JP2002327171A - Method for producing cerium based polishing agent - Google Patents

Method for producing cerium based polishing agent

Info

Publication number
JP2002327171A
JP2002327171A JP2001134150A JP2001134150A JP2002327171A JP 2002327171 A JP2002327171 A JP 2002327171A JP 2001134150 A JP2001134150 A JP 2001134150A JP 2001134150 A JP2001134150 A JP 2001134150A JP 2002327171 A JP2002327171 A JP 2002327171A
Authority
JP
Japan
Prior art keywords
raw material
cerium
abrasive
concentration
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001134150A
Other languages
Japanese (ja)
Other versions
JP4070180B2 (en
Inventor
Hidehiko Yamazaki
秀彦 山▲崎▼
Akifumi Ito
昭文 伊藤
Yoshiji Uchino
義嗣 内野
Kazuya Ushiyama
和哉 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001134150A priority Critical patent/JP4070180B2/en
Publication of JP2002327171A publication Critical patent/JP2002327171A/en
Application granted granted Critical
Publication of JP4070180B2 publication Critical patent/JP4070180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing cerium based polishing agent low in concentration of coarse particles, holding a high polishing force and excellent in cleaning property of the polished face. SOLUTION: This method of production for cerium based polishing agent having a process crushing raw material, a calcination process carrying out a calcinations of the raw material after crushing and a crushing process crushing the calination product, uses a cerium based rare earth carbonate or a mixture of the cerium based rare earth carbonate and the cerium based rare earth oxide and in the crushing process the raw material is crushed in a slurry obtained by mixing the raw material and a solution including a fluorine component to the slurry state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セリウム系研摩材
の製造方法に関し、特に、焙焼前に行なわれる原料を解
砕する工程に特徴を有するセリウム系研摩材の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cerium-based abrasive, and more particularly to a method for producing a cerium-based abrasive characterized by a step of pulverizing raw materials before roasting.

【0002】[0002]

【従来の技術】セリウム系研摩材(以下、単に研摩材と
も称する)は、従来から、光学レンズの研摩に多用され
ているが、近年、ハードディスク等の磁気記録媒体用ガ
ラスや液晶ディスプレイ(LCD)のガラス基板といっ
た電気・電子機器で用いられるガラス材料用の研摩材と
しても広く用いられている。
2. Description of the Related Art Cerium-based abrasives (hereinafter also simply referred to as abrasives) have been widely used for polishing optical lenses, but recently, glass for magnetic recording media such as hard disks and liquid crystal displays (LCD) have been used. It is also widely used as an abrasive for glass materials used in electric and electronic devices such as glass substrates.

【0003】セリウム系研摩材は、例えば、バストネサ
イト鉱や中国産複雑鉱をから得られるセリウム系希土類
炭酸塩(以下、炭酸希土とも称する)、または炭酸希土
を予め高温で仮焼することにより得られるセリウム系希
土類酸化物(以下、酸化希土とも称する)を原料とし
て、次のようにして製造される。まず、これらのセリウ
ム系研摩材の原料(以下、単に原料ともいう)をアトラ
イタ、ボールミル、ビーズミルなどの粉砕装置によって
湿式粉砕し、その後、化学処理(湿式処理)を施して、
濾過し、乾燥する。その後、加熱して焙焼することで原
料粒子同士を適度に焼結させ、焼結後の原料を、上述し
たような粉砕装置を用いて乾式あるいは湿式で解砕(再
粉砕)すると共に解砕後の原料を分級する。このように
することで所望の粒径、粒度分布の研摩材を得ている。
なお、ここでいう化学処理とは、焙焼時に異常粒成長の
原因となるナトリウム等のアルカリ金属を除去する処理
(鉱酸処理)のこと、およびセリウム系研摩材の研摩力
(研摩速度)の確保や被研摩面の平滑性の確保を目的と
してフッ素成分を添加する処理(フッ化処理)のことで
ある。フッ素成分は被研摩材であるガラスと反応して被
研摩面の平滑性を向上させる効果や研摩力を高める効果
があるため、フッ化処理を行うことでこのような効果を
得ることができる。
A cerium-based abrasive is, for example, calcined at a high temperature in advance from a cerium-based rare earth carbonate (hereinafter, also referred to as a rare earth carbonate) obtained from bastnaesite ore or a complex ore produced in China. The cerium-based rare earth oxide (hereinafter also referred to as rare earth oxide) obtained as a raw material is produced as follows. First, raw materials of these cerium-based abrasives (hereinafter, also simply referred to as raw materials) are wet-pulverized by a pulverizing device such as an attritor, a ball mill, a bead mill, and then subjected to a chemical treatment (wet treatment).
Filter and dry. Thereafter, the raw material particles are appropriately sintered by heating and roasting, and the raw material after sintering is pulverized (re-pulverized) in a dry or wet manner using the above-described pulverizing apparatus. Classify the later raw materials. By doing so, an abrasive having a desired particle size and particle size distribution is obtained.
Here, the chemical treatment refers to a treatment (mineral acid treatment) for removing an alkali metal such as sodium which causes abnormal grain growth during roasting, and a polishing force (polishing speed) of a cerium-based abrasive. This is a treatment (fluorination treatment) in which a fluorine component is added for the purpose of securing or ensuring the smoothness of the polished surface. Since the fluorine component has the effect of improving the smoothness of the surface to be polished and the effect of increasing the polishing force by reacting with the glass as the material to be polished, such effects can be obtained by performing fluorination treatment.

【0004】[0004]

【発明が解決しようとする課題】ところで、研摩材製品
には粗大粒子が含まれていないことが望ましい。これ
は、粗大粒子が被研摩面に傷をつける原因になるからで
ある。また、例えば、高密度記録や高速読み書きに対応
できる磁気記録媒体用ガラス基板の製造過程で行われる
研摩工程では、ガラス基板の表面(被研摩面)の平滑性
などについて、非常に高い精度が要求されており、この
要求に対応する必要があるが、研摩材中の粗大粒子濃度
が高いとガラス基板の表面に傷が発生しやすいく、平滑
性などの要求に対応できない。したがって、この点から
も研摩材には粗大粒子が含まれていないことが望まれ
る。
However, it is desirable that the abrasive product does not contain coarse particles. This is because the coarse particles cause damage to the polished surface. Also, for example, in the polishing process performed in the manufacturing process of a glass substrate for a magnetic recording medium capable of supporting high-density recording and high-speed reading and writing, extremely high accuracy is required for the smoothness of the surface (polished surface) of the glass substrate. However, it is necessary to meet this requirement. However, if the concentration of coarse particles in the abrasive is high, the surface of the glass substrate is likely to be damaged, and the requirement for smoothness cannot be met. Therefore, also from this point, it is desired that the abrasive does not contain coarse particles.

【0005】また、研摩工程における研摩作業効率を考
慮すると、研摩材製品としては、研摩力が高いものが望
ましい。そして、高い研摩力を確保するためには、研摩
材粒子の粒径が必要以上に小さくならないように粉砕す
る必要がある。
In view of the efficiency of the polishing operation in the polishing step, it is desirable that the abrasive product has a high abrasive force. Then, in order to secure a high polishing force, it is necessary to grind the abrasive particles so that the particle diameter of the abrasive particles does not become smaller than necessary.

【0006】ところが、従来の粉砕手段では、これらの
条件を満足しようとしても限界がある。つまり、ボール
ミル、アトライタ、ビーズミルなどの粉砕装置を用いる
従来の湿式粉砕によって、粗大粒子が少なくなるように
粉砕するには、粉砕時間を長くする必要があるが、粉砕
時間を長くすると、必要以上に粉砕された微粒子の生成
量が増加するため、研摩材製品において、必要な研摩力
を確保することが難しくなるのである。
However, the conventional pulverizing means has a limit in satisfying these conditions. In other words, ball mills, attritors, conventional wet pulverization using a pulverizer such as a bead mill, in order to pulverize so as to reduce the coarse particles, it is necessary to increase the pulverization time, but if the pulverization time is increased, more than necessary Since the amount of pulverized fine particles increases, it becomes difficult to secure a necessary polishing force in an abrasive product.

【0007】そこで、従来の研摩材では、研摩材製造時
にフッ化処理を行ってフッ素成分を添加し、添加したフ
ッ素成分の効果によって、必要な被研摩面の平滑性や研
摩時の研摩力を確保している。上述したように、フッ素
成分には、被研摩面の平滑性を向上させる効果や研摩力
を高める効果があるからである。例えば、特開平9−1
83966号公報には、研摩材製品中のフッ素含有量が
3重量%〜9重量%になるように、湿式粉砕粉砕後の原
料スラリーにフッ素水溶液を撹拌しながら滴下して研摩
材を製造する方法が開示されている。
[0007] Therefore, in the conventional abrasive, a fluorine component is added by performing fluoridation during the production of the abrasive, and the required smoothness of the surface to be polished and the polishing force at the time of polishing are reduced by the effect of the added fluorine component. Is secured. As described above, the fluorine component has the effect of improving the smoothness of the surface to be polished and the effect of increasing the polishing force. For example, Japanese Patent Laid-Open No. 9-1
No. 83966 discloses a method of producing an abrasive by dropping an aqueous fluorine solution into a raw slurry after wet pulverization while stirring so that the fluorine content in the abrasive product is 3% by weight to 9% by weight. Is disclosed.

