JPH11181406A - Cerium oxide abrasive and grinding of substrate - Google Patents

Cerium oxide abrasive and grinding of substrate

Info

Publication number
JPH11181406A
JPH11181406A JP34924397A JP34924397A JPH11181406A JP H11181406 A JPH11181406 A JP H11181406A JP 34924397 A JP34924397 A JP 34924397A JP 34924397 A JP34924397 A JP 34924397A JP H11181406 A JPH11181406 A JP H11181406A
Authority
JP
Japan
Prior art keywords
cerium oxide
particles
polishing
insulating film
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34924397A
Other languages
Japanese (ja)
Inventor
Toranosuke Ashizawa
寅之助 芦沢
Hiroto Otsuki
裕人 大槻
Masato Yoshida
誠人 吉田
Hiroki Terasaki
裕樹 寺崎
Yasushi Kurata
靖 倉田
Jun Matsuzawa
純 松沢
Kiyohito Tanno
清仁 丹野
Takashi Sakurada
剛史 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP34924397A priority Critical patent/JPH11181406A/en
Publication of JPH11181406A publication Critical patent/JPH11181406A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cerium oxide abrasive intended for high-speed grinding of the surface of SiO2 insulation films to-be-ground or the like without causing any scratches. SOLUTION: This cerium oxide abrasive comprises a slurry which is prepared by dispersing in a medium cerium oxide particles 150-450 nm in the median of size with 3-40 vol.% thereof being >=500 nm. An Si wafer provided with an SiO2 insulation film made by tetraethoxysilane(TEOS)-CVD method or the like is ground with this abrasive.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化セリウム研磨
剤及び基板の研磨法に関する。
The present invention relates to a cerium oxide abrasive and a method for polishing a substrate.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程において、
プラズマ−CVD、低圧−CVD等の方法で形成される
SiO2 絶縁膜等無機絶縁膜層を平坦化するための化学
機械研磨剤として、コロイダルシリカ系の研磨剤が一般
的に検討されている。コロイダルシリカ系の研磨剤は、
シリカ粒子を四塩化珪酸を熱分解する等の方法で粒成長
させ、アルカリ溶液でpH調整を行って製造している。
しかしながら、この様な研磨剤は無機絶縁膜の研磨速度
が充分な速度を持たず、実用化には低研磨速度という技
術課題がある。
2. Description of the Related Art Conventionally, in the manufacturing process of a semiconductor device,
As a chemical mechanical polishing agent for planarizing an inorganic insulating film layer such as an SiO 2 insulating film formed by a method such as plasma-CVD or low-pressure-CVD, colloidal silica-based polishing agents are generally studied. Colloidal silica-based abrasives
The silica particles are produced by growing grains by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting the pH with an alkaline solution.
However, such a polishing agent does not have a sufficient polishing rate for the inorganic insulating film, and there is a technical problem of a low polishing rate for practical use.

【0003】一方、フォトマスクやレンズ等のガラス表
面研磨として、酸化セリウム研磨剤が用いられている。
酸化セリウム粒子は、シリカ粒子やアルミナ粒子に比べ
硬度が低く、したがって研磨表面に傷が入りにくいこと
から仕上げ鏡面研磨に有用である。また、酸化セリウム
は強い酸化剤として知られるように、化学的活性な性質
を有している。この利点を活かし、絶縁膜用化学機械研
磨剤への適用が有用である。しかしながら、ガラス表面
研磨用酸化セリウム研磨剤は、不純物を多く含有するた
めそのまま半導体用研磨剤として適用することはできな
い。さらに、ガラス表面研磨用酸化セリウム研磨剤をそ
のまま無機絶縁膜研磨に適用すると、酸化セリウム粒子
径(一次粒子や凝集粒子)が大きく、そのため絶縁膜表
面に目視で観察できる研磨傷が入ってしまう。
On the other hand, cerium oxide abrasives have been used for polishing glass surfaces such as photomasks and lenses.
Cerium oxide particles have a lower hardness than silica particles and alumina particles and are therefore less likely to scratch the polished surface, and thus are useful for finish mirror polishing. Cerium oxide also has chemically active properties, as is known as a strong oxidizing agent. Taking advantage of this advantage, application to a chemical mechanical polishing agent for an insulating film is useful. However, a cerium oxide abrasive for polishing a glass surface contains a large amount of impurities, and therefore cannot be used as it is as a semiconductor abrasive. Furthermore, when the cerium oxide abrasive for polishing the glass surface is applied to the polishing of the inorganic insulating film as it is, the cerium oxide particle diameter (primary particles and aggregated particles) is large, and polishing scratches that can be visually observed are formed on the insulating film surface.

【0004】[0004]

【発明が解決しようとする課題】本発明は、SiO2
縁膜等の被研磨面を傷なく高速に研磨することが可能な
酸化セリウム研磨剤および基板の研磨法を提供するもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cerium oxide abrasive and a substrate polishing method capable of polishing a surface to be polished such as an SiO 2 insulating film at a high speed without damage.

【0005】[0005]

