分布に関する改良については十分なものとはいえなかった。
【0010】
研摩値、研摩表面および研摩後の洗浄性に関する問題は、もともと研摩材粒子の粒径に原因があり、それを研摩材以外の物質を添加すること等で対処しようとしてきた。しかし、研摩材粒子そのものでこのような問題点が解決できること、もしくは改善できることが本質的に重要であるが、従来技術において十分解決されたとはいえない。
【0011】
【発明が解決しようとする課題】
本発明は、上記実情に鑑み、研摩力及び研摩精度を落とすことのないように研摩材の粒径を最適化したセリウム系研摩材粒子粉末、セリウム系研摩材スラリー、及びセリウム系研摩材の製造方法を提供する事を課題とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明者らは鋭意検討の結果、研摩材粒子粉末の平均粒径だけに注目せず、その粒度分布の幅を狭くすることで、本課題を解決することができることを見出した。
すなわち本発明のセリウム系研摩材粒子粉末は、酸化セリウム(CeO)を全希土酸化物(TREO)に対して、30〜80重量%含有しているセリウム系研摩材粒子粉末であって、粒子粉末の粒度分布測定で、小粒径側からの累積粒度分布度数において10%、50%、90%の粒径(μm)をそれぞれd10、d50、d90とした場合、下記(1)式及び(2)式を満足することを特徴とする。
0.1≦d50≦3 ・・・(1)
90/d10≦15 ・・・(2)
【0013】
さらに、本発明のセリウム系研摩材スラリーにおいては、上記(1)式及び(2)式を満たす研摩材粒子粉末を含有するものとする事である。
【0014】
さらに、本発明のセリウム系研摩材の製造方法においては、セリウム系化合物を粉砕、焙焼、分級して得られるセリウム系研摩材粒子粉末の製造方法において、分級工程において分級点を大粒径側と小粒径側のそれぞれ1回づつ、もしくはそれ以上の回数の分級を行うことである。
【0015】
【発明の実施の形態】
以下、本発明のセリウム系研摩材粒子粉末、セリウム系研摩材スラリー、及びセリウム系研摩材粒子粉末の製造方法について詳細に説明する。
本発明のセリウム系研摩材粒子粉末は、粒子粉末の粒度分布測定で、累積粒度分布度数において、小粒径側からの累積粒度分布度数において10%、50%、90%の粒径(μm)をそれぞれd10、d50、d90とした場合、上記(1)式及び(2)式を満足することを特徴とするものである。
【0016】
本発明はセリウム系研摩材粒子粉末として、酸化セリウム(CeO)を全希土酸化物(TREO)に対して30〜80重量%含有している。この範囲以下では、研摩作用を有する酸化セリウムの含有量が少ないため、十分な研摩速度を得ることが困難となる。逆に、この範囲を超えると、セリウム以外の希土類の含有率が少なくなり、特に酸化セリウムに比べて焙焼時のフッ素保持能力の高いLaやPrの酸化物の存在量が低下するため、特にガラス研摩時に必要とされるフッ素により発現する化学的研摩が行われず、研摩表面の微細な凹凸の修正ができない。
【0017】
また、必要以上にセリウム含有率の高い希土酸化物を原料とするためには、セリウム以外の希土を分離除去する必要があり、生産コスト的にも問題が大きい。上記記載の酸化セリウムの含有率においては、バストネサイト精鉱や酸化希土、炭酸希土というような従来から用いられている研摩材用原料を任意に選択でき、それらの原料を用いて研摩材粒子粉末を製造する場合、TREO含有量が研摩材粒子粉末重量に対して、75〜99重量%であり、さらにTREO中に含有されるCeOが30〜80重量%であることが必要である。また、TREO中の酸化ランタン及び酸化プラセオジムの合計が20〜70重量%であることが、特に水を分散媒とする研摩材スラリー用途としてのセリウム系研摩材粒子粉末には必要である。これらの化合物は、酸化セリウムより親水性が高く、したがって水を媒体とした分散において、酸化セリウムだけを含有するものよりも、高い分散性を有するためである。
【0018】
従来技術によると、研摩材粒子の粒径の測定としては、空気透過法などを用いた平均粒径の測定を行うことで対応してきたが、さらに、マイクロトラックなどを用いた粒度分布測定装置によって、直接的に粒度を測定できるようになってきた。そこで、小粒径側からの累積粒度分布度数に基づき、50個数%の粒径をもって、d50と称し、この値の大小のみで研摩材の評価を行ってきた。しかしながら、研摩材の研摩評価はこの平均粒径やd50の値だけでは十分とは言えず、研摩評価における不良発生の原因を精査した結果、本発明者らは、研摩材粒子粉末の粒度分布に注目し、この粒度分布と研摩評価に相関性があることを見出した。
【0019】
すなわち、研摩粒子の粒径が大きい場合、研摩速度が高く、また、研摩後の表面洗浄性も優れているが、スラリー中での沈降性が大きく、また、研摩表面の傷の原因となる。一方、研摩粒子の粒径が小さい場合、研摩表面の平滑性は優れているが、研摩速度は小さく、また、研摩後の洗浄が困難となる。通常の研摩材はこのような粒径の異なる粒子が共存しており、それぞれの特徴を残したまま研摩用途に使用されているため、粒径に依存する研摩評価を悪化させないため、研摩条件や研摩材スラリーへ添加剤を共存させるなどの工夫が必要とされていたが、本発明のように、必要とする研摩粒子粉末の粒径の幅を狭くすることで、このような問題を解決することができる。
【0020】
本発明では、研摩粒子の大きさとその粒度分布に特徴を有するセリウム系研摩材粒子粉末に関するものである。本発明において、粒子粉末の粒度分布を測定する方法としては、顕微鏡等によって直接粒径を測定する方法、コールターカウンタのような電気的信号から測定する方法、マイクロトラックなどのレーザー光の反射や散乱を利用した測定方法などさまざまなものがあるが、粒度分布を測定できる方法であればいずれの方法を用いても良い。本発明の平均粒径が0.1〜3μm程度の粒子粉末の粒度分布を測定する方法としては、レーザー光散乱法を利用したマイクロトラックを用いる方法が多用されている。また、マイクロトラックにて測定する場合、原理的には体積粒子径を測定するので、累積粒度分布度数としては体積粒度分布度数であり、この場合、d10、d50、d90の粒径の値(μm)は小粒径側からの体積累積粒度分布度数で10%、50%、90%における粒径を意味する。
【0021】
本発明における研摩粒子粉末のd50の値としては、0.1≦d50≦3とする必要がある。より好ましくは0.3≦d50≦2.5、さらに好ましくは0.5≦d50≦2.0とする必要がある。d50の値が3μmを超えると、研摩速度は高いが、研摩表面に傷等が発生して、研摩精度が低下するので好ましくない。また、d50の値が0.1未満では、研摩表面の平滑性は優れているが、実用的な研摩速度は得られにくい。このd50の測定については、例えば、上述のマイクロトラックによる測定では、小粒径側からの体積累積粒度分布度数により、50重量%に相当する粒径の大きさで表現する。
【0022】
また、小粒径側からの累積粒度分布度数において、10重量%と90重量%に相当する粒径をそれぞれd10、d90とした場合、d90/d10≦15とする必要がある。より好ましくはd90/d10≦10、さらに好ましくはd90/d10≦7とする必要がある。d90/d10>15だと、粒度分布の幅が広いため、上述した大粒径に起因する傷の問題及び小粒径粒子に起因する洗浄不良が改善できない。
【0023】
本発明の研摩材スラリーは、上記粒子粉末を媒質とし、水や有機溶剤などの溶媒に分散させたものである。このような分散によっても、本発明の粒子粉末が有する粒径の特徴は損なわれず、このスラリーを研摩用途に用いた場合、優れた研摩性能及び研摩後の洗浄性に関する特徴を有する。研摩用途としては、コスト及び安全性の面から水を用いることが好ましく、また、公知である分散剤、pH調整剤、安定化剤などのような添加剤についても、必要に応じて併用することもできる。
【0024】
また、本発明のセリウム系研摩材粒子粉末の製造方法は、セリウム系化合物を粉砕、焙焼、分級して得られるセリウム系研摩材粒子粉末の製造方法において、分級工程において分級点を大粒径側と小粒径側のそれぞれ1回ずつ、もしくはそれ以上の回数の分級を行うことである。以下、その製造方法について詳しく記載する。
【0025】
まず、本発明において、原料とされるセリウム系化合物は、従来用いられたバストネサイト精鉱の粉砕品や酸化希土原料、炭酸希土原料などを、そのまま用いることができる。研摩材粒子粉末としては、希土類含有率は高いほうが好ましく、研摩材粒子粉末重量に対してTREO重量が好ましくは75wt%以上、さらに好ましくは80wt%以上を含有できるような組成を有する原料を選択すればよい。さらに、TREO重量に対する酸化セリウムの含有率としては好ましくは30wt%〜80wt%、さらに好ましくは、40wt%〜70wt%であれば、研摩用途として十分な研摩値を得ることができる。
【0026】