【0008】しかしながら、フッ素を添加して必要な平
滑性や研摩力を確保すると、研摩材中のフッ素成分の濃
度が高くなるため、研摩時に微粒の研摩材が被研摩面に
付着しやすくなり、しかも被研摩面上に残留しやすくな
るため、被研摩面の洗浄性が低下するという不具合があ
る。
However, if the required smoothness and polishing power are secured by adding fluorine, the concentration of the fluorine component in the abrasive becomes high, so that the fine abrasives tend to adhere to the surface to be polished during polishing. In addition, there is a problem in that the surface to be polished tends to remain on the surface to be polished, so that the cleanability of the surface to be polished is reduced.

【0009】本発明は、以上のような背景の下になされ
たものであり、粗大粒子濃度がより低く、かつより高い
研摩力が確保されており、しかも被研摩面の洗浄性に優
れるセリウム系研摩材の製造方法を提供することを課題
とする。
The present invention has been made in view of the above background, and has been made of a cerium-based material having a lower concentration of coarse particles, a higher polishing power, and an excellent cleanability of a surface to be polished. An object of the present invention is to provide a method for producing an abrasive.

【0010】[0010]

【課題を解決するための手段】このような課題を解決す
るため、発明者等は、アトライタなどの粉砕装置を用い
て最初に行われる原料を粉砕する工程に着目し、より粗
大粒子濃度が低くなる粉砕条件や、より微粒の研摩粒子
の濃度が低くなる粉砕条件について検討した。しかしな
がら、粗大粒子および微粒の研摩粒子の両方について、
含有濃度をより低く抑えることができる粉砕条件は見出
されなかった。
Means for Solving the Problems In order to solve such a problem, the present inventors have paid attention to a step of first pulverizing a raw material using a pulverizing device such as an attritor, and have found that the coarse particle concentration is lower. The grinding conditions under which the concentration of the finer abrasive particles was reduced and the grinding conditions under which the concentration of finer abrasive particles became lower were examined. However, for both coarse and fine abrasive particles,
No pulverizing conditions have been found that can keep the content lower.

【0011】そこで、発明者等は、従来の粉砕方法に拘
泥することなく広く粉砕手段を検討した。その結果、ア
トライタなどの粉砕装置を用いて原料を粉砕しなくて
も、特定の原料を用いた場合には、フッ素成分を含有す
る溶液によって原料を粉砕できることを見出し、本発明
に想到した。
Therefore, the present inventors have studied a wide range of pulverizing means without being bound by the conventional pulverizing method. As a result, they have found that, when a specific raw material is used, the raw material can be pulverized by a solution containing a fluorine component without using a pulverizing device such as an attritor to pulverize the raw material.

【0012】すなわち、本発明は、セリウム系研摩材の
原料を粉砕する工程を有すると共に、粉砕後の原料を焙
焼する工程および焙焼により得られる焙焼品を解砕する
工程を有するセリウム系研摩材の製造方法において、セ
リウム系研摩材の原料として、セリウム系希土類炭酸
塩、またはセリウム系希土類炭酸塩とセリウム系希土類
酸化物とが混在するものが用いられており、原料を粉砕
する工程は、原料とフッ素成分含有溶液とを混合してス
ラリー状態にすることにより該スラリー中の原料を粉砕
する工程を有することを特徴とする。
That is, the present invention provides a cerium-based abrasive having a step of pulverizing a raw material of a cerium-based abrasive, a step of roasting the pulverized raw material, and a step of pulverizing a roasted product obtained by roasting. In the method for producing an abrasive, as a raw material of a cerium-based abrasive, a cerium-based rare earth carbonate, or a mixture of a cerium-based rare earth carbonate and a cerium-based rare earth oxide is used. And mixing the raw material and the fluorine component-containing solution to form a slurry to pulverize the raw material in the slurry.

【0013】原料を粉砕する工程では、セリウム系希土
類炭酸塩、またはセリウム系希土類炭酸塩とセリウム系
希土類酸化物とが混在するものを原料として用い、この
原料をスラリーの状態にすることにより、該スラリー中
の原料を粉砕する。スラリーにする前の原料の大きさ
は、厳密に限られるものではないが、通常、平均粒径
は、1000μm以下であり、この程度の大きさが好ま
しい。また、スラリーにおける固形成分の濃度も特に限
定されるものではないが、通常の粉砕等で用いられる、
固形成分が1重量%〜50重量%のスラリーが好まし
い。
In the step of pulverizing the raw material, a cerium-based rare earth carbonate or a mixture of a cerium-based rare earth carbonate and a cerium-based rare earth oxide is used as a raw material, and the raw material is made into a slurry to form a slurry. Grind the raw material in the slurry. The size of the raw material before slurrying is not strictly limited, but usually the average particle size is 1000 μm or less, and this size is preferable. Further, the concentration of the solid component in the slurry is not particularly limited, but is used in ordinary pulverization and the like,
Preference is given to slurries having a solids content of 1% to 50% by weight.

【0014】本発明では、スラリーを調製する際に、溶
液としてフッ素成分を含有している溶液を用いて原料を
スラリーの状態にする。このような状態にすると、アト
ライタ、ボールミル、ビーズミルなど、原料を物理的に
粉砕する従来の粉砕装置を用いなくても、溶液中のフッ
素成分を利用して、スラリー中の原料(スラリー中の固
形成分)を化学的に粉砕できる。そして、このようにし
て原料を粉砕すると、原料全体を、より均等に粉砕する
ことができ、粗大粒子濃度および微粒子濃度のいずれも
が低い状態に粉砕できる。
In the present invention, when preparing the slurry, the raw material is made into a slurry state using a solution containing a fluorine component as the solution. In such a state, the raw material in the slurry (solid in the slurry) can be utilized by utilizing the fluorine component in the solution without using a conventional pulverizing apparatus for physically pulverizing the raw material such as an attritor, a ball mill, and a bead mill. Component) can be chemically ground. Then, when the raw material is pulverized in this way, the entire raw material can be pulverized more uniformly, and can be pulverized to a state in which both the coarse particle concentration and the fine particle concentration are low.

【0015】粉砕後の原料中の粗大粒子濃度を低くする
ことができれば、研摩材製品中の粗大粒子濃度をより確
実に低くすることができる。研摩材中の粗大粒子濃度が
低くなれば、粗大粒子を原因とする被研摩面における傷
発生がより確実に防止されると共に、被研摩面の平滑性
が向上する。また、原料全体を均等に粉砕でき、粉砕後
の原料中の微粒子濃度が低い状態になるように粉砕でき
れば、研摩材を構成する各研摩材粒子の粒径が平均的な
粒径により揃った状態になるので、研摩速度が向上す
る。
If the concentration of coarse particles in the raw material after pulverization can be reduced, the concentration of coarse particles in the abrasive product can be reduced more reliably. When the concentration of coarse particles in the abrasive is low, the generation of scratches on the surface to be polished due to the coarse particles is more reliably prevented, and the smoothness of the surface to be polished is improved. In addition, if the whole raw material can be ground evenly, and if the fine particles can be ground so that the concentration of fine particles in the raw material after grinding is low, the particle size of each abrasive particle constituting the abrasive is uniform with the average particle size. Therefore, the polishing speed is improved.

【0016】必要な平滑性や研摩速度が確保されれば、
さらにフッ素成分を添加してこれらの性能を確保する必
要がなくなるため、研摩材製品中のフッ素成分濃度の低
減が可能になる。そして、フッ素成分濃度を低減するこ
とで、被研摩面の洗浄性を向上させることが可能にな
る。また、近年は、年々高水準の環境対策が要求される
ようになりつつあり、フッ素成分濃度についてもより低
い濃度が要求されるようになると考えられるところ、本
発明によれば、研摩材中のフッ素成分濃度をより低減で
きるため、より確実にこのような要求に対応できる。
If the required smoothness and polishing rate are secured,
Further, since it is not necessary to add a fluorine component to secure these performances, the fluorine component concentration in the abrasive product can be reduced. And, by reducing the fluorine component concentration, it becomes possible to improve the cleanability of the polished surface. Further, in recent years, a high level of environmental measures has been required year by year, and it is considered that a lower concentration of the fluorine component is expected to be required. Since the fluorine component concentration can be further reduced, such a demand can be more reliably met.

【0017】このような好結果が得られるのは、ここで
いう化学的な粉砕方法は、従来の物理的な粉砕方法と異
なり、原料の全体を均等に粉砕できるからであると考え
られる。
It is considered that such a good result is obtained because the chemical pulverization method here can uniformly pulverize the entire raw material, unlike the conventional physical pulverization method.

