JP2004175964A - Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process - Google Patents

Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process Download PDF

Info

Publication number
JP2004175964A
JP2004175964A JP2002345240A JP2002345240A JP2004175964A JP 2004175964 A JP2004175964 A JP 2004175964A JP 2002345240 A JP2002345240 A JP 2002345240A JP 2002345240 A JP2002345240 A JP 2002345240A JP 2004175964 A JP2004175964 A JP 2004175964A
Authority
JP
Japan
Prior art keywords
cerium
raw material
cerium oxide
abrasive
oxide abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002345240A
Other languages
Japanese (ja)
Inventor
Kazuya Ushiyama
和哉 牛山
Yuki Nakajima
祐樹 中島
Hiromi Uryu
博美 瓜生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002345240A priority Critical patent/JP2004175964A/en
Publication of JP2004175964A publication Critical patent/JP2004175964A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of a high purity cerium oxide abrasive that has a lower content of coarse particles, yet maintains a higher polishing power and an excellent cleaning performance. <P>SOLUTION: The manufacturing process of the high purity cerium oxide abrasive comprises a pulverizing process for a raw material for the cerium oxide abrasive, a firing process for the pulverized raw material and a crushing process for the fired raw material. A carbonate of cerium based rare earths with ≥ 90% of CeO<SB>2</SB>/TREO (total rare earth oxides) is used for the raw material. Monooxy cerium carbonate is formed from the carbonate of cerium based rare earths and the monooxy cerium carbonate is pulverized in the raw material pulverizing process and fired at 600°C-1,200°C in the subsequent firing process. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高純度の酸化セリウム研摩材の製造方法に関し、特に、粗大粒子が少なく、高い研摩力を備えた高純度酸化セリウム研摩材を低コスト製造できる技術に関するものであり、ガラス研摩用途を含む各種用途に好適な高純度酸化セリウム研摩材を提供せんとするものである。
【0002】
【従来の技術】
酸化セリウム研摩材(以下、単に研摩材とも称する)は、従来から、光学レンズの研摩に多用されているが、近年、ハードディスク等の磁気記録媒体用ガラスや液晶ディスプレイ(LCD)のガラス基板といった電気・電子機器で用いられるガラス材料用の研摩材としても広く用いられている。
【0003】
この酸化セリウム研摩材は、例えば、バストネサイト鉱や中国産複雑鉱から得られるセリウム系希土類炭酸塩(以下、炭酸希土とも称する)、または炭酸希土を予め高温で仮焼することにより得られるセリウム系希土類酸化物(以下、酸化希土とも称する)をセリウム系研摩材原料として製造される。
【0004】
具体的には、まず、これらのセリウム系研摩材の原料(以下、単に原料ともいう)をアトライタ、ボールミル、ビーズミルなどの粉砕装置によって湿式粉砕し、その後、化学処理(湿式処理)を施して、濾過、乾燥する。その後、加熱して焙焼することで原料粒子同士を適度に焼結させ、焼結後の原料を、上述したような粉砕装置を用いて乾式あるいは湿式で解砕(再粉砕)すると共に解砕後の原料を分級する。このようにして所望の粒径、粒度分布を有する研摩材を得ている。なお、ここでいう化学処理とは、焙焼時に異常粒成長の原因となるナトリウム等のアルカリ金属を除去する処理(鉱酸処理)のこと、およびセリウム系研摩材の研摩力の確保や被研摩面の平滑性の確保を目的としてフッ素成分を添加する処理(フッ化処理)のことである。上記したような製造法についての先行技術として例えば特許文献1〜5が挙げられる。
【0005】
【特許文献1】国際公開WO97/29510パンフレット
【特許文献2】特開平11−181404号公報
【特許文献3】特開平7−81932号公報
【特許文献4】特開2000−273443号公報
【特許文献5】特開平9−183966号公報
【0006】
【発明が解決しようとする課題】
ところで、従来の研摩材は、低価格の原料を用いCeO/TREOが50〜70%の低純度酸化セリウム研摩材を用いられることが多かった。そして、このような低価格のセリウム系研摩材の原料には、ランタンなどのセリウム以外の希土類元素を含んでおり、このランタンのようなセリウム以外の希土類元素は、研摩材製造工程の中の焙焼時に酸化セリウム単結晶粒子の焼結を適度に抑制しながら適度な硬さを有する凝集粒子を形成させるため、研摩傷の少ない研摩材を製造することには好適なものといえた。
【0007】
一方、研摩時の研摩速度は、研摩材に含まれる酸化セリウムの品位が高くなれば大きくなることが一般的に知られている。そのため、酸化セリウムの品位をより高くした研摩材、即ち、高純度酸化セリウム研摩材の開発が行われてきたが、酸化セリウムの品位を高くすると焙焼時における酸化セリウムの焼結が進行し易く、研摩傷の少ない研摩材にするためには、焙焼工程以降の焙焼品の粉砕作業及び分級処理の強化が必要で、製造工程的に困難を伴い、コスト的にも割高になる傾向があった。
【0008】
しかしながら、昨今の研摩材市場においては、ガラス研摩用途のみならず各種用途における酸化セリウム研摩材について、さらなる研摩特性の向上が要求されており、適度な凝集粒子を有し、且つ粗大粒子も少なく、優れた研摩特性を有する高純度酸化セリウム研摩材を、低コストで製造できる技術の確立を強く求められているのが現状である。
【0009】
本発明は、上述したような背景の下になされたものであり、適度な凝集粒子を有し、且つ粗大粒子も少なく、優れた研摩特性を備える高純度酸化セリウム研摩材を、低コストで製造できる技術を提供するものである。
【0010】
【課題を解決するための手段】
本発明者は、従来の粉砕方法に拘泥することなく広く粉砕手段を検討し、アトライタなどの粉砕装置を用いず、特定の原料を用いた場合に、原料を水溶液中に浸漬させた状態で加熱することによって原料を粉砕する浸漬加熱処理という原料粉砕方法を既に開発している(先行文献1参考)。そして、この先行技術に基づき、さらなる検討を行った結果、本発明を想到したのである。
【0011】
【先行文献1】特願2001−160644
【0012】
本発明は、セリウム系研摩材原料の粉砕工程と、粉砕後の原料の焙焼工程および焙焼後の原料の解砕工程とを有する高純度酸化セリウム研摩材の製造方法において、セリウム系研摩材原料として、CeO/TREO(酸化セリウム換算重量/全希土類酸化物換算重量)90%以上のセリウム系希土類炭酸塩を用い、原料の粉砕工程は、セリウム系希土類炭酸塩からモノオキシ炭酸セリウムを生成して、該モノオキシ炭酸セリウムに機械的粉砕を施し、その後の焙焼工程において600℃〜1200℃の加熱温度で焙焼するものである。
【0013】