また、これらの原料中にはTREO重量に対して、La酸化物(La)及び/またはプラセオジム酸化物(Pr11)を1重量%以上含有していることが好ましい。これらの化合物は、後の焙焼工程において、熱により気散しやすいフッ素成分を研摩材粒子に固定する作用が高いため、フッ素を含有することでもたらされる化学的研摩効果を本発明の研摩材粒子粉末にもたらすことができる。
【0027】
これらの原料は、湿式にて分散し、さらに粉砕することで微粒子粉末を得る。このとき用いられる溶媒としては、好ましくは水であり、また、粉砕する装置としてはボールミル、アトライタ、ビーズミルなど、必要に応じて使用できる。このときの粉砕条件としては、平均粒径としてd50が0.1〜3μmとなるように、粉砕装置に応じて設定すれば良いが、ここで重要なことは、過剰粉砕となって微粒子を多量に発生させないことである。ここで得られるd50のさらに好ましい範囲としては、0.2〜2.5μm、さらに好ましくは0.3〜2.0μmである。
【0028】
このように湿式で粉砕された研摩材粒子粉末は必要に応じてフッ素系化合物によって化学的処理をされる。このとき、濃フッ酸のように化学作用の激しい処理剤を使用すると、粒度の大小によって化学作用の受け方に大きな差を生じるため、後工程で行われる焙焼時に、焼結等の速度にばらつきを生じさせ、ひいては最終の粒度分布に悪影響を与える原因となる。したがって、化学的処理に用いられるフッ素化合物としては、10mol/リットル以下の濃度に希釈したフッ酸や、フッ化アンモニウム等の塩類を含有する水溶液を用いるのが好ましい。研摩材粒子粉末中に含有されるフッ素含有率としては、F元素重量に換算して、10wt%以下、好ましくは0.01〜8wt%、さらに好ましくは0.05〜7wt%である。
【0029】
このようにして処理されたスラリーをろ過、洗浄、焙焼、粉砕して、研摩材原料粉末とする。このとき焙焼条件は研摩粒子の大きさに影響を与えることが知られている。本発明においては、焙焼最高温度を800℃〜1200℃とし、この温度範囲における保持時間を1〜6時間であるが、さらにこの焙焼温度までに到達する粉体に対する昇温速度を100℃/分以下となるように設定することが重要である。すなわち、高い研摩値を有するためには、研摩粒子の成長を促す必要があり、そのためには十分な焙焼を行うことが必要であるが、過剰な温度下における焙焼や急激な温度上昇を伴う焙焼は、異常粒子成長や、研摩材微粒子の焼結速度においてばらつきの原因となるため避けなければならない。特にこの焙焼工程を注意して行い、研摩材粒子に対して均一かつ穏やかに焙焼を行える装置では、粗粒子の発生を十分防止することができるので、分級工程に対する負荷を軽減することができる。
【0030】
このようにして得られた研摩材粒子粉末について、通常、10μmを超える粒径を有する粗粒子を除去して研摩材となる。このときの分別方法としては、通常分級と呼ばれる工程にて処理される。分級する方法としては乾式のまま風力分級機等で分級する方法、又は再度溶媒に分散させた後、湿式にてサイクロン等で分級することが行われている。
【0031】
本発明において、このように粗粒子を除去した研摩材粒子粉末は、上記記載の粉砕、化学処理、焙焼等の工程を最適化して、粒度分布のばらつきをある程度抑えたものとなっている。しかしながら、上記工程に対する生産設備などからの負荷が大きい場合、最終工程で行われる分級処理を最適化することでも、本発明における粒度分布の幅の狭いものとすることができる。すなわち、分級点を大粒径側と小粒径側のそれぞれ1回づつ、もしくはそれ以上の回数の分級を行うことで、粗粒子のみならず、微粒子を除去することで、粒度分布の幅の狭い研摩材粒子粉末を得ることができる。このときに設定する分級点としては、大粒径側では10μm以下、好ましくは9μm以下、さらに好ましくは8μm以下で行い、小粒径側では、0.1μm以上、好ましくは0.3μm以上、さらに好ましくは0.5μm以上で設定すれば良い。この設定で少なくとも大粒径側において、分級点以上の大きさの粗粒子を除去し、さらに小粒径側において、分級点以下の大きさの微粒子を除去することによって、粒度分布の狭い研摩材粒子粉末が得られる。
【0032】
このときに使用できる分級方法は、湿式及び乾式のいずれの方法でも使用でき、また、1回目に行う分級点の設定としては、大粒径側と小粒径側のどちらを行っても良い。また、分級精度をさらに要求される場合、大粒径側及び/又は小粒径側の分級を繰り返し行っても良く、そのときの分級点の設定は前述した大粒径側と小粒径側の範囲内で変化させても良い。また、前述の粗粒子除去を1回目の分級とし、小粒径側で再度分級することを2回目の分級として処理しても良い。分級の順序及び回数は、それぞれの分級装置の特徴と求められる研摩粒子粉末の粒度分布及び分級に供用する粉末中の研摩粒子粉末の粒度分布に応じて設定すれば良い。
【0033】
本発明における研摩材粒子粉末は、その粒子粉末の粒度分布の幅が狭いことであるが、特に微粒子の少ないことが現在研摩材として求められているものである。精密研摩ができるような平均粒径を有する研摩材粒子粉末であっても、研摩後の洗浄性が悪く、研摩表面に残存してしまうような微粒子を含有するものは、精密研摩用途として用いることができない。残存研摩材の発生については、小さい研摩材粒子が研摩表面に付着していることが原因であり、これを低減させた研摩材粒子粉末が必要とされているためである。したがって、分級をおこなう場合、特に微粒子を除去する小粒径側の分級が重要であり、この微粒子除去のための分級を複数回行うことも、精密研摩用研摩材粒子粉末の製造として行うこともできる。
【0034】
このような微粒子除去の目的として使用できる分級機としては、一般には湿式分級機より乾式分級機のほうが優れており、例えば、日鉄鉱業(株)製 エルボジェット、ホソカワミクロン(株)製 ファインシャープセパレーター、三協電業(株)製 バリアブル・インパクタ、セイシン企業(株)製 スペディッククラシファイア、日本ドナルドソン(株)製 ドナセレック、安川商事(株)製 ワイエムマイクロカット、その他各種エアーセパレータ、ミクロンセパレーター、ミクロプレックス、アキュカットなどの乾式分級装置などが使用できるがこれらに限定されるわけではない。一方、粗粒子除去の目的では、上記乾式分級装置だけでなく、湿式分級機も十分使用が可能であり、例えば、円筒型遠心分離機や分離板型遠心分離機なども使用することができる。本発明においてはこれらの分級機を単独で、あるいは個別に組み合わせることによって、小粒径側と大粒径側のそれぞれ1回づつ、またはそれ以上の回数の分級を行うことも任意にできる。
【0035】
このようにして得られたセリウム系研摩材粒子粉末は、窒素ガスを用いたBET法による比表面積として、1〜15m/g、より好ましくは1.5〜10m/gである。15m/gを超える比表面積を有する場合、研摩速度が小さいため、また、1m/g未満では研摩傷が生じるため、研摩材粒子粉末として好ましくない。
また、研摩後の表面を重視する仕上げ研摩用研摩材粒子粉末としては、比較的粒径の小さい研摩材が好ましく、比表面積の値として5〜10m/gが好適であるが、このような粒径の小さい研摩材において、従来問題となっていた研摩後の洗浄性を改善し、残存研摩材を防止する上で、本発明に記載の粒度分布に優れたセリウム系研摩材粒子粉末によって、特に大きな効果が得られる。
【0036】
【実施例】
以下、実施例にて本発明を説明するが、本発明は以下の実施例に限定されるものではない。
【0037】
〔実施例1〕
バストネサイト精鉱(精鉱中に含有される全酸化希土が89重量%、全酸化希土中に含有される酸化セリウムが51重量%、全酸化希土中に含有される酸化ランタンと酸化プラセオジムの合計が47重量%)を原料とし、これに溶媒として水を加え、湿式ボールミルを使用して湿式粉砕した。このとき、湿式ボールミルへ供給するスラリー濃度として、原料と水とが重量比で1:1となるようにした。また、粉砕は、後述する粉砕粒子粉末の粒度分布測定において、d50が0.5μmとなるまで粉砕を続けた。その後、フィルタープレスでろ過をし、研摩材粒子粉末を含有するケーキを得た。得られたケーキを乾燥した後、あらかじめ1000℃に保持した電気炉で焙焼し、この温度を3時間保持した後、放冷した。得られた粉末を粉砕し、分級点として10μmとなるように設定した乾式分級機によって、粗粉を除去したセリウム系研摩材粒子粉末を得た。
さらに、この粒子粉末に対して、分級点を2μmに変更し、再度分級を行い、微粉を除去した粉末を得た。
得られた粉末は以下の方法で評価し、得られた結果を表1に示す。
【0038】
〔粒度分布測定〕
得られた研摩材粒子粉末の粒度分布の測定は以下のように行った。
研摩材粒子粉末又は、粒子粉末を含むスラリーを試料とし、粒子粉末として約0.1gを0.1wt%ヘキサメタ燐酸ナトリウム水溶液100mlに入れ、超音波ホモジナイザー((株)日本精機製作所 MODEL US-300T)にて300Wで10分間かけて分散した。得られた分散液を一部取り、マイクロトラック(日機装(株) マイクロトラックMK−II 粒度分析計 SPA MODEL7997−20)にて、粒度分布を測定した。得られたデータに基づいて、各測定チャンネルに設定された粒径を上限とする粒度分布についてのグラフを図1に、さらに小粒径よりの体積累積粒度分布度数で10%、50%、90%における粒径の値(μm)をそれぞれd10、d50、d90として表1に示す。