【0018】アトライタなどの粉砕装置による従来の物
理的な粉砕は、ボール等の粉砕媒体を強制的に運動させ
て粉砕媒体どうしを衝突させることで原料を粉砕するも
のであり、粉砕が行われる原料と行われない原料とが生
ずる。このようなことから、粉砕が不足している原料が
生じて粗大粒子が残存する一方で、過剰な粉砕が行われ
て微粒子が生成されることになると考えられる。これに
対し、ここでいう化学的な粉砕は、スラリー全体に均等
に存在する液体中のフッ素成分によって原料(スラリー
中の固形成分)を粉砕する方法であり、原料全体を均等
に粉砕することができる。したがって、粗大粒子の残存
を防止しつつ微粒子の生成をも防止でき、原料(スラリ
ー中の固形成分)の全体を均等に粉砕できると考えられ
るのである。
Conventional physical pulverization by a pulverizing device such as an attritor is a method in which a raw material is pulverized by forcibly moving a pulverizing medium such as a ball and causing the pulverizing media to collide with each other. And unprocessed raw materials. From such a fact, it is considered that a raw material that is insufficiently pulverized is generated and coarse particles remain, while excessive pulverization is performed to generate fine particles. On the other hand, the chemical pulverization here is a method of pulverizing the raw material (solid component in the slurry) by the fluorine component in the liquid which is uniformly present in the entire slurry. it can. Therefore, it is considered that generation of fine particles can be prevented while remaining coarse particles, and the entire raw material (solid component in the slurry) can be uniformly pulverized.

【0019】なお、スラリーの調製に用いる溶液として
は、例えば、水溶性フッ化物を含有するフッ化水素水溶
液、フッ化アンモニウムなどを挙げることができる。ま
た、粉砕においては、スラリーの溶液中のフッ素成分を
利用した化学的な粉砕と、従来からある物理的な粉砕と
を併用することができ、併用によって、より効率的な粉
砕を行うことも可能である。併用する場合は、化学的な
粉砕を、従来の物理的な粉砕の前に行うか同時に行うの
が好ましい。物理的な粉砕後に化学的な粉砕を行うと、
物理的に粉砕された原料をさらに化学的に粉砕すること
となり、原料中の微粒子濃度を低減する目的が果たせな
いためである。
The solution used for preparing the slurry includes, for example, an aqueous solution of hydrogen fluoride containing a water-soluble fluoride, ammonium fluoride and the like. In the pulverization, the chemical pulverization using the fluorine component in the slurry solution and the conventional physical pulverization can be used together, and by using them together, more efficient pulverization can be performed. It is. When used in combination, it is preferable to perform the chemical pulverization before or simultaneously with the conventional physical pulverization. When chemical grinding is performed after physical grinding,
This is because the physically pulverized raw material is further chemically pulverized, and the purpose of reducing the concentration of fine particles in the raw material cannot be achieved.

【0020】ところで、化学的な粉砕を行う場合に、で
きるだけ迅速に粉砕を行うには、スラリーの溶液中のフ
ッ素成分濃度は高い方がよい。ところが、フッ素成分濃
度を高くし過ぎると、最終的に製造される研摩材製品中
のフッ素成分濃度を低くすることが難しくなる。粉砕後
の焙焼により原料中のフッ素成分が原料中から逃げるた
め、これにより原料中のフッ素成分濃度を減少させるこ
とができるが、後述するように、焙焼本来の目的との関
係で、フッ素成分濃度の調節に必要十分な焙焼を行うこ
とができるとは限らないからである。他方、スラリーの
溶液中のフッ素成分濃度が低すぎると化学的な粉砕が進
みにくくなる。
Incidentally, in the case of performing chemical pulverization, in order to perform pulverization as quickly as possible, the higher the fluorine component concentration in the slurry solution, the better. However, if the fluorine component concentration is too high, it is difficult to lower the fluorine component concentration in the finally manufactured abrasive product. Since the fluorine component in the raw material escapes from the raw material by roasting after pulverization, the concentration of the fluorine component in the raw material can be reduced by this.However, as described later, fluorine This is because it is not always possible to perform roasting necessary and sufficient for adjusting the component concentration. On the other hand, if the fluorine component concentration in the slurry solution is too low, chemical pulverization becomes difficult to proceed.

【0021】そこで、フッ素含有溶液を用いて粉砕する
工程におけるスラリーの溶液中のフッ素成分濃度につい
て検討した。その結果、フッ素成分濃度が希薄な溶液に
よって化学的な粉砕が可能であることが解った。具体的
には、スラリーの溶液中のフッ素成分濃度の最大値は、
0.001mol/L〜1.0mol/Lが好ましいこ
とが解った。
Therefore, the concentration of the fluorine component in the slurry solution in the step of pulverizing using the fluorine-containing solution was examined. As a result, it was found that chemical pulverization was possible with a solution having a low fluorine component concentration. Specifically, the maximum value of the fluorine component concentration in the slurry solution is:
It has been found that 0.001 mol / L to 1.0 mol / L is preferable.

【0022】溶液中のフッ素成分濃度の最大値の上限を
1.0mol/Lに限るのは、これを超えると、研摩材
製品のフッ素成分濃度を低く抑えることが難しくなるか
らである。なお、原料を化学的に粉砕する効果は、スラ
リーの溶液中にフッ素成分が含まれていれば得られると
考えられるが、粉砕工程における生産性(粉砕効率)を
確保する観点に立つと、フッ素成分濃度は、0.001
mol/L以上が好ましい。
The reason why the upper limit of the maximum value of the fluorine component concentration in the solution is limited to 1.0 mol / L is that if the maximum value is exceeded, it becomes difficult to keep the fluorine component concentration of the abrasive product low. The effect of chemically pulverizing the raw material is considered to be obtained when the fluorine solution is contained in the slurry solution. However, from the viewpoint of securing the productivity (pulverization efficiency) in the pulverization step, the effect of fluorine is considered. Component concentration is 0.001
mol / L or more is preferable.

【0023】ところで、フッ素溶液による粉砕工程で
は、原料の粉砕が進むにつれて、固形成分中の希土類元
素と溶液中のフッ素成分とが反応して不溶性のフッ化希
土になることから、溶液中のフッ素成分濃度は次第に低
下する。この場合、粉砕の途中でフッ素成分を新たに添
加しなくても、スラリーの溶液中にフッ素成分が存在す
る限り粉砕は進行するが、随時フッ素成分を添加しても
よい。スラリーの溶液中のフッ素成分濃度を高めること
により、あるいは一定に保つことによって、より均等な
粉砕を実現できると共に粉砕時間をより短時間にするこ
とができるからである。
In the pulverization step using a fluorine solution, as the pulverization of the raw material proceeds, the rare earth element in the solid component and the fluorine component in the solution react to form insoluble rare earth fluoride. The fluorine component concentration gradually decreases. In this case, the pulverization proceeds as long as the fluorine component is present in the slurry solution without newly adding a fluorine component during the pulverization, but the fluorine component may be added as needed. By increasing the concentration of the fluorine component in the slurry solution or keeping it constant, more uniform pulverization can be realized and the pulverization time can be shortened.

【0024】ただし、フッ素成分含有溶液を添加し過ぎ
ると、溶液中のフッ素成分濃度の最大値が上述の範囲を
逸脱しない場合でも、研摩材製品中に含まれるフッ素成
分濃度を低くすることが難しくなる。研摩材中のフッ素
濃度を低くすることができなければ洗浄性が低下する。
この点について、検討した結果、フッ素成分含有溶液を
用いてスラリー中の原料を粉砕する工程の後に得られる
原料のフッ素成分濃度が、0.01重量%〜4.0重量
%であれば良好な研摩材を容易に製造できることが解っ
た。粉砕後の原料のフッ素成分濃度がこの範囲に収まる
ようにすれば、粉砕の途中でフッ素成分を添加するしな
いに拘わらず、研摩材製品中のフッ素成分濃度が確実に
制限され、洗浄性に優れる研摩材をより確実に製造でき
る。ここでいう原料のフッ素成分濃度は、原料や研摩材
製品におけるTREO(全希土酸化物含有量)に対する
フッ素元素含有量の重量比率である。このようにTRE
Oを基準に用いるのは、炭酸希土を含有する原料や研摩
材原料が、焙焼によりその重量が減少するという性質を
有しており、原料の重量を基準にしてフッ素成分濃度を
規定したのでは、焙焼の前後でフッ素成分濃度を必ずし
も正確に比較できないからである。
However, if the fluorine component-containing solution is added too much, it is difficult to lower the fluorine component concentration in the abrasive product even if the maximum value of the fluorine component concentration in the solution does not deviate from the above range. Become. If the fluorine concentration in the abrasive cannot be reduced, the cleaning properties will decrease.
As a result of study on this point, it is preferable that the fluorine component concentration of the raw material obtained after the step of pulverizing the raw material in the slurry using the fluorine-containing solution is 0.01% by weight to 4.0% by weight. It was found that abrasives could be easily manufactured. If the fluorine component concentration of the raw material after the grinding is within this range, regardless of whether the fluorine component is added during the grinding, the fluorine component concentration in the abrasive product is surely limited, and the cleaning property is excellent. Abrasives can be manufactured more reliably. Here, the fluorine component concentration of the raw material is the weight ratio of the fluorine element content to TREO (total rare earth oxide content) in the raw material or abrasive product. Thus TRE
The use of O as the basis is that the raw material containing the rare earth carbonate and the abrasive material have the property that the weight is reduced by roasting, and the fluorine component concentration is defined based on the weight of the raw material. This is because it is not always possible to accurately compare the fluorine component concentration before and after roasting.

