JP3875668B2 - Cerium-based abrasive containing fluorine and method for producing the same - Google Patents

Cerium-based abrasive containing fluorine and method for producing the same Download PDF

Info

Publication number
JP3875668B2
JP3875668B2 JP2003301327A JP2003301327A JP3875668B2 JP 3875668 B2 JP3875668 B2 JP 3875668B2 JP 2003301327 A JP2003301327 A JP 2003301327A JP 2003301327 A JP2003301327 A JP 2003301327A JP 3875668 B2 JP3875668 B2 JP 3875668B2
Authority
JP
Japan
Prior art keywords
roasting
cerium
rare earth
fluorine
based abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003301327A
Other languages
Japanese (ja)
Other versions
JP2005068312A (en
Inventor
直義 望月
大作 小林
明 下河原
秀彦 山▲崎▼
幸輝 堂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003301327A priority Critical patent/JP3875668B2/en
Priority to TW93119008A priority patent/TWI249570B/en
Priority to CNB2004100685518A priority patent/CN1300278C/en
Publication of JP2005068312A publication Critical patent/JP2005068312A/en
Application granted granted Critical
Publication of JP3875668B2 publication Critical patent/JP3875668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、フッ素を含有するセリウム系研摩材およびその製造方法に関する。   The present invention relates to a cerium-based abrasive containing fluorine and a method for producing the same.

セリウム系研摩材としては、バストネサイト精鉱を原料として製造されたものがある(特許文献1参照)。その製造方法は、概略的には、バストネサイトを湿式粉砕し、得られたスラリを乾燥し、焙焼し、放冷し、得られた焼成品を解砕し、分級するというものである。このような製造方法において、研摩傷が生じにくいなど研摩精度の高い研摩材を製造する場合は、焙焼工程における焙焼温度を比較的低温に設定し、より研摩速度が高い研摩材を製造する場合は、焙焼温度を比較的高温に設定するようにしている。   As the cerium-based abrasive, there is one manufactured using bastonesite concentrate as a raw material (see Patent Document 1). The production method is roughly pulverizing the bastonite, drying the slurry obtained, roasting it, allowing to cool, crushing and classifying the obtained fired product. . In such a manufacturing method, in the case of manufacturing an abrasive with high polishing accuracy such that abrasion scratches are unlikely to occur, the roasting temperature in the roasting process is set to a relatively low temperature, and an abrasive with a higher polishing speed is manufactured. In such a case, the roasting temperature is set to a relatively high temperature.

ところで、バストネサイト精鉱は、フッ素を適量含有しているなど、セリウム系研摩材の原料として優れた特性を有するが、その一方で、トリウム(Th)やウラン(U)を、バストネサイト精鉱の全希土類酸化物換算量(TREO)との比率((Th+U)/TREO)で約0.1wt%含有量しているという特性を有する。このようなことから、トリウムやウランの含有率を低減しつつセリウム系研摩材を製造する方法が提供されている(特許文献2参照)。なお、当該製造方法は、概略的に説明すると、バストネサイト精鉱等の希土類鉱石に化学的処理を施してトリウムやウラン等の放射性元素、アルカリ金属およびアルカリ土類金属等の含有率が低減された軽希土類炭酸塩を得た後、当該軽希土類炭酸塩にフッ酸を添加してこれを部分フッ素化し、得られたものを焙焼するというものである(特許文献2参照)。   By the way, bust necite concentrate has excellent properties as a raw material for cerium-based abrasives, such as containing an appropriate amount of fluorine. On the other hand, thorium (Th) and uranium (U) can be It has a characteristic that the content of the concentrate is about 0.1 wt% in the ratio ((Th + U) / TREO) to the total rare earth oxide equivalent (TREO). For this reason, a method for producing a cerium-based abrasive while reducing the content of thorium or uranium has been provided (see Patent Document 2). In addition, the manufacturing method is roughly explained, and the rare earth ore such as bastonite concentrate is chemically treated to reduce the content of radioactive elements such as thorium and uranium, alkali metals and alkaline earth metals. After the obtained light rare earth carbonate is obtained, hydrofluoric acid is added to the light rare earth carbonate, this is partially fluorinated, and the resulting product is roasted (see Patent Document 2).

したがって、後者のような製法を用いると、トリウムやウランの含有率が低減されたセリウム系研摩材が得られる。ところが、後者の製法において、焙焼温度を比較的高温に設定して高研摩速度の研摩材を製造しようとしても、前者の製法によって得られるセリウム系研摩材のような高研摩速度の研摩材を製造できない。   Therefore, when the latter method is used, a cerium-based abrasive with a reduced content of thorium and uranium can be obtained. However, in the latter manufacturing method, even if an attempt is made to produce a high polishing rate abrasive by setting the roasting temperature to a relatively high temperature, a high polishing rate abrasive such as a cerium-based abrasive obtained by the former method is used. It cannot be manufactured.

特開2003−213250号公報JP 2003-213250 A 特開平9−183966号公報JP-A-9-183966

上記問題点に鑑みてなされた本発明は、トリウムやウラン等の含有率が低減されており、しかも従来品と同等以上の高い研摩速度を有するセリウム系研摩材を提供することおよびその製造方法を提供することを課題とする。   The present invention made in view of the above problems is to provide a cerium-based abrasive having a reduced content rate of thorium, uranium, etc., and having a high polishing rate equivalent to or higher than that of conventional products, and a method for producing the same. The issue is to provide.

本発明は、このような課題を解決するものであり、フッ素(F)を含有するセリウム系研摩材であって、研摩材質量に対する全希土類酸化物換算質量(以下、TREOと記すことがある)の質量比が90wt%以上であり、当該全希土類酸化物換算量に対するトリウム(Th)とウラン(U)の合計含有量の質量比((Th+U)/TREO)が0.05wt%以下であり、ブレーン法平均粒径(D)が1.5μm〜2.5μmであることを特徴とする。 The present invention solves such problems, and is a cerium-based abrasive containing fluorine (F), which is a total rare earth oxide equivalent mass (hereinafter sometimes referred to as TREO) with respect to the abrasive mass. The mass ratio of the total content of thorium (Th) and uranium (U) with respect to the total equivalent amount of the rare earth oxide ((Th + U) / TREO) is 0.05 wt% or less. The brain method average particle diameter (D B ) is 1.5 μm to 2.5 μm.

検討の結果、本発明に係るセリウム系研摩材は、原料の種類に拘わらず、バストネサイト精鉱を原料として製造される従来のセリウム系研摩材と同等かそれよりも高い研摩速度を有することが解った。このセリウム系研摩材は、例えば、液晶用、ハードディスク用またはフォトマスク用ガラス基板の一次研摩または中間研摩あるいは、光学ガラスの研摩等の用途に好適である。研摩速度の低下が防止される理由は必ずしも明確でないが、研摩材の粒径設定の基準がブレーン法平均粒径(D)であることと関わりが深いと考えられる。セリウム系研摩材の製造では、例えば「仕上げ用」等、研摩材の用途に応じて製造する研摩材の粒径が設定されることがある。そして、この粒径設定では、レーザ回折・散乱粒度分布測定法で測定される小粒径側からの累積体積が50wt%になる粒子の粒径(D50)が用いられている。ところが、トリウムやウランの含有率が低減されており、しかも研摩速度が高いセリウム系研摩材を製造する場合、当該粒径(D50)を基準に用いて粒径設定を行っても、製造された研摩材は研摩速度が低いものとなる場合が多い。このようなことから、従来の粒径(D50)を基準に用いて粒径設定を行っても、必要な研摩速度が確保されるように研摩材粒子の粒度分布を制御できず、したがって、これまでのような粒度設定を行っても上述した要求レベルの研摩速度性能を発揮する粒度分布を有する研摩材は製造されないと考えられる。これに対し、粒度設定においてブレーン法平均粒径(D)を基準に用いて得られたセリウム系研摩材は、上記要求レベルかそれ以上の高い研摩速度を有する。したがって、ブレーン法平均粒径(D)を基準とする粒径設定が行われたセリウム系研摩材は、必要な研摩速度が確保されるように研摩材の粒子の状態(例えば粒度分布)が制御された研摩材であると考えられる。つまり、粒度設定の基準がブレーン法平均粒径(D)であり、当該平均粒径が上記範囲内である本発明に係るセリウム系研摩材は、上述した要求レベルの研摩速度性能を発揮する粒子の状態を有することなると考えられる。 As a result of the examination, the cerium-based abrasive according to the present invention has a polishing speed equal to or higher than that of a conventional cerium-based abrasive manufactured using bastonite concentrate as a raw material, regardless of the type of raw material. I understand. This cerium-based abrasive is suitable for applications such as primary polishing or intermediate polishing of glass substrates for liquid crystals, hard disks or photomasks, or polishing of optical glass. The reason why the reduction in the polishing rate is prevented is not necessarily clear, but it is considered that the standard for setting the particle size of the abrasive is the Blaine method average particle size (D B ). In the production of a cerium-based abrasive, the particle size of the abrasive to be produced may be set depending on the use of the abrasive, such as “for finishing”. In this particle size setting, the particle size (D 50 ) of the particles whose cumulative volume from the small particle size side measured by the laser diffraction / scattering particle size distribution measurement method is 50 wt% is used. However, when producing a cerium-based abrasive with a reduced content of thorium and uranium and a high polishing rate, it is produced even if the particle size is set using the particle size (D 50 ) as a reference. Abrasive materials often have a low polishing rate. Therefore, even if the particle size is set using the conventional particle size (D 50 ) as a reference, the particle size distribution of the abrasive particles cannot be controlled so as to ensure the necessary polishing speed. Even if the particle size is set as described above, it is considered that an abrasive having a particle size distribution that exhibits the above-described required polishing speed performance is not produced. On the other hand, the cerium-based abrasive obtained by using the Blaine average particle size (D B ) as a reference in setting the particle size has a high polishing rate at or above the above required level. Therefore, a cerium-based abrasive having a particle size set on the basis of the Blaine average particle size (D B ) has a state (for example, a particle size distribution) of the abrasive particles so as to ensure a necessary polishing speed. It is considered a controlled abrasive. That is, the cerium-based abrasive according to the present invention in which the standard for setting the particle size is the Blaine method average particle size (D B ) and the average particle size is in the above range, exhibits the above-mentioned required polishing rate performance. It is thought to have a particle state.

そして、上述したような用途で用いられる場合など特に高い研摩速度が要求される場合、セリウム系研摩材におけるブレーン法平均粒径(D)として好ましい範囲は、上記のように、1.5μm〜2.5μmである。当該平均粒径(D)が下限値未満では、十分な研摩速度を確保できないからである。他方、上限値を超えると、被研摩面に大きな傷やうねりが発生してしまい、その後に仕上げ研摩を行っても除去できないことがある。したがって、これらの両面を考慮すると、ブレーン法平均粒径(D)は、1.7μm〜2.3μmがより好ましい。なお、セリウム系研摩材のTREOに対するトリウムとウランの合計含有量の質量比((Th+U)/TREO)は0.05wt%以下であり、0.005wt%以下が好ましく、0.0005wt%以下がより好ましい。ウランやトリウムといった放射性物質の含有率はできるだけ低い方が好ましい。 And when a particularly high polishing rate is required, such as when used in the above-mentioned applications, the preferable range as the brain method average particle diameter (D B ) in the cerium-based abrasive is 1.5 μm to 2.5 μm. This is because if the average particle size (D B ) is less than the lower limit, a sufficient polishing rate cannot be secured. On the other hand, if the upper limit is exceeded, large scratches and undulations may occur on the surface to be polished, which may not be removed even after finishing polishing. Therefore, considering these both surfaces, the Blaine method average particle diameter (D B ) is more preferably 1.7 μm to 2.3 μm. The mass ratio ((Th + U) / TREO) of the total content of thorium and uranium to TREO of the cerium-based abrasive is 0.05 wt% or less, preferably 0.005 wt% or less, and more preferably 0.0005 wt% or less. preferable. The content of radioactive substances such as uranium and thorium is preferably as low as possible.

セリウム系研摩材質量に対するTREOの質量比は90wt%以上である。より具体的には、TREOの割合は90wt%以上が好ましく、92wt%以上がより好ましく、93wt%以上がさらに好ましい。各希土類元素の割合が一定の場合、TREOの質量比が高いほど、希土類酸化物のうちで最も研摩に寄与する酸化セリウムの研摩材質量中に占める割合が増えることとなり、高い研摩速度を確保できるからである。また、傷発生の原因の一つである不純物の含有率が低いこととなり、傷発生がより確実に防止されるからである。   The mass ratio of TREO to the mass of the cerium-based abrasive is 90 wt% or more. More specifically, the ratio of TREO is preferably 90 wt% or more, more preferably 92 wt% or more, and further preferably 93 wt% or more. When the ratio of each rare earth element is constant, the higher the mass ratio of TREO, the greater the ratio of cerium oxide that contributes to polishing among the rare earth oxides in the abrasive mass, and a high polishing rate can be secured. Because. Moreover, it is because the content rate of the impurity which is one of the causes of generation | occurrence | production of a crack will be low, and a crack generation | occurrence | production will be prevented more reliably.

ただし、検討の結果、TREOに占める酸化セリウム(CeO)の割合(CeO/TREO)は、50wt%〜70wt%が好ましい。酸化セリウムの割合が高くなると傷が発生しやすくなり、上記上限値を上回ると研摩傷が発生しやすくなるからである。他方、酸化セリウムの割合が低くなるほど研摩速度が低下してしまい、上記下限値を下回ると、十分な研摩速度を確保できない。 However, as a result of the study, the ratio of cerium oxide (CeO 2 ) to TREO (CeO 2 / TREO) is preferably 50 wt% to 70 wt%. This is because if the ratio of cerium oxide is high, scratches are likely to occur, and if the upper limit is exceeded, abrasive scratches are likely to occur. On the other hand, the polishing rate decreases as the proportion of cerium oxide decreases, and if the ratio is below the lower limit, a sufficient polishing rate cannot be ensured.

フッ素(F)の含有率は4.0wt%〜10wt%が好ましい。フッ素の含有率が低くなり過ぎると、十分な研摩速度を確保できないからであり、他方、高くなり過ぎると、研摩傷が発生するからである。そして、これらの両面を考慮すると、フッ素の含有率は5.0wt%〜9.0wt%がより好ましい。   The fluorine (F) content is preferably 4.0 wt% to 10 wt%. This is because if the fluorine content is too low, a sufficient polishing rate cannot be secured, while if it is too high, polishing scratches are generated. In consideration of these two surfaces, the fluorine content is more preferably 5.0 wt% to 9.0 wt%.

また、バストネサイト精鉱など、セリウム系研摩材の原料として用いられる鉱石は、ウランやトリウムといった放射性物質以外にも、カルシウム(Ca)、バリウム(Ba)、鉄(Fe)、リン(P)等の元素を多く含有している。したがって、これらの元素からなる不純物を多く含有するセリウム系研摩材が製造されることがある。このような不純物を含有する研摩材は、研摩傷が発生しやすく、研摩速度が低いものが多い。また、これらの不純物(特に鉄)が被研摩面に残留すると、被研摩部材の電気的または磁気的特性を低下させることがある。このようなことから、セリウム系研摩材としては、TREOに対するカルシウム、バリウム、鉄、リンの合計含有量の質量比((Ca+Ba+Fe+P)/TREO)が2.0wt%以下が好ましく、1.0wt%以下がより好ましく、0.5wt%以下がさらに好ましい。そして、その原料としても、当該質量比((Ca+Ba+Fe+P)/TREO)が2.0wt%以下が好ましく、1.0wt%以下がより好ましく、0.5wt%以下がさらに好ましい。   Also, ores used as raw materials for cerium-based abrasives such as bastonite concentrate are calcium (Ca), barium (Ba), iron (Fe), phosphorus (P) in addition to radioactive materials such as uranium and thorium. It contains a lot of elements such as. Therefore, a cerium-based abrasive containing a large amount of impurities composed of these elements may be produced. Many of the abrasives containing such impurities are prone to polishing scratches and have a low polishing rate. Further, if these impurities (particularly iron) remain on the surface to be polished, the electrical or magnetic characteristics of the member to be polished may be deteriorated. For this reason, as a cerium-based abrasive, the mass ratio of the total content of calcium, barium, iron, and phosphorus with respect to TREO ((Ca + Ba + Fe + P) / TREO) is preferably 2.0 wt% or less, and 1.0 wt% or less. Is more preferable, and 0.5 wt% or less is more preferable. And as the raw material, the mass ratio ((Ca + Ba + Fe + P) / TREO) is preferably 2.0 wt% or less, more preferably 1.0 wt% or less, and further preferably 0.5 wt% or less.

そして、セリウム系研摩材としては、BET法比表面積は、1.0m/g〜3.5m/gが好ましい。BET法比表面積が大きくなるほど研摩速度が低下し、上記上限値を超えると十分な研摩速度を確保できないからである。他方、BET法比表面積が小さくなるほど傷が発生しやすくなり、上記下限値を下回ると、高精度の研摩が要求される前述の分野では許容できないような研摩傷が発生するようになるからである。これらの両面を考慮すると、BET法比表面積は、1.2m/g〜3.0m/gがより好ましい。 Then, as the cerium-based abrasive, BET method specific surface area is preferably 1.0m 2 /g~3.5m 2 / g. This is because the polishing rate decreases as the BET method specific surface area increases, and if the upper limit is exceeded, a sufficient polishing rate cannot be ensured. On the other hand, the smaller the BET method specific surface area, the easier it is to generate scratches, and if it falls below the lower limit value, scratches that are unacceptable in the above-mentioned fields where high-precision polishing is required will occur. . In consideration of these, BET method specific surface area, and more preferably 1.2m 2 /g~3.0m 2 / g.

ここまで本発明に係るセリウム系研摩材について説明したが、次に、そのようなセリウム系研摩材の製造方法について説明する。バストネサイト精鉱、モナザイト精鉱、中国複雑鉱精鉱等の鉱石原料から化学処理等により放射性元素、アルカリ金属、アルカリ土類金属等の不純物の含有率を低減して得られる希土類炭酸塩等の希土類化合物などを原料として用いるセリウム系研摩材の製造方法は、通常、原料を焙焼する工程を有する。そして、セリウム系研摩材の製造方法では、必要に応じて、焙焼工程前に、粉砕(解砕)工程、乾燥工程、フッ化処理や不純物を除去する処理などの湿式処理が行われたり、焙焼工程後に、粉砕(解砕)工程、乾燥工程、分級工程などが行われたりする。   The cerium-based abrasive according to the present invention has been described so far. Next, a method for producing such a cerium-based abrasive will be described. Rare earth carbonates obtained by reducing the content of impurities such as radioactive elements, alkali metals, alkaline earth metals, etc. from ore materials such as bust nesite concentrate, monazite concentrate, Chinese complex ore concentrate etc. by chemical treatment etc. The method for producing a cerium-based abrasive using a rare earth compound as a raw material usually has a step of roasting the raw material. And, in the manufacturing method of the cerium-based abrasive, if necessary, a wet process such as a pulverization (disintegration) process, a drying process, a fluorination process or a process of removing impurities is performed before the roasting process, After the roasting process, a pulverization (disintegration) process, a drying process, a classification process, and the like are performed.

このように、原料を焙焼する工程を有するセリウム系研摩材の製造方法において、前記焙焼する工程に供される原料として、焙焼を経て得られたフッ素含有希土類化合物を含んでおり、かつ当該原料の全希土類酸化物換算質量に占める前記フッ素含有希土類化合物の酸化物換算質量の割合が30wt%以上であり、当該全希土類酸化物換算量に対するトリウム(Th)とウラン(U)の合計含有量の質量比((Th+U)/TREO)が0.05wt%以下であるものを用いると、バストネサイト精鉱を原料として製造されるセリウム系研摩材などの従来のセリウム系研摩材と同等かそれよりも高い研摩速度を有するセリウム系研摩材が製造される。   Thus, in the method for producing a cerium-based abrasive having the step of roasting the raw material, the raw material used for the roasting step includes a fluorine-containing rare earth compound obtained through roasting, and The ratio of the oxide equivalent mass of the fluorine-containing rare earth compound to the total rare earth oxide equivalent mass of the raw material is 30 wt% or more, and the total content of thorium (Th) and uranium (U) relative to the total rare earth oxide equivalent amount If the mass ratio of the amount ((Th + U) / TREO) is 0.05 wt% or less, is it equivalent to conventional cerium-based abrasives such as cerium-based abrasives produced from bastonite concentrate? A cerium-based abrasive having a higher polishing rate is produced.

このような原料を用いると良い理由は必ずしも明確でないが、原料中に焙焼を経て得られたフッ素含有希土類化合物を含めることと関わりが深いと考えられる。原料中のフッ素含有希土類化合物は、フッ素含有希土類化合物製造段階で焙焼され、さらに研摩材製造段階で焙焼される。つまり、原料中のフッ素含有希土類化合物は、セリウム系研摩材とされるまでに都合2回以上焙焼される。そして、検討の結果、このようにフッ素を含有した状態で複数回の焙焼工程を経て製造されるセリウム系研摩材は、1回しか焙焼されないものと比べると、セリウム系研摩材の粒子の状態が大きく異なっていると考えられることが解った。両セリウム系研摩材を比較したところ、レーザ回折・散乱粒度分布測定法で測定される粒径(D50)に差はなくても、実際に研摩を行って得られた被研摩面における傷発生状態や研摩値(研摩速度)は、複数回の焙焼工程を経て製造されるセリウム系研摩材の方が優れていたからである。 The reason for using such a raw material is not necessarily clear, but it is considered to be closely related to including a fluorine-containing rare earth compound obtained through roasting in the raw material. The fluorine-containing rare earth compound in the raw material is roasted at the stage of manufacturing the fluorine-containing rare earth compound, and further roasted at the stage of manufacturing the abrasive. That is, the fluorine-containing rare earth compound in the raw material is roasted at least twice before it is made a cerium-based abrasive. As a result of the examination, the cerium-based abrasive produced through the multiple roasting steps in the state of containing fluorine in this way is more cerium-based abrasive particles than the one baked only once. It turns out that the state is thought to be very different. When both cerium-based abrasives are compared, scratches are generated on the polished surface obtained by actual polishing even if there is no difference in the particle size (D 50 ) measured by the laser diffraction / scattering particle size distribution measurement method. This is because the cerium-based abrasive produced through a plurality of roasting steps was superior in condition and polishing value (polishing speed).

実用的な研摩材を製造するための原料としては、上述したように、フッ素含有希土類化合物の割合が30wt%以上のものを用いる。当該割合がこれより低いと、傷発生を十分に防止できず、また十分な研摩値(研摩速度)を確保できないからである。したがって、フッ素含有希土類化合物の割合としては、50wt%以上が好ましく、70wt%以上がより好ましい。より具体的に説明すると、本発明に係る研摩材の製造方法の原料の一部として用いられるフッ素含有希土類化合物としては、例えば、希土類の炭酸塩、モノオキシ炭酸塩、塩基性炭酸塩、しゅう酸塩、水酸化物あるいは酸化物などの希土類化合物と、フッ化水素酸、フッ化アンモニウムあるいはフッ化水素アンモニウム等のフッ素含有化合物とを混合した後、得られた混合物(希土類化合物とフッ素含有化合物との混合物)を焙焼することによって得られるものなどを挙げることができる。   As a raw material for producing a practical abrasive, one having a fluorine-containing rare earth compound ratio of 30 wt% or more is used as described above. If the ratio is lower than this, the generation of scratches cannot be sufficiently prevented, and a sufficient polishing value (polishing speed) cannot be ensured. Accordingly, the proportion of the fluorine-containing rare earth compound is preferably 50 wt% or more, more preferably 70 wt% or more. More specifically, as the fluorine-containing rare earth compound used as a part of the raw material of the method for producing an abrasive according to the present invention, for example, rare earth carbonate, monooxy carbonate, basic carbonate, oxalate A rare earth compound such as hydroxide or oxide and a fluorine-containing compound such as hydrofluoric acid, ammonium fluoride, or ammonium hydrogen fluoride, and then the resulting mixture (a mixture of the rare earth compound and the fluorine-containing compound). And the like obtained by roasting the mixture).

フッ素含有希土類化合物の焙焼温度としては、300℃〜1100℃が好ましく、400℃〜1000℃がより好ましい。下限値未満の温度での焙焼により得られたフッ素含有希土類化合物を原料に用いると、研摩速度が低いセリウム系研摩材が製造されやすい。他方、上限値を超えた焙焼温度での焙焼により得られたフッ素含有希土類化合物は大粒径で硬いものになりやすく、このようなものを原料に用いると、研摩傷が発生しやすいセリウム系研摩材が製造されやすい。なお、焙焼により得られたフッ素含有希土類化合物としては、種々の方法によって得られるものを挙げることができる。一例としては、フッ素含有セリウム系研摩材の製造において焙焼工程後に分級工程を行って微粒の研摩材を得る場合に当該分級工程において粗粉側に回収されるものを挙げることができる。   The roasting temperature of the fluorine-containing rare earth compound is preferably 300 ° C to 1100 ° C, and more preferably 400 ° C to 1000 ° C. When a fluorine-containing rare earth compound obtained by roasting at a temperature lower than the lower limit is used as a raw material, a cerium-based abrasive having a low polishing rate is easily produced. On the other hand, the fluorine-containing rare earth compound obtained by baking at a baking temperature exceeding the upper limit tends to be hard with a large particle size, and when such a material is used as a raw material, cerium is likely to cause abrasive scratches. Abrasive materials are easy to manufacture. In addition, examples of the fluorine-containing rare earth compound obtained by roasting include those obtained by various methods. As an example, in the production of a fluorine-containing cerium-based abrasive, when a fine-grained abrasive is obtained by performing a classification process after the roasting process, it can be recovered on the coarse powder side in the classification process.

また、原料のうちフッ素含有希土類化合物以外の部分としては、確認的には、希土類の炭酸塩、モノオキシ炭酸塩、塩基性炭酸塩、しゅう酸塩、水酸化物などの希土類化合物や、これらの希土類化合物を焙焼(あるいは仮焼)して得られたものが用いられる。そして、これらの中でも、列挙した希土類化合物を仮焼することにより得られる強熱減量が20wt%以下、好ましくは15wt%以下、より好ましくは10wt%以下になったものや、列挙した希土類化合物を高温で長時間焙焼することにより得られる強熱減量がほとんど0wt%である酸化物が、フッ素含有希土類化合物以外の部分として特に好ましい。最終的に粒径が大きなセリウム系研摩材を得やすいからである。   In addition, as a part of the raw material other than the fluorine-containing rare earth compound, for confirmation, rare earth compounds such as rare earth carbonates, monooxy carbonates, basic carbonates, oxalates and hydroxides, and these rare earths What was obtained by roasting (or calcination) the compound is used. Among these, the ignition loss obtained by calcining the listed rare earth compounds is 20 wt% or less, preferably 15 wt% or less, more preferably 10 wt% or less, or the listed rare earth compounds are heated to a high temperature. An oxide having a loss on ignition of almost 0 wt% obtained by roasting for a long time is particularly preferable as a portion other than the fluorine-containing rare earth compound. This is because it is easy to finally obtain a cerium-based abrasive having a large particle size.

なお、上記本発明に係るセリウム系研摩材の製造方法において、トリウムやウラン等の含有率が低減された原料(中間原料)を焙焼工程に供する方法としては、種々の方法が考えられる。例えば、出発原料としてトリウムやウラン等の放射性元素の含有率が低減されたものを用いれば、トリウムやウラン等の含有率が低減された原料(中間原料)を焙焼工程に供することができる。当該原料としては、原料の全希土類酸化物換算量に対するトリウム(Th)とウラン(U)の合計含有量の質量比((Th+U)/TREO)が0.05wt%以下であるものが好ましく、0.005wt%以下のものがより好ましく、0.0005wt%以下のものがさらに好ましい。このような原料を用いると、全希土類酸化物換算量に対するトリウム(Th)とウラン(U)の合計含有量の質量比((Th+U)/TREO)が低減されており、しかも、バストネサイト精鉱を原料として製造されるセリウム系研摩材などの従来のセリウム系研摩材と同等かそれよりも高い研摩速度を有するセリウム系研摩材が製造される。なお、トリウムやウラン等の放射性元素を含む鉱石等からこれらの含有率が低減された原料を製造する方法としては、特許文献2に記載されている化学的処理方法など、種々の公知の方法がある。具体例を1つ挙げるとすると、例えば、バストネサイト精鉱などの精鉱を硫酸分解法やアルカリ分解法によって分解し、分別沈澱や分別溶解等の処理を行ってウラン、トリウム、カルシウム、バリウム、鉄、リン等の不純物を低減・除去することにより希土類溶液を得て、得られた希土類溶液の希土類成分の組成を調整した後、組成が調整された希土類溶液と沈澱剤(例えば、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸ナトリウム、アンモニア水、しゅう酸、しゅう酸アンモニウム、しゅう酸ナトリウム、尿素等)を混合して希土類化合物(例えば、炭酸塩、塩基性炭酸塩、モノオキシ炭酸塩、水酸化物、しゅう酸塩等)の沈澱を生成し、これを濾過・水洗して本発明に係るセリウム系研摩材用原料を得るという方法を挙げることができる。また、これらから(仮焼により)焼成される酸化物、あるいは酸化物との中間体としたものをも原料として用いることができる。このように、この方法によれば、同時に、カルシウム、バリウム、鉄、リン等の不純物の含有率をも低減できる。   In the method for producing a cerium-based abrasive according to the present invention, various methods are conceivable as a method for subjecting a raw material (intermediate raw material) having a reduced content of thorium, uranium or the like to the roasting step. For example, if a material with a reduced content of radioactive elements such as thorium or uranium is used as a starting material, a material (intermediate material) with a reduced content of thorium or uranium or the like can be subjected to a roasting step. The raw material is preferably such that the mass ratio ((Th + U) / TREO) of the total content of thorium (Th) and uranium (U) to the total rare earth oxide equivalent of the raw material is 0.05 wt% or less. 0.005 wt% or less is more preferable, and 0.0005 wt% or less is more preferable. When such a raw material is used, the mass ratio ((Th + U) / TREO) of the total content of thorium (Th) and uranium (U) with respect to the total amount of rare earth oxides is reduced. A cerium-based abrasive having a polishing speed equal to or higher than that of a conventional cerium-based abrasive such as a cerium-based abrasive manufactured using ore as a raw material is produced. Various known methods such as the chemical treatment method described in Patent Document 2 can be used as a method for producing raw materials with reduced content from ores containing radioactive elements such as thorium and uranium. is there. As one specific example, for example, concentrates such as bastonite concentrate are decomposed by sulfuric acid decomposition method or alkali decomposition method, and subjected to treatment such as fractional precipitation and fractional dissolution, and uranium, thorium, calcium, barium. A rare earth solution is obtained by reducing and removing impurities such as iron, phosphorus, etc., and the composition of the rare earth component of the obtained rare earth solution is adjusted. Ammonium, ammonium carbonate, sodium bicarbonate, sodium carbonate, aqueous ammonia, oxalic acid, ammonium oxalate, sodium oxalate, urea, etc.) mixed with rare earth compounds (e.g. carbonate, basic carbonate, monooxy carbonate, A precipitate of hydroxide, oxalate, etc.), which is filtered and washed with water to obtain a cerium-based abrasive raw material according to the present invention. The law can be mentioned. In addition, oxides fired from these (by calcination), or intermediates with oxides can be used as raw materials. Thus, according to this method, the content of impurities such as calcium, barium, iron, and phosphorus can be reduced at the same time.

なお、上述したように、レーザ回折・散乱粒度分布測定法で測定される粒径(D50)に基づいたのでは研摩特性の優劣を判断できなかったので、傷評価や研摩値(研摩速度)といった研摩特性の優劣と、研摩材の粒子状態を表す各種物性との間の相関関係について検討したところ、先に説明したように、ブレーン法平均粒径(D)が所定範囲であるセリウム系研摩材は、傷評価や研摩値(研摩速度)の面で研摩特性に優れていた。このようなことから、セリウム系研摩材製造時の粒度設定の基準がブレーン法平均粒径(D)であり、当該平均粒径が上記範囲内である本発明に係るセリウム系研摩材は、上述した要求レベルの研摩速度性能を発揮する粒子の状態を有することなる。 As described above, based on the particle size (D 50 ) measured by the laser diffraction / scattering particle size distribution measurement method, the superiority or inferiority of the polishing characteristics could not be determined. Therefore, scratch evaluation and polishing value (polishing speed) As described above, the correlation between the superiority or inferiority of the polishing characteristics and various physical properties that represent the particle state of the abrasive was examined. As described above, the cerium-based system has a Brain method average particle size (D B ) in a predetermined range. The polishing material was excellent in polishing characteristics in terms of scratch evaluation and polishing value (polishing speed). Therefore, the cerium-based abrasive according to the present invention in which the standard of particle size setting at the time of producing the cerium-based abrasive is the Blaine method average particle size (D B ), and the average particle size is within the above range, It will have the state of the particle | grains which exhibit the polishing speed performance of the required level mentioned above.

そして、複数回ある焙焼工程相互の関係について検討した。その結果、フッ素含有希土類化合物を含んでいる原料の焙焼工程での焙焼温度としては、900℃〜1200℃の範囲内であって、かつ原料に含ませるフッ素含有希土類化合物生成時の焙焼での焙焼温度より10℃以上高い温度が好ましいことが解った。   And the relationship between several roasting processes was examined. As a result, the roasting temperature in the roasting step of the raw material containing the fluorine-containing rare earth compound is in the range of 900 ° C. to 1200 ° C. and is roasted when producing the fluorine-containing rare earth compound to be included in the raw material. It has been found that a temperature higher by 10 ° C. or more than the roasting temperature is preferable.

焙焼温度が低いと、最終的に得られる研摩材の粒径が大きくならないと共に研摩速度が低くなる傾向にあり、上記温度範囲の下限値未満になると、粒径が十分に大きくならないと共に研摩速度が十分に高くならないからである。他方、焙焼温度が高いと、最終的に得られる研摩材の粒径が大きくなると共に研摩傷が発生しやすくなる傾向にあり、上記温度範囲の上限値を超えると、粒径が大きくなり過ぎると共に多くの研摩傷が発生するようになるからである。したがって、これらの点を考慮すると、焙焼温度は、950℃〜1150℃がより好ましい。   When the roasting temperature is low, the particle size of the abrasive material finally obtained does not increase and the polishing rate tends to decrease. When the temperature is below the lower limit of the above temperature range, the particle size does not increase sufficiently and the polishing rate is increased. This is because is not high enough. On the other hand, if the roasting temperature is high, the particle size of the abrasive material finally obtained tends to increase and abrasive scratches tend to occur. If the upper limit of the above temperature range is exceeded, the particle size becomes too large. This is because many abrasive scratches are generated. Therefore, considering these points, the roasting temperature is more preferably 950 ° C to 1150 ° C.

さらに、本製造方法の焙焼高低における焙焼温度と、原料に含ませるフッ素含有希土類化合物生成時の焙焼での焙焼温度との温度差が小さいほど焙焼における焼結が進み難く、温度差が10℃未満では、製造されるセリウム系研摩材は、粒径が小さく、しかも研摩速度の低いものになり易い。この点を考慮すると、当該温度差は、20℃以上がより好ましく、50℃以上がさらに好ましい。   Furthermore, the smaller the temperature difference between the roasting temperature at the roasting height of this production method and the roasting temperature at the time of roasting when the fluorine-containing rare earth compound to be included in the raw material is, the more difficult the sintering in the roasting proceeds. When the difference is less than 10 ° C., the produced cerium-based abrasive tends to have a small particle size and a low polishing rate. Considering this point, the temperature difference is more preferably 20 ° C. or higher, and further preferably 50 ° C. or higher.

また、フッ化処理工程を有するセリウム系研摩材の製造方法を用いる場合は、次のような製造方法によっても、トリウムやウラン等の含有率が低減されており、しかも、バストネサイト精鉱を原料として製造されるセリウム系研摩材などの従来のセリウム系研摩材と同等かそれよりも高い研摩速度を有するセリウム系研摩材を製造できる。   In addition, when using a method for producing a cerium-based abrasive having a fluorination treatment step, the content of thorium, uranium, etc. is reduced by the following production method, and the bastonesite concentrate is further reduced. A cerium-based abrasive having a polishing speed equivalent to or higher than that of a conventional cerium-based abrasive such as a cerium-based abrasive produced as a raw material can be produced.

すなわち、その製造方法とは、セリウム系研摩材の原料中にフッ素を含有させるフッ化処理工程を少なくとも1回有し、フッ化処理工程後に行われる焙焼工程を有するセリウム系研摩材の製造方法であって、最初のフッ化処理工程後に行われる焙焼工程の回数が2回以上であり、最初の焙焼工程に供される焙焼対象物(中間原料)は、全希土類酸化物換算量に対するトリウム(Th)とウラン(U)の合計含有量の質量比((Th+U)/TREO)が0.05wt%以下であるセリウム系研摩材の製造方法である。   That is, the production method is a method for producing a cerium-based abrasive having a fluorination treatment step of containing fluorine in the raw material of the cerium-based abrasive at least once and having a roasting step performed after the fluorination treatment step. The number of roasting steps performed after the first fluorination treatment step is 2 or more, and the roasting object (intermediate raw material) used in the first roasting step is equivalent to the total rare earth oxide equivalent amount. This is a method for producing a cerium-based abrasive with a mass ratio ((Th + U) / TREO) of the total content of thorium (Th) and uranium (U) to 0.05 wt% or less.

検討において、単に焙焼工程を2回以上行うだけでは所望のセリウム系研摩材は得られないことと、および、各焙焼工程はフッ素を含有したセリウム系研摩材の原料(中間原料を含む)を焙焼する工程である必要があることが解ったことから本発明に想到するに至った。したがって、本製造方法は、焙焼工程前に行われるフッ化処理工程を有しており、1回目のフッ化処理は1回目の焙焼工程前に行われる。なお、2回目以降の焙焼工程に着目すれば、当該焙焼工程とその直前の焙焼工程との間に追加のフッ化処理を行った方が好ましい。そして、コストや生産効率等を考えると焙焼工程は2回であるのが最も好ましい。このような製造方法を用いると、バストネサイト精鉱を原料として製造されるセリウム系研摩材などの従来のセリウム系研摩材と同等かそれよりも高い研摩速度を有するセリウム系研摩材が製造される。焙焼対象物がフッ素を含有したものであると、焙焼によって適度に大きな粒径の焙焼品を生成でき、より高い研摩速度の研摩材を製造しやすいからであると考えられる。   In the study, the desired cerium-based abrasive cannot be obtained simply by performing the roasting process twice or more, and the raw materials for the cerium-based abrasive containing fluorine in each roasting process (including intermediate raw materials) The present invention was conceived from the fact that it was found necessary to be a process of roasting. Therefore, this manufacturing method has a fluorination treatment step performed before the roasting step, and the first fluorination treatment is performed before the first roasting step. If attention is paid to the second and subsequent roasting steps, it is preferable to perform an additional fluorination treatment between the roasting step and the immediately preceding roasting step. In view of cost, production efficiency, etc., the roasting process is most preferably performed twice. By using such a manufacturing method, a cerium-based abrasive having a polishing speed equivalent to or higher than that of a conventional cerium-based abrasive such as a cerium-based abrasive manufactured using bastonite concentrate as a raw material is produced. The If the object to be baked contains fluorine, it is considered that a baked product having a reasonably large particle diameter can be generated by baking and it is easy to produce an abrasive having a higher polishing speed.

原料としては、確認的であるが、希土類の炭酸塩、モノオキシ炭酸塩、塩基性炭酸塩、しゅう酸塩、水酸化物などの希土類化合物や、これらの希土類化合物を焙焼(あるいは仮焼)して得られたものが用いられる。そして、これらのなかでも、列挙した希土類化合物を仮焼することにより得られる強熱減量が20wt%以下、好ましくは15wt%以下、より好ましくは10wt%以下になったものや、列挙した希土類化合物を高温で長時間焙焼することにより得られる強熱減量がほとんど0wt%である酸化物が特に好ましい。最終的に粒径が大きなセリウム系研摩材を得やすいからである。   As raw materials, it is confirmed, but rare earth compounds such as rare earth carbonates, monooxy carbonates, basic carbonates, oxalates and hydroxides, and these rare earth compounds are roasted (or calcined). What was obtained is used. Among these, the ignition loss obtained by calcining the listed rare earth compounds is 20 wt% or less, preferably 15 wt% or less, more preferably 10 wt% or less, or the listed rare earth compounds. Particularly preferred is an oxide whose loss on ignition obtained by roasting at a high temperature for a long time is almost 0 wt%. This is because it is easy to finally obtain a cerium-based abrasive having a large particle size.

フッ化処理は、セリウム系研摩材の原料(中間原料を含む)とフッ素含有化合物とを混合することによって実施できる。フッ素含有化合物としては、フッ化水素酸、フッ化アンモニウム、フッ化水素アンモニウム等のフッ素含有化合物や、希土類フッ化物、希土類オキシフッ化物などのフッ素含有希土類化合物を用いる。ただし、フッ素含有希土類化合物は、焙焼によって得られたものである必要はなく、例えば、希土類炭酸塩等の希土類化合物とフッ化水素酸等のフッ素含有化合物との混合によって得られるものであってもよい。これは、フッ素含有希土類化合物によりフッ化処理した原料は焙焼工程を2回以上経るためである。   The fluorination treatment can be performed by mixing a cerium-based abrasive material (including intermediate materials) and a fluorine-containing compound. As the fluorine-containing compound, fluorine-containing compounds such as hydrofluoric acid, ammonium fluoride, and ammonium hydrogen fluoride, and fluorine-containing rare earth compounds such as rare earth fluoride and rare earth oxyfluoride are used. However, the fluorine-containing rare earth compound does not have to be obtained by roasting, and is obtained, for example, by mixing a rare earth compound such as rare earth carbonate and a fluorine containing compound such as hydrofluoric acid. Also good. This is because the raw material fluorinated with the fluorine-containing rare earth compound undergoes a roasting process twice or more.

また、本製造方法を用いてトリウムやウラン等の含有率が低減されたセリウム系研摩材を製造する方法としては、種々の方法が考えられる。例えば、本製造方法の出発原料として、トリウムやウラン等の放射性元素の含有率が低減されたものを用いれば、トリウムやウラン等の含有率が低減されたセリウム系研摩材を製造できる。原料としては、先にも説明したように、当該原料の全希土類酸化物換算量に対するトリウム(Th)とウラン(U)の合計含有量の質量比((Th+U)/TREO)が0.05wt%以下であるものが好ましく、0.005wt%以下のものがより好ましく、0.0005wt%以下のものがさらに好ましい。なお、トリウムやウラン等の放射性元素を含む鉱石等からこれらの含有率が低減された原料を製造する方法については、先に説明した通りであり、ここではその説明を省略する。   In addition, various methods are conceivable as a method for producing a cerium-based abrasive with a reduced content of thorium, uranium and the like using this production method. For example, if a material having a reduced content of radioactive elements such as thorium or uranium is used as a starting material of the present production method, a cerium-based abrasive with a reduced content of thorium or uranium can be produced. As described above, as described above, the mass ratio ((Th + U) / TREO) of the total content of thorium (Th) and uranium (U) to the total rare earth oxide equivalent of the raw material is 0.05 wt%. The following are preferable, those having 0.005 wt% or less are more preferable, and those having 0.0005 wt% or less are more preferable. In addition, about the method of manufacturing the raw material by which these content rates were reduced from the ore containing radioactive elements, such as thorium and uranium, it is as having demonstrated previously, The description is abbreviate | omitted here.

また、検討の結果、最初の焙焼工程をはじめとして各焙焼工程における焙焼温度は700℃以上が好ましく、最後の焙焼工程における焙焼温度は900℃〜1200℃が好ましく、2回目以降の各焙焼工程における焙焼温度は各焙焼工程の直前の焙焼工程における焙焼温度より10℃以上高い温度が好ましい。   As a result of the examination, the roasting temperature in each roasting step including the first roasting step is preferably 700 ° C. or higher, and the roasting temperature in the final roasting step is preferably 900 ° C. to 1200 ° C., and the second and subsequent times. The roasting temperature in each of the roasting steps is preferably 10 ° C. or more higher than the roasting temperature in the roasting step immediately before each roasting step.

各焙焼工程における焙焼温度が700℃未満では、焙焼により粒子が成長するという効果がほとんど得られず、所望の研摩速度を有する研摩材を製造できないからである。そして、各焙焼工程における焙焼温度が700℃以上であっても、最後の焙焼工程における焙焼温度が低いと、最終的に得られる研摩材の粒径が大きくならないと共に研摩速度が低くなる傾向にあり、900℃未満になると粒径が十分に大きくならないと共に研摩速度が十分に高くならない。他方、最終焙焼工程の焙焼温度が高いと、最終的に得られる研摩材の粒径が大きくなると共に研摩傷が発生しやすくなる傾向にあり、1200℃を超えると、粒径が大きくなり過ぎると共に多くの研摩傷が発生するようになる。したがって、これらの点を考慮すると、焙焼温度は、950℃〜1150℃がより好ましい。また、2回目以降のある焙焼工程に着目した場合、当該焙焼工程の焙焼温度は、当該焙焼工程の直前の焙焼工程の焙焼温度よりも高い方が好ましいが、両焙焼温度の温度差が小さいほど焙焼における焼結が進み難い。そして、温度差が10℃未満では、製造されるセリウム系研摩材は、粒径が小さく、しかも研摩速度の低いものになり易い。このようなことから、2回目以降の各焙焼工程における焙焼温度は各焙焼工程の直前の焙焼工程における焙焼温度よりも10℃以上高い温度が好ましく、20℃以上高い温度がより好ましく、50℃以上高い温度がさらに好ましい。   This is because if the roasting temperature in each roasting step is less than 700 ° C., the effect that particles grow by roasting is hardly obtained, and an abrasive having a desired polishing rate cannot be produced. And even if the baking temperature in each baking process is 700 degreeC or more, if the baking temperature in the last baking process is low, the particle size of the abrasive material finally obtained will not become large, and polishing speed will be low. When the temperature is lower than 900 ° C., the particle size does not increase sufficiently and the polishing rate does not increase sufficiently. On the other hand, if the roasting temperature in the final roasting process is high, the particle size of the abrasive material finally obtained tends to increase and abrasive scratches tend to occur. If the temperature exceeds 1200 ° C., the particle size increases. As it passes, many abrasive scratches occur. Therefore, considering these points, the roasting temperature is more preferably 950 ° C to 1150 ° C. Further, when attention is paid to a certain roasting process after the second time, the roasting temperature of the roasting process is preferably higher than the roasting temperature of the roasting process immediately before the roasting process. The smaller the temperature difference, the more difficult the sintering in roasting proceeds. When the temperature difference is less than 10 ° C., the produced cerium-based abrasive tends to have a small particle size and a low polishing rate. Therefore, the roasting temperature in the second and subsequent roasting steps is preferably 10 ° C or higher, more preferably 20 ° C or higher than the roasting temperature in the roasting step immediately before each roasting step. A temperature higher by 50 ° C. or higher is more preferable.

なお、ここで説明しているセリウム系研摩材の製造方法と異なり、先に説明した製造方法(焙焼工程に供される原料が焙焼を経て得られたフッ素含有希土類化合物を含むものである製造方法)は、フッ化処理工程を必ずしも必要としていない製造方法であるが、その製造方法を用いると、被研摩面における傷発生状態や研摩値(研摩速度)に優れるセリウム系研摩材を製造できる。先に説明した製造方法は、フッ素含有希土類化合物を含む原料を用いる方法だからである。既にフッ素成分を含んでいるフッ素含有希土類化合物を原料中に含ませておけば、研摩材製造段階で改めてフッ化処理を行う必要がない。   In addition, unlike the manufacturing method of the cerium-based abrasive described here, the manufacturing method described above (the manufacturing method in which the raw material used in the roasting step includes a fluorine-containing rare earth compound obtained through roasting) ) Is a manufacturing method that does not necessarily require a fluorination treatment step. However, by using this manufacturing method, it is possible to manufacture a cerium-based abrasive that is excellent in the scratched state and polishing value (polishing speed) on the surface to be polished. This is because the manufacturing method described above uses a raw material containing a fluorine-containing rare earth compound. If a fluorine-containing rare earth compound that already contains a fluorine component is included in the raw material, there is no need to perform fluorination again at the abrasive production stage.

また、ここまでに説明した本発明に係る各製造方法において、所定の粒径の研摩材(例えばブレーン法平均粒径(D)が1.5μm〜2.5μmである研摩材)を製造する場合は、後述の実施形態のところで説明しているように適宜の段階で粉砕(解砕)や分級等を行う。 Further, in each of the manufacturing methods according to the present invention described so far, an abrasive having a predetermined particle diameter (for example, an abrasive having a brain method average particle diameter (D B ) of 1.5 μm to 2.5 μm) is manufactured. In this case, pulverization (crushing), classification, etc. are performed at an appropriate stage as described in the embodiments described later.

そして、ここまでに説明した本発明に係る各製造方法を用いて、カルシウム(Ca)、バリウム(Ba)、鉄(Fe)、リン(P)の含有率が低減されたセリウム系研摩材を製造する方法としては、その原料として、カルシウム、バリウム、鉄、リンの含有率が低減されたものを用いる方法がある。このような原料を用いる場合、セリウム系研摩材の原料としては、当該原料の全希土類酸化物換算量に対するカルシウム、バリウム、鉄、リンの合計含有量の質量比((Ca+Ba+Fe+P)/TREO)が2.0wt%以下であるものが好ましい。このような原料を用いると、全希土類酸化物換算量に対するカルシウム、バリウム、鉄、リンの合計含有量の質量比((Ca+Ba+Fe+P)/TREO)が2.0wt%以下に低減されたセリウム系研摩材が製造される。なお、先に説明したように、トリウムやウラン等の放射性元素の含有率が低減された原料を製造すると、同時に、カルシウム、バリウム、鉄、リンの含有率をも低減された原料が製造されることから、ここでは、カルシウム、バリウム、鉄、リンの含有率が低減された原料の製造方法についての説明を省略する。   And the cerium type abrasive | polishing material with which the content rate of calcium (Ca), barium (Ba), iron (Fe), and phosphorus (P) was reduced is manufactured using each manufacturing method based on this invention demonstrated so far. As a method of doing this, there is a method of using a raw material whose content of calcium, barium, iron, and phosphorus is reduced. When such a raw material is used, the raw material for the cerium-based abrasive is a mass ratio ((Ca + Ba + Fe + P) / TREO) of the total content of calcium, barium, iron, and phosphorus to the total rare earth oxide equivalent of the raw material. It is preferable that it is 0.0 wt% or less. When such a raw material is used, the cerium-based abrasive in which the mass ratio ((Ca + Ba + Fe + P) / TREO) of the total content of calcium, barium, iron, and phosphorus to the total amount of rare earth oxides is reduced to 2.0 wt% or less. Is manufactured. As described above, when a raw material with a reduced content of radioactive elements such as thorium and uranium is produced, a raw material with a reduced content of calcium, barium, iron, and phosphorus is produced at the same time. For this reason, the description of the method for producing a raw material with a reduced content of calcium, barium, iron, and phosphorus is omitted here.

以上のように、本発明によれば、トリウムやウラン等の含有率が低減されており、しかも従来品と同等以上の研摩速度を有するという研摩特性に優れるセリウム系研摩材を提供できる。   As described above, according to the present invention, it is possible to provide a cerium-based abrasive that has a reduced content of thorium, uranium, and the like, and that has an excellent polishing characteristic that has a polishing rate equal to or higher than that of a conventional product.

以下、本発明に係るフッ素含有セリウム系研摩材の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the fluorine-containing cerium-based abrasive according to the present invention will be described.

第1実施形態
第1実施形態では、表1に示されるような物性を有する2種類のセリウム研摩材用の原料を用意した。
First Embodiment In the first embodiment, two kinds of raw materials for cerium abrasive having physical properties as shown in Table 1 were prepared.

Figure 0003875668
Figure 0003875668

2種類の原料のうち、原料Aは、希土類炭酸塩を650℃で12時間仮焼することで得られたものである。なお、原料Aを得るために用意した希土類炭酸塩は、全希土類酸化物換算質量(TREO)が45wt%、CeO/TREOが61wt%、(Th+U)/TREOが0.0005wt%未満、(Ca+Ba+Fe+P)/TREOが0.4wt%未満、フッ素(F)が0.1wt%未満であった。 Of the two types of raw materials, the raw material A is obtained by calcining a rare earth carbonate at 650 ° C. for 12 hours. The rare earth carbonate prepared for obtaining the raw material A has a total rare earth oxide equivalent mass (TREO) of 45 wt%, CeO 2 / TREO of 61 wt%, (Th + U) / TREO of less than 0.0005 wt%, (Ca + Ba + Fe + P). ) / TREO was less than 0.4 wt% and fluorine (F) was less than 0.1 wt%.

実施例1:本実施例は、原料Aを用いるものである。概略的には、原料Aを湿式粉砕し、フッ化処理(1回目)し、洗浄・濾過し、乾燥し、解砕し、焙焼(1回目)し、乾式粉砕し、フッ化処理(2回目)し、洗浄・濾過し、乾燥し、解砕し、焙焼(2回目)し、乾式粉砕し、分級してセリウム系研摩材を製造する方法である。以下、詳細に説明する。まず、原料Aに当該原料の2倍の質量の純水を混合し、得られた混合物をアトライターで湿式粉砕した。この粉砕で用いた粉砕媒体は直径5mmのジルコニアボールであり、粉砕時間は8時間であった。次に粉砕により得られた原料スラリーに、これを撹拌しながら10wt%フッ化水素酸を添加し、その後1時間撹拌を継続した(1回目のフッ化処理)。10wt%フッ化水素酸の添加量は、10wt%フッ化水素酸の添加によって添加されるフッ素質量と原料スラリーの全希土類酸化物換算質量(TREO)との質量比(F/TREO)が4.5wt%になる量であった。その後、スラリー中の固形分を沈降させて上澄み液を抜出し純水を加えるという、いわゆるリパルプ洗浄を行い、洗浄後のスラリーをフィルタプレス法にて濾過した。続いて、得られた濾過ケーキを150℃で24時間乾燥し、得られた乾燥ケーキをロールクラッシャーで解砕した。得られた解砕品の平均粒径(D50)は1.12μmであった。そして、得られた解砕品を焙焼した(1回目の焙焼工程)。焙焼条件は、焙焼温度が950℃、焙焼時間が12時間というものであった。焙焼後、得られた焙焼品をサンプルミルで乾式粉砕した。 Example 1 : This example uses the raw material A. In general, raw material A is wet-ground, fluorinated (first time), washed and filtered, dried, crushed, roasted (first time), dry-ground, and fluorinated (2 The cerium-based abrasive is produced by washing, filtering, drying, crushing, roasting (second time), dry grinding, and classification. Details will be described below. First, pure water having twice the mass of the raw material A was mixed with the raw material A, and the resulting mixture was wet pulverized with an attritor. The grinding medium used in this grinding was zirconia balls having a diameter of 5 mm, and the grinding time was 8 hours. Next, 10 wt% hydrofluoric acid was added to the raw material slurry obtained by pulverization while stirring, and then stirring was continued for 1 hour (first fluorination treatment). The addition amount of 10 wt% hydrofluoric acid is such that the mass ratio (F / TREO) of the fluorine mass added by the addition of 10 wt% hydrofluoric acid to the total rare earth oxide equivalent mass (TREO) of the raw slurry is 4. The amount was 5 wt%. Thereafter, so-called repulp washing was performed in which the solid content in the slurry was settled, the supernatant liquid was extracted, and pure water was added, and the washed slurry was filtered by a filter press method. Subsequently, the obtained filter cake was dried at 150 ° C. for 24 hours, and the obtained dry cake was crushed with a roll crusher. The average particle diameter (D 50 ) of the obtained crushed product was 1.12 μm. The obtained crushed product was roasted (first roasting step). The baking conditions were a baking temperature of 950 ° C. and a baking time of 12 hours. After roasting, the obtained roasted product was dry-ground with a sample mill.

次に、得られた粉砕品を、これに当該粉砕品の2倍の質量の純水を混合してスラリーを調整し、当該スラリー中に、これを撹拌しながら10wt%フッ化水素酸を添加し、その後1時間撹拌を行うというフッ化処理を行った(2回目のフッ化処理)。10wt%フッ化水素酸の添加量は、フッ化処理対象である焙焼品が含有するフッ素質量(F1)と10wt%フッ化水素酸の添加によって添加されるフッ素質量(F2)との合計と、原料スラリーの全希土類酸化物換算質量(TREO)との質量比((F1+F2)/TREO)が6.0wt%になる量であった。その後、リパルプ洗浄を行い、洗浄後のスラリーをフィルタプレス法で濾過し、得られた濾過ケーキを150℃で24時間乾燥し、得られた乾燥ケーキをロールクラッシャーで解砕し、得られた解砕品を焙焼した(2回目の焙焼工程)。焙焼条件は、焙焼温度が1050℃、焙焼時間が12時間というものであった。焙焼後、得られた焙焼品をサンプルミルで乾式粉砕し、得られた粉砕品を、ターボクラシファイア(分級点を9μmに設定)にて分級してセリウム系研摩材を得た。なお、得られた研摩材の(Th+U)/TREOは0.0005wt%未満であり、(Ca+Ba+Fe+P)/TREOが0.4wt%未満であった。
Next, the resulting pulverized product is mixed with pure water having twice the mass of the pulverized product to prepare a slurry, and 10 wt% hydrofluoric acid is added to the slurry while stirring the slurry. Then, a fluorination treatment of stirring for 1 hour was performed (second fluorination treatment). The addition amount of 10 wt% hydrofluoric acid is the sum of the fluorine mass (F1) contained in the roasted product to be fluorinated and the fluorine mass (F2) added by the addition of 10 wt% hydrofluoric acid. The mass ratio ((F1 + F2) / TREO) to the total rare earth oxide equivalent mass (TREO) of the raw material slurry was 6.0% by weight. Thereafter, repulp washing is performed, the slurry after washing is filtered by a filter press method, the obtained filter cake is dried at 150 ° C. for 24 hours, and the obtained dried cake is crushed by a roll crusher, and the obtained crushed product Was roasted (second roasting step). The baking conditions were a baking temperature of 1050 ° C. and a baking time of 12 hours. After roasting, the obtained roasted product was dry pulverized with a sample mill, and the obtained pulverized product was classified with a turbo classifier (the classification point was set to 9 μm) to obtain a cerium-based abrasive. In addition, (Th + U) / TREO of the obtained abrasive was less than 0.0005 wt%, and (Ca + Ba + Fe + P) / TREO was less than 0.4 wt%.

比較例1:この比較例は、実施例1と比べると、1回目の焙焼工程後に行われる乾式粉砕工程までは、フッ化処理における10wt%フッ化水素酸の添加量および焙焼温度が異なること以外、実施例1と同じであった。 Comparative Example 1 : This comparative example differs from Example 1 in the amount of addition of 10 wt% hydrofluoric acid and the roasting temperature in the fluorination treatment until the dry grinding step performed after the first roasting step. Except for this, this was the same as Example 1.

そして、本比較例では、焙焼後の乾式粉砕後、実施例1で行ったフッ化処理(2回目)を行わず、乾式粉砕によって得られた粉砕品(平均粒径(D50)=1.17μm)をターボクラシファイア(分級点を9μmに設定)にて分級してセリウム系研摩材を得た。なお、フッ素処理では、10wt%フッ化水素酸の添加によって添加されるフッ素質量と原料スラリーの全希土類酸化物換算質量(TREO)との質量比(F/TREO)が所定の質量比になるように10wt%フッ化水素酸の添加量を添加した。当該所定の質量比(F/TREO)および焙焼温度条件は、表2に示す通りである。 In this comparative example, after the dry pulverization after roasting, the fluorination treatment (second time) performed in Example 1 was not performed, and a pulverized product obtained by dry pulverization (average particle diameter (D 50 ) = 1). .17 μm) was classified with a turbo classifier (the classification point was set to 9 μm) to obtain a cerium-based abrasive. In the fluorine treatment, the mass ratio (F / TREO) between the mass of fluorine added by addition of 10 wt% hydrofluoric acid and the total rare earth oxide equivalent mass (TREO) of the raw slurry becomes a predetermined mass ratio. An addition amount of 10 wt% hydrofluoric acid was added. The predetermined mass ratio (F / TREO) and roasting temperature conditions are as shown in Table 2.

実施例2〜6および比較例2〜5:これらの実施例および比較例は、実施例1と比べると、フッ化処理における10wt%フッ化水素酸の添加量および焙焼温度が異なること以外、実施例1と同じであった。なお、フッ素処理では、10wt%フッ化水素酸の添加によって添加されるフッ素質量と原料スラリーの全希土類酸化物換算質量(TREO)との質量比(F/TREO)が所定の質量比になるように10wt%フッ化水素酸の添加量を添加した。当該所定の質量比(F/TREO)および焙焼温度は、表2に示す通りである。 Examples 2 to 6 and Comparative Examples 2 to 5 : These Examples and Comparative Examples are different from Example 1 except that the addition amount of 10 wt% hydrofluoric acid and the baking temperature are different in the fluorination treatment. Same as Example 1. In the fluorine treatment, the mass ratio (F / TREO) between the mass of fluorine added by addition of 10 wt% hydrofluoric acid and the total rare earth oxide equivalent mass (TREO) of the raw slurry becomes a predetermined mass ratio. An addition amount of 10 wt% hydrofluoric acid was added. The predetermined mass ratio (F / TREO) and roasting temperature are as shown in Table 2.

実施例7:この実施例は、実施例1と比べると、1回目の焙焼工程後の乾式粉砕工程までは、フッ化処理における10wt%フッ化水素酸の添加量が異なること以外、実施例1と同じであった。 Example 7 : This example is different from Example 1 except that the addition amount of 10 wt% hydrofluoric acid in the fluorination treatment is different until the dry grinding step after the first roasting step. Same as 1.

そして、本比較例では、焙焼後の乾式粉砕後、実施例1で行ったフッ化処理(2回目)を行わずに、乾式粉砕によって得られた粉砕品について、さらに2回目の焙焼を行った。続いて、この2回目の焙焼工程によって得られた焙焼品を乾式粉砕し、分級してセリウム系研摩材を得た。2回目の焙焼工程以降の各工程は実施例1と同じであった。なお、フッ素処理では、10wt%フッ化水素酸を添加することによって添加されるフッ素質量と原料スラリーの全希土類酸化物換算質量(TREO)との質量比(F/TREO)が所定の質量比になるように10wt%フッ化水素酸の添加量を添加した。当該所定の質量比(F/TREO)および各焙焼工程の焙焼温度は、表2に示すとおりである。   In this comparative example, after the dry pulverization after roasting, the fluorination treatment (second time) performed in Example 1 was not performed, and the pulverized product obtained by dry pulverization was further subjected to the second roasting. went. Subsequently, the roasted product obtained in the second roasting step was dry-ground and classified to obtain a cerium-based abrasive. Each step after the second roasting step was the same as in Example 1. In the fluorine treatment, the mass ratio (F / TREO) of the mass of fluorine added by adding 10 wt% hydrofluoric acid to the total rare earth oxide equivalent mass (TREO) of the raw slurry is a predetermined mass ratio. The addition amount of 10 wt% hydrofluoric acid was added so that. The predetermined mass ratio (F / TREO) and the roasting temperature of each roasting step are as shown in Table 2.

比較例6:本比較例は、従来のセリウム系研摩材を製造する例であり、原料B(バストネサイト精鉱)を用い、これを比較的高温で焙焼して比較的研摩速度の大きなセリウム系研摩材を製造しようとする例である。まず、原料を実施例1と同じ条件で湿式粉砕した。次に粉砕によって得られた原料スラリーに、これを撹拌しながら35%塩酸をスラリーの液質量の5wt%に相当する量添加し、その後1時間撹拌を継続した。なお、当該塩酸添加処理は、軽し無灯の不純物の含有率を若干低減させるために行ったものである。その後、スラリー中の固形分を沈降させて上澄み液を抜出し純水を加えるという、いわゆるリパルプ洗浄を行い、洗浄後のスラリーをフィルタープレス法で濾過した。続いて、得られた濾過ケーキを150℃24時間乾燥し、得られた乾燥ケーキをロールクラッシャーで解砕した。得られた解砕品の平均粒径(D50)は1.15μmであった。そして、得られた解砕品を焙焼し、焙焼によって得られた焙焼品をサンプルミルで乾式粉砕し、得られた粉砕品をターボクラシファイア(分級点を9μmに設定)にて分級してセリウム系研摩材を得た。焙焼工程の焙焼温度の条件は、表2に示すとおりである。 Comparative Example 6 : This comparative example is an example of producing a conventional cerium-based abrasive, and the raw material B (bastonite concentrate) is roasted at a relatively high temperature to have a relatively high polishing rate. This is an example of producing a cerium-based abrasive. First, the raw material was wet pulverized under the same conditions as in Example 1. Next, 35% hydrochloric acid was added to the raw material slurry obtained by pulverization while stirring, and the stirring was continued for 1 hour. The hydrochloric acid addition treatment is performed in order to slightly reduce the content of light and lightless impurities. Thereafter, so-called repulp washing was performed in which the solid content in the slurry was settled, the supernatant liquid was extracted, and pure water was added, and the washed slurry was filtered by a filter press method. Subsequently, the obtained filter cake was dried at 150 ° C. for 24 hours, and the obtained dry cake was crushed with a roll crusher. The average particle diameter (D 50 ) of the obtained crushed product was 1.15 μm. The obtained crushed product is roasted, the roasted product obtained by roasting is dry pulverized with a sample mill, and the obtained pulverized product is classified with a turbo classifier (the classification point is set to 9 μm) to be cerium. A system abrasive was obtained. Table 2 shows the conditions of the roasting temperature in the roasting step.

セリウム系研摩材の評価
各実施例および比較例で得られたセリウム系研摩材について、フッ素含有率、ブレーン法平均粒径(D)、レーザ回折・散乱法粒度分布に基づく平均粒径(D50)、BET法比表面積を測定した。そして、各実施例および比較例で得られたセリウム系研摩材を用いて研摩試験を行い、研摩値(研摩速度)、得られた研摩面の傷評価を行った。測定値および評価結果を表2に示す。なお、測定方法、研摩試験方法、各種研摩特性の評価方法は次の通りである。
Evaluation of Cerium-Based Abrasives For the cerium-based abrasives obtained in each Example and Comparative Example, the fluorine content, the average particle size of the Brane method (D B ), the average particle size based on the particle size distribution of the laser diffraction / scattering method (D 50 ), the BET specific surface area was measured. And the grinding | polishing test was done using the cerium type abrasive | polishing material obtained by each Example and the comparative example, the polishing value (polishing speed), and the damage | wound evaluation of the obtained polished surface were performed. Table 2 shows the measured values and the evaluation results. The measurement method, the polishing test method, and the evaluation methods for various polishing characteristics are as follows.

フッ素含有率:各実施例および比較例で得られたセリウム系研摩材をアルカリ試薬(炭酸ナトリウム、炭酸カリウム、水酸化ナトリウムあるいは水酸化カリウム等)によってアルカリ溶融して温湯抽出したものを測定試料として用いる、アルカリ溶融・温湯抽出・フッ素イオン電極法を用いた。 Fluorine content : A cerium-based abrasive obtained in each of the examples and comparative examples was melted with an alkali reagent (sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, etc.) and extracted with hot water as a measurement sample The alkali melting, hot water extraction, and fluorine ion electrode methods used were used.

ブレーン法平均粒径(D :各実施例および比較例で得られたセリウム系研摩材粉末の比表面積S(m/g)を、JIS K 5201-1997(セメントの物理試験方法)の「7.1 比表面積試験」に準拠して測定し、セリウム系研摩材粉末の密度ρ(g/cm)を、JIS R 1620-1995に掲載される方法に準拠して測定する。そして、ブレーン法平均粒径(D)を数式(1)より算出した。 Brain method average particle diameter (D B ) : The specific surface area S (m 2 / g) of the cerium-based abrasive powders obtained in each of the examples and comparative examples was measured according to JIS K 5201-1997 (cement physical test method). The density ρ (g / cm 3 ) of the cerium-based abrasive powder is measured according to the method described in JIS R 1620-1995. And the Blaine method average particle diameter (D B ) was calculated from the mathematical formula (1).

Figure 0003875668
Figure 0003875668

レーザ回折・散乱法粒度分布に基づく平均粒径(D 50 :レーザ回折・散乱法粒度分布測定装置((株)島津製作所製:SALD−2000A)を使用してセリウム系研摩材の粒度分布を測定し、平均粒径(D50:小粒径側からの累積体積50wt%における粒径)を求めた。 Average particle diameter based on laser diffraction / scattering particle size distribution (D 50 ) : Particle size distribution of cerium-based abrasive using laser diffraction / scattering particle size distribution measuring device (manufactured by Shimadzu Corporation: SALD-2000A) The average particle size (D 50 : particle size at a cumulative volume of 50 wt% from the small particle size side) was determined.

BET法比表面積(BET):JIS R 1626-1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 の(3.5)一点法」に準拠して測定を行った。その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。 BET specific surface area (BET) : In accordance with “6.2 Flow method (3.5) single point method” of JIS R 1626-1996 (Method for measuring specific surface area of fine ceramic powder by gas adsorption BET method) Measurements were made. At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used.

研摩試験:研摩機として、研摩試験機(HSP−2I型、台東精機(株)製)を用意した。この研摩試験機は、研摩対象面に研摩材スラリーを供給しながら研摩パッドで研摩対象面を研摩するものである。研摩パッドはポリウレタン製のものであり、当該研摩試験では1回の試験毎に新品に交換した。また、研摩対象物として65mmφの平面パネル用ガラスの用意した。そして、粉末状のセリウム系研摩材粉末と純水を混合して、固形分濃度が15重量wt%である研摩材スラリーを50L調製した。この研摩材スラリーを用いて平面パネル用ガラスの表面を研摩した。本研摩試験では、研摩材スラリーを5リットル/分の割合で供給することとし、研摩材スラリーを循環使用した。また、研摩面に対する研摩パッドの圧力を19.6kPa(200g/cm2)とし、研摩試験機の回転速度を200rpmに設定した。 Abrasion test : A polishing tester (HSP-2I type, manufactured by Taito Seiki Co., Ltd.) was prepared as a polishing machine. This polishing tester polishes the surface to be polished with a polishing pad while supplying an abrasive slurry to the surface to be polished. The polishing pad was made of polyurethane. In the polishing test, the polishing pad was replaced with a new one for each test. Moreover, 65 mmφ glass for a flat panel was prepared as an object to be polished. The powdered cerium-based abrasive powder and pure water were mixed to prepare 50 L of an abrasive slurry having a solid content concentration of 15 wt%. The surface of the glass for flat panels was polished using this abrasive slurry. In this polishing test, the abrasive slurry was supplied at a rate of 5 liters / minute, and the abrasive slurry was circulated and used. The pressure of the polishing pad against the polishing surface was 19.6 kPa (200 g / cm 2 ), and the rotation speed of the polishing tester was set to 200 rpm.

研摩値(研摩速度)の評価:研摩開始から30分後、研摩対象の平面パネル用ガラスを交換して研摩値測定用の平面パネル用ガラスを装着した。なお、交換により装着した平面パネル用ガラスは質量測定済みのものである。そして、平面パネル用ガラス交換後10分間研摩を行って、研摩によるガラス重量の減少量を求め、この値に基づき「研摩値」を求めた。なお、比較例1の研摩材の研摩値を基準(100)とした。 Evaluation of polishing value (polishing speed) : After 30 minutes from the start of polishing, the flat panel glass to be polished was exchanged, and the flat panel glass for polishing value measurement was mounted. In addition, the glass for flat panels mounted | worn by replacement | exchange has been mass-measured. Then, polishing was performed for 10 minutes after the replacement of the glass for the flat panel, the amount of reduction in the glass weight due to polishing was determined, and the “polishing value” was determined based on this value. The polishing value of the polishing material of Comparative Example 1 was used as the reference (100).

研摩傷の評価:研摩した平面パネル用ガラスについて、純水で洗浄し、無塵状態で乾燥させた研摩面について傷評価を行った。傷評価は、30万ルクスのハロゲンランプを光源として用いる反射法でガラス表面を観察し、大きな傷および微細な傷の数を点数化し、100点を満点として減点評価する方式で行った。この傷評価では、ハードディスク用あるいはLCD用のガラス基板の仕上げ研摩で要求される研摩精度を判断基準とした。具体的には表2および表4中、「○」は、92点以上(HD用・LCD用ガラス基板の研摩に好適)であることを、「△」は、92点未満85点以上(HD用・LCD用ガラス基板の研摩に使用可能)であることを、そして「×」は、85点未満(HD用・LCD用ガラス基板の研摩に使用不可)であることを示す。 Evaluation of polished scratches : Polished flat panel glass was cleaned with pure water and dried in a dust-free state, and scratches were evaluated. Scratch evaluation was performed by observing the glass surface by a reflection method using a 300,000 lux halogen lamp as a light source, scoring the number of large scratches and fine scratches, and evaluating 100 points as a perfect score. In this scratch evaluation, the polishing accuracy required for finish polishing of a glass substrate for hard disk or LCD was used as a criterion. Specifically, in Tables 2 and 4, “◯” indicates 92 points or more (suitable for polishing glass substrates for HD / LCD), and “Δ” indicates less than 92 points and 85 points or more (HD "X" indicates that it is less than 85 points (cannot be used for polishing glass substrates for HD and LCD).

Figure 0003875668
Figure 0003875668

表2に示されるように、各実施例の研摩材と比較例6の研摩材を比較すると、フッ素含有率、平均粒径(D)あるいはBET法比表面積に差は見られなかったが、研摩特性は、明らかに各実施例の研摩材の方が優れていた。この結果、より研摩値(研摩速度)が高いセリウム系研摩材を製造する場合、その原料としては、バストネサイト精鉱(原料B)を用いるよりも、希土類炭酸塩仮焼品(原料A)を用いる方が好ましいことが解った。 As shown in Table 2, when the abrasive of each Example and the abrasive of Comparative Example 6 were compared, there was no difference in fluorine content, average particle size (D B ) or BET specific surface area. The abrasive characteristics of each of the examples were clearly superior. As a result, when producing a cerium-based abrasive having a higher polishing value (polishing speed), the raw material is a rare earth carbonate calcined product (raw material A) rather than using bust nesite concentrate (raw material B). It has been found that it is preferable to use.

比較例1および比較例2の研摩材は、実施例1〜3の研摩材と比較すると、研摩値が小さく、若干傷が発生するものであった。また、比較例3の研摩材は、実施例1〜3の研摩材と比較すると、研摩傷が発生しやすかった。これらに対し、実施例1〜3の研摩材は、いずれも優れた研摩特性を有していた。そこで、研摩材の平均粒径に着目したところ、平均粒径(D50)には差が見られなかったが、平均粒径(D)には差が見られた。この平均粒径(D)の値について検討した結果、ブレーン法平均粒径(D)が1.5μm〜2.5μmの研摩材が好ましいことが解った。そして、研摩材の製造条件に着目したところ、製造条件としては、焙焼工程を2回行った方が好ましいことが解った。 The abrasives of Comparative Example 1 and Comparative Example 2 were smaller in polishing value and slightly scratched than the abrasives of Examples 1 to 3. Further, the abrasive of Comparative Example 3 was more likely to have an abrasive flaw than the abrasives of Examples 1 to 3. On the other hand, the abrasives of Examples 1 to 3 all had excellent polishing characteristics. Accordingly, when focusing on the average particle size of the abrasive, no difference was found in the average particle size (D 50 ), but there was a difference in the average particle size (D B ). As a result of examining the value of this average particle size (D B ), it was found that an abrasive having a Blaine method average particle size (D B ) of 1.5 μm to 2.5 μm is preferable. Then, when paying attention to the production conditions of the abrasive, it was found that it is preferable to perform the roasting process twice as the production conditions.

また、比較例4の研摩材は、実施例2,4,5の研摩材と比較すると、研摩値が小さかった。また、比較例5の研摩材は、実施例2,4,5の研摩材と比較すると、研摩傷が発生しやすかった。そこで、研摩材の平均粒径(D)について検討した結果、ブレーン法平均粒径(D)が1.5μm〜2.5μmの研摩材が好ましいことが解った。そして、研摩材の製造条件に着目したところ、製造条件としては、最後の焙焼工程における焙焼温度が900℃〜1200℃の範囲であることが好ましいことが解った。 Moreover, the polishing material of Comparative Example 4 had a smaller polishing value than the polishing materials of Examples 2, 4 and 5. Further, the polishing material of Comparative Example 5 was more likely to cause polishing scratches than the polishing materials of Examples 2, 4 and 5. Therefore, the average particle size of the abrasive (D B) results of studying, Blaine method average particle diameter (D B) was found to be preferred abrasives 1.5Myuemu~2.5Myuemu. And it turned out that it is preferable that the roasting temperature in the last roasting process is the range of 900 to 1200 degreeC as a manufacturing condition when paying attention to the manufacturing conditions of an abrasive.

実施例2の研摩材と実施例6の研摩材を比較すると、実施例2の方が研摩特性に優れていた。この結果、焙焼工程を2回行う場合、2回目の焙焼工程における焙焼温度は、1回目の焙焼工程における焙焼温度より高い方が好ましいことが解った。   When the abrasive of Example 2 and the abrasive of Example 6 were compared, Example 2 was superior in polishing characteristics. As a result, it was found that when the roasting step is performed twice, the roasting temperature in the second roasting step is preferably higher than the roasting temperature in the first roasting step.

実施例3の研摩材と実施例7の研摩材を比較すると、実施例3の方が研摩特性に優れていた。この結果、焙焼工程を2回行う場合、2回目の焙焼工程の前にフッ化処理を行った方が好ましいことが解った。   When the abrasive of Example 3 and the abrasive of Example 7 were compared, Example 3 was superior in polishing characteristics. As a result, it was found that when the roasting process is performed twice, it is preferable to perform the fluorination treatment before the second roasting process.

第2実施形態
本実施形態では、希土類炭酸塩仮焼品(原料A)と、当該希土類炭酸塩仮焼品をフッ化処理後焙焼して得たフッ素含有希土類化合物とを混合したものをセリウム系研摩材用の原料として用いた。ここでは、希土類炭酸塩仮焼品として、第1実施形態においてセリウム系研摩材用原料として用いた原料Aを用いた。一方、希土類炭酸塩仮焼品と混合するフッ素含有希土類化合物については、複数種類製造した。製造された各フッ素含有希土類化合物(D1〜D5およびE1)の物性は表3に示すとおりである。
Second Embodiment In this embodiment, a mixture of a rare earth carbonate calcined product (raw material A) and a fluorine-containing rare earth compound obtained by roasting the rare earth carbonate calcined product after fluorination treatment is obtained as cerium. Used as a raw material for abrasives. Here, the raw material A used as the raw material for the cerium-based abrasive in the first embodiment was used as the rare earth carbonate calcined product. On the other hand, multiple types of fluorine-containing rare earth compounds to be mixed with the rare earth carbonate calcined product were produced. Table 3 shows the physical properties of the produced fluorine-containing rare earth compounds (D1 to D5 and E1).

フッ素含有希土類化合物(D1)の製造:希土類炭酸塩仮焼品(原料A)を、湿式粉砕し、フッ化処理し、洗浄・濾過し、乾燥し、解砕し、焙焼して、フッ素含有希土類化合物(D1)を得た。湿式粉砕から解砕までの各工程の条件は、フッ素処理における10%フッ化水素酸の添加量と、焙焼における焙焼温度が異なること以外、実施例1の最初の湿式粉砕から1回目の解砕工程までと同じであった。なお、フッ化処理によって得られたスラリーの全希土類酸化物換算質量(TREO)に対するフッ素(F)の質量比(F/TREO)は20wt%であった。また、焙焼工程における焙焼温度は700℃であった(表3参照)。 Production of fluorine-containing rare earth compound (D1) : Rare earth carbonate calcined product (raw material A) is wet-ground, fluorinated, washed and filtered, dried, crushed, roasted, and fluorine-containing A rare earth compound (D1) was obtained. The conditions of each step from wet pulverization to pulverization are the first from the first wet pulverization of Example 1 except that the addition amount of 10% hydrofluoric acid in the fluorine treatment and the roasting temperature in the roasting are different. It was the same up to the crushing process. In addition, the mass ratio (F / TREO) of fluorine (F) to the total rare earth oxide equivalent mass (TREO) of the slurry obtained by the fluorination treatment was 20 wt%. The roasting temperature in the roasting step was 700 ° C. (see Table 3).

フッ素含有希土類化合物(D2〜D5)の製造:これらのフッ素含有希土類化合物の製造方法は、フッ素処理における10%フッ化水素酸の添加量および/または焙焼条件が異なること以外、フッ素含有希土類化合物(D1)の製造方法と同じであった。各フッ素含有希土類化合物(D2〜D5)の製造におけるフッ化処理によって得られたスラリーの全希土類酸化物換算質量(TREO)に対するフッ素(F)の質量比(F/TREO)と、焙焼条件は、表3に示すとおりである。表3に示されるように、フッ素含有希土類化合物(D2)の製造では焙焼は行われなかった。また、フッ素含有希土類化合物(D3〜D5)の製造における焙焼条件は、焙焼温度が異なること以外、フッ素含有希土類化合物(D1)の焙焼条件と同じであった。 Production of fluorine-containing rare earth compounds (D2 to D5) : The production method of these fluorine-containing rare earth compounds is different from the addition amount of 10% hydrofluoric acid and / or roasting conditions in the fluorine treatment. It was the same as the manufacturing method of (D1). The mass ratio (F / TREO) of fluorine (F) to the total rare earth oxide equivalent mass (TREO) of the slurry obtained by the fluorination treatment in the production of each fluorine-containing rare earth compound (D2 to D5), and roasting conditions are As shown in Table 3. As shown in Table 3, no roasting was performed in the production of the fluorine-containing rare earth compound (D2). The roasting conditions in the production of the fluorine-containing rare earth compound (D3 to D5) were the same as the roasting conditions of the fluorine-containing rare earth compound (D1) except that the roasting temperature was different.

フッ素含有希土類化合物(E1)の製造:用意した希土類炭酸塩仮焼品(原料A)を湿式粉砕して、フッ化処理し、洗浄・濾過し、乾燥し、解砕し、焙焼する工程までは、フッ素処理における10%フッ化水素酸の添加量および焙焼工程の焙焼温度が異なること以外、フッ素含有希土類化合物(D1)の製造工程と同じであった。なお、フッ化処理によって得られたスラリーの全希土類酸化物換算質量(TREO)に対するフッ素(F)の質量比(F/TREO)は、8.0wt%であり、焙焼工程における焙焼温度は、850℃であった(表3参照)。そして、フッ素含有希土類化合物(E1)の製造では、さらに、焙焼によって得られた焙焼品をサンプルミルで乾式粉砕し、得られた粉砕品をターボクラシファイア(分級点を6μmに設定)にて分級した。次に、当該分級によって粗粉側に回収される粒子をサンプルミルで乾式粉砕し、得られた粉砕品をターボクラシファイア(分級点を4μmに設定)にて分級した。そして、当該分級によって粗粉側に回収された粒子をフッ素含有希土類化合物(E1)として得た。 Production of fluorine-containing rare earth compound (E1) : Wet pulverized rare earth carbonate calcined product (raw material A), fluorinated, washed and filtered, dried, crushed and roasted Was the same as the production process of the fluorine-containing rare earth compound (D1) except that the addition amount of 10% hydrofluoric acid in the fluorine treatment and the baking temperature in the baking process were different. The mass ratio (F / TREO) of fluorine (F) to the total rare earth oxide equivalent mass (TREO) of the slurry obtained by the fluorination treatment is 8.0 wt%, and the roasting temperature in the roasting step is 850 ° C. (see Table 3). In the production of the fluorine-containing rare earth compound (E1), the roasted product obtained by roasting is further dry pulverized with a sample mill, and the obtained pulverized product is subjected to a turbo classifier (the classification point is set to 6 μm). Classified. Next, the particles recovered on the coarse powder side by the classification were dry-pulverized with a sample mill, and the obtained pulverized product was classified with a turbo classifier (the classification point was set to 4 μm). And the particle | grains collect | recovered by the said classification by the coarse powder side were obtained as a fluorine-containing rare earth compound (E1).

Figure 0003875668
Figure 0003875668

実施例8,9,11および比較例8,9:これらの実施例および比較例では、セリウム系研摩材の原料として、希土類炭酸塩(原料A)とフッ素含有希土類化合物(D1〜D4,E1)とを混合したものを用いた。希土類炭酸塩およびフッ素含有希土類化合物の割合は表4に示すとおりである。 Examples 8, 9, and 11 and Comparative Examples 8 and 9 : In these Examples and Comparative Examples, rare earth carbonate (raw material A) and fluorine-containing rare earth compound (D1 to D4, E1) are used as raw materials for the cerium-based abrasive. And a mixture thereof. The ratio of the rare earth carbonate and the fluorine-containing rare earth compound is as shown in Table 4.

そして、これらの実施例および比較例では、混合によって得られた原料を、湿式粉砕し、乾燥し、解砕し、焙焼し、乾式粉砕し、分級してセリウム系研摩材を得た。このような工程からなる各実施例の研摩材の製造方法は、第1実施形態の比較例1の製造方法と比べると、フッ化処理とこれに続く洗浄・濾過を行わなかったこと以外、同じであった。したがって、各工程についての詳細な説明は省略する。   In these Examples and Comparative Examples, the raw materials obtained by mixing were wet pulverized, dried, crushed, roasted, dry pulverized, and classified to obtain a cerium-based abrasive. The manufacturing method of the abrasive material of each Example consisting of such steps is the same as that of the manufacturing method of Comparative Example 1 of the first embodiment, except that fluorination treatment and subsequent cleaning / filtration were not performed. Met. Therefore, the detailed description about each process is abbreviate | omitted.

実施例10,12および比較例7:これらの実施例および比較例では、セリウム系研摩材の原料として、希土類炭酸塩(原料A)とフッ素含有希土類化合物(D1,D5,E1)とを混合したものを用いた。希土類炭酸塩およびフッ素含有希土類化合物の割合は表4に示すとおりである。 Examples 10 and 12 and Comparative Example 7 : In these Examples and Comparative Examples, rare earth carbonate (raw material A) and fluorine-containing rare earth compound (D1, D5, E1) were mixed as raw materials for the cerium-based abrasive. A thing was used. The ratio of the rare earth carbonate and the fluorine-containing rare earth compound is as shown in Table 4.

そして、これらの実施例および比較例では、混合によって得られた原料を、湿式粉砕し、フッ化処理し、洗浄・濾過し、乾燥し、解砕し、焙焼し、乾式粉砕し、分級してセリウム系研摩材を得た。つまり、これらの実施例および比較例は、原料が異なることと、フッ化処理における10wt%フッ化水素酸の添加量が異なること以外、比較例1と同じであった。なお、フッ化処理における10wt%フッ化水素酸の添加量は、フッ化処理対象である原料(原料スラリー)が含有するフッ素質量(F1)と10wt%フッ化水素酸の添加によって添加されるフッ素質量(F2)との合計と、原料スラリーの全希土類酸化物換算質量(TREO)との質量比((F1+F2)/TREO)が6.0wt%になる量であった。   In these examples and comparative examples, the raw materials obtained by mixing are wet-ground, fluorinated, washed and filtered, dried, crushed, roasted, dry-ground, and classified. A cerium-based abrasive was obtained. That is, these Examples and Comparative Examples were the same as Comparative Example 1 except that the raw materials were different and the addition amount of 10 wt% hydrofluoric acid in the fluorination treatment was different. The addition amount of 10 wt% hydrofluoric acid in the fluorination treatment is the fluorine mass (F1) contained in the raw material (raw material slurry) to be fluorinated and fluorine added by the addition of 10 wt% hydrofluoric acid. The mass ratio ((F1 + F2) / TREO) of the total mass (F2) and the total rare earth oxide equivalent mass (TREO) of the raw slurry was 6.0 wt%.

セリウム系研摩材の評価
各実施例および比較例で得られたセリウム系研摩材について、フッ素含有率、ブレーン法平均粒径(D)、レーザ回折・散乱法粒度分布に基づく平均粒径(D50)、BET法比表面積を測定した。また、各実施例および比較例で得られたセリウム系研摩材を用いて研摩試験を行い、研摩値(研摩速度)、得られた研摩面の傷評価を行った。測定値および評価結果を表4に示す。なお、測定方法、研摩試験方法、各種研摩特性の評価方法は、第1実施形態と共通である。
Evaluation of Cerium-Based Abrasives For the cerium-based abrasives obtained in each Example and Comparative Example, the fluorine content, the average particle size of the Brane method (D B ), the average particle size based on the particle size distribution of the laser diffraction / scattering method (D 50 ), the BET specific surface area was measured. Further, a polishing test was performed using the cerium-based abrasives obtained in each of the examples and comparative examples, and the polishing value (polishing speed) and scratches on the obtained polished surface were evaluated. Table 4 shows the measured values and the evaluation results. The measurement method, the polishing test method, and the evaluation methods for various polishing characteristics are the same as those in the first embodiment.

Figure 0003875668
Figure 0003875668

表4に示されるように、比較例7および比較例8の研摩材は、実施例の研摩材と比較すると、研摩値が小さかった。また、比較例9の研摩材は、実施例の研摩材と比較すると、研摩傷が発生しやすかった。これらに対し、実施例の研摩材は、いずれも優れた研摩特性を有していた。そこで、研摩材の平均粒径(D)について検討した結果、ブレーン法平均粒径(D)が1.5μm〜2.5μmの研摩材が好ましいことが解った。そして、研摩材の原料に着目したところ、例えば実施例9と比較例8との比較から解るように、フッ素含有率が高いフッ素含有希土類化合物を用意して比較的少量使用するよりも、フッ素含有量が少ないフッ素含有希土類化合物を用意して比較的多く使用した方が好ましいことが解った。 As shown in Table 4, the polishing values of Comparative Example 7 and Comparative Example 8 were smaller in polishing value than the polishing materials of Examples. In addition, the abrasive of Comparative Example 9 was more likely to cause abrasive scratches than the abrasive of Example. On the other hand, the polishing materials of the examples all had excellent polishing characteristics. Therefore, the average particle size of the abrasive (D B) results of studying, Blaine method average particle diameter (D B) was found to be preferred abrasives 1.5Myuemu~2.5Myuemu. Then, focusing on the raw material of the abrasive, for example, as can be seen from the comparison between Example 9 and Comparative Example 8, rather than preparing a fluorine-containing rare earth compound having a high fluorine content and using it in a relatively small amount, it contains fluorine. It has been found that it is preferable to prepare a relatively small amount of a fluorine-containing rare earth compound having a small amount.

そして、実施例8の研摩材と比較例7の研摩材との比較から好ましい原料が解った。すなわち、原料中に焙焼を経て得られたフッ素含有希土類化合物を含んでおり、かつ当該原料の全希土類酸化物換算質量に占める前記フッ素含有希土類化合物の酸化物換算質量の割合が30wt%以上である原料が好ましいことが解った。また、実施例8の研摩材と比較例8の研摩材との比較から、原料中に含めるフッ素含有希土類化合物は、D2よりもD1の方が好ましいことが解った。つまり、表3に示されるように、焙焼を経て得られたフッ素含有希土類化合物の方が、焙焼を経ていないものよりも好ましいことが解った。さらに、そして、実施例11の研摩材と実施例12の研摩材との比較から、焙焼工程前にフッ素処理工程を行った方がより研摩特性に優れる研摩材が得られることが解った。   And the preferable raw material was understood from the comparison of the abrasive of Example 8 and the abrasive of Comparative Example 7. That is, the raw material contains a fluorine-containing rare earth compound obtained through roasting, and the ratio of the oxide-converted mass of the fluorine-containing rare earth compound to the total rare earth oxide-converted mass of the raw material is 30 wt% or more. It has been found that some raw materials are preferred. Further, from the comparison between the polishing material of Example 8 and the polishing material of Comparative Example 8, it was found that the fluorine-containing rare earth compound included in the raw material is preferably D1 over D2. That is, as shown in Table 3, it was found that the fluorine-containing rare earth compound obtained through roasting was preferable to those not subjected to roasting. Furthermore, it was found from the comparison between the abrasive material of Example 11 and the abrasive material of Example 12 that an abrasive material having better polishing characteristics can be obtained by performing the fluorine treatment step before the roasting step.

本発明に係るセリウム系研摩材は、例えば、光ディスクや磁気ディスク用ガラス基板、アクティブマトリックス型LCD(Liquid Crystal Display)、液晶TV用カラーフィルタ、時計、電卓、カメラ用LCD、太陽電池等のディスプレイ用ガラス基板、LSIフォトマスク用ガラス基板あるいは光学用レンズ等のガラス基板や光学用レンズ等の研摩で用いられる。   The cerium-based abrasive according to the present invention is used for displays such as optical substrates and glass substrates for magnetic disks, active matrix LCDs (Liquid Crystal Displays), color filters for liquid crystal TVs, clocks, calculators, LCDs for cameras, and solar cells. It is used for polishing glass substrates, glass substrates for LSI photomasks, glass substrates such as optical lenses, and optical lenses.

Claims (7)

バストネサイト精鉱、モナザイト精鉱、中国複雑鉱精鉱を含む鉱石原料を化学処理して得られる希土類化合物を原料とし、前記原料を少なくとも1回焙焼することにより製造されるセリウム系研摩材であって、
フッ素(F)を4.0wt%〜10wt%含有し、
研摩材質量に対する全希土類酸化物換算質量(TREO)の質量比が90wt%以上であり、全希土類酸化物換算量に対するトリウム(Th)とウラン(U)の合計含有量の質量比((Th+U)/TREO)が0.05wt%以下であり、
ブレーン法平均粒径が1.5μm〜2.5μmであるセリウム系研摩材。
A cerium-based abrasive produced by roasting the raw material at least once using a rare earth compound obtained by chemically treating ore raw materials including bastonite concentrate, monazite concentrate, and Chinese complex ore concentrate Because
Containing 4.0 wt% to 10 wt% of fluorine (F),
The mass ratio of the total rare earth oxide equivalent mass (TREO) to the abrasive mass is 90 wt% or more, and the mass ratio of the total content of thorium (Th) and uranium (U) to the total rare earth oxide equivalent amount ((Th + U)) / TREO) is 0.05 wt% or less,
A cerium-based abrasive having an average grain size of 1.5 to 2.5 μm in the Blaine method.
全希土類酸化物換算質量(TREO)に占める酸化セリウム(CeO)の割合(CeO/TREO)は、50wt%〜70wt%である請求項1に記載のセリウム系研摩材。 2. The cerium-based abrasive according to claim 1, wherein a ratio (CeO 2 / TREO) of cerium oxide (CeO 2 ) to a total rare earth oxide equivalent mass (TREO) is 50 wt% to 70 wt%. 全希土類酸化物換算質量(TREO)に対するカルシウム(Ca)、バリウム(Ba)、鉄(Fe)、リン(P)の合計含有量の質量比((Ca+Ba+Fe+P)/TREO)は、2.0wt%以下である請求項1又は請求項2に記載のセリウム系研摩材。 The mass ratio ((Ca + Ba + Fe + P) / TREO) of the total content of calcium (Ca), barium (Ba), iron (Fe), and phosphorus (P) to the total rare earth oxide equivalent mass (TREO) is 2.0 wt% or less. The cerium-based abrasive according to claim 1 or 2. バストネサイト精鉱、モナザイト精鉱、中国複雑鉱精鉱を含む鉱石原料を化学処理して得られる希土類化合物からなる原料を焙焼する工程を有する請求項1から請求項3のいずれか1項に記載のセリウム系研摩材の製造方法であって、
前記焙焼する工程に供される原料は、希土類化合物とフッ素含有化合物との混合物を少なくとも1回400〜1000℃で焙焼してなるフッ素含有希土類化合物を含み、前記フッ素希土類化合物は、その酸化物換算質量の前記原料の全希土類酸化物換算質量に対する割合が30wt%以上で、かつ、製造後のセリウム系研摩材中のフッ素の含有率が、4.0wt%〜10wt%となるように混合されており、
前記全希土類酸化物換算量に対するトリウム(Th)とウラン(U)の合計含有量の質量比((Th+U)/TREO)が0.05wt%以下であり、
前記原料を焙焼することにより、ブレーン法平均粒径を1.5μm〜2.5μmとするセリウム系研摩材の製造方法。
4. The method according to claim 1, further comprising a step of roasting a raw material composed of a rare earth compound obtained by chemically treating an ore raw material including a bastonite concentrate, a monazite concentrate, or a Chinese complex ore concentrate. A method for producing a cerium-based abrasive according to claim 1,
The raw material used for the roasting step includes a fluorine-containing rare earth compound obtained by baking a mixture of a rare earth compound and a fluorine-containing compound at least once at 400 to 1000 ° C., and the fluorine rare earth compound is oxidized. Mixing so that the ratio of the mass in terms of material to the mass in terms of total rare earth oxide of the raw material is 30 wt% or more, and the fluorine content in the cerium-based abrasive after production is 4.0 wt% to 10 wt% Has been
The mass ratio ((Th + U) / TREO) of the total content of thorium (Th) and uranium (U) with respect to the total rare earth oxide equivalent is 0.05 wt% or less,
A method for producing a cerium-based abrasive by roasting the raw material so as to have a brain method average particle size of 1.5 μm to 2.5 μm.
前記原料の焙焼工程における焙焼温度は、900℃〜1200℃であり、かつフッ素含有希土類化合物生成時の焙焼における焙焼温度より10℃以上高い請求項4に記載のセリウム系研摩材の製造方法。 The roasting temperature in the roasting step of the raw material is 900 ° C to 1200 ° C, and is higher by 10 ° C or more than the roasting temperature in the roasting when the fluorine-containing rare earth compound is produced. Production method. バストネサイト精鉱、モナザイト精鉱、中国複雑鉱精鉱を含む鉱石原料を化学処理して得られる希土類化合物からなるセリウム系研摩材の原料中にフッ素を含有させるフッ化処理工程を少なくとも1回有し、フッ化処理工程後に行われる焙焼工程を有する請求項1から請求項3のいずれか1項に記載のセリウム系研摩材の製造方法であって、
最初の焙焼工程に供される焙焼対象物は全希土類酸化物換算量に対するトリウム(Th)とウラン(U)の合計含有量の質量比((Th+U)/TREO)が0.05wt%以下であり、
前記フッ化処理工程は、製造後のセリウム系研摩材中のフッ素の含有率が、4.0wt%〜10wt%となるようにフッ素含有させるものであり、
最初のフッ化処理工程後に行われる焙焼工程の回数を2回以上とすると共に、各焙焼工程における焙焼温度は700℃以上であり、最後の焙焼工程における焙焼温度を900℃〜1200℃とし、2回目以降の各焙焼工程における焙焼温度を、各焙焼工程の直前の焙焼工程における焙焼温度より10℃以上高い温度に設定し、
ブレーン法平均粒径を1.5μm〜2.5μmとするセリウム系研摩材の製造方法。
At least one fluorination treatment step in which fluorine is contained in the raw material of the cerium-based abrasive comprising a rare earth compound obtained by chemically treating ore raw materials including bust nesite concentrate, monazite concentrate, and Chinese complex ore concentrate The method for producing a cerium-based abrasive according to any one of claims 1 to 3, further comprising a roasting step performed after the fluorination treatment step,
The to-be-roasted object to be subjected to the first roasting process has a mass ratio ((Th + U) / TREO) of the total content of thorium (Th) and uranium (U) to the total rare earth oxide equivalent amount of 0.05 wt% or less. And
In the fluorination treatment step, fluorine is contained so that the fluorine content in the cerium-based abrasive after production is 4.0 wt% to 10 wt%.
While the number of times of the roasting process performed after the first fluorination treatment process is two times or more, the roasting temperature in each roasting process is 700 ° C. or higher, and the roasting temperature in the final roasting process is 900 ° C. to 1200 ° C., the roasting temperature in the second and subsequent roasting steps is set to a temperature 10 ° C. higher than the roasting temperature in the roasting step immediately before each roasting step,
A method for producing a cerium-based abrasive with a Blaine method average particle size of 1.5 μm to 2.5 μm.
焙焼工程に供されるセリウム系研摩材の原料は、全希土類酸化物換算質量(TREO)に対するカルシウム(Ca)、バリウム(Ba)、鉄(Fe)、リン(P)の合計含有量の質量比((Ca+Ba+Fe+P)/TREO)が2.0wt%以下である請求項4から請求項6のいずれか一項に記載のセリウム系研摩材の製造方法。
The raw material of the cerium-based abrasive used in the roasting process is the mass of the total content of calcium (Ca), barium (Ba), iron (Fe), and phosphorus (P) relative to the total rare earth oxide equivalent mass (TREO). The method for producing a cerium-based abrasive according to any one of claims 4 to 6, wherein the ratio ((Ca + Ba + Fe + P) / TREO) is 2.0 wt% or less.
JP2003301327A 2003-08-26 2003-08-26 Cerium-based abrasive containing fluorine and method for producing the same Expired - Lifetime JP3875668B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003301327A JP3875668B2 (en) 2003-08-26 2003-08-26 Cerium-based abrasive containing fluorine and method for producing the same
TW93119008A TWI249570B (en) 2003-08-26 2004-06-29 Cerium-based abrasive containing fluorine and method of producing the same
CNB2004100685518A CN1300278C (en) 2003-08-26 2004-08-26 Fluocerite-contained series abrasive and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301327A JP3875668B2 (en) 2003-08-26 2003-08-26 Cerium-based abrasive containing fluorine and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005068312A JP2005068312A (en) 2005-03-17
JP3875668B2 true JP3875668B2 (en) 2007-01-31

Family

ID=34405981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301327A Expired - Lifetime JP3875668B2 (en) 2003-08-26 2003-08-26 Cerium-based abrasive containing fluorine and method for producing the same

Country Status (3)

Country Link
JP (1) JP3875668B2 (en)
CN (1) CN1300278C (en)
TW (1) TWI249570B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929481B2 (en) * 2005-04-04 2007-06-13 昭和電工株式会社 Cerium oxide-based abrasive, its production method and use
JP5512962B2 (en) * 2008-12-08 2014-06-04 三井金属鉱業株式会社 Cerium-based abrasive containing fluorine and sulfur
US9222009B2 (en) 2011-01-25 2015-12-29 Konica Minolta, Inc. Fine abrasive particles and method for producing same
EP2669046B1 (en) * 2011-01-27 2020-08-19 Fujimi Incorporated Abrasive and polishing composition
WO2019049932A1 (en) * 2017-09-11 2019-03-14 昭和電工株式会社 Manufacturing method for starting material for cerium-based abrasive agent, and manufacturing method for cerium-based abrasive agent

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183966A (en) * 1995-12-29 1997-07-15 Seimi Chem Co Ltd Production of cerium abrasive
JP3600725B2 (en) * 1998-03-24 2004-12-15 三井金属鉱業株式会社 Manufacturing method of cerium-based abrasive
JP2001152134A (en) * 1999-11-22 2001-06-05 Speedfam Co Ltd Composition and process for grinding oxide single crystal wafer
TW586157B (en) * 2000-04-13 2004-05-01 Showa Denko Kk Slurry composition for polishing semiconductor device, and method for manufacturing semiconductor device using the same
JP3838870B2 (en) * 2000-12-11 2006-10-25 三井金属鉱業株式会社 Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
KR100453802B1 (en) * 2000-05-16 2004-10-22 미쓰이 긴조꾸 고교 가부시키가이샤 Cerium based abrasive material, raw material thereof and method for their preparation
JP3694478B2 (en) * 2000-11-30 2005-09-14 昭和電工株式会社 Cerium-based abrasive and method for producing the same
EP1346003B1 (en) * 2000-11-30 2009-11-25 Showa Denko K.K. Cerium-based abrasive, production process thereof

Also Published As

Publication number Publication date
TW200508375A (en) 2005-03-01
JP2005068312A (en) 2005-03-17
TWI249570B (en) 2006-02-21
CN1300278C (en) 2007-02-14
CN1597829A (en) 2005-03-23

Similar Documents

Publication Publication Date Title
KR102090494B1 (en) Cerium abrasive and manufacturing method
JP4401353B2 (en) Cerium-based abrasive
JPWO2006107116A1 (en) Cerium oxide-based abrasive, its production method and use
JP2002348563A (en) Method for producing cerium abrasive material
KR100647103B1 (en) Cerium based polishing material and raw materials therefor
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP3694478B2 (en) Cerium-based abrasive and method for producing the same
JP4128906B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP3365993B2 (en) Cerium-based abrasives, raw materials therefor, and methods for producing them
TWI285674B (en) Cerium-based abrasive and production process thereof
JP3392398B2 (en) Cerium-based abrasive, its quality inspection method and manufacturing method
JP3607592B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP4395049B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP4070180B2 (en) Method for producing cerium-based abrasive
JP4756996B2 (en) Cerium-based abrasive
JP4394848B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP3392399B2 (en) Cerium-based abrasive, its quality inspection method and manufacturing method
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Ref document number: 3875668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term