【0039】
【表1】

Figure 0003685481
【0040】
〔比表面積測定〕
試料を精秤し、比表面積測定装置(湯浅アイオニクス(株)製 全自動表面積測定装置 マルチソーブ12型)を使用して、窒素ガス吸着BET1点法によって測定した。結果を表1に示す。
【0041】
〔研摩評価〕
得られたセリウム系研摩材粒子粉末を用いて、以下の条件で研摩評価を行った。
<研摩材スラリーの調整>
得られた研摩材粒子粉末を水に分散させ、濃度10重量%のスラリーとした。このスラリーは研摩試験中、攪拌機を用いて常に混合した。
<研摩試験>
試験装置としてオスカー型研摩試験機(台東精機(株)社製 HSP−2I 型)を使い、ポリウレタン製の研摩パッドを用い、60mmφの平面パネル用ガラスを被研摩材料とし、上記研摩材スラリーを500ml/分の速度で供給しながら研摩面に対する圧力設定を1000g/cmとし、及び研摩機の回転速度を1700rpmに設定し、5分間研摩した。研摩後のガラスを純水中で1分間超音波洗浄し、さらに純水による流水洗浄を行い、無塵状態で乾燥させた。
<研摩試験の評価方法>
研摩値の評価は、研摩前後におけるガラスの重量の減少を測定し、実施例1を100とした場合の相対値に換算して研摩値とした。
また、研摩表面の傷の有無、及び残存している付着研摩材粒子の有無については、研摩後のガラスの表面に光源として30万ルックスのハロゲンランプを照射して、反射法にて観察した。傷に関しては、傷の程度及びその数を観察して点数付けを行い、100点満点からの減点方式にて評価した。また、研摩後のガラスを光学顕微鏡で観察することで、ガラス表面に残存している研摩材の有無を確認した。結果を表1に示す。
【0042】
〔実施例2〕
実施例1と同じ原料を用い、実施例1と同様に湿式粉砕を行った。得られたスラリーを濾過し、乾燥後、昇温速度を200℃/hrに設定した電気炉に入れ、室温より1000℃まで昇温した後、1000℃で3時間保持して焙焼を行った。得られた粉末を実施例1に準じて粉砕、分級を行い、粗粒子及び微粒子を除去した研摩材粒子粉末を得た。
得られた粉末は、実施例1に準じて評価を行い、得られた結果を表1に示す。
【0043】
〔実施例3〕
原料として、セリウム系希土類酸化物(希土類酸化物全重量に対して、全酸化希土含有率が99重量%、全酸化希土中に含有される酸化セリウム含有率が60重量%、全酸化希土中に含有される酸化ランタンと酸化プラセオジムの合計が38重量%)を原料とし、これを用いてセリウム系研摩材粒子粉末を製造した。まず、原料と水とを、重量比で1:2となるようにしたスラリーをアトライタへ供給し、湿式粉砕した。粉砕は粉砕粒子粉末の粒度分布測定において、d50が0.5μmとなるまで粉砕を続けた。得られたスラリーにフッ化アンモニウムをスラリー中の濃度が0.1mol/リットルとなるように加え、2時間攪拌を行うことで穏やかにフッ化処理を行い、その後ろ過した。得られたケーキを乾燥した後、実施例2と同じように電気炉で焙焼し、さらに放冷、粉砕、分級を行ってセリウム系研摩材粒子粉末を得た。
得られた粒子粉末を実施例1に準じて評価を行い、得られた結果を表1に示す。
【0044】
〔実施例4〕
原料として、セリウム系希土類炭酸塩(希土類炭酸塩前重量に対して、全酸化希土含有率が70重量%、全酸化希土中に含有される酸化セリウム含有率が61重量%、全酸化希土中に含有される酸化ランタンと酸化プラセオジムの合計が37重量%)を原料とし、これを用いてセリウム系研摩材粒子粉末を製造した。まず、原料と水とを、重量比で1:2となるようにしたスラリーをアトライタへ供給し、湿式粉砕した。粉砕は粉砕粒子の粒度分布測定において、d50が0.5μmとなるまで粉砕を続けた。得られたスラリーにフッ化アンモニウムをスラリー中の濃度が0.1mol/リットルとなるように加え、2時間攪拌を行うことで穏やかに反応させ、その後ろ過した。得られたケーキを乾燥した後、実施例2と同じように電気炉で焙焼し、さらに放冷、粉砕、分級してセリウム系研摩材粒子粉末を得た。
得られた粒子粉末を実施例1に準じて評価を行い、得られた結果を表1に示す。
【0045】
〔実施例5〕
原料として、実施例4で使用したセリウム系希土類酸化物と実施例5で使用したセリウム系炭酸塩を50重量%ずつ混合したものを原料とし、これを用いてセリウム系研摩材粒子粉末を製造した。まず、原料と水とを、重量比で1:2となるようにしたスラリーをアトライタへ供給し、湿式粉砕した。粉砕は粉砕粒子の粒度分布測定において、d50が0.5μmとなるまで粉砕を続けた。得られたスラリーにフッ化アンモニウムの濃度が0.1mol/リットルとなるように加え、2時間攪拌を行うことで穏やかに反応させ、その後ろ過した。得られたケーキを乾燥した後、実施例2と同じように電気炉で焙焼し、放冷、粉砕、分級してセリウム系研摩材粒子粉末を得た。
得られた粒子粉末を実施例1に準じて評価を行い、得られた結果を表1に示す。
【0046】
〔比較例1〕
実施例1と同じ原料を用い、焙焼まで実施例1と同様に処理を行った。得られた焙焼後の粉末を、分級点が10μmに設定した乾式分級機によって、粗粒子を除去し、その後実施例1と同様に処理を行い、研摩材粒子粉末を得た。
得られた粒子粉末を実施例1に準じて評価を行い、得られた結果を表1に示す。
【0047】
比較例1に対して、実施例1〜5では、分級処理を進めていくことで粒度分布の幅が狭くなり、研摩評価としても優れた評価が得られることがわかる。また、粉砕時のスラリー濃度や焼成温度を最適化することで、原料の依存性がなく、分級に頼ることのない粒度分布及び研摩評価に優れた研摩材粒子粉末が得られることがわかる。また、特に焙焼時における昇温速度を限定することにより、粗粒子が低減されるため、さらに小粒径側の分級を行うことで、本発明に記載の粒度分布が優れ、研摩後の残存研摩材の少ない研摩材粒子粉末を得ることができる。
これに対して、比較例1は、微粒子の研摩材粒子が多数存在しているため、d10の値が小さく、したがって研摩後の残存研摩材が多く存在しており、洗浄性に優れた研摩材粒子粉末とはいえるものではなかった。
【0048】
【発明の効果】
以上説明したように、本発明の粒度分布を有する研摩材粒子粉末を使用することで、研摩後の研摩表面に傷がなく、研摩表面に残存する研摩材粒子が少ないことにより、高い研摩評価を得ることができるため、特に光学用ガラスレンズやガラス基板、高密度磁気記録媒体用ガラス基板、高密度磁気記録媒体用アルミニウム基板、高精細液晶ディスプレイ用ガラス基板、電子素子用シリコン基板など、特に精密を要する研摩用途に使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cerium-based abrasive particle powder suitable for precise polishing, a cerium-based abrasive slurry containing the particle powder, and a method for producing the same, in which the width of the particle size distribution of the particle powder is controlled.
[0002]
[Prior art]
Abrasive materials containing cerium-based particle powder are rapidly expanding their applications due to their excellent polishing efficiency and the functions of various additives added to the abrasive slurry. Not only glass substrates but also glass substrates for high-density magnetic recording media, glass substrates for high-definition liquid crystal displays, semiconductor substrates, and the like are frequently used in polishing requiring particularly high precision.
[0003]
In such electronic material-related applications, not only high-speed abrasiveness for high productivity but also excellent specularity and cleanability are required in the final polishing process, and the level of technical requirements is high every day. It has become.