【0025】また、上述したように、本発明では、原料
として、セリウム系希土類炭酸塩、またはセリウム系希
土類炭酸塩とセリウム系希土類酸化物とが混在するもの
を用いる。化学的な粉砕によれば、スラリー中のフッ素
成分によって原料を粗大粒子濃度および微粒子濃度が極
めて低い状態に粉砕できるが、これは、主に炭酸希土と
の関係で生ずる効果であると考えられるからである。
As described above, in the present invention, a cerium-based rare earth carbonate or a mixture of a cerium-based rare earth carbonate and a cerium-based rare earth oxide is used as a raw material. According to the chemical pulverization, the raw material can be pulverized to a state where the concentration of coarse particles and the concentration of fine particles are extremely low by the fluorine component in the slurry. This is considered to be an effect mainly caused by the relation with rare earth carbonate. Because.

【0026】なお、「セリウム系希土類」とは、TRE
Oに占める酸化セリウム(CeO2)の割合が30重量
%以上であるもののことであり、通常の研摩材製造で
は、この値が40重量%〜99重量%の範囲にあるもの
が用いられている。また「セリウム系希土類炭酸塩」と
は、「セリウム系希土類」水溶液から炭酸根を含有する
沈殿剤によって得られるものである。例えばセリウム系
希土類水溶液として塩化希土を、また沈殿剤として炭酸
アンモニウムを例示することができる。そして、「セリ
ウム系希土類酸化物」とは、セリウム系希土類炭酸塩を
焙焼して酸化させたものである。
[0026] "Cerium-based rare earth" refers to TRE
The ratio of cerium oxide (CeO 2 ) to O is 30% by weight or more, and in the case of ordinary abrasive production, a value in the range of 40% by weight to 99% by weight is used. . The “cerium-based rare earth carbonate” is obtained from a “cerium-based rare earth” aqueous solution by a precipitant containing a carbonate group. For example, rare earth chloride can be exemplified as a cerium-based rare earth aqueous solution, and ammonium carbonate can be exemplified as a precipitant. The “cerium-based rare earth oxide” is obtained by roasting and oxidizing a cerium-based rare earth carbonate.

【0027】そこで、本発明のセリウム系研摩材の製造
方法で用いる原料として好ましい範囲について、セリウ
ム系研摩材用原料の強熱減量(以下、LOI(Loss
On Ignition)ともいう。)という物性に
着目して検討した。LOIとは、対象物を強熱した際の
重量減少率のことである。その値は炭酸希土で約30重
量%〜40重量%、また完全に酸化された酸化希土の場
合は0重量%である。つまり、LOIが解れば、化学的
な粉砕との関連が深いと考えられる炭酸希土の原料中に
占める割合が解るのである。
Therefore, the preferred range of the raw material used in the method for producing a cerium-based abrasive according to the present invention is defined as the loss on ignition of the raw material for the cerium-based abrasive (hereinafter, LOI (Loss).
On Ignition). ). LOI is a weight reduction rate when an object is ignited. Its value is about 30% to 40% by weight for rare earth carbonate and 0% for fully oxidized rare earth. In other words, if the LOI is known, the ratio of the rare earth carbonate in the raw material, which is considered to be closely related to the chemical pulverization, is known.

【0028】セリウム系希土類炭酸塩とセリウム系希土
類酸化物とが混在する原料を対象として検討した結果、
1000℃で1時間加熱した場合の強熱減量が1.0重
量%〜40重量%であるセリウム系研摩材用の原料が好
ましいことが解った。LOIが1.0重量%より小さく
なるレベルまで炭酸希土の割合が低くなると、粉砕時
に、原料を水溶性フッ化物により化学的に粉砕する効果
がほとんど得られなくなると考えられる。なお、通常は
LOIが0.5重量%未満のものを酸化希土と称してい
る。
As a result of examining a raw material containing a mixture of a cerium-based rare earth carbonate and a cerium-based rare earth oxide,
It has been found that a raw material for a cerium-based abrasive having a loss on ignition of 1.0 to 40% by weight when heated at 1000 ° C. for 1 hour is preferable. When the ratio of the rare earth carbonate is reduced to a level where the LOI is smaller than 1.0% by weight, it is considered that the effect of chemically pulverizing the raw material with the water-soluble fluoride during pulverization is hardly obtained. Note that those having an LOI of less than 0.5% by weight are usually referred to as rare earth oxides.

【0029】原料のLOIの測定は、JIS−K−00
67(1992年、日本規格協会)に準拠して行った。
簡単に説明すると、まず原料から採取した少量の原料を
105℃で1時間加熱(予備乾燥)して十分に乾燥させ
た後るつぼに入れ、その重量を0.1mgの桁まで測定
した。その後、これらを電気炉中で1000℃、1時間
加熱して乾燥雰囲気下で放冷した後、再び原料入りのる
つぼの重量を測定し、両重量測定における重量差に基づ
いて強熱減量を求めた。本発明において強熱減量を10
00℃で1時間加熱した後に測定することにしたのは、
希土塩の場合、500℃以上の加熱で強熱減量の値が安
定し始めることが実験的に確認されており、1000℃
での加熱が最も安定的な指標として適用可能であるとい
う考えに基づくものである。
The LOI of the raw material is measured according to JIS-K-00
67 (1992, Japan Standards Association).
Briefly, first, a small amount of raw material collected from the raw material was heated (preliminary drying) at 105 ° C. for 1 hour, sufficiently dried, and then placed in a crucible, and its weight was measured to the order of 0.1 mg. Thereafter, these were heated in an electric furnace at 1000 ° C. for 1 hour and allowed to cool in a dry atmosphere, then the weight of the crucible containing the raw materials was measured again, and the ignition loss was determined based on the weight difference between the two weight measurements. Was. In the present invention, the ignition loss is 10
After measuring at 00 ° C for 1 hour,
In the case of a rare earth salt, it has been experimentally confirmed that the value of the ignition loss starts to be stabilized by heating at 500 ° C. or more,
Is based on the belief that heating at is applicable as the most stable index.

【0030】ところで、セリウム系希土類炭酸塩とセリ
ウム系希土類酸化物とが混在する原料を大別すると、セ
リウム系希土類炭酸塩を焙焼することによって得られる
原料と、セリウム系希土類炭酸塩とセリウム系希土類酸
化物とを混合させることで得られる原料とがあるが、前
者の原料の方が粉砕性により優れており、前者の原料を
用いた方が研摩材製品の粗大粒子濃度がより低くなるた
め、より好ましい。つまり、後者の原料には、硬くて粉
砕しにくい酸化希土が混合されているため、粉砕が進み
にくく、粗大粒子濃度が高くなりやすいと考えられる。
これに対し、前者の原料は、原料全体を適度に焙焼して
LOIを調節したものであり、炭酸希土を完全に焙焼す
ることにより得られる酸化希土の焼成が防止されている
ので、粗大粒子濃度がより低減しやすいと考えられる。
By the way, a raw material in which a cerium-based rare earth carbonate and a cerium-based rare earth oxide are mixed is roughly classified into a raw material obtained by roasting a cerium-based rare earth carbonate, and a cerium-based rare earth carbonate and a cerium-based rare earth carbonate. There are raw materials obtained by mixing with rare earth oxides, but the former raw materials are more excellent in grindability, and the use of the former raw materials lowers the coarse particle concentration of the abrasive product because it is lower Is more preferable. That is, it is considered that since the latter raw material contains a rare earth oxide that is hard and hard to be pulverized, the pulverization hardly proceeds, and the concentration of coarse particles tends to increase.
On the other hand, in the former raw material, the entire raw material is appropriately roasted and the LOI is adjusted, and the firing of the rare earth oxide obtained by completely roasting the rare earth carbonate is prevented. It is considered that the coarse particle concentration is more easily reduced.

【0031】原料を粉砕する工程が終了すると、従来の
技術で説明したような通常の製造工程と同様の工程を行
って研摩材を製造する。具体的には、まず必要に応じて
化学処理(湿式処理)を施し、濾過して乾燥する。その
後、焙焼して、解砕(再粉砕)を行う。湿式粉砕によっ
て解砕する場合で、スラリー状態の研摩材を製造する場
合は、この解砕を完了した時点で研摩材が製造される。
また、それ以外の場合は、通常、解砕後の原料を分級し
て所望の粒径、粒度分布の研摩材を得る。
When the step of pulverizing the raw material is completed, an abrasive is manufactured by performing the same steps as in the ordinary manufacturing steps as described in the background art. Specifically, first, a chemical treatment (wet treatment) is performed, if necessary, followed by filtration and drying. Thereafter, it is roasted and crushed (reground). In the case of crushing by wet pulverization and producing an abrasive in a slurry state, the abrasive is produced when the crushing is completed.
In other cases, the crushed raw material is usually classified to obtain an abrasive having a desired particle size and particle size distribution.