本発明におけるセリウム系研摩材原料の粉砕工程では、セリウム系希土類炭酸塩を原料とし、この原料からモノオキシ炭酸塩を生成する。セリウム系希土類炭酸塩からモノオキシ炭酸セリウム〔(CeO(CO・xHO(x=1〜6))を生成するためには、セリウム系希土類炭酸塩を60℃以上の水に接触させることにより実現できる。60℃以上の水に接触させると、原料中の炭酸根の一部が分解して二酸化炭素を放出し、モノオキシ炭酸セリウムが形成されるのである。原料と水との接触方法は、特に制限はないが、例えば、原料を60℃以上の水に浸漬する方法や、原料を60℃以上の高湿度雰囲気に放置する方法などが挙げられる。
【0014】
このようにセリウム系希土類炭酸塩からモノオキシ炭酸セリウムを生成すると、その際に原料自体の粉砕が生じる。つまり、原料中の炭酸根の一部が二酸化炭素となって放出する際に、原料自体が粉砕するのである。
【0015】
本発明で用いるセリウム系研摩材原料は、水との接触による原料自体の粉砕を有効に行えることを考慮すると、炭酸セリウム〔(Ce(CO・xHO(x=1〜8))を主成分とする希土類炭酸塩を用いるもので、特に、CeO/TREOが90%以上の炭酸セリウムを用いることが望ましい。
【0016】
そして、その原料の大きさは、厳密に限られるものではないが、通常、レーザー回折法による重量累積粒度分布測定から得られる平均粒径D50が1000μm以下になるまで粗粉砕された原料や、市販されているセリウム系希土類炭酸塩(D50が10〜1000μm)を用いることが可能である。本発明者の研究によると、原料の平均粒径D50が30μm程度であると、60℃以上の水との接触により粉砕して生成されるモノオキシ炭酸セリウムは3〜10μmの微細な粒子となることを確認している。
【0017】
この粉砕工程においては、60℃以上の水との接触を行う前の原料、或いは生成したモノオキシ炭酸セリウムに、必要に応じて機械的粉砕を施し、さらに微細な粒子に整えることも可能である。この場合の機械的粉砕は、アトライタ、ボールミル、ビーズミルなどの粉砕装置によって行うことが可能である。
【0018】
そして、得られたモノオキシ炭酸セリウムは、600℃〜1200℃の加熱温度により焙焼工程が施される。本発明の製造方法では、このような高温における焙焼を行っても、粗大粒子は生成されず、適度な凝集粒子を形成した高純度の酸化セリウム研摩材を得ることができる。焙焼工程における加熱温度は、600℃未満であると、適度な凝集粒子が形成されず、研摩速度も遅くなり実用的な研摩特性を満足しない研摩材となる。一方、1200℃を越えると、凝集が進行しすぎ易くなり、粗大な粒子が形成されて、研摩傷などの問題が生じる傾向がある。
【0019】
本発明の高純度酸化セリウム研摩材の製造方法によると、セリウム純度の高い原料を使用しても、粗大な粒子を多量に形成しない理由を、本発明者は次にように推測している。セリウムの含有量が少ない原料は、一般的にセリウム以外の希土類元素(例えばLa)を多く含むため、高温による焙焼工程ではこのセリウム以外の希土類元素が固溶体を生成するものと考えられる。そして、このセリウム以外の希土類元素の固溶体が焼結速度を低下させることになり、粗大粒子の発生が抑制されていると考えられる。この焼結速度に影響を与えるセリウム以外の希土類元素が少ない原料、すなわちセリウムの純度が高い原料においては、高温の焙焼処理において粗大粒子を多量に発生し易いのでのである。一方、本発明の製造方法では、従来のようにセリウム系炭酸希土塩を直接焙焼せずに、モノオキシ炭酸セリウムという状態にして焙焼工程を行うため、セリウムの純度が高い原料を使用しても、粗大粒子の発生が抑制されているものではないかと考えている。つまり、本発明の製造方法と従来の製造方法では焙焼時における原料の化学組成が異なっているため、焙焼後における粗大粒子の発生量に大きく差異を生じるものと推測される。
【0020】
本発明の製造方法に用いるセリウム系希土類炭酸塩は、CeO/TREO 90%以上のものを用いる必要がある。このような高純度のセリウム系希土類炭酸塩原料から製造される高純度酸化セリウム研摩材は、研摩速度が大きく、例えば、ガラス等の表面(被研摩面)を非常に平滑に精度高く仕上げることが可能となるからである。
【0021】
本発明の製造方法における粉砕工程では、セリウム系希土類炭酸塩からモノオキシ炭酸セリウムを生成する処理として、原料を水溶液中に浸漬させた状態で加熱すること(以下、浸漬加熱処理ともいう)が好ましい。モノオキシ炭酸セリウムを生成する方法として、原料を高湿度雰囲気に放置し加熱する方法もあるが、原料を水溶液中に浸漬させた状態で加熱する方法が、原料全体を均等かつ確実に加熱することができ、原料全体を均等に粉砕できるからである。高湿度雰囲気下で加熱する方法は、伝熱が浸漬加熱ほど均一にならないことや、比較的長時間の加熱を要することが考えられる。加えて、高湿度下での加熱を実現するには、恒温恒湿器あるいはスチーム導入が可能な乾燥機など、高価な装置が必要であるという生産コストを増加させる要因もある。従って、浸漬加熱処理を採用する方が、高い生産性を可能とし、より低コストで高純度酸化セリウム研摩材を製造できる。
【0022】
この浸漬加熱処理においては、原料と水溶液との混合比率(重量比率)は特に限定されるものではないが、水溶液は原料(原料がスラリーの場合はその固形成分)の0.5倍〜10倍が好ましい。水溶液の量が0.5倍より少ないと原料を均等に加熱できないおそれがあり、他方、10倍より多くしても加熱の均一性は向上せず、加熱時間やエネルギーを浪費することになるからである。なお、原料を浸漬させる水溶液には、水(純水、工業用水、水道水等)そのものや、例えばアルコール、アセトンなどの水溶性の有機溶媒が混合された溶液が含まれる。こられの溶液を用いて原料を浸漬加熱粉砕できるからである。
【0023】
原料を水溶液中に浸漬させた状態で加熱する態様としては、加熱前の水溶液中に原料を浸漬させた後これらを加熱する態様、加熱した水溶液中に原料を浸漬させる態様、加熱した水溶液中に原料を浸漬させた後さらに加熱する態様等が考えられる。また、浸漬加熱粉砕の際に撹拌によって原料を水溶液中に分散させると原料の加熱をより均等に行うことができるため好ましい。
【0024】
また、浸漬加熱処理においては、水溶液の加熱温度を60℃〜100℃とすることが望ましい。60℃未満では十分にモノオキシ炭酸セリウムが生成されないことがあるからである。これに対して、加熱温度の上限温度は特に制約がないものの、原料を浸漬させた水溶液の沸点は常圧下では100℃前後であり、これ以上の温度で加熱するにはオートクレーブ等の特殊な装置が必要となるなど工業的にみて不利であるため、少なくとも60℃以上であれば、原料からモノオキシ炭酸セリウムを十分に生成できることが確認された。
【0025】
そして、浸漬加熱処理における処理時間は、1〜90分間であればよいことを確認している。この浸漬加熱処理時間は、原料や水溶液の条件により左右されるものではあるが、1分間という極めて短時間でも、浸漬加熱処理によってモノオキシ炭酸セリウムが生成できることが解った。様々な条件下において浸漬加熱処理を行ったところ、要は原料であるセリウム系希土類炭酸塩が、モノオキシ炭酸セリウムに変化してしまえばそれ以上の処理時間は必要がないことであった。原料がモノオキシ炭酸セリウムへ変化したことの確認は、原料を水と接触させた際に発生する炭酸ガスの泡の発生が無くなることを見定めることで可能である。例えば、セリウム系希土類炭酸塩を水に分散させて加熱すると、80℃を越えるあたりから炭酸ガス(泡)が発生し、90℃で1時間程度経過すると、その泡の発生は止まる。その後処理時間を経過させても、さらなる泡の発生は生じない。そして、この泡の発生が終了した時点の原料をX線回折により調べたところ、炭酸セリウム由来のX線ピークは確認されず、モノオキシ炭酸セリウムに由来するX線ピークが確認された。また、加熱温度を高くすればするほど、モノオキシ炭酸セリウムへの変化は素早く完了することも確認された。このような結果から、浸漬加熱処理の処理時間は、加熱温度にもよるが、好ましくは1〜90分間、より望ましくは60分間以下にすることである。
【0026】
以上説明した本発明の酸化セリウム研摩材の製造方法によれば、X線回折測定によるメインピークにおける半値幅が0.7°以下、5μm以上の粗大粒子含有量が500ppm以下である高純度酸化セリウム研摩材を、生産性高く、低コストで製造することが可能となる。従来の製造方法では、高純度の酸化セリウム研摩材を生産する際に、過度の解砕処理や過度の分級処理を行わなければ、上記したような高純度酸化セリウム研摩材を製造することができないものであったが、本発明の製造方法によると、極めて生産性よく、低コストで製造することが可能となるのである。
【0027】
X線回折測定におけるメインピークとは、回折角度2θ=28.6°付近に見られるCeOの[111]面を示すピーク(以上及び以下において、単にメインピークと称する)であり、その半値幅は焙焼時における加熱温度との相関がある。つまり、得られた酸化セリウム研摩材のX線回折測定でのメインピークの半値幅は、研摩材の凝集粒子の硬さを表す指標となるのである。ガラスのような被研摩対象物の場合、研摩速度を高く維持する必要があるので、ある程度の凝集粒子の存在を要する。その際の半値幅としては、0.7°以下であればよく、このような半値幅を持つメインピークを示す研摩材で有れば高い研摩速度を実現できる。半値幅が0.7°を越えると、研摩速度を高く維持できなくなる。また、半値幅が0.3°未満になる場合は、必要以上に高い焙焼温度とすることになり、凝集粒子が多くそして硬いものとなるため、ガラスのような研摩対象物には研摩傷を発生し易くなる。