[0004]
As raw materials used for the production of cerium-based abrasives, there are rare earth raw materials such as rare earth carbonate, rare earth hydroxide, rare earth oxalic acid, or rare earth oxide raw materials obtained by firing these. These rare earth materials are generally bastonesite-based rare earth materials or cerium-containing rare earth materials other than bastonesite-based materials, and some of the rare earth materials (Nd, Pr, etc.) and radioactive elements are chemically treated. It is manufactured by removing.
[0005]
When such a raw material is used, a cerium-based abrasive is generally produced by the following method. That is, the rare earth material is slurried, wet pulverized, and treated with a mineral acid as necessary, followed by chemical treatment with hydrofluoric acid or ammonium fluoride. Then, the obtained slurry is filtered and dried, and then roasted. Thereafter, grinding and classification can be performed to obtain abrasive particle powder having a desired particle size.
[0006]
An important characteristic required for the abrasive is the particle size of the abrasive particle powder. That is, it is known that when polishing rate, so-called polishing value, is desired to be increased in polishing evaluation, it can be adjusted by increasing the particle powder of the abrasive. Further, it is known that if the particle size is too large, the polishing speed increases, but defects such as scratches occur on the polished surface of glass or the like and the specularity decreases. Further, the cleaning property of the abrasive particle powder remaining on the polished surface after polishing is also an important evaluation characteristic, but this is also greatly influenced by the particle size. That is, if the particle size is small, the adhesion of the particles to the polished surface becomes strong and cleaning becomes difficult. In order to obtain excellent surface properties in precision polishing, which has been particularly demanded in recent years, the abrasive particle powder cleaning ability and the presence of remaining abrasive particles are significant due to the progress of smaller abrasive particles. It was a problem.
[0007]
In order to solve such problems of the abrasive, various improvements have been made in recent years with respect to the additives added to the polishing slurry. While various improvements have been made to the pH of the polishing liquid, inorganic / organic dispersants, cleaning agents, etc., the environmental burden associated with the use of these additives is also a problem. Development of abrasive slurries using highly biodegradable additives is also underway.
[0008]
On the other hand, regarding the particle size of cerium oxide, for example, French Patent Application Publication No. 2583034 has a specific surface area of 10 m. 2 Cerium oxide having an aggregate size of 0.2 to 5.0 [mu] m and an average particle size of the aggregate of 0.5 to 1.5 [mu] m is disclosed. Japanese Patent Application Laid-Open No. 01-52610 discloses a fine and narrow particle size in which the average particle size of the aggregate is 0.2 to 1 μm and the dispersion index of the size of the aggregate is 0.3 to 0.5. Disclosed is ceric oxide having a distribution. However, these documents do not show an effect due to the particle size distribution on the polishing characteristics as an abrasive, and also maintain an excellent polishing surface and clean after polishing. No function is described as a functioning abrasive particle powder. That is, the particle size distribution of the aggregates in French Patent Application Publication No. 2583034 and Japanese Patent Application Laid-Open No. 1-52610 has reached a level that is sufficiently satisfactory with respect to the polishing accuracy and cleanability required for current abrasives. It's hard to say.
[0009]
Moreover, JP-A-7-187613 can be cited as a metal oxide and a method for producing the metal oxide, which is composed of polyhedral particles having 6 or more faces, and having a number average particle diameter of 0.1 μm or more and 300 μm or less. 10% cumulative and 90% cumulative particle size from the fine particle side of the cumulative particle size distribution 10 , D 90 D 90 / D 10 A metal oxide powder excluding α-alumina powder having a particle size distribution of 10 or less and a method for producing the same are disclosed. Further, there is a description that the cohesiveness is improved by narrowing the width of the particle size distribution, and the cohesiveness is determined from a scanning electron micrograph and the aggregated particle size obtained by the cumulative particle size distribution. According to the publication, it is described in Example 27 that cerium oxide can be obtained by using ceric sulfate as a reagent. However, it is possible to use a raw material with high purity such as a reagent as an industrial raw material. It was difficult, and the effect as an abrasive containing cerium and a rare earth other than cerium, and the improvement regarding the particle size distribution for the evaluation of polishing, were not sufficient.
[0010]
Problems related to the polishing value, the polishing surface, and the cleanability after polishing were originally caused by the particle size of the abrasive particles, and have been attempted to cope with this by adding substances other than the abrasive. However, it is essential that the abrasive particles themselves can solve or improve such problems, but it cannot be said that they have been sufficiently solved by the prior art.
[0011]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention provides a cerium-based abrasive particle powder, a cerium-based abrasive slurry, and a cerium-based abrasive that are optimized in the particle size of the abrasive so as not to reduce the polishing force and accuracy. The problem is to provide a method.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors, as a result of intensive studies, are able to solve this problem by not focusing only on the average particle diameter of the abrasive particle powder and narrowing the width of the particle size distribution. I found out that I can do it.
That is, the cerium-based abrasive particle powder of the present invention contains cerium oxide (CeO 2 ) Is a cerium-based abrasive particle powder containing 30 to 80% by weight of the total rare earth oxide (TREO), and the cumulative particle size distribution from the small particle size side in the particle size distribution measurement of the particle powder The particle size (μm) of 10%, 50% and 90% in frequency is d 10 , D 50 , D 90 In this case, the following expressions (1) and (2) are satisfied.
0.1 ≦ d 50 ≦ 3 (1)
d 90 / D 10 ≦ 15 (2)
[0013]
Furthermore, the cerium-based abrasive slurry of the present invention contains abrasive particle powder that satisfies the above formulas (1) and (2).
[0014]
Furthermore, in the method for producing a cerium-based abrasive of the present invention, in the method for producing a cerium-based abrasive particle powder obtained by pulverizing, roasting and classifying a cerium-based compound, the classification point is set to the large particle size side in the classification step. And classification on the small particle size side once or more times.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the cerium-based abrasive particle powder, the cerium-based abrasive slurry, and the method for producing the cerium-based abrasive particle powder of the present invention will be described in detail.
The cerium-based abrasive particle powder of the present invention has a particle size distribution (μm) of 10%, 50%, and 90% in the cumulative particle size distribution frequency from the small particle size side in the particle size distribution measurement of the particle powder. D 10 , D 50 , D 90 In this case, the above formulas (1) and (2) are satisfied.
[0016]
The present invention provides cerium-based abrasive particle powder as cerium oxide (CeO). 2 ) Is contained in an amount of 30 to 80% by weight based on the total rare earth oxide (TREO). Below this range, since the content of cerium oxide having a polishing action is small, it is difficult to obtain a sufficient polishing speed. On the other hand, if it exceeds this range, the content of rare earths other than cerium will be reduced, especially since the abundance of oxides of La and Pr having a higher fluorine retention ability during roasting than cerium oxide will decrease. Chemical polishing expressed by fluorine required during glass polishing is not performed, and fine irregularities on the polishing surface cannot be corrected.
[0017]
Further, in order to use a rare earth oxide having a higher cerium content than necessary as a raw material, it is necessary to separate and remove rare earth other than cerium, which is a serious problem in terms of production cost. With regard to the content of cerium oxide described above, conventionally used raw materials for abrasives such as bastonite concentrate, rare earth oxide, and rare earth carbonate can be arbitrarily selected, and polishing using these raw materials is possible. When producing particle particle powder, the TREO content is 75 to 99% by weight with respect to the weight of the abrasive particle powder, and further CeO contained in the TREO. 2 Is required to be 30 to 80% by weight. In addition, the total amount of lanthanum oxide and praseodymium oxide in TREO is required to be 20 to 70% by weight, particularly for cerium-based abrasive particle powder for use as an abrasive slurry using water as a dispersion medium. This is because these compounds have higher hydrophilicity than cerium oxide, and therefore have higher dispersibility in dispersion using water as a medium than those containing only cerium oxide.
[0018]
According to the prior art, the particle size of abrasive particles has been supported by measuring the average particle size using an air permeation method, etc. It has become possible to directly measure the particle size. Therefore, based on the cumulative particle size distribution frequency from the small particle size side, with a particle size of 50% by number, d 50 Abrasive materials have been evaluated only by the magnitude of this value. However, the polishing evaluation of the abrasive is not limited to this average particle 50 As a result of investigating the cause of defects in polishing evaluation, the present inventors focused on the particle size distribution of the abrasive particle powder, and there is a correlation between this particle size distribution and the polishing evaluation. I found out.
[0019]
That is, when the particle size of the abrasive particles is large, the polishing speed is high and the surface cleanability after polishing is excellent, but the settling property in the slurry is large, and it causes scratches on the polishing surface. On the other hand, when the particle size of the abrasive particles is small, the smoothness of the polished surface is excellent, but the polishing rate is low and cleaning after polishing becomes difficult. Since normal abrasives have such particles with different particle sizes and are used for polishing applications with their respective characteristics remaining, the polishing evaluation depending on the particle size is not deteriorated. There has been a need for a device such as an additive to coexist with the abrasive slurry. However, as in the present invention, the problem is solved by narrowing the width of the required particle size of the abrasive particles. be able to.
[0020]
The present invention relates to a cerium-based abrasive particle powder characterized by the size and size distribution of abrasive particles. In the present invention, the particle size distribution of the particle powder can be measured by directly measuring the particle size with a microscope or the like, by measuring from an electrical signal such as a Coulter counter, or by reflecting or scattering laser light from a microtrack or the like. There are various methods such as a measurement method using, but any method can be used as long as it can measure the particle size distribution. As a method for measuring the particle size distribution of a particle powder having an average particle size of about 0.1 to 3 μm according to the present invention, a method using a microtrack utilizing a laser light scattering method is frequently used. Further, when measuring with a microtrack, in principle, the volume particle diameter is measured, so the cumulative particle size distribution frequency is the volume particle size distribution frequency. In this case, d 10 , D 50 , D 90 The value (μm) of the particle size means the particle size at 10%, 50%, and 90% in terms of the volume cumulative particle size distribution frequency from the small particle size side.
[0021]
D of the abrasive particle powder in the present invention 50 As a value of 0.1 ≦ d 50 It is necessary to make ≦ 3. More preferably 0.3 ≦ d 50 ≦ 2.5, more preferably 0.5 ≦ d 50 It is necessary to make ≦ 2.0. d 50 If the value exceeds 3 μm, the polishing speed is high, but scratches and the like are generated on the polishing surface, and the polishing accuracy is lowered. D 50 When the value of is less than 0.1, the smoothness of the polished surface is excellent, but a practical polishing rate is difficult to obtain. This d 50 Regarding the measurement of, for example, in the above-described measurement using the microtrack, the particle size is equivalent to 50% by weight based on the volume cumulative particle size distribution frequency from the small particle size side.
[0022]
In addition, in the cumulative particle size distribution frequency from the small particle size side, the particle sizes corresponding to 10 wt% and 90 wt% are respectively d 10 , D 90 D 90 / D 10 It is necessary to satisfy ≦ 15. More preferably d 90 / D 10 ≦ 10, more preferably d 90 / D 10 It is necessary to make ≦ 7. d 90 / D 10 When it is> 15, since the particle size distribution is wide, the problem of scratches caused by the large particle size and the poor cleaning caused by the small particle size cannot be improved.
[0023]
The abrasive slurry of the present invention is obtained by dispersing the above-described particle powder in a medium such as water or an organic solvent. Even with such dispersion, the particle size characteristics of the particle powder of the present invention are not impaired, and when this slurry is used for polishing, it has characteristics regarding excellent polishing performance and cleanability after polishing. For polishing applications, it is preferable to use water from the viewpoint of cost and safety. Also, known additives such as dispersants, pH adjusters, stabilizers, etc. may be used in combination as necessary. You can also.
[0024]
Further, the method for producing a cerium-based abrasive particle powder of the present invention is a method for producing a cerium-based abrasive particle powder obtained by pulverizing, roasting and classifying a cerium-based compound. The classification is performed once or more on each of the side and the small particle size side. Hereinafter, the manufacturing method will be described in detail.
[0025]
First, as the cerium-based compound used as a raw material in the present invention, a conventionally used crushed product of bastonesite concentrate, an oxidized rare earth material, a rare earth carbonate material, or the like can be used as it is. As the abrasive particle powder, it is preferable that the rare earth content is high, and a raw material having such a composition that the TREO weight is preferably 75 wt% or more, more preferably 80 wt% or more based on the weight of the abrasive particle powder is selected. That's fine. Further, if the content of cerium oxide with respect to the weight of TREO is preferably 30 wt% to 80 wt%, and more preferably 40 wt% to 70 wt%, a polishing value sufficient for polishing use can be obtained.
[0026]
Further, in these raw materials, La oxide (La 2 O 3 ) And / or praseodymium oxide (Pr) 6 O 11 ) Is preferably contained in an amount of 1% by weight or more. Since these compounds have a high effect of fixing fluorine components that are easily diffused by heat to abrasive particles in the subsequent roasting step, the chemical polishing effect brought about by containing fluorine is exhibited by the abrasive of the present invention. It can be brought to particle powder.
[0027]
These raw materials are dispersed in a wet manner and further pulverized to obtain fine particle powder. The solvent used at this time is preferably water, and a pulverizing apparatus such as a ball mill, an attritor, or a bead mill can be used as necessary. The pulverization condition at this time is d as the average particle diameter. 50 However, what is important here is that excessive pulverization does not generate a large amount of fine particles. D obtained here 50 The more preferable range is 0.2 to 2.5 μm, and more preferably 0.3 to 2.0 μm.
[0028]
The abrasive particle powder thus pulverized in a wet manner is chemically treated with a fluorine-based compound as necessary. At this time, if a treating agent with a strong chemical action such as concentrated hydrofluoric acid is used, there is a large difference in the way of receiving the chemical action depending on the size of the particle size. And thus adversely affecting the final particle size distribution. Therefore, as the fluorine compound used for the chemical treatment, it is preferable to use an aqueous solution containing hydrofluoric acid diluted to a concentration of 10 mol / liter or less or a salt such as ammonium fluoride. The fluorine content contained in the abrasive particle powder is 10 wt% or less, preferably 0.01 to 8 wt%, more preferably 0.05 to 7 wt% in terms of the weight of F element.
[0029]
The slurry thus treated is filtered, washed, roasted and pulverized to obtain an abrasive raw material powder. At this time, it is known that roasting conditions affect the size of the abrasive particles. In the present invention, the maximum roasting temperature is 800 ° C. to 1200 ° C., and the holding time in this temperature range is 1 to 6 hours. Further, the heating rate for the powder reaching the roasting temperature is 100 ° C. It is important to set it to be less than / min. In other words, in order to have a high polishing value, it is necessary to promote the growth of abrasive particles, and for that purpose, it is necessary to perform sufficient roasting. The accompanying roasting must be avoided because it causes abnormal particle growth and variation in the sintering speed of the abrasive fine particles. In particular, this roasting process is performed with care, and in an apparatus that can perform uniform and gentle roasting on abrasive particles, the generation of coarse particles can be sufficiently prevented, so the load on the classification process can be reduced. it can.
[0030]
The abrasive particle powder thus obtained is usually used as an abrasive by removing coarse particles having a particle size exceeding 10 μm. As a classification method at this time, it is processed in a process called normal classification. As a classification method, a method of classifying with a wind classifier or the like while being dry, or a method of classifying with a cyclone or the like after being dispersed again in a solvent is performed.
[0031]
In the present invention, the abrasive particle powder from which the coarse particles have been removed in this way has been optimized to the above-described processes such as pulverization, chemical treatment, and roasting to suppress variation in particle size distribution to some extent. However, when the load from the production equipment or the like for the above process is large, the particle size distribution in the present invention can be narrowed by optimizing the classification process performed in the final process. That is, the classification point is divided once for each of the large particle size side and the small particle size side, or by performing classification more than once, so that not only coarse particles but also fine particles can be removed, thereby reducing the width of the particle size distribution. A narrow abrasive particle powder can be obtained. The classification point set at this time is 10 μm or less, preferably 9 μm or less, more preferably 8 μm or less on the large particle size side, and 0.1 μm or more, preferably 0.3 μm or more, on the small particle size side. Preferably, it may be set at 0.5 μm or more. With this setting, abrasive particles with a narrow particle size distribution are removed by removing coarse particles larger than the classification point on at least the large particle size side and further removing fine particles smaller than the classification point on the small particle size side. A particle powder is obtained.
[0032]
As a classification method that can be used at this time, either a wet method or a dry method can be used. As the setting of the classification point to be performed for the first time, either the large particle size side or the small particle size side may be performed. In addition, when further classification accuracy is required, classification on the large particle size side and / or small particle size side may be repeated, and the setting of the classification point at that time is the above described large particle size side and small particle size side. You may change within the range. The coarse particle removal described above may be treated as the first classification, and classification on the small particle size side again may be treated as the second classification. What is necessary is just to set the order and frequency | count of classification according to the characteristic of each classifier, the required particle size distribution of the abrasive particle powder, and the particle size distribution of the abrasive particle powder in the powder used for classification.
[0033]
The abrasive particle powder in the present invention is narrow in the particle size distribution of the particle powder, but it is currently required as an abrasive that there are particularly few fine particles. Even abrasive powders with an average particle size that can be precisely polished, those that contain fine particles that have poor cleanability after polishing and remain on the polishing surface should be used for precision polishing applications. I can't. This is because the generation of the remaining abrasive is caused by the fact that small abrasive particles are attached to the polishing surface, and an abrasive particle powder that reduces this is required. Therefore, when performing classification, it is particularly important to classify on the small particle size side to remove fine particles, and the classification for removing fine particles may be performed a plurality of times, or as the production of abrasive particles for precision polishing. it can.
[0034]
As a classifier that can be used for the purpose of removing such fine particles, a dry classifier is generally superior to a wet classifier. For example, an elbow jet manufactured by Nippon Steel Mining Co., Ltd., a fine sharp separator manufactured by Hosokawa Micron Co., Ltd. , Sankyo Electric Industry Co., Ltd. Variable Impactor, Seishin Enterprise Co., Ltd. Spedic Classifier, Nippon Donaldson Co., Ltd. Donaserek, YASKAWA Corporation YM Microcut, other various air separators, micron separators, A dry classifier such as Microplex or Accucut can be used, but is not limited thereto. On the other hand, for the purpose of removing coarse particles, not only the above-described dry classifier but also a wet classifier can be used sufficiently. For example, a cylindrical centrifuge, a separation plate centrifuge, or the like can also be used. In the present invention, these classifiers may be used alone or in combination to arbitrarily classify the small particle size side and the large particle size side once or more times.
[0035]
The cerium-based abrasive particle powder thus obtained has a specific surface area of 1 to 15 m by the BET method using nitrogen gas. 2 / G, more preferably 1.5 to 10 m 2 / G. 15m 2 When the specific surface area exceeds 1 / g, the polishing speed is small, and 1 m 2 If it is less than / g, an abrasive flaw occurs, which is not preferable as an abrasive particle powder.
Further, as the abrasive particle powder for finishing polishing which places importance on the surface after polishing, an abrasive having a relatively small particle size is preferable, and the specific surface area is 5 to 10 m. 2 / G is preferable, but in such an abrasive having a small particle size, the particle size distribution according to the present invention is improved in order to improve the cleanability after polishing and prevent residual abrasives, which has been a problem in the past. The cerium-based abrasive particle powder that is excellent in achieving particularly great effects.
[0036]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to a following example.
[0037]
[Example 1]
Bustnessite concentrate (89% by weight of all oxidized rare earth contained in concentrate, 51% by weight of cerium oxide contained in all oxidized rare earth, lanthanum oxide contained in all oxidized rare earth and A total of 47% by weight of praseodymium oxide) was used as a raw material, and water was added as a solvent thereto, followed by wet grinding using a wet ball mill. At this time, the raw material and water were set to have a weight ratio of 1: 1 as the slurry concentration supplied to the wet ball mill. In addition, the pulverization is performed in the particle size distribution measurement of the pulverized particle powder described later. 50 Grinding was continued until the thickness became 0.5 μm. Then, it filtered with the filter press and obtained the cake containing abrasive material particle powder. After drying the obtained cake, it was baked in an electric furnace previously maintained at 1000 ° C., kept at this temperature for 3 hours, and then allowed to cool. The obtained powder was pulverized, and a cerium-based abrasive particle powder from which coarse powder had been removed was obtained by a dry classifier set to have a classification point of 10 μm.
Furthermore, the classification point was changed to 2 μm for this particle powder, and classification was performed again to obtain a powder from which fine powder was removed.
The obtained powder was evaluated by the following method, and the obtained results are shown in Table 1.
[0038]
(Particle size distribution measurement)
The particle size distribution of the obtained abrasive particle powder was measured as follows.
Abrasive particle powder or slurry containing particle powder is used as a sample. About 0.1 g of the particle powder is placed in 100 ml of a 0.1 wt% sodium hexametaphosphate aqueous solution, and an ultrasonic homogenizer (Nippon Seiki Seisakusho MODEL US-300T) is used. At 300 W for 10 minutes. A part of the obtained dispersion was taken, and the particle size distribution was measured with a Microtrac (Nikkiso Co., Ltd. Microtrac MK-II particle size analyzer SPA MODEL7997-20). Based on the obtained data, a graph of the particle size distribution with the upper limit of the particle size set for each measurement channel is shown in FIG. 1, and the volume cumulative particle size distribution frequency from smaller particle sizes is 10%, 50%, 90%. % Of particle size (μm) in% 10 , D 50 , D 90 As shown in Table 1.
[0039]
[Table 1]
Figure 0003685481
[0040]
[Specific surface area measurement]
The sample was precisely weighed and measured by a nitrogen gas adsorption BET one-point method using a specific surface area measuring device (a fully automatic surface area measuring device manufactured by Yuasa Ionics Co., Ltd., Multisorb type 12). The results are shown in Table 1.
[0041]
[Polishing evaluation]
Using the obtained cerium-based abrasive particle powder, polishing evaluation was performed under the following conditions.
<Adjustment of abrasive slurry>
The obtained abrasive particle powder was dispersed in water to obtain a slurry having a concentration of 10% by weight. This slurry was always mixed using a stirrer during the polishing test.
<Polishing test>
Using an Oscar-type polishing tester (HSP-2I type, manufactured by Taito Seiki Co., Ltd.) as a test apparatus, using a polyurethane polishing pad, 60 mmφ flat panel glass as the material to be polished, and 500 ml of the above abrasive slurry 1000g / cm pressure setting on the polishing surface while supplying at a rate of / min 2 And the rotational speed of the polishing machine was set to 1700 rpm, and polishing was performed for 5 minutes. The glass after polishing was ultrasonically cleaned in pure water for 1 minute, and further washed with pure water and dried in a dust-free state.
<Evaluation method of polishing test>
For the evaluation of the polishing value, the decrease in the weight of the glass before and after polishing was measured, and the polishing value was converted to a relative value when Example 1 was 100.
Further, the presence or absence of scratches on the polishing surface and the presence or absence of the remaining adhered abrasive particles were observed by a reflection method by irradiating the surface of the polished glass with a 300,000 lux halogen lamp as a light source. The scratches were scored by observing the degree and number of the scratches, and evaluated by a point deduction system from a maximum of 100 points. Moreover, the presence or absence of the abrasive remaining on the glass surface was confirmed by observing the polished glass with an optical microscope. The results are shown in Table 1.
[0042]
[Example 2]
Using the same raw materials as in Example 1, wet pulverization was performed in the same manner as in Example 1. The obtained slurry was filtered, dried, put into an electric furnace set at a heating rate of 200 ° C./hr, heated from room temperature to 1000 ° C., and then kept at 1000 ° C. for 3 hours for roasting. . The obtained powder was pulverized and classified according to Example 1 to obtain abrasive particle powder from which coarse particles and fine particles had been removed.
The obtained powder was evaluated according to Example 1, and the obtained results are shown in Table 1.
[0043]
Example 3
As a raw material, cerium-based rare earth oxide (total rare earth oxide content is 99% by weight relative to the total weight of the rare earth oxide, cerium oxide content contained in the total rare earth oxide is 60% by weight, The total amount of lanthanum oxide and praseodymium oxide contained in the soil was 38% by weight), and a cerium-based abrasive particle powder was produced using this. First, a slurry in which the weight ratio of the raw material and water was 1: 2 was supplied to an attritor and wet pulverized. Crushing is used to measure the particle size distribution of the pulverized particle powder. 50 Grinding was continued until the thickness became 0.5 μm. Ammonium fluoride was added to the obtained slurry so that the concentration in the slurry was 0.1 mol / liter, and the mixture was stirred for 2 hours to perform a fluorination treatment, followed by filtration. After the obtained cake was dried, it was baked in an electric furnace in the same manner as in Example 2, and further cooled, pulverized, and classified to obtain a cerium-based abrasive particle powder.
The obtained particle powder was evaluated according to Example 1, and the obtained results are shown in Table 1.
[0044]
Example 4
As a raw material, cerium-based rare earth carbonate (total rare earth oxide content is 70% by weight with respect to the pre-rare earth carbonate weight, the cerium oxide content contained in the total rare earth oxide is 61% by weight, A total of 37% by weight of lanthanum oxide and praseodymium oxide contained in the soil was used as a raw material, and a cerium-based abrasive particle powder was produced using this. First, a slurry in which the weight ratio of the raw material and water was 1: 2 was supplied to an attritor and wet pulverized. Crushing is used to measure the particle size distribution of pulverized particles. 50 Grinding was continued until the thickness became 0.5 μm. Ammonium fluoride was added to the obtained slurry so that the concentration in the slurry became 0.1 mol / liter, and the mixture was stirred for 2 hours to cause a mild reaction, and then filtered. The obtained cake was dried and then baked in an electric furnace in the same manner as in Example 2 and further allowed to cool, pulverize and classify to obtain a cerium-based abrasive particle powder.
The obtained particle powder was evaluated according to Example 1, and the obtained results are shown in Table 1.
[0045]
Example 5
As a raw material, a mixture of 50% by weight of the cerium-based rare earth oxide used in Example 4 and the cerium-based carbonate used in Example 5 was used as a raw material, and a cerium-based abrasive particle powder was produced using this. . First, a slurry in which the weight ratio of the raw material and water was 1: 2 was supplied to an attritor and wet pulverized. Crushing is used to measure the particle size distribution of pulverized particles. 50 Grinding was continued until the thickness became 0.5 μm. The obtained slurry was added so that the concentration of ammonium fluoride was 0.1 mol / liter, and the mixture was stirred for 2 hours to cause a gentle reaction, followed by filtration. After drying the obtained cake, it was baked in an electric furnace in the same manner as in Example 2, allowed to cool, pulverized, and classified to obtain a cerium-based abrasive particle powder.
The obtained particle powder was evaluated according to Example 1, and the obtained results are shown in Table 1.
[0046]
[Comparative Example 1]
The same raw material as in Example 1 was used, and the same treatment as in Example 1 was performed until roasting. Coarse particles were removed from the obtained powder after roasting by a dry classifier having a classification point set to 10 μm, and then treated in the same manner as in Example 1 to obtain abrasive particle powder.
The obtained particle powder was evaluated according to Example 1, and the obtained results are shown in Table 1.
[0047]
In comparison with Comparative Example 1, it can be seen that in Examples 1 to 5, the classification process is advanced, the width of the particle size distribution is narrowed, and excellent evaluation can be obtained as polishing evaluation. It can also be seen that by optimizing the slurry concentration and firing temperature at the time of pulverization, it is possible to obtain an abrasive particle powder excellent in particle size distribution and polishing evaluation that does not depend on raw materials and does not depend on classification. In addition, since the coarse particles are reduced by limiting the heating rate especially during roasting, the particle size distribution described in the present invention is excellent by performing classification on the small particle size side, and the remaining after polishing Abrasive particle powder with less abrasive can be obtained.
On the other hand, since Comparative Example 1 has a large number of fine abrasive particles, d 10 Therefore, a large amount of residual abrasive after polishing was present, and it could not be said that the abrasive particle powder was excellent in cleanability.
[0048]
【The invention's effect】
As described above, by using the abrasive particle powder having the particle size distribution of the present invention, there is no scratch on the polished surface after polishing, and there are few abrasive particles remaining on the polished surface, so that high polishing evaluation is achieved. In particular, optical glass lenses and glass substrates, glass substrates for high-density magnetic recording media, aluminum substrates for high-density magnetic recording media, glass substrates for high-definition liquid crystal displays, silicon substrates for electronic devices, etc. It can be used for polishing applications that require

Claims (3)

酸化セリウム(CeO)を全希土酸化物(TREO)に対して30〜80重量%含有し、かつ、フッ素重量換算でフッ素含有率が0.01〜8重量%であるセリウム系研摩材粒子粉末において、
粒子粉末の粒度分布測定で、小粒径側からの累積粒度分布度数において10%、50%、90%の粒径(μm)をそれぞれd10、d50、d90とした場合、下記(1)式及び(2)式を満足することを特徴とするセリウム系研摩材粒子粉末。
0.1≦d50≦3・・・(1)
90/d10≦8.28・・・(2)
Cerium-based abrasive particles containing 30 to 80% by weight of cerium oxide (CeO 2 ) with respect to all rare earth oxides (TREO) and having a fluorine content of 0.01 to 8% by weight in terms of fluorine weight In the powder
In the particle size distribution measurement of the particle powder, when the particle size (μm) of 10%, 50%, and 90% in the cumulative particle size distribution frequency from the small particle size side is d 10 , d 50 , and d 90 respectively, the following (1 A cerium-based abrasive particle powder characterized by satisfying the formulas (2) and (2).
0.1 ≦ d 50 ≦ 3 (1)
d 90 / d 10 ≦ 8.28 (2)
請求項1に記載のセリウム系研摩材粒子粉末を含有することを特徴とする、セリウム系研摩材スラリー。A cerium-based abrasive slurry comprising the cerium-based abrasive particle powder according to claim 1. 請求項1記載のセリウム系研摩材粒子粉末の製造方法であって、
セリウム系化合物を粉砕、焙焼、分級する工程を含み、
分級工程において、分級点を10μm以下とする大粒径側の分級と、分級点を0.1μm以上とする小粒径側の分級を、それぞれ少なくとも1回ずつ行う工程を含むセリウム系研摩材粒子粉末の製造方法。
A method for producing a cerium-based abrasive particle powder according to claim 1,
Including crushing, roasting, and classifying cerium compounds,
Cerium-based abrasive particles comprising a step of performing classification on the large particle size side with a classification point of 10 μm or less and classification on the small particle size side with a classification point of 0.1 μm or more in the classification step at least once each Powder manufacturing method.
JP2000396533A 2000-12-27 2000-12-27 Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder Expired - Lifetime JP3685481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396533A JP3685481B2 (en) 2000-12-27 2000-12-27 Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396533A JP3685481B2 (en) 2000-12-27 2000-12-27 Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder

Publications (2)

Publication Number Publication Date
JP2002194334A JP2002194334A (en) 2002-07-10
JP3685481B2 true JP3685481B2 (en) 2005-08-17

Family

ID=18861807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396533A Expired - Lifetime JP3685481B2 (en) 2000-12-27 2000-12-27 Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder

Country Status (1)

Country Link
JP (1) JP3685481B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033440B2 (en) * 2001-09-17 2008-01-16 三井金属鉱業株式会社 Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry
TWI314949B (en) * 2002-09-06 2009-09-21 Seimi Chem Kk Polishing compound for insulating film for semiconductor integrated circuit and method for producing semiconductor integrated circuit
TWI370843B (en) * 2004-03-16 2012-08-21 Samsung Corning Prec Mat Co Ceria slurry for polishing semiconductor thin layer
FR3081360B1 (en) * 2018-05-28 2020-07-24 Saint Gobain Ct Recherches BLASTING POWDER

Also Published As

Publication number Publication date
JP2002194334A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
AU752038B2 (en) Improved ceria powder
US6120571A (en) Polishing agent for semiconductor and method for its production
JP3359535B2 (en) Method for manufacturing semiconductor device
KR100543781B1 (en) Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry
JP2003277729A (en) Cerium abrasive material and its preparation process
KR100567678B1 (en) Cerium based abrasive material and abrasive material slurry, and method for producing cerium based abrasive material
US6905527B2 (en) Method of manufacturing cerium-based polishing agent
JP3685481B2 (en) Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
US20060120930A1 (en) Method for setting firing temperature of cerium carbonate, method for producing cerium oxide abrasives and cerium oxide abrasives obtained by the method
JP5237542B2 (en) Cerium oxide abrasive
TWI695060B (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
JP2008001907A (en) Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry
JP2007231158A (en) Cerium-based abrasive
JP4070180B2 (en) Method for producing cerium-based abrasive
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
TWI285674B (en) Cerium-based abrasive and production process thereof
JP3986384B2 (en) Cerium-based abrasive and method for producing the same
JP2004175964A (en) Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP3986410B2 (en) Method for producing cerium-based abrasive slurry and cerium-based abrasive slurry obtained thereby
JPH11181407A (en) Cerium oxide abrasive and grinding of substrate
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JPH11181406A (en) Cerium oxide abrasive and grinding of substrate
JP2004189857A (en) Cerium type abrasive and manufacturing method of cerium type abrasive, and quality evaluation method of cerium type abrasive

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041029

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3685481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term