【0032】原料中のフッ素成分濃度の調節は、原料を
粉砕する工程においてスラリーの調製に用いる溶液中の
フッ素濃度を調節することで行われるほか、研摩材を粉
砕する工程後の焙焼によっても行われる。焙焼により原
料中のフッ素成分を飛ばすことができるからである。た
だし、焙焼工程は、最終的に製造しようとする研摩材の
粒径との関係で、研摩材原料粒子が適当な大きさに粒成
長するように、原料を焙焼するものであるため、原料中
のフッ素成分濃度が適当な値になるような焙焼条件(温
度や時間)を常に選択できるとは限らない。したがっ
て、研摩材中のフッ素成分濃度を確実に低くするには、
原料を粉砕する工程において原料中のフッ素濃度を極力
低減させておく必要がある。この点、本発明によれば、
原料を粉砕する工程におけるフッ素成分濃度を低くする
ことができ、またフッ化処理も必要ないので、焙焼前の
原料中のフッ素成分濃度を低く抑えることができ、焙焼
後の原料や研摩材製品中のフッ素成分濃度を容易かつ確
実に上述の範囲に収めることができる。
The concentration of the fluorine component in the raw material is adjusted not only by adjusting the concentration of fluorine in the solution used for preparing the slurry in the step of pulverizing the raw material, but also by roasting after the step of pulverizing the abrasive. Done. It is because the fluorine component in the raw material can be removed by roasting. However, since the roasting step is to roast the raw material so that the abrasive raw material particles grow to an appropriate size in relation to the particle size of the abrasive to be finally manufactured, It is not always possible to always select the roasting conditions (temperature and time) such that the fluorine component concentration in the raw material becomes an appropriate value. Therefore, in order to surely lower the fluorine component concentration in the abrasive,
In the step of pulverizing the raw material, it is necessary to reduce the fluorine concentration in the raw material as much as possible. In this regard, according to the present invention,
Since the fluorine component concentration in the process of pulverizing the raw material can be reduced and the fluorination treatment is not required, the fluorine component concentration in the raw material before roasting can be kept low, and the raw material and abrasive after roasting can be reduced. The concentration of the fluorine component in the product can be easily and reliably kept within the above range.

【0033】ここまで説明してきたような研摩材の製造
方法によれば、粗大粒子濃度および微粒子濃度が低い研
摩材を容易に製造できるが、検討の結果、本発明に係る
セリウム系研摩材の製造方法によって製造された研摩材
の中でも、研摩材中のTREOに対するフッ素元素含有
率が0.01重量%〜3.0重量%であるものが、被研
摩面の平滑性および洗浄性に優れており、研摩時の傷発
生が少なく、しかも研摩力が高い研摩材であることが解
った。なお、研摩材製品中のフッ素成分濃度は、研摩材
製品におけるTREOに対するフッ素元素含有量の重量
比率である。フッ素成分濃度が0.01重量%以下のも
のは被研摩面の平滑性に劣り、一方、3.0重量%を超
えるものは洗浄性に劣るからである。また、高い平面性
が要求される電子材料用ガラス基板研摩用途としては、
特に洗浄性に優れる研摩材が要求される。このような用
途には、研摩材中のフッ素成分濃度が特に低い0.01
重量%〜1.0重量%のものが好適である。
According to the method for producing an abrasive described above, an abrasive having a low concentration of coarse particles and a low concentration of fine particles can be easily produced. However, as a result of investigation, the production of a cerium-based abrasive according to the present invention has been studied. Among the abrasives produced by the method, those having a fluorine element content of 0.01% by weight to 3.0% by weight based on TREO in the abrasive have excellent smoothness and cleanability of the polished surface. In addition, it was found that the abrasive was less abrasive during polishing and had high abrasive power. The fluorine component concentration in the abrasive product is a weight ratio of the fluorine element content to TREO in the abrasive product. If the fluorine component concentration is 0.01% by weight or less, the surface to be polished is inferior in smoothness, while if it exceeds 3.0% by weight, the cleaning property is inferior. In addition, for polishing glass substrates for electronic materials that require high flatness,
In particular, an abrasive having excellent cleaning properties is required. For such an application, the fluorine component concentration in the abrasive is particularly low at 0.01%.
% By weight to 1.0% by weight are preferred.

【0034】[0034]

【発明の実施の形態】以下、本発明の好適な実施の形態
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0035】第1実施形態:セリウム系研摩材原料とし
て、TREOが69.5重量%であって、TREOに占
める酸化セリウム(CeO2)が60重量%、TREO
に占めるフッ素成分の含有量が0.02重量%である炭
酸希土を用いた。なお、原料の平均粒径は約500μm
であった。また、原料のLOIは30重量%であった。
LOIの測定方法は、上述した通りであり、その説明を
省略する。
First Embodiment : As a cerium-based abrasive raw material, TREO is 69.5% by weight, cerium oxide (CeO 2 ) in TREO is 60% by weight, and TREO is
Used was a rare earth carbonate having a fluorine content of 0.02% by weight. The average particle size of the raw material is about 500 μm
Met. The LOI of the raw material was 30% by weight.
The method of measuring the LOI is as described above, and the description is omitted.

【0036】この原料2kgと、フッ化水素(HF)濃
度が0.01mol/Lである水溶液2Lとを混合し
て、固形成分含有率が50重量%であるスラリーを調製
した。
2 kg of the raw material was mixed with 2 L of an aqueous solution having a hydrogen fluoride (HF) concentration of 0.01 mol / L to prepare a slurry having a solid content of 50% by weight.

【0037】このスラリーを常温下(20℃)で1時間
撹拌し、その後、直径4mmのボールが10kg投入さ
れたアトライタ(三井三池製作所(株)製 MA−1S
E)を用いて3時間、湿式粉砕を行った。粉砕後、固形
成分を濾過してケーキを得た後、このケーキを乾燥させ
て、焙焼(850℃)し、解砕を行い、その後、10μ
m以上の粒子を除く分級を行って、平均粒径が1.0μ
mのセリウム系研摩材製品を得た。なお、各実施形態お
よび比較例は全て、平均粒径が1.0μmのセリウム系
研摩材を製造するものであり、各実施形態および比較例
では、この目標との関係で、原料が適当な粒径まで粒成
長するように焙焼を行うと共に必要な解砕がなされるよ
うに解砕している。
This slurry was stirred at room temperature (20 ° C.) for 1 hour, and thereafter, an attritor (MA-1S, manufactured by Mitsui Miike Seisakusho Co., Ltd.) into which 10 kg of a ball having a diameter of 4 mm was introduced.
Using E), wet grinding was performed for 3 hours. After the pulverization, the solid component was filtered to obtain a cake. The cake was dried, roasted (850 ° C.), crushed, and then crushed.
Classification to remove particles of m or more, the average particle size is 1.0μ
m of a cerium-based abrasive product was obtained. In each of the embodiments and the comparative examples, a cerium-based abrasive having an average particle diameter of 1.0 μm is manufactured. Roasting is performed so that the grains grow to the diameter, and crushing is performed so that necessary crushing is performed.

【0038】第1実施形態をはじめ、後述の実施形態お
よび比較例では、撹拌終了時のスラリーの固形成分およ
び最終的に得られた研摩材について、フッ素成分濃度を
測定した。また、撹拌終了時および湿式粉砕終了時の原
料と最終的に得られた研摩材製品について、粗大粒子濃
度(粒径10μm以上の粒子の濃度)を測定した。
In the following embodiments and comparative examples, including the first embodiment, the fluorine component concentration was measured for the solid component of the slurry at the end of stirring and the finally obtained abrasive. Further, the coarse particle concentration (the concentration of particles having a particle diameter of 10 μm or more) was measured for the raw materials at the end of stirring and at the end of wet pulverization and the finally obtained abrasive product.

【0039】フッ素成分濃度の測定:フッ素成分濃度測
定方法は、「JIS−K−010234」に記載のフッ
素化合物測定方法(イオン電極法)に準拠したもの(フ
ッ素が微量の場合にはイオンクロマトグラフ法による測
定を併用)であり、その説明を省略する。結果を表1に
示す。
Measurement of fluorine component concentration: The fluorine component concentration was measured in accordance with the method for measuring fluorine compounds (ion electrode method) described in "JIS-K-010234". Measurement is also used), and the description is omitted. Table 1 shows the results.