【0028】
また、本発明の製造方法により得られた高純度酸化セリウム研摩材は、研摩傷の発生原因である粗大粒子が非常に低い含有率、即ち、5μm以上の粗大粒子の含有量が500ppm以下のものとなる。
【0029】
さらに、本発明の製造方法により得られた高純度酸化セリウム研摩材では、ガラス用途として用いる場合、その平均粒径D50(レーザー回折法による重量累積粒度分布測定から得られる平均粒径)が、0.3〜2.0μmであることが望ましい。0.3μm未満の平均粒径では、ガラス用途の研摩材として研摩力が低下しすぎ、逆に2.0μmを越えると研摩傷を生じ易い研摩材となる。一方、研摩力をガラスの場合のように必要としない半導体用途に用いる場合、その平均粒径D50は0.1〜0.3μmであることが好ましい。焙焼温度を高くした場合、半値幅が0.7°以下の範囲、特に0.3°未満となると、D50が2.0μmを越える傾向にあるが、このような研摩材であれば必要に応じて機械的粉砕を行うことで微粒な高純度酸化セリウム研摩材にすることができる。
【0030】
【発明の実施の形態】
以下、本発明の好適な実施の形態を実施例及び比較例に基づいて説明する。
【0031】
本実施形態では、表1に示す実施例1〜6の原料を用いて高純度酸化セリウム研摩材を製造した。この高純度酸化セリウム研摩材の原料は、次のようにして準備したものである。セリウムを含有する鉱物を酸により溶解してセリウムを酸化した後、溶媒抽出法或いはイオン交換法を繰り返し用いて、その他の希土類元素からセリウムを分離して、重炭酸アンモニウム等の炭酸塩を加えることで炭酸セリウムを沈殿させて、濾過、乾燥することで製造したものである。
【0032】
まず、実施例1では、原料としてCeO/TREO=99%の高純度のセリウム系希土類炭酸塩を使用した(D5030μm、Dmax200μm)。そして、固形分濃度として50wt%となるように純水を加えてスラリー化した。このスラリーの一部を加熱して90℃で60分間保持し、浸漬加熱処理を行った。この浸漬加熱処理が終わった段階の原料をX線回折測定したところ、検出されるピークはモノオキシ炭酸セリウム由来のものであることが確認され、レーザー回折法による累積粒度分布測定(島津製作所 SALD2000)よる平均粒径はD50が7μm、Dmax60μmであった。ここで、浸漬加熱処理により原料自体の粉砕が不十分で粗大な粒子が残る場合には、原料のセリウム系希土類炭酸塩に対して必要に応じて予備的な機械粉砕を行い、ある程度の微細な状態に調整することも可能である。
【0033】
その後ビーズミルを用いて機械的粉砕処理を行い、D50が1μm程度になるまで粉砕を行った。この粉砕工程を経た粉砕スラリーを濾過して、残渣を乾燥した後、電気炉で1000℃、4時間放置して、室温まで冷却する焙焼工程を行った。焙焼工程を経て得られたものをハンマーミルで解砕した。この解砕した酸化セリウム研摩材(以下単に解砕品と称する)をX線回折によるメインピークにおける半値幅測定、累積重量粒度分布測定、及び解砕品に含まれる5μm以上の粗大粒子の含有率を測定した。
【0034】
ここで、5μm以上の粗大粒子の含有率測定方法について説明する。この粗大粒子の含有率を求めるために粗大粒子の分離を次ぎのようにして行った。まず、0.1wt%ヘキサメタ燐酸ナトリウム水溶液に解砕品を加えろ過用スラリーを作製し、そのろ過用スラリーに超音波を加えて超音波分散を行い、その後、JIS Z8801―3(2000)に規定される目開き5μmの電成ふるいを用いてろ過をして5μm以上の粗大粒子を分離した。この場合のろ過はスラリー濃度を配慮して、最初のろ過用スラリーにおいて超音波分散をした後、5分間ほど放置してスラリーの沈降を待ち、その上澄み分(ろ過用スラリー全量の2/3程度)を電成ふるいでろ過した。そして、ろ過をしていない残分(1/3)には、さらに0.1wt%ヘキサメタ燐酸ナトリウム水溶液を加え、この新たに作製したろ過用スラリーに超音波分散をして、上述したように超音波停止後5分間放置、上澄み分のろ過を行った。このようなろ過処理を連続して10回繰り返し、10回目のろ過用スラリーについてはその全量をろ過して、連続して10回繰り返し行われたろ過によって、電成ふるい上に回収された粗大粒子を100℃で乾燥して、5μm以上の粗大粒子の重量を測定した。
【0035】
また、実施例2〜6については、表1に示すCeO/TREO値の原料を用い、表1の条件に従い上述したようにして解砕品を得て、X線回折によるメインピークにおける半値幅測定、累積重量粒度分布測定、及び解砕品に含まれる5μm以上の粗大粒子の含有率を測定した。なお、各実施例の粉砕工程後の原料についてX線回折測定をした結果、炭酸セリウム由来のピークが消え、モノオキシ炭酸セリウム由来のピークが確認された。
【0036】
さらに、比較として、比較例1ではCeO/TREO=60%の低純度のセリウム系希土類炭酸塩を用い、その他の処理工程は上述実施例と同様にした。比較例2ではCeO/TREO=99%の高純度のセリウム系希土類炭酸塩を用い、浸漬加熱処理を行うことなしに機械的粉砕処理後、焙焼工程を行った(表1)。このようにして得られた比較例の解砕品について実施例と同様の各測定を行った。表2に、実施例1〜6、比較例1,2の測定結果を示す。
【0037】
【表1】

Figure 2004175964
【0038】
【表2】
Figure 2004175964
【0039】
表2を見ると判るように、累積重量平均粒径D50の値は大差が見られないものの、5μmより大きな粗大粒子の含有率は浸漬加熱処理を行う粉砕工程による解砕品の方が非常に優れていることが判明した。また、X線回折によるメインピークの半値幅は、焙焼温度が高いとその値も小さく、D50は逆に大きめの数値を示すことが確認された。
【0040】
続いて、上記のようにして得られた各解砕品を用いて研摩特性を調査した結果について説明する。この研摩特性調査では、各解砕品を乾式風力分級機(安川電機社製 ワイエムマイクロカット)を用いて5μm以上の粗大粒子を除去できるように所定の分級設定を行い、分級後の微粒側研摩材製品に含まれる5μm以上の粗大粒子の含有量が100ppm以下となるまで、必要に応じて微粒側研摩材製品に対してハンマーミルによる粉砕と風力分級による分級を繰り返し行った。尚、各解砕品における1回目の分級操作において、解砕品の供給重量に対する分級後の微粒側研摩材製品の産出重量(分級効率)を求めた(表3参照)。
【0041】
各解砕品より得られた分級後の酸化セリウム研摩材(以下、分級品と称す)をレーザー回折法による累積重量粒度分布測定、及び水簸法により5μm以上の粗大粒子の含有率を測定した。また、以下に説明する研摩試験により、各分級品の研摩特性を示す研摩値、傷評価を調査した。その結果を表3に示す。
【0042】
研摩試験は、高速研摩試験機を試験装置として用い、65mmφの平面パネル用ガラス(BK−7)を被研摩材とし、このガラスをポリウレタン製の研摩パッドを用いて研摩した。研摩材は、得られた分級品を水に分散させてスラリー濃度が10重量%の研摩材スラリーを調製した。研摩条件は、調製した研摩材スラリーを5L/minで供給し、研摩面に対する圧力を9.8kPa(100g/cm)に設定し、研摩試験機の回転速度を100rpmに設定した。研摩後のガラス材料は、純水で洗浄し無塵状態で乾燥させた。
【0043】
研摩値の評価:上述の研摩試験において、研摩前のガラス重量と、所定時間研摩を行った後のガラス重量とを測定することにより求められたガラス重量の減少量に基づいて、研摩値を求めた。ここで、研摩値の基準は、比較例1で製造された研摩材を用いて研摩試験を行い、その結果より得られたガラス重量の減少量を100とした。そして、各分級品の研摩値は、この基準の相対値として算出したものである。
【0044】
傷評価:被研摩面の状態を評価したものである。被研摩面の傷の有無を基準として傷の評価を行った。具体的には、研摩後のガラスの表面に30万ルクスのハロゲンランプを照射し、反射法にてガラス表面を観察して、傷の程度(大きさおよび個数)を見極めて点数化し、100点満点からの減点方式にて評価点を定めた。
【0045】
【表3】
Figure 2004175964
【0046】
表3で示すように、実施例1〜6のどの研摩材においても、研摩値、傷評価の特性は非常に優れていることが判明した。一方、比較例1ではすべての実施例よりも研摩値は小さかった。さらに、比較例2では、粉砕分級を6回繰り返したにもかかわらず、粗大粒子含有量はもっとも多く、その結果としてガラス表面への傷の発生が非常に多いものであった。また、浸漬加熱処理を行った場合には、分級効率も非常に高いことが判った。それに対し、浸漬加熱処理を行わない比較例2においては、分級効率が非常に低いものであった。従って、浸漬加熱処理を行う本実施例の製造方法は、優れた研摩特性を備える高純度の酸化セリウム研摩材を高い生産効率で得られることが判る。