【課題を解決するための手段】本発明の酸化セリウム研
磨剤は、酸化セリウム粒子、分散剤、及び水を含むもの
である。酸化セリウムは炭酸塩、硝酸塩、硫酸塩、しゅ
う酸塩等のセリウム化合物を焼成または溶解−酸化する
ことによって得られる。本発明の酸化セリウム研磨剤を
構成する酸化セリウム粒子は、500nm以上の粒子径
の含有量が全酸化セリウム粒子の3〜40体積%のもの
で、高速研磨が可能で研磨傷を防止できる。粒子径の中
央値が150〜450nmであることが好ましい。酸化
セリウム粒子の粒子径は、レーザー回折法(例えば測定
装置、Malvern Instruments社製
Mastersizer Microplus、光源H
e−Neレーザー、粒子の屈折率1.9285、吸収0
で測定)で測定する。中央値は、体積粒子径分布の中央
値であり、粒子径の細かいものからその粒子の体積割合
を積算していき50%になったときの粒子径を意味す
る。すなわち、ある区間Δの粒子径の範囲に体積割合V
i%の量の粒子が存在するとき、区間Δの平均粒子径を
diとすると粒子径diの粒子がVi体積%存在すると
する。粒子径diの小さい方から粒子の存在割合Vi
(体積%)を積算していき、Vi=50%になったとき
のdiを中央値とする。酸化セリウム研磨剤中の酸化セ
リウム粒子は、99体積%以上が3000nm以下であ
ることが好ましい。本発明の基板の研磨法は、上記の酸
化セリウム研磨剤で所定の基板、例えばSiO2 絶縁膜
が形成された基板で研磨することを特徴とするものであ
る。本発明は、粒子径を制御した酸化セリウム粒子を含
む酸化セリウム研磨剤が、SiO2 絶縁膜等の被研磨面
を傷なく高速に研磨することを見い出したことによりな
されたものである。
The cerium oxide abrasive of the present invention contains cerium oxide particles, a dispersant, and water. Cerium oxide is obtained by calcining or dissolving and oxidizing cerium compounds such as carbonates, nitrates, sulfates, and oxalates. The cerium oxide particles constituting the cerium oxide abrasive of the present invention have a particle diameter of 500 nm or more in a content of 3 to 40% by volume of the total cerium oxide particles, and can perform high-speed polishing and prevent polishing scratches. The median value of the particle diameter is preferably 150 to 450 nm. The particle diameter of the cerium oxide particles can be determined by a laser diffraction method (for example, a measuring device, manufactured by Malvern Instruments).
Mastersizer Microplus, light source H
e-Ne laser, particle refractive index 1.9285, absorption 0
Measurement). The median value is the median value of the volume particle size distribution, and means the particle size when the volume ratio of the particles from the finer particle size is increased to 50%. That is, the volume ratio V falls within the range of the particle diameter in a certain section Δ.
When particles having an amount of i% are present, if the average particle diameter in the section Δ is di, it is assumed that particles having a particle diameter di exist in Vi volume%. Particle existence ratio Vi from the smaller particle diameter di
(Volume%) are integrated, and di when Vi = 50% is set as a median value. It is preferable that 99% by volume or more of the cerium oxide particles in the cerium oxide abrasive is 3000 nm or less. The substrate polishing method of the present invention is characterized in that a predetermined substrate, for example, a substrate on which an SiO 2 insulating film is formed is polished with the above-mentioned cerium oxide abrasive. The present invention has been made based on the finding that a cerium oxide abrasive containing cerium oxide particles having a controlled particle diameter can polish a surface to be polished such as a SiO 2 insulating film at high speed without damage.

【0006】[0006]

【発明の実施の形態】本発明の酸化セリウム研磨剤を構
成する酸化セリウム粒子は、粒子径500nm以上の含
有量が5〜40体積%であり、粒子径の中央値が150
〜450nmであることが好ましい。本発明の酸化セリ
ウム研磨剤は、粒子径500nm以上の含有量が5〜4
0体積%とサブミクロンの粒子が多いために、自然沈降
で測定すると測定時間が1か月以上となるため、沈降測
定の場合は、遠心沈降法が好ましい。酸化セリウム研磨
剤中の酸化セリウム粒子は、99体積%以上が3000
nm以下であることが好ましい。また半導体チップ研磨
に使用することから、アルカリ金属およびハロゲン類の
含有率は、10ppm以下に抑えることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The cerium oxide particles constituting the cerium oxide abrasive of the present invention have a content of 5 nm to 40% by volume with a particle diameter of 500 nm or more and a median particle diameter of 150%.
Preferably it is ~ 450 nm. The cerium oxide abrasive of the present invention has a content of 5 nm or more having a particle diameter of 500 nm or more.
Since there are many submicron particles at 0% by volume, the measurement time is one month or more when measured by natural sedimentation. For sedimentation measurement, the centrifugal sedimentation method is preferable. 99 volume% or more of cerium oxide particles in the cerium oxide abrasive is 3000
nm or less. Further, since it is used for polishing a semiconductor chip, the content of alkali metals and halogens is preferably suppressed to 10 ppm or less.

【0007】本発明において、酸化セリウム粉末を作製
する方法として、焼成法またはセリウム化合物水溶液の
酸化法が使用できる。焼成温度は、600℃以上900
℃以下が好ましい。セリウム化合物水溶液中で酸化する
方法としては、セリウム水溶液に硝酸等の酸及び過酸化
水素水等の酸化剤を加える方法がある。上記の方法によ
り製造された酸化セリウム粒子は凝集しているため、機
械的に粉砕することが好ましい。粉砕方法として、ジェ
ットミル等による乾式粉砕や遊星ビーズミル等による湿
式粉砕方法が好ましい。ジェットミルは、例えば化学工
学業論文集第6巻第5号(1980)527〜532頁
に説明されている。
In the present invention, as a method for producing cerium oxide powder, a firing method or an oxidation method of an aqueous cerium compound solution can be used. The firing temperature is 600 ° C or higher and 900
C. or less is preferred. As a method of oxidizing in a cerium compound aqueous solution, there is a method of adding an acid such as nitric acid and an oxidizing agent such as aqueous hydrogen peroxide to the cerium aqueous solution. Since the cerium oxide particles produced by the above method are agglomerated, it is preferable to mechanically pulverize the particles. As the pulverization method, a dry pulverization method using a jet mill or the like or a wet pulverization method using a planetary bead mill or the like is preferable. The jet mill is described, for example, in Chemical Engineering Transactions, Vol. 6, No. 5, (1980), pp. 527-532.

【0008】本発明における酸化セリウムスラリーは、
例えば上記の特徴を有する酸化セリウム粒子とポリアク
リル酸アンモニウム塩を含む分散剤と水からなる組成物
を分散させることによって得られる。ここで、酸化セリ
ウム粒子の濃度に制限はないが、懸濁液の取り扱いやす
さから0.5以上20重量%以下の範囲が好ましい。ま
た、分散剤として、半導体チップ研磨に使用することか
らNa、K等のアルカリ金属および、ハロゲン、イオウ
を含まないものとしてポリアクリル酸アンモニウム塩が
好ましい。また、ポリアクリル酸アンモニウム塩と水溶
性有機高分子類(ポリグリセリン脂肪酸エステル等)、
水溶性陰イオン性界面活性剤(アルキルエーテルカルボ
ン酸塩)、水溶性非イオン性界面活性剤(ポリエチレン
グリコールモノステアレート等)、水溶性アミン類(モ
ノエタノールアミン等)から選ばれた少なくとも1種類
を含む2種類以上の分散剤を使用してもよい。これらの
分散剤添加量は、スラリー中の粒子の分散性および沈降
防止、さらに研磨傷と分散剤添加量との関係から、酸化
セリウム粒子100重量部に対して0.01以上2.0
重量部以下の範囲が好ましい。ポリアクリル酸アンモニ
ウム塩の分子量(重量平均分子量)は、1000〜10
000が好ましく、3000〜8000がより好まし
い。これらの酸化セリウム粒子を水中に分散させる方法
としては、通常の撹拌機による分散処理の他にホモジナ
イザ−、超音波分散機、ビーズミル、遊星ボールミル、
振動ミル等を用いることができる。分散後のスラリー中
の大きな凝集粒子を分級により除去する方法としては、
沈降分離法、液体サイクロン、フィルターろ過等を用い
ることができる。
[0008] The cerium oxide slurry in the present invention comprises:
For example, it can be obtained by dispersing a composition composed of water and a dispersant containing cerium oxide particles having the above characteristics, ammonium polyacrylate, and the like. Here, the concentration of the cerium oxide particles is not limited, but is preferably in the range of 0.5 to 20% by weight from the viewpoint of easy handling of the suspension. As a dispersant, an alkali metal such as Na or K, and ammonium polyacrylate are preferable because they do not contain halogen or sulfur because they are used for polishing semiconductor chips. In addition, ammonium polyacrylate and water-soluble organic polymers (such as polyglycerin fatty acid ester),
At least one selected from a water-soluble anionic surfactant (alkyl ether carboxylate), a water-soluble nonionic surfactant (polyethylene glycol monostearate, etc.), and a water-soluble amine (monoethanolamine, etc.) May be used. The amount of the dispersant added is preferably 0.01 to 2.0 parts by weight based on 100 parts by weight of the cerium oxide particles in view of the dispersibility of the particles in the slurry and the prevention of sedimentation, and the relationship between the polishing scratches and the amount of the dispersant added.
A range of not more than parts by weight is preferred. The molecular weight (weight average molecular weight) of the ammonium polyacrylate is 1000 to 10
000 is preferable, and 3000 to 8000 is more preferable. Methods for dispersing these cerium oxide particles in water include homogenizers, ultrasonic dispersers, bead mills, planetary ball mills, as well as dispersion treatments with ordinary stirrers.
A vibration mill or the like can be used. As a method of removing large agglomerated particles in the slurry after dispersion by classification,
A sedimentation separation method, liquid cyclone, filter filtration, and the like can be used.

【0009】本発明の酸化セリウム研磨剤は、上記スラ
リ−をそのまま使用してもよいが、N,N−ジエチルエ
タノ−ルアミン、N,N−ジメチルエタノ−ルアミン、
アミノエチルエタノ−ルアミン等の添加剤を添加して研
磨剤とすることができる。
In the cerium oxide abrasive of the present invention, the above slurry may be used as it is, but N, N-diethylethanolamine, N, N-dimethylethanolamine,
Additives such as aminoethylethanolamine can be added to make an abrasive.

【0010】本発明の酸化セリウム研磨剤が使用される
無機絶縁膜の作製方法として、低圧CVD法、プラズマ
CVD法等が挙げられる。低圧CVD法によるSiO2
絶縁膜形成は、Si源としてモノシラン:SiH4 、酸
素源として酸素:O2 を用いる。このSiH4 −O2
酸化反応を400℃程度以下の低温で行わせることによ
り得られる。場合によっては、CVD後1000℃また
はそれ以下の温度で熱処理される。高温リフローによる
表面平坦化を図るために、リン:Pをドープするときに
は、SiH4 −O2 −PH3 系反応ガスを用いることが
好ましい。プラズマCVD法は、通常の熱平衡下では高
温を必要とする化学反応が低温でできる利点を有する。
プラズマ発生法には、容量結合型と誘導結合型の2つが
挙げられる。反応ガスとしては、Si源としてSi
4 、酸素源としてN2 Oを用いたSiH4 −N2 O系
ガスとテトラエトキシシラン(TEOS)をSi源に用
いたTEOS−O2 系ガス(TEOS−プラズマCVD
法)が挙げられる。基板温度は250℃〜400℃、反
応圧力は67〜400Paの範囲が好ましい。このよう
に、本発明のSiO2 絶縁膜にはリン、ホウ素等の元素
がド−プされていても良い。
As a method for forming an inorganic insulating film using the cerium oxide abrasive of the present invention, a low pressure CVD method, a plasma CVD method and the like can be mentioned. SiO 2 by low pressure CVD
In forming the insulating film, monosilane: SiH 4 is used as a Si source, and oxygen: O 2 is used as an oxygen source. This is obtained by performing the SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. In some cases, heat treatment is performed at a temperature of 1000 ° C. or lower after CVD. When doping phosphorus: P in order to planarize the surface by high-temperature reflow, it is preferable to use a SiH 4 —O 2 —PH 3 -based reaction gas. The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium.
The plasma generation method includes two types, a capacitive coupling type and an inductive coupling type. As a reaction gas, Si is used as a Si source.
H 4, SiH 4 -N 2 O-based gas and TEOS-O 2 based gas using tetraethoxysilane (TEOS) to Si source using N 2 O as oxygen source (TEOS-plasma CVD
Method). The substrate temperature is preferably from 250 to 400 ° C., and the reaction pressure is preferably from 67 to 400 Pa. As described above, the elements such as phosphorus and boron may be doped in the SiO 2 insulating film of the present invention.

【0011】所定の基板として、半導体基板すなわち回
路素子と配線パターンが形成された段階の半導体基板、
回路素子が形成された段階の半導体基板等の半導体基板
上に、SiO2 絶縁膜層が形成された基板が使用でき
る。このような半導体基板上に形成されたSiO2 絶縁
膜層を、上記酸化セリウム研磨剤で研磨することによっ
て、SiO2 絶縁膜層表面の凹凸を解消し、半導体基板
全面に渡って平滑な面とする。ここで、研磨する装置と
しては、半導体基板を保持するホルダーと研磨布(パッ
ド)を貼り付けた(回転数が変更可能なモータ等を取り
付けてある)定盤を有する一般的な研磨装置が使用でき
る。研磨布としては、一般的な不織布、発泡ポリウレタ
ン、多孔質フッ素樹脂等が使用でき、特に制限がない。
また、研磨布には、スラリーが溜まる様な溝加工を施す
ことが好ましい。研磨条件には制限はないが、定盤の回
転速度は、半導体が飛び出さない様に100rpm以下
の低回転が好ましく、半導体基板にかける圧力は、研磨
後に傷が発生しない様に1kg/cm2 以下が好まし
い。研磨している間、研磨布にはスラリーをポンプ等で
連続的に供給する。この供給量には制限はないが、研磨
布の表面が常にスラリーで覆われていることが好まし
い。
The predetermined substrate is a semiconductor substrate, that is, a semiconductor substrate in which circuit elements and wiring patterns are formed,
A substrate in which a SiO 2 insulating film layer is formed on a semiconductor substrate such as a semiconductor substrate at a stage where circuit elements are formed can be used. The SiO 2 insulating film layer formed on such a semiconductor substrate is polished with the above cerium oxide abrasive to eliminate irregularities on the surface of the SiO 2 insulating film layer and to provide a smooth surface over the entire semiconductor substrate. I do. Here, as a polishing apparatus, a general polishing apparatus having a holder for holding a semiconductor substrate and a platen on which a polishing cloth (pad) is attached (a motor or the like capable of changing the number of rotations is attached) is used. it can. As the polishing cloth, a general nonwoven fabric, foamed polyurethane, porous fluororesin, or the like can be used, and there is no particular limitation.
Further, it is preferable that the polishing cloth is subjected to groove processing such that the slurry is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 100 rpm or less so that the semiconductor does not jump out, and the pressure applied to the semiconductor substrate is 1 kg / cm 2 so that scratches are not generated after polishing. The following is preferred. During polishing, the slurry is continuously supplied to the polishing cloth by a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with the slurry.

【0012】研磨終了後の半導体基板は、流水中で良く
洗浄後、スピンドライヤ等を用いて半導体基板上に付着
した水滴を払い落としてから乾燥させることが好まし
い。このようにして平坦化されたSiO2 絶縁膜層の上
に、第2層目のアルミニウム配線を形成し、その配線間
および配線上に再度上記方法により、SiO2 絶縁膜を
形成後、上記酸化セリウム研磨剤を用いて研磨すること
によって、絶縁膜表面の凹凸を解消し、半導体基板全面
に渡って平滑な面とする。この工程を所定数繰り返すこ
とにより、所望の層数の半導体を製造する。
It is preferable that the semiconductor substrate after the polishing is thoroughly washed in running water, and then water drops adhering to the semiconductor substrate are wiped off using a spin drier or the like, and then dried. On this way, the SiO 2 insulating film layer which is flattened, forming an aluminum wiring of the second layer, again by the above method on the inter-wiring and the wiring, after forming the SiO 2 insulating film, the oxide By polishing using a cerium abrasive, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.

【0013】本発明の酸化セリウム研磨剤は、半導体基
板に形成されたSiO2 絶縁膜だけでなく、所定の配線
を有する配線板に形成されたSiO2 絶縁膜、ガラス、
窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プ
リズム等の光学ガラス、ITO等の無機導電膜、ガラス
及び結晶質材料で構成される光集積回路・光スイッチン
グ素子・光導波路、光ファイバ−の端面、シンチレ−タ
等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザLE
D用サファイア基板、SiC、GaP、GaAs等の半
導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等
を研磨するために使用される。このように本発明におい
て所定の基板とは、SiO2 絶縁膜が形成された半導体
基板、SiO2 絶縁膜が形成された配線板、ガラス、窒
化ケイ素等の無機絶縁膜が形成された基板、フォトマス
ク・レンズ・プリズム等の光学ガラス、ITO等の無機
導電膜、ガラス及び結晶質材料で構成される光集積回路
・光スイッチング素子・光導波路、光ファイバ−の端
面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結
晶、青色レ−ザLED用サファイア基板、SiC、Ga
P、GaAs等の半導体単結晶、磁気ディスク用ガラス
基板、磁気ヘッド等を含む。
The cerium oxide abrasive of the present invention can be used not only for an SiO 2 insulating film formed on a semiconductor substrate but also for an SiO 2 insulating film formed on a wiring board having predetermined wiring, glass,
Inorganic insulating films such as silicon nitride, optical glasses such as photomasks, lenses, and prisms; inorganic conductive films such as ITO; optical integrated circuits, optical switching elements, optical waveguides, and optical fibers composed of glass and crystalline materials. Single crystal for optics such as end face, scintillator, solid laser single crystal, blue laser LE
It is used for polishing a sapphire substrate for D, a semiconductor single crystal such as SiC, GaP, GaAs, a glass substrate for a magnetic disk, a magnetic head, and the like. Thus the predetermined substrate in the present invention, SiO 2 semiconductor substrate on which an insulating film is formed, SiO 2 insulating film is formed wiring board, a glass substrate an inorganic insulating film such as silicon nitride is formed, the photo Optical glass such as masks, lenses, prisms, etc., inorganic conductive films such as ITO, optical integrated circuits, optical switching elements, optical waveguides composed of glass and crystalline materials, optical fiber end faces, scintillators, etc. Single crystal, solid laser single crystal, sapphire substrate for blue laser LED, SiC, Ga
Includes semiconductor single crystals such as P and GaAs, glass substrates for magnetic disks, magnetic heads, and the like.

【0014】[0014]

【実施例】実施例1 (酸化セリウム粒子の作製1)炭酸セリウム水和物2k
gを白金製容器に入れ、800℃で2時間空気中で焼成
することにより、黄白色の粉末を約1kg得た。この粉
末をX線回折法で相同定を行ったところ、酸化セリウム
であることを確認した。焼成粉末粒子径は30〜100
μmであった。焼成粉末粒子表面を走査型電子顕微鏡で
観察したところ、酸化セリウムの粒界が観察された。粒
界に囲まれた酸化セリウム一次粒子径を測定したとこ
ろ、その分布の中央値が190nm、最大値が500n
mであった。焼成粉末についてX線回折精密測定を行
い、その結果についてリートベルト法(RIETAN−
94)による解析で、一次粒子径を表わす構造パラメー
ター:Xの値が0.080、等方的微少歪みを表わす構
造パラメーター:Yの値が0.223であった。酸化セ
リウム粉末1kgをジェットミルを用いて乾式粉砕を行
った。粉砕粒子について走査型電子顕微鏡で観察したと
ころ、一次粒子径と同等サイズの小さな粒子の他に、1
μmから3μmの大きな粉砕粒子と0.5から1μmの
粉砕粒子が混在していた。これらの粉砕粒子は、一次粒
子の凝集体ではない。粉砕粒子についてX線回折精密測
定を行い、その結果についてリートベルト法(RIET
AN−94)による解析で、一次粒子径を表わす構造パ
ラメーター:Xの値が0.085、等方的微少歪みを表
わす構造パラメーター:Yの値が0.264であった。
この結果、粉砕による一次粒子径変量は殆どなく、また
粉砕により粒子に歪みが導入されていた。さらに、BE
T法による比表面積測定の結果、10m2 /gであるこ
とがわかった。
EXAMPLES Example 1 (Production of cerium oxide particles 1) Cerium carbonate hydrate 2k
g was placed in a platinum container and calcined at 800 ° C. for 2 hours in air to obtain about 1 kg of a yellow-white powder. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed that the powder was cerium oxide. The calcined powder particle size is 30-100
μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median of the distribution was 190 nm and the maximum was 500 n.
m. X-ray diffraction precision measurement was performed on the calcined powder, and the results were analyzed using the Rietveld method (Rietan-
In the analysis according to 94), the value of the structural parameter representing the primary particle diameter: X was 0.080, and the value of the structural parameter representing the isotropic micro-strain: Y was 0.223. 1 kg of cerium oxide powder was dry-ground using a jet mill. Observation of the pulverized particles with a scanning electron microscope revealed that, in addition to small particles having the same size as the primary particle size, 1
Large crushed particles of 3 μm to 3 μm and crushed particles of 0.5 to 1 μm were mixed. These ground particles are not aggregates of primary particles. X-ray diffraction precision measurement is performed on the pulverized particles, and the result is measured using the Rietveld method (Riet method).
According to the analysis by AN-94), the value of the structural parameter indicating the primary particle diameter: X was 0.085, and the value of the structural parameter indicating the isotropic micro-strain: Y was 0.264.
As a result, there was almost no change in the primary particle diameter due to the pulverization, and distortion was introduced into the particles by the pulverization. In addition, BE
As a result of measuring the specific surface area by the T method, it was found that the specific surface area was 10 m 2 / g.