【0040】粗大粒子濃度の測定:粗大粒子濃度の測定
は以下のようにして行った。測定対象について、固形成
分の重量が200gに相当する量を秤量採取し、これを
分散剤として0.1重量%のヘキサメタリン酸ナトリウ
ムを含有する水溶液に分散させ2分間攪拌しスラリーを
製造した。このスラリーを孔径10μmのマイクロシー
ブで濾過し、篩上の残滓を回収した。回収した残滓を再
度0.1重量%ヘキサメタリン酸ナトリウム溶液に分散
させスラリー化した。このとき、分散は超音波攪拌を1
分間行っている。そして、スラリーを孔径10μmのマ
イクロシーブで濾過した。この回収残滓の再スラリー
化、濾過は2回行って粗大粒子を回収した。その後、こ
の粗大粒子を十分乾燥させた後秤量し、この粗大粒子重
量から粗大粒子濃度を求めた。
Measurement of Coarse Particle Concentration: The measurement of coarse particle concentration was performed as follows. For the measurement object, an amount corresponding to the solid component weight of 200 g was weighed and collected, and this was dispersed in an aqueous solution containing 0.1% by weight of sodium hexametaphosphate as a dispersant and stirred for 2 minutes to produce a slurry. This slurry was filtered through a micro sieve having a pore size of 10 μm, and the residue on the sieve was recovered. The collected residue was again dispersed in a 0.1% by weight sodium hexametaphosphate solution to form a slurry. At this time, the dispersion was carried out by ultrasonic stirring for 1
Go for a minute. Then, the slurry was filtered with a micro sieve having a pore size of 10 μm. Re-slurry and filtration of the collected residue were performed twice to collect coarse particles. Thereafter, the coarse particles were sufficiently dried and weighed, and the coarse particle concentration was determined from the weight of the coarse particles.

【0041】第2〜5実施形態および比較例1〜比較例
:第1実施形態で用いた原料と同じ原料を用い、スラ
リー調製に用いる水溶液中のフッ化水素濃度を変化させ
て原料を粉砕する工程を行った。各実施形態におけるフ
ッ素濃度を表1に示す。これ以外の研摩材製造条件は、
第1実施形態と同じであった。
Second to fifth embodiments and comparative examples 1 to 5
3 : Using the same raw material as used in the first embodiment, a step of pulverizing the raw material by changing the concentration of hydrogen fluoride in the aqueous solution used for preparing the slurry was performed. Table 1 shows the fluorine concentration in each embodiment. Other abrasive production conditions are:
It was the same as the first embodiment.

【0042】[0042]

【表1】 [Table 1]

【0043】比較例3では、フッ素成分を含有しない水
溶液(純水)を用いてスラリーを調製したが、撹拌後に
得られた原料は粗大粒子濃度が極め高いものであった。
これに対し、第1実施形態によれば、撹拌後に粗大粒子
濃度の低い原料が得られた。つまり、フッ素成分濃度が
0.001mol/L以上の水溶液を用いてスラリーを
調製することにより、溶液中に含有するフッ素成分を利
用した化学的な粉砕を行うことができることが解った。
また、最終的に得られる研摩材製品中の粗大粒子濃度も
比較例3と比べて抑制されており、研摩材中の粗大粒子
濃度を低減する効果を有することも解った。なお、0.
001mol/L以下の濃度でも溶液中にフッ素成分が
含有されていれば粉砕効果は得られるが、必要な粉砕を
行うには時間がかかることが解った。また、撹拌操作
は、スラリー中のフッ素成分を利用した化学的な粉砕が
促進されると考えられるので、粉砕効率を向上させるた
めには好ましい。
In Comparative Example 3, a slurry was prepared using an aqueous solution (pure water) containing no fluorine component, but the raw material obtained after stirring had an extremely high coarse particle concentration.
On the other hand, according to the first embodiment, a raw material having a low concentration of coarse particles was obtained after stirring. That is, it was found that by preparing a slurry using an aqueous solution having a fluorine component concentration of 0.001 mol / L or more, chemical pulverization using the fluorine component contained in the solution can be performed.
Further, the concentration of coarse particles in the finally obtained abrasive product was also suppressed as compared with Comparative Example 3, and it was also found that the abrasive had an effect of reducing the concentration of coarse particles in the abrasive. Note that 0.
Even at a concentration of 001 mol / L or less, a pulverizing effect can be obtained if a fluorine component is contained in the solution, but it has been found that it takes time to perform necessary pulverization. Further, the stirring operation is considered to promote chemical pulverization using a fluorine component in the slurry, and is therefore preferable for improving the pulverization efficiency.

【0044】第2実施形態から第5実施形態の結果に示
されるように、スラリー調製に用いた溶液中のフッ素濃
度を高めていくと、撹拌後あるいは粉砕工程後に得られ
る原料の粗大粒子濃度を低減できることが解った。この
一方で、比較例1から解るように、スラリー調製に用い
る水溶液中のフッ素成分濃度が5.0mol/Lになる
と、研摩材製品中の粗大粒子濃度がかえって高くなるこ
とが解った。溶液中のフッ素濃度を高くすると、化学的
な粉砕は促進され、粉砕後に得られる原料中の粗大粒子
濃度は低減するが、原料中のフッ素濃度が高くなる。こ
の結果、焙焼時の粒成長が促進され過ぎ、研摩材製品中
の粗大粒子濃度がかえって高くなるからであると考えら
れる。
As shown in the results of the second to fifth embodiments, as the concentration of fluorine in the solution used for preparing the slurry was increased, the concentration of the coarse particles of the raw material obtained after stirring or after the pulverizing step was reduced. It turns out that it can be reduced. On the other hand, as can be seen from Comparative Example 1, it was found that when the fluorine component concentration in the aqueous solution used for preparing the slurry became 5.0 mol / L, the concentration of coarse particles in the abrasive product increased rather. When the fluorine concentration in the solution is increased, chemical pulverization is accelerated, and the concentration of coarse particles in the raw material obtained after the pulverization is reduced, but the fluorine concentration in the raw material is increased. As a result, it is considered that the grain growth during roasting is excessively promoted, and the concentration of coarse particles in the abrasive product is rather increased.

【0045】第6〜9実施形態および比較例4:第1実
施形態で用いた原料を600℃〜800℃で所定時間仮
焼してLOIを所定の値に調節した原料を用いた。各実
施形態の原料のLOIは表2に示すとおりである。これ
以外の研摩材製造条件は第4実施形態と同じであったの
で、その説明を省略する。
Sixth to Ninth Embodiments and Comparative Example 4 : The raw materials used in the first embodiment were calcined at 600 to 800 ° C. for a predetermined time to adjust the LOI to a predetermined value. The LOI of the raw materials of each embodiment is as shown in Table 2. The other abrasive material manufacturing conditions were the same as in the fourth embodiment, and a description thereof will be omitted.

【0046】第10および第11実施形態:スラリーを
調製する際に用いる、フッ素含有水溶液として、フッ化
アンモニウム(NH4F)水溶液を用いた。これ以外の
研摩材製造条件は、第10実施形態は第4実施形態と同
じであり、第11実施形態形態は、第8実施形態と同じ
であった。
Tenth and eleventh embodiments : An aqueous solution of ammonium fluoride (NH 4 F) was used as a fluorine-containing aqueous solution used when preparing a slurry. Other abrasive production conditions were the same in the tenth embodiment as in the fourth embodiment, and in the eleventh embodiment as in the eighth embodiment.

【0047】[0047]

【表2】 [Table 2]

【0048】各実施形態の結果から解るように、原料の
LOIが1.0重量%以上の場合に、撹拌(化学的な粉
砕)後に得られる原料および研摩材製品中の粗大粒子濃
度が低くなるという結果が得られた。これに対し、比較
例4に示されるように、LOIが0.5重量%の原料を
用いた場合は、撹拌処理(化学的な粉砕)によっては粗
大粒子濃度を低くすることはできなかった。したがっ
て、セリウム系研摩材の原料としては、セリウム系希土
類炭酸塩、またはセリウム系希土類炭酸塩とセリウム系
希土類酸化物とが混在するものが好ましく、より具体的
にはLOIが、1.0重量%以上であるものが好ましい
ことが解った。このような結果になるのは、スラリー中
のフッ素成分が粗大粒子を粉砕する効果は、主に炭酸希
土に対する効果だからであると考えられる。また、LO
Iの上限値は特に限定されることはなく、原料として入
手可能な炭酸希土原料のLOIの上限値である40重量
%以下であれば好ましいことが解った。ただし、スラリ
ー中のフッ素成分濃度の調製を正確に行うためには、原
料はできるだけ安定した物性のものが好ましい。この点
を考慮すると、原料のLOIは30重量%以下がより好
ましい。
As can be seen from the results of the embodiments, when the LOI of the raw material is 1.0% by weight or more, the concentration of coarse particles in the raw material and the abrasive product obtained after stirring (chemical pulverization) becomes low. The result was obtained. On the other hand, as shown in Comparative Example 4, when the raw material having an LOI of 0.5% by weight was used, the concentration of coarse particles could not be reduced by the stirring treatment (chemical pulverization). Therefore, the raw material of the cerium-based abrasive is preferably a cerium-based rare earth carbonate or a mixture of a cerium-based rare earth carbonate and a cerium-based rare earth oxide. More specifically, the LOI is 1.0% by weight. It has been found that the above is preferable. It is considered that such a result is due to the effect of the fluorine component in the slurry that pulverizes the coarse particles mainly due to the effect on rare earth carbonate. Also, LO
It has been found that the upper limit of I is not particularly limited, and it is preferable that the upper limit of LOI of the rare earth carbonate raw material available as the raw material is 40% by weight or less. However, in order to accurately adjust the fluorine component concentration in the slurry, it is preferable that the raw materials have physical properties as stable as possible. In consideration of this point, the LOI of the raw material is more preferably 30% by weight or less.