【0047】
最後に、焙焼工程後の研摩材についてSEM観察を行った結果について説明する。図1に、比較例2で説明した浸漬加熱処理を全く行わないで焙焼工程を施した場合の研摩材を観察したSEM写真(倍率2000)を示したものであり、図2は実施例1で説明した浸漬加熱処理を行った後に焙焼工程を施した場合の研摩材を観察したSEM写真(倍率2000)を示したものである。
【0048】
図1を見ると判るように、従来のように浸漬加熱処理を行わない場合にあっては、数十ミクロンの大きな粗大粒子が非常に多く存在していることが確認された。一方、図2で示されるように、浸漬加熱処理を経て焙焼工程を行った場合、浸漬加熱処理による原料自体の粉砕が進行している結果、数μm以下の微細な粒子状態の研摩材になっていることが判明した。
【0049】
【発明の効果】
以上のように、本発明によれば、高純度酸化セリウム研摩材を高い生産性で、且つ低コストで製造できる。そして、粗大粒子濃度がより低く、かつより高い研摩力が確保され、ガラス研摩用はもとより、半導体用途などの各種用途に好適な高純度酸化セリウム研摩材を提供することが可能となる。
【図面の簡単な説明】
【図1】比較例2における焙焼工程後の研摩材のSEM観察写真。
【図2】実施例1における焙焼工程後の研摩材のSEM観察写真。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a high-purity cerium oxide abrasive, and more particularly to a technique for producing a high-purity cerium oxide abrasive having a small amount of coarse particles and high abrasive power at a low cost. It is an object of the present invention to provide a high-purity cerium oxide abrasive suitable for various uses including the above.
[0002]
[Prior art]
Cerium oxide abrasives (hereinafter, also simply referred to as abrasives) have been frequently used for polishing optical lenses, but in recent years, they have recently been used for polishing glass for magnetic recording media such as hard disks and glass substrates for liquid crystal displays (LCDs). -Widely used as an abrasive for glass materials used in electronic equipment.
[0003]
The cerium oxide abrasive is obtained, for example, by calcining a cerium-based rare earth carbonate (hereinafter, also referred to as rare earth carbonate) obtained from bastnaesite ore or a complex ore from China, or rare earth carbonate at a high temperature in advance. The cerium-based rare earth oxide (hereinafter, also referred to as rare earth oxide) is used as a cerium-based abrasive material.
[0004]
Specifically, first, the raw materials of these cerium-based abrasives (hereinafter, simply referred to as raw materials) are wet-pulverized by a pulverizing device such as an attritor, a ball mill, a bead mill, and then subjected to a chemical treatment (wet treatment). Filter and dry. Thereafter, the raw material particles are appropriately sintered by heating and roasting, and the raw material after sintering is pulverized (re-pulverized) in a dry or wet method using the above-described pulverizing apparatus. Classify the later raw materials. Thus, an abrasive having a desired particle size and particle size distribution is obtained. Here, the chemical treatment refers to a treatment (mineral acid treatment) for removing alkali metals such as sodium which cause abnormal grain growth during roasting, and to secure the polishing power of the cerium-based abrasive and to polish it. This is a treatment (fluorination treatment) in which a fluorine component is added for the purpose of ensuring surface smoothness. For example, Patent Literatures 1 to 5 are given as prior arts on the above-described manufacturing method.
[0005]
[Patent Document 1] International Publication WO97 / 29510 Pamphlet
[Patent Document 2] JP-A-11-181404
[Patent Document 3] Japanese Patent Application Laid-Open No. 7-81932
[Patent Document 4] JP-A-2000-273443
[Patent Document 5] JP-A-9-183966
[0006]
[Problems to be solved by the invention]
By the way, conventional abrasives use low-cost raw materials and use CeO. 2 A low-purity cerium oxide abrasive having a / TREO of 50 to 70% was often used. The raw materials for such low-cost cerium-based abrasives include rare-earth elements other than cerium such as lanthanum, and rare-earth elements other than cerium such as lanthanum are used during the polishing material manufacturing process. Since sintering of the cerium oxide single crystal particles was appropriately suppressed during sintering to form agglomerated particles having appropriate hardness, it could be said to be suitable for producing an abrasive having few abrasive scratches.
[0007]
On the other hand, it is generally known that the polishing speed during polishing increases as the quality of cerium oxide contained in the polishing material increases. Therefore, abrasives with a higher grade of cerium oxide, that is, high-purity cerium oxide abrasives have been developed.However, when the grade of cerium oxide is increased, sintering of cerium oxide during roasting tends to proceed. In order to produce abrasives with less abrasive scratches, it is necessary to strengthen the pulverization of the roasted product and the classification process after the roasting process, which makes the production process difficult and tends to be costly. there were.
[0008]
However, in the recent abrasive market, cerium oxide abrasives for not only glass polishing applications but also various applications are required to have further improved abrasive characteristics, have moderate agglomerated particles, and have few coarse particles. At present, there is a strong demand for the establishment of a technology capable of producing a high-purity cerium oxide abrasive having excellent polishing characteristics at low cost.
[0009]
The present invention has been made under the above-mentioned background, and has a low-cost process for producing a high-purity cerium oxide abrasive having moderate agglomeration particles, a small number of coarse particles, and excellent polishing characteristics. The technology that can be provided.
[0010]
[Means for Solving the Problems]
The present inventor has studied a wide range of pulverization means without being bound by the conventional pulverization method, and when using a specific raw material without using a pulverizing device such as an attritor, heating the raw material in a state of being immersed in an aqueous solution. By doing so, a raw material pulverization method called immersion heat treatment for pulverizing the raw material has already been developed (see Reference 1). Further, based on this prior art, as a result of further study, the present invention was conceived.
[0011]
[Prior Document 1] Japanese Patent Application No. 2001-160644
[0012]
The present invention relates to a method for producing a high-purity cerium oxide abrasive having a cerium-based abrasive raw material pulverizing step, a pulverized raw material roasting step and a roasted raw material pulverizing step, CeO as raw material 2 / TREO (cerium oxide-equivalent weight / total rare earth oxide-equivalent weight) cerium-based rare earth carbonate of 90% or more. Cerium is mechanically pulverized, and roasted at a heating temperature of 600 to 1200 ° C. in a subsequent roasting step.
[0013]
In the crushing step of the cerium-based abrasive raw material in the present invention, a cerium-based rare earth carbonate is used as a raw material, and a monooxycarbonate is generated from the raw material. Cerium rare earth carbonate to cerium monooxycarbonate [(Ce 2 O (CO 3 ) 2 ・ XH 2 O (x = 1 to 6)) can be generated by bringing a cerium-based rare earth carbonate into contact with water at 60 ° C. or higher. When the raw material is brought into contact with water at a temperature of 60 ° C. or higher, a part of the carbonate group in the raw material is decomposed to release carbon dioxide, and cerium monooxycarbonate is formed. The method of contacting the raw material with water is not particularly limited, and examples thereof include a method of immersing the raw material in water at 60 ° C. or higher, and a method of leaving the raw material in a high humidity atmosphere at 60 ° C. or higher.
[0014]
When cerium monooxycarbonate is produced from the cerium-based rare earth carbonate in this manner, the raw material itself is crushed. That is, when a part of the carbonate groups in the raw material is released as carbon dioxide, the raw material itself is crushed.
[0015]
The cerium-based abrasive raw material used in the present invention is preferably cerium carbonate [(Ce), considering that the raw material itself can be effectively ground by contact with water. 2 (CO 3 ) 3 ・ XH 2 O (x = 1 to 8)) is used as the main component of the rare earth carbonate. 2 It is desirable to use cerium carbonate having a / TREO of 90% or more.
[0016]
The size of the raw material is not strictly limited, but usually, the average particle size D obtained from the weight-cumulative particle size distribution measurement by a laser diffraction method. 50 Is reduced to 1000 μm or less, or a commercially available cerium-based rare earth carbonate (D 50 Is 10 to 1000 μm). According to the study of the present inventors, the average particle diameter D of the raw material 50 Is about 30 μm, it has been confirmed that cerium monooxycarbonate produced by pulverization by contact with water at 60 ° C. or higher becomes fine particles of 3 to 10 μm.
[0017]
In this pulverization step, the raw material before contact with water at 60 ° C. or higher, or the produced cerium monooxycarbonate, may be subjected to mechanical pulverization if necessary to prepare finer particles. In this case, the mechanical pulverization can be performed by a pulverizer such as an attritor, a ball mill, and a bead mill.
[0018]
Then, the obtained cerium monooxycarbonate is subjected to a roasting step at a heating temperature of 600C to 1200C. In the production method of the present invention, even when roasting at such a high temperature, coarse particles are not generated, and a high-purity cerium oxide abrasive having moderate aggregated particles formed can be obtained. If the heating temperature in the roasting step is lower than 600 ° C., appropriate aggregated particles are not formed, and the polishing rate is reduced, resulting in an abrasive material that does not satisfy practical polishing characteristics. On the other hand, when the temperature exceeds 1200 ° C., aggregation tends to proceed too easily, coarse particles are formed, and problems such as abrasive flaws tend to occur.
[0019]
According to the method for producing a high-purity cerium oxide abrasive of the present invention, the present inventors speculate as follows why a large amount of coarse particles is not formed even when a raw material having a high cerium purity is used. Since a raw material having a low cerium content generally contains a large amount of rare earth elements (for example, La) other than cerium, it is considered that the rare earth elements other than cerium form a solid solution in the roasting step at a high temperature. Then, it is considered that the solid solution of the rare earth element other than cerium lowers the sintering speed, and the generation of coarse particles is suppressed. A raw material having a small amount of rare earth elements other than cerium which affects the sintering rate, that is, a raw material having a high cerium purity, is likely to generate a large amount of coarse particles in a high-temperature roasting treatment. On the other hand, in the production method of the present invention, the roasting step is performed in the state of cerium monooxycarbonate without directly roasting the cerium-based rare earth salt as in the prior art, so that a raw material having a high cerium purity is used. However, it is thought that the generation of coarse particles is suppressed. In other words, it is presumed that the production method of the present invention and the conventional production method are different in the chemical composition of the raw materials during roasting, so that the amount of coarse particles generated after roasting is greatly different.
[0020]
The cerium-based rare earth carbonate used in the production method of the present invention is CeO 2 / TREO 90% or more must be used. A high-purity cerium oxide abrasive produced from such a high-purity cerium-based rare earth carbonate raw material has a high polishing rate, and can, for example, finish the surface of a glass or the like (the surface to be polished) very smoothly and with high precision. This is because it becomes possible.
[0021]
In the pulverizing step in the production method of the present invention, as a treatment for producing cerium monooxycarbonate from a cerium-based rare earth carbonate, it is preferable to heat the raw material in a state of being immersed in an aqueous solution (hereinafter also referred to as immersion heat treatment). As a method of producing cerium monooxycarbonate, there is a method of heating the raw material while leaving it in a high humidity atmosphere, but a method of heating the raw material in a state of being immersed in an aqueous solution can uniformly and reliably heat the entire raw material. This is because the entire raw material can be evenly crushed. In the method of heating in a high humidity atmosphere, it is conceivable that the heat transfer is not as uniform as immersion heating, or that heating for a relatively long time is required. In addition, in order to realize heating under high humidity, expensive equipment such as a thermo-hygrostat or a dryer capable of introducing steam is required, which increases the production cost. Therefore, adopting the immersion heat treatment enables higher productivity and can produce a high-purity cerium oxide abrasive at lower cost.