【0015】(酸化セリウム粒子の作製2)酸化セリウ
ム粒子の作製1で用いたのと同じ炭酸セリウム水和物2
kgを白金製容器に入れ、750℃で2時間空気中で焼
成することにより、黄白色の粉末を約1kg得た。この
粉末をX線回折法で相同定を行ったところ、酸化セリウ
ムであることを確認した。焼成粉末粒子径は30〜10
0μmであった。焼成粉末粒子表面を走査型電子顕微鏡
で観察したところ、酸化セリウムの粒界が観察された。
粒界に囲まれた酸化セリウム一次粒子径を測定したとこ
ろ、その分布の中央値が141nm、最大値が400n
mであった。焼成粉末についてX線回折精密測定を行
い、その結果についてリートベルト法(RIRTAN−
94)による解析で、一次粒子径を表わす構造パラメー
ター:Xの値が0.101、等方的微少歪みを表わす構
造パラメーター:Yの値が0.223であった。酸化セ
リウム粉末1kgをジェットミルを用いて乾式粉砕を行
った。粉砕粒子について走査型電子顕微鏡で観察したと
ころ、一次粒子径と同等サイズの小さな粒子の他に、1
μmから3μmの大きな粉砕粒子と0.5から1μmの
粉砕粒子が混在していた。これらの粉砕粒子は、一次粒
子の凝集体ではない。粉砕粒子についてX線回折精密測
定を行い、その結果についてリートベルト法(RIET
AN−94)による解析で、一次粒子径を表わす構造パ
ラメーター:Xの値が0.104、等方的微少歪みを表
わす構造パラメーター:Yの値が0.315であった。
この結果、粉砕による一次粒子径変量は殆どなく、また
粉砕により粒子に歪みが導入されていた。さらに、BE
T法による比表面積測定の結果、16m2 /gであるこ
とがわかった。
(Preparation of cerium oxide particles 2) The same cerium carbonate hydrate 2 used in preparation of cerium oxide particles 1
The resulting powder was placed in a platinum container and calcined at 750 ° C. for 2 hours in the air to obtain about 1 kg of a yellowish white powder. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed that the powder was cerium oxide. Fired powder particle size is 30 to 10
It was 0 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed.
When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median of the distribution was 141 nm and the maximum was 400 n.
m. X-ray diffraction precision measurement was performed on the calcined powder, and the results were analyzed using the Rietveld method (RIRTAN-
In the analysis according to 94), the value of the structural parameter representing the primary particle diameter: X was 0.101, and the value of the structural parameter representing the isotropic micro-strain: Y was 0.223. 1 kg of cerium oxide powder was dry-ground using a jet mill. Observation of the pulverized particles with a scanning electron microscope revealed that, in addition to small particles having the same size as the primary particle size, 1
Large crushed particles of 3 μm to 3 μm and crushed particles of 0.5 to 1 μm were mixed. These ground particles are not aggregates of primary particles. X-ray diffraction precision measurement is performed on the pulverized particles, and the result is measured using the Rietveld method (Riet method).
According to the analysis by AN-94), the value of the structural parameter indicating the primary particle diameter: X was 0.104, and the value of the structural parameter indicating the isotropic micro strain: Y was 0.315.
As a result, there was almost no change in the primary particle diameter due to the pulverization, and distortion was introduced into the particles by the pulverization. In addition, BE
The specific surface area measured by the T method was found to be 16 m 2 / g.

【0016】(酸化セリウムスラリーの作製)上記作製
1、2の酸化セリウム粒子1kgとポリアクリル酸アン
モニウム塩水溶液(40重量%)23gと脱イオン水8
977gを混合し、撹拌しながら超音波分散を10分間
施した。得られたスラリーを5μmフィルターでろ過を
し、さらに脱イオン水を加えることにより3wt%研磨
剤を得た。スラリーpHは8.3であった。スラリー粒
子の粒度分布をレーザー回折法(測定装置:Malve
rn Instruments社製 Mastersi
zer Microplus、光源He−Neレーザ
ー、粒子の屈折率1.9285、吸収0で測定)を用い
て調べたところ、中央値が酸化セリウム粒子の作製1に
よるスラリーは200nm、酸化セリウム粒子の作製2
によるスラリーは280nmであった。500nm以上
の粒子の含有量は、酸化セリウム粒子の作製1によるス
ラリーが13.4体積%、酸化セリウム粒子の作製2に
よるスラリーが37.8体積%、最大粒子径は共に19
50nmであった。スラリーの分散性およびスラリー粒
子の電荷を調べるため、スラリーのゼータ電位を調べ
た。両側に白金製電極を取り付けてある測定セルに酸化
セリウムスラリーを入れ、両電極に10Vの電圧を印加
した。電圧を印加することにより電荷を持ったスラリー
粒子は、その電荷と反対の極を持つ電極側に移動する。
この移動速度を求めることにより、粒子のゼータ電位を
求めることができる。ゼータ電位測定の結果、それぞれ
マイナスに荷電し、−38mV、−55mVと絶対値が
大きく分散性が良好であることを確認した。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared in Preparations 1 and 2, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8
977 g were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered with a 5 μm filter, and 3 wt% abrasive was obtained by adding deionized water. The slurry pH was 8.3. The particle size distribution of the slurry particles was measured by a laser diffraction method (measuring device: Malve
Mastersi made by rn Instruments
zer Microplus, light source He-Ne laser, refractive index of the particles was 1.9285, and the absorption was measured at 0).
Was 280 nm. The content of particles having a particle diameter of 500 nm or more was 13.4% by volume for the slurry obtained from preparation 1 of cerium oxide particles, 37.8% by volume for the slurry obtained from preparation 2 of cerium oxide particles, and the maximum particle diameter was 19 in both cases.
It was 50 nm. In order to examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was placed in a measurement cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the electrode side having the opposite pole to the charge.
By determining the moving speed, the zeta potential of the particles can be determined. As a result of the zeta potential measurement, it was confirmed that each was negatively charged, and the absolute values were -38 mV and -55 mV, and the dispersibility was good.

【0017】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーに、TEOS−プ
ラズマCVD法で作製したSiO2 絶縁膜を形成させた
Siウエハをセットし、多孔質ウレタン樹脂製の研磨パ
ッドを貼り付けた定盤上に、絶縁膜面を下にしてホルダ
ーを載せ、さらに加工荷重が300g/cm2 になるよ
うに重しを載せた。定盤上に、上記の酸化セリウムスラ
リー(固形分:3重量%)を50cc/minの速度で
滴下しながら、定盤を30rpmで2分間回転させ、絶
縁膜を研磨した。研磨後ウエハをホルダーから取り外し
て、流水で良く洗浄後、超音波洗浄機によりさらに20
分間洗浄した。洗浄後、ウエハをスピンドライヤーで水
滴を除去し、120℃の乾燥機で10分間乾燥させた。
光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を
測定した結果、この研磨によりそれぞれ620nm、6
40nm(研磨速度:310nm/min、320nm
/min)の絶縁膜が削られ、ウエハ全面に渡って均一
の厚みになっていることがわかった。また、光学顕微鏡
を用いて絶縁膜表面を観察したところ、明確な傷は見ら
れなかった。
(Polishing of Insulating Film Layer) A Si wafer having a SiO 2 insulating film formed by a TEOS-plasma CVD method is set on a holder to which a suction pad for holding a substrate to be held is attached, and a porous urethane is formed. The holder was placed on the surface plate to which the resin polishing pad was attached, with the insulating film face down, and a weight was placed so that the processing load was 300 g / cm 2 . The cerium oxide slurry (solid content: 3% by weight) was dropped on the platen at a rate of 50 cc / min, and the platen was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, the wafer is removed from the holder, washed well with running water, and then further cleaned with an ultrasonic cleaner.
Washed for minutes. After the cleaning, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes.
The change in film thickness before and after polishing was measured using a light interference type film thickness measuring device.
40 nm (polishing rate: 310 nm / min, 320 nm
/ Min) of the insulating film was removed, and the thickness was uniform over the entire surface of the wafer. When the surface of the insulating film was observed using an optical microscope, no clear damage was found.

【0018】実施例2 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、800℃で2時間空気中で焼成す
ることにより、黄白色の粉末を約1kg得た。この粉末
をX線回折法で相同定を行ったところ、酸化セリウムで
あることを確認した。焼成粉末粒子径は30〜100μ
mであった。焼成粉末粒子表面を走査型電子顕微鏡で観
察したところ、酸化セリウムの粒界が観察された。粒界
に囲まれた酸化セリウム一次粒子径を測定したところ、
その分布の中央値が190nm、最大値が500nmで
あった。焼成粉末についてX線回折精密測定を行い、そ
の結果についてリートベルト法(RIETAN−94)
による解析で、一次粒子径を表わす構造パラメーター:
Xの値が0.080、等方的微少歪みを表わす構造パラ
メーター:Yの値が0.223であった。酸化セリウム
粉末1kgをジェットミルを用いて乾式粉砕を行った。
粉砕粒子について走査型電子顕微鏡で観察したところ、
一次粒子径と同等サイズの小さな粒子の他に、1μmか
ら3μmの大きな粉砕粒子と0.5から1μmの粉砕粒
子が混在していた。これらの粉砕粒子は、一次粒子の凝
集体ではない。粉砕粒子についてX線回折精密測定を行
い、その結果についてリートベルト法(RIETAN−
94)による解析で、一次粒子径を表わす構造パラメー
ター:Xの値が0.085、等方的微少歪みを表わす構
造パラメーター:Yの値が0.264であった。この結
果、粉砕による一次粒子径変量は殆どなく、また粉砕に
より粒子に歪みが導入されていた。さらに、BET法に
よる比表面積測定の結果、10m2 /gであることがわ
かった。
Example 2 (Preparation of cerium oxide particles) 2 kg of cerium carbonate hydrate
Was put in a platinum container and calcined at 800 ° C. for 2 hours in the air to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed that the powder was cerium oxide. Fired powder particle size is 30 ~ 100μ
m. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by grain boundaries was measured,
The median of the distribution was 190 nm and the maximum was 500 nm. X-ray diffraction precision measurement is performed on the fired powder, and the result is Rietveld method (Rietan-94).
Structural parameters representing the primary particle size, as analyzed by:
The value of X was 0.080, and the value of Y, a structural parameter representing isotropic micro-strain, was 0.223. 1 kg of cerium oxide powder was dry-ground using a jet mill.
When the crushed particles were observed with a scanning electron microscope,
In addition to small particles having the same size as the primary particle diameter, large ground particles of 1 μm to 3 μm and ground particles of 0.5 to 1 μm were mixed. These ground particles are not aggregates of primary particles. X-ray diffraction precision measurement was performed on the pulverized particles, and the results were analyzed using the Rietveld method (Rietan-
In the analysis according to 94), the value of the structural parameter indicating the primary particle diameter: X was 0.085, and the value of the structural parameter indicating the isotropic micro-strain: Y was 0.264. As a result, there was almost no change in the primary particle diameter due to the pulverization, and distortion was introduced into the particles by the pulverization. Further, the specific surface area measured by the BET method was found to be 10 m 2 / g.

【0019】(酸化セリウムスラリーの作製)上記の酸
化セリウム粒子1kgとポリアクリル酸アンモニウム塩
水溶液(40重量%)23gと脱イオン水8977gを
混合し、撹拌しながら超音波分散を10分間施した。得
られたスラリーを1μmフィルターでろ過をし、さらに
脱イオン水を加えることにより3wt%研磨剤を得た。
スラリーpHは8.3であった。スラリー粒子の粒度分
布をレーザー回折法を用いて調べたところ、中央値が2
00nm、500nm以上の含有量は5.1体積%、最
大粒子径は780nmであった。スラリーの分散性およ
びスラリー粒子の電荷を調べるため、スラリーのゼータ
電位を調べた。両側に白金製電極を取り付けてある測定
セルに酸化セリウムスラリーを入れ、両電極に10Vの
電圧を印加した。電圧を印加することにより電荷を持っ
たスラリー粒子は、その電荷と反対の極を持つ電極側に
移動する。この移動速度を求めることにより、粒子のゼ
ータ電位を求めることができる。ゼータ電位測定の結
果、マイナスに荷電し、−50mVと絶対値が大きく分
散性が良好であることを確認した。
(Preparation of Cerium Oxide Slurry) 1 kg of the above cerium oxide particles, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered through a 1 μm filter, and 3 wt% abrasive was obtained by adding deionized water.
The slurry pH was 8.3. When the particle size distribution of the slurry particles was examined using a laser diffraction method, the median was 2
The content at 00 nm and 500 nm or more was 5.1% by volume, and the maximum particle size was 780 nm. In order to examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was placed in a measurement cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the electrode side having the opposite pole to the charge. By determining the moving speed, the zeta potential of the particles can be determined. As a result of zeta potential measurement, it was confirmed that the sample was negatively charged, had a large absolute value of −50 mV, and had good dispersibility.

【0020】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーに、TEOS−プ
ラズマCVD法で作製したSiO2 絶縁膜を形成させた
Siウエハをセットし、多孔質ウレタン樹脂製の研磨パ
ッドを貼り付けた定盤上に、絶縁膜面を下にしてホルダ
ーを載せ、さらに加工荷重が300g/cm2 になるよ
うに重しを載せた。定盤上に、上記の酸化セリウムスラ
リー(固形分:3重量%)を50cc/minの速度で
滴下しながら、定盤を30rpmで2分間回転させ、絶
縁膜を研磨した。研磨後ウエハをホルダーから取り外し
て、流水で良く洗浄後、超音波洗浄機によりさらに20
分間洗浄した。洗浄後、ウエハをスピンドライヤーで水
滴を除去し、120℃の乾燥機で10分間乾燥させた。
光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を
測定した結果、この研磨により600nm(研磨速度:
300nm/min)の絶縁膜が削られ、ウエハ全面に
渡って均一の厚みになっていることがわかった。また、
光学顕微鏡を用いて絶縁膜表面を観察したところ、明確
な傷は見られなかった。
(Polishing of Insulating Film Layer) An Si wafer having a SiO 2 insulating film formed by a TEOS-plasma CVD method is set on a holder to which a suction pad for holding a substrate to be held is attached. The holder was placed on the surface plate to which the resin polishing pad was attached, with the insulating film face down, and a weight was placed so that the processing load was 300 g / cm 2 . The cerium oxide slurry (solid content: 3% by weight) was dropped on the platen at a rate of 50 cc / min, and the platen was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, the wafer is removed from the holder, washed well with running water, and then further cleaned with an ultrasonic cleaner.
Washed for minutes. After the cleaning, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes.
As a result of measuring the change in film thickness before and after polishing using an optical interference type film thickness measuring apparatus, this polishing resulted in 600 nm (polishing speed:
It was found that the insulating film of 300 nm / min) was shaved and had a uniform thickness over the entire surface of the wafer. Also,
When the surface of the insulating film was observed using an optical microscope, no clear scratch was found.

【0021】比較例1 実施例2で用いたのと同じ酸化セリウム粒子1kgとポ
リアクリル酸アンモニウム塩水溶液(40重量%)23
gと脱イオン水8977gを混合し、撹拌しながら超音
波分散を10分間施し、さらに脱イオン水を加えること
により3wt%研磨剤を得た。スラリーpHは8.2で
あった。スラリー粒子の粒度分布をレーザー回折法を用
いて調べたところ、中央値は600nm、500nm以
上の含有量は56体積%、最大粒子径は3300nmで
あった。スラリーの分散性およびスラリー粒子の電荷を
調べるため、スラリーのゼータ電位を調べた。両側に白
金製電極を取り付けてある測定セルに酸化セリウムスラ
リーを入れ、両電極に10Vの電圧を印加した。電圧を
印加することにより電荷を持ったスラリー粒子は、その
電荷と反対の極を持つ電極側に移動する。この移動速度
を求めることにより、粒子のゼータ電位を求めることが
できる。ゼータ電位測定の結果、マイナスに荷電し、−
35mVと絶対値が大きく分散性が良好であることを確
認した。
Comparative Example 1 1 kg of the same cerium oxide particles as used in Example 2 and an aqueous solution of ammonium polyacrylate (40% by weight) 23
g and 8977 g of deionized water were mixed, subjected to ultrasonic dispersion with stirring for 10 minutes, and further added with deionized water to obtain a 3 wt% abrasive. The slurry pH was 8.2. When the particle size distribution of the slurry particles was examined using a laser diffraction method, the median value was 600 nm, the content of 500 nm or more was 56% by volume, and the maximum particle size was 3300 nm. In order to examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was placed in a measurement cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the electrode side having the opposite pole to the charge. By determining the moving speed, the zeta potential of the particles can be determined. As a result of zeta potential measurement,
It was confirmed that the absolute value was 35 mV and the dispersibility was good.

【0022】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーに、TEOS−プ
ラズマCVD法で作製したSiO2 絶縁膜を形成させた
Siウエハをセットし、多孔質ウレタン樹脂製の研磨パ
ッドを貼り付けた定盤上に、絶縁膜面を下にしてホルダ
ーを載せ、さらに加工荷重が300g/cm2 になるよ
うに重しを載せた。定盤上に、上記の酸化セリウムスラ
リー(固形分:3重量%)を50cc/minの速度で
滴下しながら、定盤を30rpmで2分間回転させ、絶
縁膜を研磨した。研磨後ウエハをホルダーから取り外し
て、流水で良く洗浄後、超音波洗浄機によりさらに20
分間洗浄した。洗浄後、ウエハをスピンドライヤーで水
滴を除去し、120℃の乾燥機で10分間乾燥させた。
光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を
測定した結果、この研磨により780nm(研磨速度:
340nm/min)の絶縁膜が削られ、ウエハ全面に
渡って均一の厚みになっていることがわかった。光学顕
微鏡を用いて絶縁膜表面を観察したところ、幅の狭い傷
がウエハ前面にわたって無数に見られた。
(Polishing of Insulating Film Layer) A Si wafer having a SiO 2 insulating film formed by a TEOS-plasma CVD method is set on a holder to which a suction pad for mounting a substrate to be held is attached, and a porous urethane is formed. The holder was placed on the surface plate to which the resin polishing pad was attached, with the insulating film face down, and a weight was placed so that the processing load was 300 g / cm 2 . The cerium oxide slurry (solid content: 3% by weight) was dropped on the platen at a rate of 50 cc / min, and the platen was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, the wafer is removed from the holder, washed well with running water, and then further cleaned with an ultrasonic cleaner.
Washed for minutes. After the cleaning, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes.
As a result of measuring the change in film thickness before and after polishing using an optical interference type film thickness measuring apparatus, it was found that this polishing resulted in 780 nm (polishing speed:
It was found that the insulating film at 340 nm / min) was shaved and had a uniform thickness over the entire surface of the wafer. When the surface of the insulating film was observed using an optical microscope, countless narrow scratches were found over the front surface of the wafer.

【0023】比較例2 実施例と同様にTEOS−CVD法で作製したSiO2
絶縁膜を形成させたSiウエハについて、市販シリカス
ラリー(キャボット社製、商品名SS225)を用いて
研磨を行った。この市販スラリーのpHは10.3で、
SiO2 粒子を12.5wt%含んでいるものである。
研磨条件は実施例と同一である。その結果、研磨による
傷は見られず、また均一に研磨がなされたが、2分間の
研磨により150nm(研磨速度:75nm/min)
の絶縁膜層しか削れなかった。
Comparative Example 2 SiO 2 produced by the TEOS-CVD method in the same manner as in the example.
The Si wafer on which the insulating film was formed was polished using a commercially available silica slurry (manufactured by Cabot Corp., trade name SS225). The pH of this commercial slurry was 10.3,
It contains 12.5 wt% of SiO 2 particles.
The polishing conditions are the same as in the embodiment. As a result, no scratches due to polishing were observed, and the polishing was performed uniformly. However, 150 nm (polishing speed: 75 nm / min) by polishing for 2 minutes.
Only the insulating film layer was removed.

【0024】[0024]

【発明の効果】本発明の研磨剤により、SiO2 絶縁膜
等の被研磨面を傷なく高速に研磨することが可能とな
る。
According to the polishing agent of the present invention, a surface to be polished such as an SiO 2 insulating film can be polished at high speed without being damaged.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺崎 裕樹 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 倉田 靖 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 松沢 純 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 丹野 清仁 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社山崎工場内 (72)発明者 桜田 剛史 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社山崎工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroki Terasaki 48 Wadai, Tsukuba, Ibaraki Prefecture, Hitachi Chemical Co., Ltd.Tsukuba R & D Co., Ltd. Within the Development Laboratory (72) Inventor Jun Matsuzawa 48 Wadai, Tsukuba, Ibaraki Prefecture Within the Hitachi Chemical Co., Ltd.Tsukuba Development Laboratory Co., Ltd. Inside the Yamazaki Plant (72) Inventor Takeshi Sakurada 4-3-1-1, Higashicho, Hitachi City, Ibaraki Prefecture Inside the Yamazaki Plant of Hitachi Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】500nm以上の粒子径の含有量が3〜4
0体積%の酸化セリウム粒子、水、及び分散剤を含む酸
化セリウム研磨剤。
(1) a content of a particle diameter of 500 nm or more is 3 to 4;
A cerium oxide abrasive containing 0% by volume of cerium oxide particles, water, and a dispersant.
【請求項2】粒子径の中央値が150〜450nmであ
る酸化セリウム粒子を含む請求項1記載の酸化セリウム
研磨剤。
2. The cerium oxide abrasive according to claim 1, comprising cerium oxide particles having a median particle diameter of 150 to 450 nm.
【請求項3】請求項1〜2各項記載の酸化セリウム研磨
剤で所定の基板を研磨することを特徴とする基板の研磨
法。
3. A method for polishing a substrate, comprising polishing a predetermined substrate with the cerium oxide abrasive according to claim 1.
【請求項4】所定の基板がSiO2 絶縁膜が形成された
基板である請求項3記載の基板の研磨法。
4. The method according to claim 3, wherein the predetermined substrate is a substrate on which an SiO 2 insulating film is formed.
JP34924397A 1997-12-18 1997-12-18 Cerium oxide abrasive and grinding of substrate Withdrawn JPH11181406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34924397A JPH11181406A (en) 1997-12-18 1997-12-18 Cerium oxide abrasive and grinding of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34924397A JPH11181406A (en) 1997-12-18 1997-12-18 Cerium oxide abrasive and grinding of substrate

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2004140115A Division JP2004289170A (en) 2004-05-10 2004-05-10 Cerium oxide polishing agent and method of polishing substrate
JP2006029041A Division JP4776388B2 (en) 2006-02-06 2006-02-06 Cerium oxide abrasive and substrate polishing method
JP2006029040A Division JP4776387B2 (en) 2006-02-06 2006-02-06 Cerium oxide abrasive and substrate polishing method

Publications (1)

Publication Number Publication Date
JPH11181406A true JPH11181406A (en) 1999-07-06

Family

ID=18402453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34924397A Withdrawn JPH11181406A (en) 1997-12-18 1997-12-18 Cerium oxide abrasive and grinding of substrate

Country Status (1)

Country Link
JP (1) JPH11181406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141315A (en) * 2000-11-02 2002-05-17 Hitachi Chem Co Ltd Cmp pad for cerium oxide polishing agent and polishing method of substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141315A (en) * 2000-11-02 2002-05-17 Hitachi Chem Co Ltd Cmp pad for cerium oxide polishing agent and polishing method of substrate

Similar Documents

Publication Publication Date Title
JP3462052B2 (en) Cerium oxide abrasive and substrate polishing method
KR100403719B1 (en) Abrasive, Method of Polishing Wafer, and Method of Producing Semiconductor Device
KR20000048741A (en) Cerium oxide abrasive and method of abrading substrates
JPH10154672A (en) Cerium oxide abrasive material and polishing method of substrate
JP3480323B2 (en) Cerium oxide abrasive, substrate polishing method, and semiconductor device
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JP2010030041A (en) Cerium oxide abrasive and method of polishing substrate
JPH11181407A (en) Cerium oxide abrasive and grinding of substrate
JPH11181404A (en) Cerium oxide abrasive and grinding of substrate
JPH11181405A (en) Cerium oxide abrasive and grinding of substrate
JP4776388B2 (en) Cerium oxide abrasive and substrate polishing method
JPH11181406A (en) Cerium oxide abrasive and grinding of substrate
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP2004250714A (en) Cerium oxide abrasive and method for grinding substrate
JP4445820B2 (en) Cerium oxide abrasive and substrate polishing method
JP2005039286A (en) Cerium oxide abrasive and method for polishing substrate
JP2005039287A (en) Cerium oxide abrasive and method for polishing substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060512