【0049】研摩試験:各実施形態及び比較例により得
られたスラリー状態のセリウム系研摩材について研摩試
験を行い、研摩値の測定および研摩面の状態評価(傷評
価)を行った。研摩試験では、高速研摩試験機を試験装
置として用い、65mmφの平面パネル用ガラスを被研
摩材とし、このガラスをポリウレタン製の研摩パッドを
用いて研摩した。研摩試験では、得られた研摩材をさら
に水に分散させてスラリー濃度が10重量%の研摩材ス
ラリーを調製した。研摩条件は、調製した研摩材スラリ
ーを5ml/minの速度で供給し、研摩面に対する圧
力を15.7kg/cm2に設定し、研摩試験機の回転
速度を1000rpmに設定するというものであった。
研摩後のガラス材料は、純水で洗浄し無塵状態で乾燥さ
せた。
Polishing test : A polishing test was performed on the cerium-based abrasive in a slurry state obtained in each of the embodiments and the comparative examples, and the polishing value was measured and the state of the polished surface was evaluated (evaluation of scratches). In the polishing test, a high-speed polishing tester was used as a test device, a glass for a flat panel of 65 mmφ was used as a material to be polished, and the glass was polished using a polishing pad made of polyurethane. In the polishing test, the obtained abrasive was further dispersed in water to prepare an abrasive slurry having a slurry concentration of 10% by weight. The polishing conditions were such that the prepared abrasive slurry was supplied at a rate of 5 ml / min, the pressure on the polished surface was set at 15.7 kg / cm 2, and the rotation speed of the polishing tester was set at 1000 rpm. .
The polished glass material was washed with pure water and dried in a dust-free state.

【0050】研摩値の評価:上述の研摩試験において、
研摩前後のガラス重量を測定することにより求められた
ガラス重量の減少量に基づいて、研摩値を求めた。した
がって、研摩値が大きいほど研摩力が高いということに
なる。ここでは、第1実施形態の研摩材を用いて研摩し
た場合の研摩値を基準(100)とした。
Evaluation of polishing value : In the above polishing test,
The polishing value was determined based on the amount of reduction in the glass weight determined by measuring the glass weight before and after polishing. Therefore, the higher the polishing value, the higher the polishing power. Here, the polishing value when polishing was performed using the polishing material of the first embodiment was set as a reference (100).

【0051】傷の評価:被研摩面の状態を評価したもの
である。被研摩面の傷の有無および研摩材粒子の研摩面
への残存の有無を基準として傷の評価を行った。具体的
には、研摩後のガラスの表面に30万ルクスのハロゲン
ランプを照射し、反射法にてガラス表面を観察して、傷
の程度(大きさ)を見極めて点数化し、100点満点か
らの減点方式にて評価点を定めた。試験の結果を表3に
示す。
Evaluation of flaw : Evaluation of the condition of the polished surface. Flaws were evaluated based on the presence or absence of scratches on the polished surface and the presence or absence of abrasive particles on the polished surface. Specifically, the surface of the polished glass is irradiated with a halogen lamp of 300,000 lux, the surface of the glass is observed by a reflection method, and the degree (size) of the flaw is determined to obtain a score. The evaluation points were determined by the deduction method. Table 3 shows the results of the test.

【0052】洗浄性の評価:各実施形態および比較例で
得られたセリウム系研摩材を用いて研摩した被研摩面を
洗浄することを想定して、研摩材の洗浄性試験を行っ
た。試験では、光学顕微鏡観察用のガラス製プレパレー
トであって超音波洗浄によって洗浄し乾燥したものを用
意した。そして、セリウム系研摩材を水に分散させて、
濃度10重量%の研摩材スラリーを得た。この研摩材ス
ラリーに用意したプレパラートを浸漬し、その後引き上
げて乾燥機で十分に乾燥させてプレパラート表面に研摩
材を付着させ、洗浄性試験用の試験片を得た。なお、乾
燥時のプレパラート雰囲気の温度は50℃とした。そし
て、得られた試験片をビーカー内の純水に浸漬させた状
態で、超音波洗浄を5分間行った。洗浄後、プレパラー
トをビーカー内から取り出して、純水にて流水洗浄し
た。そして、流水洗浄後のプレパラートの表面を光学顕
微鏡にて観察し、表面に残存している研摩材粒子の残存
量を評価した。評価結果を表3に示す。
Evaluation of Detergency : The detergency test of the abrasive was carried out on the assumption that the polished surface was polished using the cerium-based abrasive obtained in each embodiment and comparative example. In the test, a glass preparation for optical microscope observation, which was washed and dried by ultrasonic cleaning, was prepared. And disperse the cerium-based abrasive in water,
An abrasive slurry having a concentration of 10% by weight was obtained. The prepared slide was immersed in the abrasive slurry, and then pulled up and dried sufficiently with a drier to attach the abrasive to the surface of the prepared slide to obtain a test piece for a cleaning test. The temperature of the preparation atmosphere during drying was 50 ° C. Then, ultrasonic cleaning was performed for 5 minutes while the obtained test piece was immersed in pure water in a beaker. After washing, the preparation was taken out of the beaker and washed with running pure water. Then, the surface of the prepared slide after washing with running water was observed with an optical microscope, and the remaining amount of abrasive particles remaining on the surface was evaluated. Table 3 shows the evaluation results.

【0053】[0053]

【表3】 [Table 3]

【0054】表から解るように、各実施形態の研摩材に
ついて、研摩値、傷および洗浄性の全ての項目につい
て、良好な結果が得られた。これに対して、比較例1の
研摩材は、研摩力には優れているが、傷評価および洗浄
性は悪かった。これは、粉砕終了時のフッ素成分濃度が
高くなり、粒成長が進みやすい状態になったため、粗大
粒子濃度が高くなったことと、粗大粒子の生成を抑制す
るため十分な焙焼を行うことができず、焙焼によりフッ
素濃度を低減できなかったことが原因であると考えられ
る。比較例2の研摩材も比較例1のものと同様の傾向を
示したが、洗浄性はやや改善されており、これはフッ素
成分濃度が低いことによるものであると考えられるが、
洗浄性が十分に改善されたレベルには達していなかっ
た。フッ素を添加していない比較例3の研摩材は、研摩
値、傷、洗浄性の全てにおいて評価が低く、これらにつ
いて必要な性能を確保するにはフッ素成分が必要である
ことが解った。そして、比較例4の研摩材は、傷評価が
低かった。比較例4は原料に酸化希土を用いたため、原
料の粉砕が進まず、粗大粒子の残存量が増大したため、
このようは評価になったものと考えられる。
As can be seen from the table, with the abrasive of each embodiment, good results were obtained for all of the abrasive values, scratches and detergency. On the other hand, the abrasive of Comparative Example 1 was excellent in abrasive power, but poor in flaw evaluation and cleanability. This is because the fluorine component concentration at the end of the pulverization was increased, and the grain growth became easy to progress, so that the coarse particle concentration was increased, and sufficient roasting was performed to suppress the generation of the coarse particles. This is considered to be due to the fact that the concentration of fluorine could not be reduced by roasting. The abrasive of Comparative Example 2 also showed the same tendency as that of Comparative Example 1, but the detergency was slightly improved, which is considered to be due to the low fluorine component concentration.
The level of detergency did not reach a sufficiently improved level. The abrasive of Comparative Example 3, to which no fluorine was added, was poorly evaluated in all of the abrasive values, scratches, and detergency, and it was found that a fluorine component was necessary to ensure the required performance for these. The abrasive of Comparative Example 4 had a low scratch evaluation. In Comparative Example 4, since the rare earth oxide was used as a raw material, pulverization of the raw material did not proceed, and the residual amount of coarse particles increased.
This is considered to have been evaluated.

【0055】この結果、原料と、上述した範囲のフッ素
成分濃度を有する溶液とを混合してスラリーを調製し、
これによって原料を化学的に粉砕すれば、研摩値、傷、
洗浄性などの全てにおいて良好な特性を有するセリウム
系研摩材を容易に製造できることが解った。
As a result, a slurry was prepared by mixing the raw material and a solution having a fluorine component concentration in the above-described range.
With this, if the raw material is chemically ground, the abrasive value, scratches,
It has been found that a cerium-based abrasive having good characteristics in all aspects such as detergency can be easily produced.