[0022]
In this immersion heat treatment, the mixing ratio (weight ratio) between the raw material and the aqueous solution is not particularly limited, but the aqueous solution is 0.5 to 10 times the raw material (when the raw material is a slurry, its solid component). Is preferred. If the amount of the aqueous solution is less than 0.5 times, the raw materials may not be uniformly heated. On the other hand, if the amount is more than 10 times, the uniformity of the heating is not improved, and the heating time and energy are wasted. It is. The aqueous solution in which the raw material is immersed includes water (pure water, industrial water, tap water, etc.) itself, and a solution in which a water-soluble organic solvent such as alcohol or acetone is mixed. This is because the raw material can be immersed in heat and pulverized using these solutions.
[0023]
As a mode of heating the raw material in a state of being immersed in the aqueous solution, a mode in which the raw material is immersed in the aqueous solution before heating and then heating, a mode in which the raw material is immersed in the heated aqueous solution, a mode in the heated aqueous solution A mode in which the raw material is further immersed and then heated is considered. It is preferable to disperse the raw material in the aqueous solution by stirring during the immersion heating and pulverization, because the raw material can be heated more uniformly.
[0024]
In the immersion heat treatment, it is desirable that the heating temperature of the aqueous solution be 60 ° C to 100 ° C. If the temperature is lower than 60 ° C., cerium monooxycarbonate may not be sufficiently generated. On the other hand, although the upper limit of the heating temperature is not particularly limited, the boiling point of the aqueous solution in which the raw material is immersed is about 100 ° C. under normal pressure, and a special device such as an autoclave is used for heating at a higher temperature. It is disadvantageous from an industrial point of view that cerium monooxycarbonate is required to be produced at least at a temperature of at least 60 ° C.
[0025]
Then, it has been confirmed that the treatment time in the immersion heat treatment may be 1 to 90 minutes. Although the immersion heat treatment time depends on the conditions of the raw material and the aqueous solution, it has been found that cerium monooxycarbonate can be generated by the immersion heat treatment even in an extremely short time of 1 minute. When the immersion heat treatment was performed under various conditions, it was found that if the cerium-based rare earth carbonate as the raw material was changed to cerium monooxycarbonate, no longer treatment time was required. It is possible to confirm that the raw material has been changed to cerium monooxycarbonate by checking that the generation of carbon dioxide gas bubbles generated when the raw material is brought into contact with water is eliminated. For example, when a cerium-based rare earth carbonate is dispersed in water and heated, carbon dioxide gas (bubbles) is generated at a temperature exceeding about 80 ° C., and after about 1 hour at 90 ° C., generation of the bubbles stops. Even after the treatment time has passed, no further foaming occurs. When the raw material at the time when the generation of bubbles was completed was examined by X-ray diffraction, an X-ray peak derived from cerium carbonate was not confirmed, but an X-ray peak derived from cerium monooxycarbonate was confirmed. It was also confirmed that the higher the heating temperature, the quicker the conversion to cerium monooxycarbonate was completed. From these results, the treatment time of the immersion heat treatment depends on the heating temperature, but is preferably 1 to 90 minutes, more preferably 60 minutes or less.
[0026]
According to the method for producing a cerium oxide abrasive of the present invention described above, the high-purity cerium oxide having a half-width at the main peak of 0.7 ° or less and 5 µm or more in coarse particles of 500 ppm or less in the main peak measured by X-ray diffraction measurement. Abrasives can be manufactured with high productivity and at low cost. With the conventional manufacturing method, when producing high-purity cerium oxide abrasive, unless the excessive crushing treatment and excessive classification treatment are performed, the above-described high-purity cerium oxide abrasive cannot be produced. However, according to the manufacturing method of the present invention, it is possible to manufacture with extremely high productivity at low cost.
[0027]
The main peak in the X-ray diffraction measurement is the CeO observed near the diffraction angle 2θ = 28.6 °. 2 (Hereinafter simply referred to as the main peak), and its half-width has a correlation with the heating temperature during roasting. That is, the half-width of the main peak of the obtained cerium oxide abrasive in the X-ray diffraction measurement is an index indicating the hardness of the aggregated particles of the abrasive. In the case of an object to be polished such as glass, it is necessary to maintain a high polishing rate, so that a certain amount of agglomerated particles is required. The half width at that time may be 0.7 ° or less, and a high polishing rate can be realized by using an abrasive exhibiting a main peak having such a half width. If the half width exceeds 0.7 °, the polishing rate cannot be maintained high. On the other hand, when the half width is less than 0.3 °, the roasting temperature becomes unnecessarily high, so that a large amount of agglomerated particles are formed and the material becomes hard. Easily occur.
[0028]
Further, the high-purity cerium oxide abrasive obtained by the production method of the present invention has a very low content of coarse particles that cause polishing scratches, that is, a content of coarse particles of 5 μm or more is 500 ppm or less. It becomes.
[0029]
Furthermore, when the high-purity cerium oxide abrasive obtained by the production method of the present invention is used for glass, its average particle diameter D 50 (Average particle size obtained by measuring the weight cumulative particle size distribution by a laser diffraction method) is preferably from 0.3 to 2.0 μm. When the average particle size is less than 0.3 μm, the polishing force is excessively reduced as an abrasive for use in glass. On the other hand, when the average particle size exceeds 2.0 μm, the abrasive is liable to produce abrasive scratches. On the other hand, when the polishing force is used for semiconductor applications that do not require polishing force as in the case of glass, the average particle diameter D 50 Is preferably 0.1 to 0.3 μm. When the roasting temperature is increased, when the half width is less than 0.7 °, especially when less than 0.3 °, D 50 However, such abrasives can be made into fine, high-purity cerium oxide abrasives by mechanically pulverizing as needed.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described based on examples and comparative examples.
[0031]
In this embodiment, a high-purity cerium oxide abrasive was manufactured using the raw materials of Examples 1 to 6 shown in Table 1. The raw material of this high-purity cerium oxide abrasive was prepared as follows. After cerium is oxidized by dissolving cerium-containing minerals with acid, cerium is separated from other rare earth elements by repeated solvent extraction or ion exchange, and carbonates such as ammonium bicarbonate are added. It is produced by precipitating cerium carbonate with, filtering and drying.
[0032]
First, in Example 1, CeO was used as a raw material. 2 / TREO = 99% high purity cerium-based rare earth carbonate was used (D 50 30 μm, D max 200 μm). Then, pure water was added so as to have a solid content concentration of 50 wt% to form a slurry. A part of this slurry was heated and held at 90 ° C. for 60 minutes to perform immersion heat treatment. X-ray diffraction measurement of the raw material after the completion of the immersion heat treatment confirmed that the detected peak was derived from cerium monooxycarbonate, which was measured by a cumulative particle size distribution measurement using a laser diffraction method (Shimadzu SALD2000). The average particle size is D 50 Is 7 μm, D max It was 60 μm. Here, if the raw material itself is insufficiently pulverized due to the immersion heat treatment and coarse particles remain, preliminary mechanical pulverization is performed on the raw material cerium-based rare earth carbonate as necessary, and a certain degree of fineness is obtained. It is also possible to adjust to the state.
[0033]
Then, mechanical grinding is performed using a bead mill, 50 Was ground to about 1 μm. After the pulverized slurry having passed through the pulverization step was filtered and the residue was dried, the pulverized slurry was left in an electric furnace at 1000 ° C. for 4 hours to be cooled to room temperature. The product obtained through the roasting step was crushed by a hammer mill. The crushed cerium oxide abrasive (hereinafter simply referred to as a crushed product) was measured for the half width at the main peak by X-ray diffraction, the cumulative weight particle size distribution, and the content of coarse particles of 5 μm or more contained in the crushed product was measured.
[0034]
Here, a method for measuring the content of coarse particles of 5 μm or more will be described. In order to determine the content ratio of the coarse particles, the coarse particles were separated as follows. First, a crushed product is added to an aqueous 0.1 wt% sodium hexametaphosphate solution to prepare a slurry for filtration, ultrasonic waves are applied to the slurry for filtration to perform ultrasonic dispersion, and thereafter, specified in JIS Z8801-3 (2000). Filtration was carried out using an electric sieve having openings of 5 μm to separate coarse particles of 5 μm or more. In this case, in consideration of the slurry concentration, the first slurry for dispersion was subjected to ultrasonic dispersion in consideration of the slurry concentration, and then left for about 5 minutes to wait for sedimentation of the slurry, and the supernatant (about 2/3 of the total amount of the slurry for filtration) ) Was filtered through an electric sieve. Then, a 0.1 wt% aqueous sodium hexametaphosphate solution was further added to the unfiltered residue (1/3), and the newly prepared slurry for filtration was ultrasonically dispersed, and the ultrafiltration was performed as described above. After stopping the sonication, the mixture was left for 5 minutes, and the supernatant was filtered. Such a filtration treatment is repeated 10 times continuously, and the entire amount of the slurry for the 10th filtration is filtered, and the coarse particles collected on the electric sieve by the filtration performed 10 times continuously are continuously filtered. Was dried at 100 ° C., and the weight of coarse particles of 5 μm or more was measured.
[0035]
Further, for Examples 2 to 6, CeO shown in Table 1 was used. 2 Using a raw material having a / TREO value, a crushed product is obtained as described above according to the conditions in Table 1, and the half-width measurement at the main peak by X-ray diffraction, the cumulative weight particle size distribution measurement, and the coarse particles of 5 μm or more contained in the crushed product Was measured. As a result of X-ray diffraction measurement of the raw material after the pulverizing step in each example, the peak derived from cerium carbonate disappeared, and the peak derived from cerium monooxycarbonate was confirmed.
[0036]
Further, for comparison, in Comparative Example 1, CeO 2 A low-purity cerium-based rare earth carbonate of / TREO = 60% was used, and the other processing steps were the same as in the above-described embodiment. In Comparative Example 2, CeO 2 A high-purity cerium-based rare earth carbonate of / TREO = 99% was used, and a roasting step was performed after mechanical pulverization without performing immersion heat treatment (Table 1). The same measurement as in the example was performed on the crushed product of the comparative example thus obtained. Table 2 shows the measurement results of Examples 1 to 6 and Comparative Examples 1 and 2.
[0037]
[Table 1]
Figure 2004175964
[0038]
[Table 2]
Figure 2004175964
[0039]
As can be seen from Table 2, the cumulative weight average particle size D 50 Although no large difference was observed in the value of, the content of coarse particles larger than 5 μm was found to be much better in the crushed product obtained by the crushing step of performing immersion heat treatment. Further, the half-value width of the main peak by X-ray diffraction is small when the roasting temperature is high, 50 On the contrary, it was confirmed that a large number was shown.
[0040]
Next, the results of investigating the polishing characteristics using each of the crushed products obtained as described above will be described. In this polishing property investigation, each crushed product was set to a predetermined classification using a dry air classifier (Yasukawa Electric Co., Ltd., YMC micro cut) so that coarse particles of 5 μm or more were removed, and the fine abrasive material after classification was set. Until the content of the coarse particles having a particle size of 5 μm or more contained in the powdered material became 100 ppm or less, the fine abrasive particles were repeatedly pulverized by a hammer mill and classified by air classification as needed. In addition, in the first classifying operation of each crushed product, the output weight (classification efficiency) of the fine-particle-side abrasive product after classification with respect to the supply weight of the crushed product was determined (see Table 3).
[0041]
The classified cerium oxide abrasive (hereinafter, referred to as a classified product) obtained from each of the crushed products was measured for the cumulative weight particle size distribution by a laser diffraction method, and the content of coarse particles of 5 μm or more was measured by an elutriation method. In addition, by the polishing test described below, the polishing value indicating the polishing characteristics of each classified product and the scratch evaluation were investigated. Table 3 shows the results.
[0042]
In the polishing test, a high-speed polishing tester was used as a test device, and a glass for flat panel (BK-7) having a diameter of 65 mm was used as a material to be polished, and the glass was polished using a polishing pad made of polyurethane. As the abrasive, the obtained classified product was dispersed in water to prepare an abrasive slurry having a slurry concentration of 10% by weight. The polishing conditions were such that the prepared abrasive slurry was supplied at 5 L / min, and the pressure on the polished surface was 9.8 kPa (100 g / cm). 2 ), And the rotation speed of the polishing tester was set to 100 rpm. The polished glass material was washed with pure water and dried in a dust-free state.
[0043]
Evaluation of polishing value : In the above-mentioned polishing test, a polishing value was determined based on the amount of reduction in glass weight determined by measuring the glass weight before polishing and the glass weight after polishing for a predetermined time. Here, as a criterion for the polishing value, a polishing test was performed using the polishing material manufactured in Comparative Example 1, and the reduction in glass weight obtained as a result was set to 100. The polishing value of each classified product was calculated as a relative value of this standard.
[0044]
Scratch evaluation : The state of the polished surface was evaluated. The scratches were evaluated based on the presence or absence of scratches on the polished surface. Specifically, the surface of the polished glass was irradiated with a halogen lamp of 300,000 lux, and the glass surface was observed by a reflection method to determine the degree (size and number) of the scratches and scored them. The evaluation points were determined by the deduction system from the perfect score.
[0045]
[Table 3]
Figure 2004175964
[0046]
As shown in Table 3, it was found that all of the abrasives of Examples 1 to 6 had extremely excellent polishing values and scratch evaluation characteristics. On the other hand, in Comparative Example 1, the polishing value was smaller than in all Examples. Further, in Comparative Example 2, the content of coarse particles was the largest, and as a result, scratches on the glass surface were extremely large even though the pulverization and classification were repeated six times. It was also found that when the immersion heat treatment was performed, the classification efficiency was very high. On the other hand, in Comparative Example 2 in which the immersion heat treatment was not performed, the classification efficiency was very low. Therefore, it can be seen that the production method of the present embodiment in which the immersion heat treatment is performed can obtain a high-purity cerium oxide abrasive having excellent polishing characteristics with high production efficiency.
[0047]
Finally, the result of SEM observation of the abrasive after the roasting step will be described. FIG. 1 shows an SEM photograph (magnification: 2000) of an abrasive obtained by performing a roasting step without performing the immersion heat treatment described in Comparative Example 2 at all, and FIG. FIG. 3 shows an SEM photograph (magnification: 2000) of an abrasive obtained by performing a roasting step after performing the immersion heat treatment described in FIG.
[0048]
As can be seen from FIG. 1, it was confirmed that when the immersion heat treatment was not performed as in the conventional case, there were very many large coarse particles of several tens of microns. On the other hand, as shown in FIG. 2, when the roasting step is performed through the immersion heat treatment, the raw material itself is being crushed by the immersion heat treatment, and as a result, the abrasive material has a fine particle state of several μm or less. Turned out to be.
[0049]
【The invention's effect】
As described above, according to the present invention, a high-purity cerium oxide abrasive can be manufactured with high productivity and at low cost. In addition, it is possible to provide a high-purity cerium oxide abrasive which is suitable for not only glass polishing but also various uses such as semiconductors, in which the concentration of coarse particles is lower and the polishing power is higher.
[Brief description of the drawings]
FIG. 1 is a SEM observation photograph of an abrasive after a roasting step in Comparative Example 2.
FIG. 2 is a SEM observation photograph of the abrasive after the roasting step in Example 1.

Claims (5)

セリウム系研摩材原料の粉砕工程と、粉砕後の原料の焙焼工程および焙焼後の原料の解砕工程とを有する高純度酸化セリウム研摩材の製造方法において、
セリウム系研摩材原料として、CeO/TREO 90%以上のセリウム系希土類炭酸塩を用い、
原料の粉砕工程は、セリウム系希土類炭酸塩からモノオキシ炭酸セリウムを生成し、
その後の焙焼工程において600℃〜1200℃の加熱温度で焙焼することを特徴とする高純度酸化セリウム研摩材の製造方法。
In a method for producing a high-purity cerium oxide abrasive having a crushing step of a cerium-based abrasive material and a roasting step of the crushed raw material and a crushing step of the roasted raw material,
As a cerium-based abrasive raw material, a cerium-based rare earth carbonate of 90% or more of CeO 2 / TREO is used,
The raw material pulverization process produces cerium monooxycarbonate from cerium-based rare earth carbonates,
A method for producing a high-purity cerium oxide abrasive, comprising roasting at a heating temperature of 600 to 1200 ° C. in a subsequent roasting step.
粉砕工程におけるセリウム系希土類炭酸塩からモノオキシ炭酸セリウムを生成する処理は、原料を水溶液中に浸漬させた状態で加熱するものである請求項1に記載の高純度酸化セリウム研摩材の製造方法。The method for producing a high-purity cerium oxide abrasive according to claim 1, wherein the treatment for producing cerium monooxycarbonate from the cerium-based rare earth carbonate in the pulverizing step is performed while the raw material is immersed in an aqueous solution. 水溶液の加熱温度は、60℃〜100℃である請求項2に記載の高純度酸化セリウム研摩材の製造方法。The method for producing a high-purity cerium oxide abrasive according to claim 2, wherein the heating temperature of the aqueous solution is 60C to 100C. 請求項1〜請求項3のいずれか一項に記載の高純度酸化セリウム系研摩材の製造方法により製造される高純度酸化セリウム系研摩材であって、
X線回折測定によるメインピークにおける半値幅が0.7°以下である高純度酸化セリウム系研摩材。
A high-purity cerium oxide-based abrasive produced by the method for producing a high-purity cerium oxide-based abrasive according to any one of claims 1 to 3,
A high-purity cerium oxide-based abrasive having a half width at the main peak of 0.7 ° or less as measured by X-ray diffraction.
5μm以上の粗大粒子含有量が500ppm以下である請求項4に記載の高純度酸化セリウム研摩材。The high-purity cerium oxide abrasive according to claim 4, wherein the content of coarse particles of 5 µm or more is 500 ppm or less.
JP2002345240A 2002-11-28 2002-11-28 Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process Pending JP2004175964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345240A JP2004175964A (en) 2002-11-28 2002-11-28 Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345240A JP2004175964A (en) 2002-11-28 2002-11-28 Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process

Publications (1)

Publication Number Publication Date
JP2004175964A true JP2004175964A (en) 2004-06-24

Family

ID=32706465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345240A Pending JP2004175964A (en) 2002-11-28 2002-11-28 Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process

Country Status (1)

Country Link
JP (1) JP2004175964A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099799A1 (en) * 2006-03-01 2007-09-07 Mitsui Mining & Smelting Co., Ltd. Cerium-based abrasive material
JP2008013689A (en) * 2006-07-06 2008-01-24 Mitsui Mining & Smelting Co Ltd Raw material for cerium-based abrasive, method for producing cerium-based abrasive and cerium-based abrasive
CN103011240A (en) * 2012-12-24 2013-04-03 赣州虔东稀土集团股份有限公司 Bulky-grain rare earth carbonate and preparation method and application of carbonate
WO2020085438A1 (en) * 2018-10-24 2020-04-30 三井金属鉱業株式会社 Adsorbent and method for producing same and adsorption molded article
CN114573014A (en) * 2022-03-03 2022-06-03 内蒙古新雨稀土功能材料有限公司 Preparation method of low-cost high-purity ceric sulfate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099799A1 (en) * 2006-03-01 2007-09-07 Mitsui Mining & Smelting Co., Ltd. Cerium-based abrasive material
JP2007231158A (en) * 2006-03-01 2007-09-13 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive
JP2008013689A (en) * 2006-07-06 2008-01-24 Mitsui Mining & Smelting Co Ltd Raw material for cerium-based abrasive, method for producing cerium-based abrasive and cerium-based abrasive
CN103011240A (en) * 2012-12-24 2013-04-03 赣州虔东稀土集团股份有限公司 Bulky-grain rare earth carbonate and preparation method and application of carbonate
WO2020085438A1 (en) * 2018-10-24 2020-04-30 三井金属鉱業株式会社 Adsorbent and method for producing same and adsorption molded article
CN112912171A (en) * 2018-10-24 2021-06-04 三井金属矿业株式会社 Adsorbent, method for producing same, and molded adsorbent
JPWO2020085438A1 (en) * 2018-10-24 2021-09-16 三井金属鉱業株式会社 Adsorbent, its manufacturing method, and adsorption molded product
CN114573014A (en) * 2022-03-03 2022-06-03 内蒙古新雨稀土功能材料有限公司 Preparation method of low-cost high-purity ceric sulfate
CN114573014B (en) * 2022-03-03 2023-10-10 内蒙古新雨稀土功能材料有限公司 Preparation method of low-cost high-purity ceric sulfate

Similar Documents

Publication Publication Date Title
JP6421887B2 (en) Method for producing cerium salt, cerium oxide and cerium-based abrasive
CN108026433B (en) Cerium-based abrasive and method for producing the same
KR100543781B1 (en) Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry
KR100509267B1 (en) Method for producing cerium-based polishing agent
WO2003097761A1 (en) Method for producing cerium-based polishing material and cerium-based polishing material produced by said method
JP2004175964A (en) Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process
KR102423338B1 (en) A method for producing a raw material for a cerium-based abrasive, and a method for producing a cerium-based abrasive
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP5259933B2 (en) Raw material for cerium-based abrasive, method for producing cerium-based abrasive, and cerium-based abrasive
JP2002371267A (en) Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP5237542B2 (en) Cerium oxide abrasive
JP2007231158A (en) Cerium-based abrasive
JP3685481B2 (en) Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP3986384B2 (en) Cerium-based abrasive and method for producing the same
JP6512096B2 (en) Abrasive material, abrasive material slurry and method of manufacturing abrasive material
KR100679966B1 (en) Cerium polishing agent and method for producing cerium polishing agent
JP2002327171A (en) Method for producing cerium based polishing agent
JP3986410B2 (en) Method for producing cerium-based abrasive slurry and cerium-based abrasive slurry obtained thereby
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive
JP2012236273A (en) Polishing agent for polishing free abrasive grain and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070413