【0056】そして、研摩材製品中のフッ素濃度は、
0.01重量%〜3.0重量%が好ましいことが解っ
た。また、撹拌処理終了後の原料中のフッ素成分濃度を
0.01重量%〜4.0重量%にすれば、研摩材製品中
のフッ素濃度を3.0重量%以下にすることができ、好
ましいことが解った(表1参照)。さらに、この試験の
結果から、より高い平面性が要求され、より洗浄性に優
れる研摩材が必要になる電子材料用ガラス基板研摩用途
としては、フッ素成分濃度が1.0重量%以下のものが
より好適であることが解った。また、撹拌処理終了後の
原料中のフッ素成分濃度を3.0重量%以下にすれば、
研摩材製品中のフッ素濃度を1.0重量%以下にするこ
とができ、好ましいことが解った(表1参照)。
The fluorine concentration in the abrasive product is
It has been found that 0.01% to 3.0% by weight is preferable. Further, if the fluorine component concentration in the raw material after the completion of the stirring treatment is adjusted to 0.01% by weight to 4.0% by weight, the fluorine concentration in the abrasive product can be reduced to 3.0% by weight or less, which is preferable. (Table 1). Further, from the results of this test, higher flatness is required, and polishing of a glass substrate for an electronic material, which requires an abrasive having more excellent detergency, is required to have a fluorine component concentration of 1.0% by weight or less. It turned out to be more suitable. If the concentration of the fluorine component in the raw material after the completion of the stirring treatment is set to 3.0% by weight or less,
It was found that the fluorine concentration in the abrasive product could be reduced to 1.0% by weight or less, which was preferable (see Table 1).

【0057】[0057]

【発明の効果】以上の説明から解るように、本発明によ
れば、粗大粒子の含有濃度がより低く、かつより高い研
摩力が確保されており、しかも被研摩面の洗浄性に優れ
るセリウム系研摩材を製造できる。
As can be understood from the above description, according to the present invention, a cerium-based material having a lower concentration of coarse particles, a higher polishing power, and excellent cleanability of the surface to be polished. Abrasives can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内野 義嗣 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社機能材料事業本部レアメタ ル事業部内 (72)発明者 牛山 和哉 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社機能材料事業本部レアメタ ル事業部内 Fターム(参考) 4G076 AA02 AB02 AB09 BA24 BA46 BD02 CA36 DA30  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshitsugu Uchino 1-11-11 Osaki, Shinagawa-ku, Tokyo Mitsui Kinzoku Mining Co., Ltd. Functional Materials Business Unit Rare Metal Division (72) Inventor Kazuya Ushiyama Shinagawa-ku, Tokyo 1-11-1, Osaki F-term (Reference) 4M076 AA02 AB02 AB09 BA24 BA46 BD02 CA36 DA30

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セリウム系研摩材の原料を粉砕する工程
を有すると共に、粉砕後の原料を焙焼する工程および焙
焼により得られる焙焼品を解砕する工程を有するセリウ
ム系研摩材の製造方法において、 セリウム系研摩材の原料として、セリウム系希土類炭酸
塩、またはセリウム系希土類炭酸塩とセリウム系希土類
酸化物とが混在するものが用いられており、 原料を粉砕する工程は、原料とフッ素成分含有溶液とを
混合してスラリー状態にすることにより該スラリー中の
原料を粉砕する工程を有することを特徴とするセリウム
系研摩材の製造方法。
1. Production of a cerium-based abrasive having a step of pulverizing a raw material of a cerium-based abrasive, a step of roasting the pulverized raw material, and a step of pulverizing a roasted product obtained by the roasting In the method, as the raw material of the cerium-based abrasive, a cerium-based rare earth carbonate or a mixture of a cerium-based rare earth carbonate and a cerium-based rare earth oxide is used. A method for producing a cerium-based abrasive, comprising a step of pulverizing raw materials in a slurry by mixing a component-containing solution to form a slurry.
【請求項2】 スラリーの溶液中のフッ素成分濃度の最
大値は、0.001mol/L〜1.0mol/Lであ
る請求項1に記載のセリウム系研摩材の製造方法。
2. The method for producing a cerium-based abrasive according to claim 1, wherein the maximum value of the fluorine component concentration in the slurry solution is 0.001 mol / L to 1.0 mol / L.
【請求項3】 フッ素成分含有溶液を用いてスラリー中
の原料を粉砕する工程の後に得られる原料のフッ素成分
濃度は、0.01重量%〜4.0重量%である請求項1
または請求項2に記載のセリウム系研摩材の製造方法。
3. The fluorine component concentration of the raw material obtained after the step of pulverizing the raw material in the slurry using the fluorine-containing solution is 0.01% by weight to 4.0% by weight.
Alternatively, the method for producing a cerium-based abrasive according to claim 2.
【請求項4】 セリウム系研摩材の原料は、1000℃
で1時間加熱した場合の強熱減量が1.0重量%〜40
重量%である請求項1から請求項3のいずれか一項に記
載のセリウム系研摩材の製造方法。
4. The raw material of the cerium-based abrasive is 1000 ° C.
Loss when heated for 1 hour at 1.0 to 40% by weight
The method for producing a cerium-based abrasive according to any one of claims 1 to 3, wherein the amount is% by weight.
【請求項5】 請求項1から請求項4のいずれか一項に
記載のセリウム系研摩材の製造方法により製造されるセ
リウム系研摩材であって、フッ素成分濃度が、0.01
重量%〜3.0重量%であるセリウム系研摩材。
5. A cerium-based abrasive produced by the method for producing a cerium-based abrasive according to any one of claims 1 to 4, wherein the fluorine component concentration is 0.01%.
A cerium-based abrasive having a weight percentage of 3.0 to 3.0% by weight.
JP2001134150A 2001-05-01 2001-05-01 Method for producing cerium-based abrasive Expired - Fee Related JP4070180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134150A JP4070180B2 (en) 2001-05-01 2001-05-01 Method for producing cerium-based abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134150A JP4070180B2 (en) 2001-05-01 2001-05-01 Method for producing cerium-based abrasive

Publications (2)

Publication Number Publication Date
JP2002327171A true JP2002327171A (en) 2002-11-15
JP4070180B2 JP4070180B2 (en) 2008-04-02

Family

ID=18981889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134150A Expired - Fee Related JP4070180B2 (en) 2001-05-01 2001-05-01 Method for producing cerium-based abrasive

Country Status (1)

Country Link
JP (1) JP4070180B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007769A1 (en) * 2003-07-17 2005-01-27 Showa Denko K.K. Method for setting firing temperature of cerium carbonate, method for producing cerium oxide abrasives and cerium oxide abrasives obtained by the method
JP2010222519A (en) * 2009-03-25 2010-10-07 Mitsui Mining & Smelting Co Ltd Method for producing cerium-based abrasive and method for treating the same
CN103253694A (en) * 2013-05-19 2013-08-21 郭尧 Roasting process of lanthanum-cerium oxide rear-earth polishing powder
CN114539928A (en) * 2022-03-16 2022-05-27 深圳市瑞来稀土材料有限公司 Rare earth polishing powder for optical glass polishing treatment and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007769A1 (en) * 2003-07-17 2005-01-27 Showa Denko K.K. Method for setting firing temperature of cerium carbonate, method for producing cerium oxide abrasives and cerium oxide abrasives obtained by the method
JP2010222519A (en) * 2009-03-25 2010-10-07 Mitsui Mining & Smelting Co Ltd Method for producing cerium-based abrasive and method for treating the same
CN103253694A (en) * 2013-05-19 2013-08-21 郭尧 Roasting process of lanthanum-cerium oxide rear-earth polishing powder
CN114539928A (en) * 2022-03-16 2022-05-27 深圳市瑞来稀土材料有限公司 Rare earth polishing powder for optical glass polishing treatment and preparation method thereof

Also Published As

Publication number Publication date
JP4070180B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
US6893477B2 (en) Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry
US7722692B2 (en) Cerium oxide-based abrasive, and production method and use thereof
KR100453802B1 (en) Cerium based abrasive material, raw material thereof and method for their preparation
KR100509267B1 (en) Method for producing cerium-based polishing agent
JP3463999B1 (en) Manufacturing method of cerium-based abrasive
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
TWI695060B (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
JP4070180B2 (en) Method for producing cerium-based abrasive
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP2008001907A (en) Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry
JP3685481B2 (en) Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder
JP3986384B2 (en) Cerium-based abrasive and method for producing the same
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP3838870B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP2004175964A (en) Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive
JP2007126525A (en) Cerium-based polishing material
JP3986410B2 (en) Method for producing cerium-based abrasive slurry and cerium-based abrasive slurry obtained thereby
JP2002212544A (en) Method of producing cerium oxide polishing material and cerium oxide polishing material produced by the method
JP2002309235A (en) Manufacturing method for cerium type abrasives material and cerium type abrasives material manufactured by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4070180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees