JP2001152134A - Composition and process for grinding oxide single crystal wafer - Google Patents

Composition and process for grinding oxide single crystal wafer

Info

Publication number
JP2001152134A
JP2001152134A JP33137799A JP33137799A JP2001152134A JP 2001152134 A JP2001152134 A JP 2001152134A JP 33137799 A JP33137799 A JP 33137799A JP 33137799 A JP33137799 A JP 33137799A JP 2001152134 A JP2001152134 A JP 2001152134A
Authority
JP
Japan
Prior art keywords
single crystal
polishing
crystal wafer
oxide single
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33137799A
Other languages
Japanese (ja)
Inventor
Hiroaki Tanaka
弘明 田中
Akitoshi Yoshida
明利 吉田
Shinya Ichikawa
真也 市川
Takahito Kojima
孝仁 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SpeedFam Co Ltd
Original Assignee
SpeedFam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SpeedFam Co Ltd filed Critical SpeedFam Co Ltd
Priority to JP33137799A priority Critical patent/JP2001152134A/en
Publication of JP2001152134A publication Critical patent/JP2001152134A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an abrasive composition for conducting efficient polishing processing of oxide single crystal wafers having relatively high hardness such as lithium tantalate, lithium niobate, or the like. SOLUTION: The abrasive composition for oxide single crystal wafers is a colloidal solution with a pH of from 8 to 11 which contains from 3 to 25 wt.% silica oxide particle and a component which imparts an electrical conductivity at 25 deg.C of >=10 mS/m per 1 wt.% silica oxide. Here, the silica oxide particle has an average primary particle size A, obtained from the specific area measured by BET method by calculating the particle as a sphere, of from 40 to 150 nm, and a ratio B/A of the average secondary particle size B, measured by laser-scattering method using microtrack UPA, to A of 1 or larger but smaller than 1.4. In a grinding process, this abrasive composition is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、弾性表面波素子や
電気光学素子等の基板となる強誘電体ウェーハとして広
く用いられるタンタル酸リチウムあるいはニオブ酸リチ
ウム等の酸化物単結晶ウェーハの表面を鏡面研磨する方
法に関する。特に本発明は、高い導電率を持つコロイダ
ルシリカの水分散物を主成分とする研磨用組成物を用い
タンタル酸リチウムまたはニオブ酸リチウムよりなる硬
質の酸化物単結晶ウェーハの表面を高速度でしかも優れ
た面粗さで鏡面研磨を行なう方法に関する。
The present invention relates to a mirror-finished surface of an oxide single crystal wafer such as lithium tantalate or lithium niobate widely used as a ferroelectric wafer serving as a substrate for a surface acoustic wave device or an electro-optical device. It relates to a method for polishing. In particular, the present invention uses a polishing composition mainly composed of an aqueous dispersion of colloidal silica having high electrical conductivity to form a hard oxide single crystal wafer made of lithium tantalate or lithium niobate at a high speed. The present invention relates to a method for performing mirror polishing with excellent surface roughness.

【0002】[0002]

【従来技術】近年の携帯電話、コードレスホーンあるい
は自動車電話等の移動体通信の急激な発達により、タン
タル酸リチウムあるいはニオブ酸リチウムよりなる酸化
物単結晶ウェーハの生産が急増している。これらのタン
タル酸リチウム、ニオブ酸リチウムなどの酸化物単結晶
は硬度(モース硬度で5〜6)が高いため、通常のポリ
ッシング方法では研磨速度が遅く、所定の厚みを得るた
めに、10時間近い研磨時間を要する場合もあり、その
生産性と効率の低さが指摘されていた。
2. Description of the Related Art With the rapid development of mobile communications such as mobile phones, cordless horns, and automobile phones in recent years, the production of oxide single crystal wafers made of lithium tantalate or lithium niobate has been rapidly increasing. Since these oxide single crystals such as lithium tantalate and lithium niobate have high hardness (5 to 6 in Mohs hardness), the polishing rate is low in a normal polishing method, and it takes nearly 10 hours to obtain a predetermined thickness. In some cases, polishing time is required, and low productivity and low efficiency have been pointed out.

【0003】一般的な研磨方法としては、例えば超精密
生産技術体系第2巻(フジテクノシステム発行)の10
25ページにおいて、「・・・コロイダルシリカをベー
スとしたアルカリ系スラリーにより、安定した表面状態
が得られる。市販品には、平均粒子径が20〜120n
m程度で、有機アミン、NaOHなどでpH9.0〜1
0.5レベルに調合した研磨剤が普及している。」との
記載があり、これは通常のシリコンウェーハ等のポリッ
シングに用いられる方法を、ほぼそのまま踏襲したもの
であり、現状においては、上述の通り、この方法による
研磨速度の低さが指摘されているものである。
[0003] As a general polishing method, for example, 10 of “Ultra-precision production technology system 2” (published by Fuji Techno System)
On page 25, "... a stable surface state is obtained by an alkali slurry based on colloidal silica. The average particle diameter of a commercially available product is 20 to 120 n.
m, pH 9.0 to 1 with organic amine, NaOH, etc.
Abrasives prepared at the 0.5 level have become widespread. There is a description, and this is a method used for polishing of a normal silicon wafer or the like almost directly followed, and at present, as described above, the low polishing rate by this method has been pointed out. Is what it is.

【0004】従来より様々な研磨用組成物がタンタル酸
リチウム、ニオブ酸リチウムよりなる酸化物単結晶の鏡
面研磨を行なうためのする研磨用組成物として提案され
ている。例えば、特開平6−191988では、コロイ
ダルシリカ、コロイダルアルミナあるいはコロイダルジ
ルコニアよりなる研磨剤に、加工液としてKOH、Na
OH、NaClO、Br−メタノールを加えて用いるこ
とが提案されている。しかしながら、タンタル酸リチウ
ム、ニオブ酸リチウムよりなる酸化物単結晶は、前述の
通り硬度が高いことの他に、化学的にも非常に安定な化
合物であるため、例えばアルカリあるいは酸化剤等の薬
剤によってもほとんど侵蝕されることなく、そのため、
メカノケミカル的な研磨方法を用いても、研磨速度が改
善されることはほとんどない。
Conventionally, various polishing compositions have been proposed as polishing compositions for mirror-polishing an oxide single crystal comprising lithium tantalate and lithium niobate. For example, Japanese Unexamined Patent Publication (Kokai) No. 6-1988 discloses that an abrasive made of colloidal silica, colloidal alumina or colloidal zirconia is added with KOH and Na
It has been proposed to use OH, NaClO, Br-methanol in addition. However, the oxide single crystal composed of lithium tantalate and lithium niobate has a high hardness as described above, and is a very chemically stable compound. Is hardly eroded, so
Even if a mechanochemical polishing method is used, the polishing rate is hardly improved.

【0005】また、特開平3−54287では、仮焼ア
ルミナ粉末を含有した研磨用組成物が提案されている。
更に、特開平5−1279では、BET比表面積が10
〜60m2/gで、二次粒子径が0.5〜5μmである
沈降法シリカの水性スラリー分散液を研磨用組成物とし
て使用する方法が提案されている。しかしながら、これ
らの方法は、比較的平均粒子径の大きな研磨剤砥粒を用
いており、高精度の鏡面は得られずまたスクラッチの発
生も多く、最終的な鏡面仕上げにおける研磨速度の改善
を目的としたものではない。
[0005] Japanese Patent Application Laid-Open No. 3-54287 proposes a polishing composition containing calcined alumina powder.
Further, in Japanese Patent Application Laid-Open No. H5-1279, the BET specific surface area is 10
In ~60m 2 / g, a method of using as a polishing composition an aqueous slurry dispersion of precipitated silica secondary particle size of 0.5~5μm is proposed. However, these methods use abrasive grains with a relatively large average particle size, do not provide a high-precision mirror surface, and often generate scratches, with the aim of improving the polishing rate in final mirror surface finishing. It's not something that I did.

【0006】研磨速度を改善する一つの方法としては、
研磨剤としての砥粒の濃度を高濃度にする方法もある。
しかしながら、この方法もある濃度を超えると、研磨速
度が飽和値に達して、所期の効果は得られずむしろスク
ラッチの発生や、研磨液循環作業への弊害が目立つよう
になり、完全なものではない。更に、研磨速度改善の方
法として、ダイヤモンド、窒化硼素等の超硬砥粒を使用
する方法も考えられるが、最終的な鏡面を得るに適した
超微粉は得にくい。
One method for improving the polishing rate is as follows.
There is also a method of increasing the concentration of abrasive grains as an abrasive.
However, if this method also exceeds a certain concentration, the polishing rate reaches a saturation value, the expected effect is not obtained, but rather the generation of scratches and the adverse effect on the polishing liquid circulation work become conspicuous, and the complete is not. Further, as a method for improving the polishing rate, a method using ultra-hard abrasive grains such as diamond and boron nitride can be considered, but it is difficult to obtain an ultrafine powder suitable for obtaining a final mirror surface.

【0007】[0007]

【発明が解決しようとする課題】本発明者等は、前述の
従来の技術の持つ問題点に鑑み、二酸化珪素(Si
2:以下酸化珪素と記す)のコロイド状の粒子(コロ
イダルシリカと記す)を研磨用砥粒として用いることを
基本とする方法での研磨速度の向上を行なう方法につい
て鋭意研究を行なった結果、ある一定範囲のサイズの粒
子径を持ち、その二次凝集を狭い範囲に抑えたコロイダ
ルシリカを、ある一定の導電率とpHの条件におくこと
によって、タンタル酸リチウムまたはニオブ酸リチウム
よりなる酸化物単結晶ウェーハの鏡面仕上げに適した研
磨用組成物が得られることを見出して本発明を完成する
に至ったものである。すなわち、本発明の目的は、酸化
物単結晶ウェーハの表面を、極めて優れた面粗さでしか
も高速で鏡面研磨を行なうに適した研磨用組成物を提供
することにある。更に、本発明の他の目的は前記研磨用
組成物を用いて、酸化物単結晶ウェーハの表面を鏡面研
磨する方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present inventors have proposed silicon dioxide (Si).
As a result of intensive research on a method of improving the polishing rate by a method based on using colloidal particles (hereinafter referred to as colloidal silica) of O 2 : hereinafter referred to as silicon oxide) as polishing abrasives, An oxide composed of lithium tantalate or lithium niobate by placing colloidal silica having a certain range of particle diameters and secondary aggregation in a narrow range under certain conditions of conductivity and pH. The present inventors have found that a polishing composition suitable for mirror finishing of a single crystal wafer can be obtained, and have completed the present invention. That is, an object of the present invention is to provide a polishing composition suitable for performing mirror polishing at a high speed with extremely excellent surface roughness on the surface of an oxide single crystal wafer. Still another object of the present invention is to provide a method for mirror-polishing the surface of an oxide single crystal wafer using the polishing composition.

【0008】上述の目的は、BET法により測定した比
表面積より真球換算で算出した平均一次粒子径Aが40
〜150nmであり、かつマイクロトラックUPAによ
るレーザー散乱法で測定した平均二次粒子径Bとの径の
比率B/Aが1以上1.4未満の酸化珪素粒子を含み、
該酸化珪素粒子の溶液全体に対する含有率が3〜25重
量%のコロイド状溶液であり、更に25℃における導電
率が酸化珪素1重量%あたり10mS/m以上であるよ
うに導電性を与える成分を含有し、かつpHが8〜11
の間にあることを特徴とする酸化物単結晶ウェーハ用研
磨用組成物にて達成される。更に、本発明の他の目的
は、上下両面あるいは片面に、合成樹脂発泡体、合成皮
革あるいは不織布等からなるポリッシングパッドを貼付
した回転可能な定盤を有する研磨機に、酸化物単結晶ウ
ェーハを載置押圧し、請求項第1項ないし請求項第3項
に記載の研磨用組成物を供給しつつ、前記定盤および酸
化物単結晶ウェーハの双方あるいはそのいずれか一方を
回転することにより、前記酸化物単結晶ウェーハ用の研
磨を行なう方法にて達成される。
[0008] The above-mentioned object is to obtain an average primary particle diameter A of 40, which is calculated from the specific surface area measured by the BET method in terms of sphere.
And silicon oxide particles having a diameter ratio B / A of from 1 to 150 nm and an average secondary particle diameter B measured by a laser scattering method using a Microtrack UPA of 1 to less than 1.4,
A colloidal solution having a silicon oxide particle content of 3 to 25% by weight based on the entire solution, and a component for imparting conductivity such that the conductivity at 25 ° C. is 10 mS / m or more per 1% by weight of silicon oxide. Contains and pH is 8-11
And a polishing composition for an oxide single crystal wafer, wherein Further, another object of the present invention is to provide a polishing machine having a rotatable platen on which polishing pads made of synthetic resin foam, synthetic leather or nonwoven fabric are stuck on both upper and lower surfaces or one surface, an oxide single crystal wafer. By placing and pressing, while supplying the polishing composition according to claim 1 to claim 3, by rotating both or one of the platen and the oxide single crystal wafer, This is achieved by a method of performing polishing for the oxide single crystal wafer.

【0009】[0009]

【発明の実施の形態】本発明の肝要は、研磨に用いる研
磨用組成物の中に含まれる酸化珪素粒子の平均一次粒子
径が40〜150nmであり、その粒子の二次凝集は、
一次粒子の径Aと二次粒子の径Bとの比率B/Aが1.
4未満に抑えられている点にあり、更に、導電性成分の
添加により導電性を与えられた液である点にある。研磨
用組成物中の砥粒をかかる形態、すなわち、ほとんど二
次凝集がなく単分散に近いようにすることにより、スク
ラッチ等の欠点の発生に繋がる大型粒子がなく、極めて
優れた仕上げ面粗さを持った面が得られ、かつ、導電性
成分の添加により研磨速度を顕著に向上させることがで
きるのである。
DETAILED DESCRIPTION OF THE INVENTION The essential point of the present invention is that the average primary particle diameter of silicon oxide particles contained in the polishing composition used for polishing is 40 to 150 nm, and the secondary aggregation of the particles is as follows.
The ratio B / A of the diameter A of the primary particles to the diameter B of the secondary particles is 1.
It is in that it is less than 4, and furthermore, it is a liquid that has been given conductivity by adding a conductive component. This form of abrasive grains in the polishing composition, that is, by making it nearly monodisperse with little secondary agglomeration, there are no large particles that lead to the occurrence of defects such as scratches, extremely excellent finished surface roughness Is obtained, and the polishing rate can be remarkably improved by adding a conductive component.

【0010】本発明においては平均一次粒子径の測定
は、BET法により測定した比表面積より真球換算で算
出した値を用い、また、平均二次粒子径としてはマイク
ロトラックUPA(Honeywell社製)によるレ
ーザー散乱法で測定した体積平均粒子径を用いる。コロ
イダルシリカの平均一次粒子径が40nm以下である
と、研磨速度は十分に向上しない。また、平均一次粒子
径が150nm以上を超えると、スクラッチ等の欠点が
発生し易くなり、また仕上げ面粗さも良くなく好ましく
ない。一般に微細粒子が凝集する場合は、フロック化
し、巨大粒子化する傾向が強いが、本発明においては平
均一次粒子径Aと平均二次粒子径Bとの比率、B/Aが
1.4未満に抑えられている点にあるものを用いること
をその重要な点とする。粒子径の比率B/Aが1.4以
上であると、スクラッチが生じ易く、極めて優れた面粗
さを持った仕上がり面の創成といった点で効果が不十分
である。
In the present invention, the average primary particle diameter is measured using a value calculated in terms of a sphere from the specific surface area measured by the BET method, and the average secondary particle diameter is determined by Microtrac UPA (manufactured by Honeywell). The volume average particle diameter measured by the laser scattering method according to the present invention is used. When the average primary particle diameter of colloidal silica is 40 nm or less, the polishing rate is not sufficiently improved. When the average primary particle size exceeds 150 nm or more, defects such as scratches are likely to occur, and the finished surface roughness is not good, which is not preferable. Generally, when fine particles are aggregated, they tend to flocculate and become giant particles, but in the present invention, the ratio of the average primary particle diameter A to the average secondary particle diameter B, B / A, is less than 1.4. It is important to use what is in the point of being suppressed. When the ratio B / A of the particle diameters is 1.4 or more, scratches are likely to occur, and the effect is insufficient in that a finished surface having extremely excellent surface roughness is created.

【0011】本発明に用いるコロイド状の酸化珪素は、
水ガラスから脱アルカリを行なって製造されるコロイダ
ルシリカ、有機ケイ素化合物を加水分解して得られたコ
ロイダルシリカ、フュームドシリカを水に分散させたコ
ロイダルシリカ等いずれも使用でき、特に製法には限定
されなく、極めて微細な酸化珪素微粉がコロイド状に分
散されたものである。そして、研磨時のシリカ濃度は3
〜25重量%の間にあることが必要であり、望ましく
は、10〜18重量%の間である。シリカ濃度が3重量
%以下であると、研磨速度が低く実用性がない。シリカ
濃度が25重量%以上になると、粗大な凝集粒子が生じ
易くスクラッチ等が発生し易い。研磨時の酸化珪素濃度
が高くなれば研磨加工速度自体は増大するが約15重量
%を越えるあたりでその値は飽和値に達してしまう。
The colloidal silicon oxide used in the present invention is:
Colloidal silica produced by dealkalization from water glass, colloidal silica obtained by hydrolyzing an organosilicon compound, colloidal silica obtained by dispersing fumed silica in water can be used, and the production method is particularly limited. Instead, extremely fine silicon oxide fine particles are dispersed in a colloidal state. The silica concentration during polishing is 3
It must be between 2525% by weight, preferably between 10-18% by weight. When the silica concentration is 3% by weight or less, the polishing rate is low and the silica is not practical. When the silica concentration is 25% by weight or more, coarse aggregated particles are easily generated and scratches and the like are easily generated. If the concentration of silicon oxide during polishing increases, the polishing speed itself increases, but the value reaches a saturation value when it exceeds about 15% by weight.

【0012】本発明においては、単位長あたりの導電率
の数値(micro・Siemens)を酸化珪素1重
量%当りに換算した数値で示し、その25℃における数
値は10mS/m/1%−SiO2以上であることが必
要である。好ましくは15mS/m/1%−SiO2
上にすることにより、研磨速度は一層上昇する。研磨用
組成物に導電性を付与する成分については特に限定を受
けるものではないが、アルカリ金属、コリン、テトラメ
チルアンモニウムまたはアンモニウムの塩のうち少なく
とも一つを添加剤として用いることができる。アルカリ
金属、コリン、テトラメチルアンモニウムまたはアンモ
ニウムの塩の形態としては、フッ化物、塩化物、臭化
物、硫酸塩、硝酸塩、炭酸塩、炭酸水素塩、臭素酸塩、
ヨウ素酸塩、過塩素酸塩、ホウ酸塩、リン酸塩等の無機
塩類、クエン酸塩、シュウ酸塩、酒石酸塩、等の有機酸
塩類があげられるが、このうち研磨性能の安定性といっ
た面から、特に硝酸塩とすることが好ましい。これらの
塩は複合して用いても良い。
In the present invention, the value of the conductivity per unit length (micro Siemens) is represented by a value converted to 1% by weight of silicon oxide, and the value at 25 ° C. is 10 mS / m / 1% -SiO 2. It is necessary to be above. Preferably, the polishing rate is further increased by setting it to 15 mS / m / 1% -SiO 2 or more. The component for imparting conductivity to the polishing composition is not particularly limited, but at least one of alkali metal, choline, tetramethylammonium and ammonium salts can be used as an additive. Alkali metal, choline, tetramethylammonium or ammonium salt forms include fluoride, chloride, bromide, sulfate, nitrate, carbonate, bicarbonate, bromate,
Inorganic salts such as iodate, perchlorate, borate, phosphate, etc., and organic acid salts such as citrate, oxalate, tartrate, etc. From the viewpoint, nitrate is particularly preferable. These salts may be used in combination.

【0013】本発明においては研磨用組成物のpHは8
〜11の範囲にあることが肝要である。pHが8以下で
あると研磨速度は著しく低下し実用の範囲からは外れ
る。また、pHが11以上になると、コロイダルシリカ
が凝集をはじめて本発明の範囲から外れ、そのため研磨
用組成物の安定性が低下してこれも実用の範囲から外れ
る。そしてまた、このpHは摩擦、熱、外気との接触あ
るいは他の成分との混合等、考えられる外的条件の変化
により容易に変化するようなものであってはならない
が、本発明においては研磨用組成物溶液自体を、外的条
件の変化に対してpHの変化の幅の少ない、所謂緩衝作
用の強い液とすることも研磨性能の安定化と持続性のた
めに有効である。緩衝作用の強い液とするために有効な
塩は、例えば、炭酸、硼酸、燐酸、クエン酸、蓚酸ある
いは酒石酸等の塩である。
In the present invention, the polishing composition has a pH of 8
It is important to be within the range of ~ 11. When the pH is 8 or less, the polishing rate is remarkably reduced and is out of a practical range. Further, when the pH becomes 11 or more, the colloidal silica is out of the range of the present invention for the first time due to agglomeration, so that the stability of the polishing composition is lowered and also out of the practical range. Also, this pH should not readily change due to possible changes in external conditions, such as friction, heat, contact with the outside air, or mixing with other components. It is also effective to make the polishing composition solution itself a liquid having a small variation in pH with respect to a change in external conditions, that is, a so-called strong buffering action, for stabilizing and maintaining polishing performance. Salts effective for forming a solution having a strong buffering action include, for example, salts of carbonic acid, boric acid, phosphoric acid, citric acid, oxalic acid and tartaric acid.

【0014】本発明の研磨用組成物の物性を改良するこ
と及び、研磨物の研磨表面の品質を向上させるため、界
面活性剤、分散剤、などを併用してもかまわない。界面
活性剤、分散剤としては、水溶性の有機物などが具体的
に挙げられる。また、本発明の研磨用組成物は水分散物
としているが、有機溶媒を添加してもかまわない。本発
明の研磨用組成物は、研磨時にコロイダルシリカとアル
カリ金属、コリン、テトラメチルアンモニウムまたはア
ンモニウムの塩と添加剤と水とを混合して調製してもよ
い。また、コロイダルシリカとして、15〜65%の濃
縮組成物として調製しておき、水あるいは、水と有機溶
媒の混合物で希釈して使用できる。
In order to improve the physical properties of the polishing composition of the present invention and to improve the quality of the polished surface of the polished material, a surfactant, a dispersant and the like may be used in combination. Specific examples of the surfactant and the dispersant include water-soluble organic substances. Although the polishing composition of the present invention is in the form of an aqueous dispersion, an organic solvent may be added. The polishing composition of the present invention may be prepared by mixing colloidal silica, an alkali metal, choline, tetramethylammonium or ammonium salt, an additive, and water during polishing. In addition, as a colloidal silica, a concentrated composition of 15 to 65% may be prepared and used after being diluted with water or a mixture of water and an organic solvent.

【0015】本発明の研磨用組成物を使用したタンタル
酸リチウムまたはニオブ酸リチウムよりなる酸化物単結
晶ウェーハの鏡面仕上げ研磨方法は、装置として例え
ば、スピードファム・アイペック(株)社製SH−24
型片面機、DSM−12B型両面機などである。これら
研磨装置で本発明の研磨用組成物を使いタンタル酸リチ
ウム、ニオブ酸リチウムなどの酸化物単結晶ウェーハを
研磨速度を一定の高いレベルに保った上で、優れた仕上
がり面粗さを持った鏡面を得ることができる。
The method for polishing the mirror surface of an oxide single crystal wafer made of lithium tantalate or lithium niobate using the polishing composition of the present invention is, for example, an SH-24 manufactured by Speedfam IPEC Co., Ltd.
And a DSM-12B type duplex machine. With these polishing apparatuses, the polishing composition of the present invention was used to maintain a polishing rate of a single oxide wafer of lithium tantalate, lithium niobate or the like at a constant high level, and also had an excellent finished surface roughness. A mirror surface can be obtained.

【0016】[0016]

【実施例】次に実施例及び比較例をあげて本発明の研磨
用組成物、およびそれを用いた研磨加工方法を具体的に
説明するが、特にこれにより限定を行なうものではな
い。研磨実験に使用した装置および条件は以下の通りで
ある。 研磨装置:(株)マルトー製、卓上小型研磨機ドクター
ラップ 定盤回転数:82RPM 研磨布:SUBA800(ロデールニッタ社製) 研磨用組成物流量:20ml/分 加工荷重:326gf/cm2 加工時間:30分 ワークピース:15mm角に裁断したもの3枚を同時研
磨 研磨速度は、研磨前後の重量差より求めた。研磨用組成
物のpHはpHメーターを用い測定した。測定にあたっ
ては、pH6.86と9.18のpH標準溶液であらか
じめpH電極の校正を行った後測定した。酸化珪素1重
量%あたりの導電率は導電率計にて測定した値を酸化珪
素濃度で除して用いた。更に研磨面の評価は、AFMを
用いて表面粗さ(Ra)を測定した。
EXAMPLES Next, the polishing composition of the present invention and the polishing method using the polishing composition of the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not particularly limited thereto. The equipment and conditions used for the polishing experiment are as follows. Polishing equipment: Doctor-made small table-top polishing machine, Doctor Wrap, made by Maruto Co., Ltd. Surface rotation speed: 82 RPM Polishing cloth: SUBA800 (manufactured by Rodel Nitta) Flow rate of polishing composition: 20 ml / min Processing load: 326 gf / cm 2 Processing time: 30 Minute Workpiece: Simultaneous polishing of three pieces cut to 15 mm square The polishing rate was determined from the difference in weight before and after polishing. The pH of the polishing composition was measured using a pH meter. In the measurement, the pH electrode was calibrated in advance with pH standard solutions of pH 6.86 and 9.18, and then measured. The conductivity per 1% by weight of silicon oxide was used by dividing the value measured by a conductivity meter by the concentration of silicon oxide. Further, for the evaluation of the polished surface, the surface roughness (Ra) was measured using AFM.

【0017】実施例1〜10、比較例1〜5 表1、表2および表3に、実施例および比較例で使用し
た研磨用組成物の組成と物性、および前記方法に準拠し
て得られた研磨試験結果を併記する。
Examples 1 to 10 and Comparative Examples 1 to 5 Tables 1, 2 and 3 show the compositions and physical properties of the polishing compositions used in the examples and comparative examples, and the polishing compositions obtained in accordance with the above methods. The results of the polishing test are also shown.

【0018】[0018]

【表1】 [Table 1]

【0019】表1は本発明の実施例である添加剤を加え
た場合と、添加剤を加えない従来例による比較例の結果
を示すものである。塩化ナトリウムあるいは芒硝等の塩
類の添加物を加えることにより、導電率を実施例1〜3
に示す如く10mS/m−1%SiO2以上の範囲に調
整することができ、良好な研磨速度と面粗さが得られる
る。これに対し、添加剤を加えない場合は導電率は比較
例1、2に示すように10mS/m−1%SiO2未満
となって、研磨速度は実施例の約半分の値を示し、好ま
しくない。
Table 1 shows the results of the example of the present invention in which the additive was added and the result of the comparative example in which the additive was not added. By adding an additive of a salt such as sodium chloride or sodium sulfate, the conductivity was increased in Examples 1 to 3.
As shown in the figure, it can be adjusted to a range of 10 mS / m-1% SiO 2 or more, and a good polishing rate and surface roughness can be obtained. On the other hand, when no additive was added, the conductivity was less than 10 mS / m-1% SiO 2 as shown in Comparative Examples 1 and 2, and the polishing rate was about half the value of the example. Absent.

【0020】[0020]

【表2】 [Table 2]

【0021】表2において比較例3及び4は粒径比B/
Aを本発明範囲1.4より大きくしたものの例であり、
比較例5は一次粒子径を本発明範囲である40nmに達
しない小粒径のものを用いた例である。表2の結果より
明らかな如く、粒径比B/Aが1.4を超えた場合はス
クラッチの発生が見られて好ましくなく、また、一次粒
子径が40nm以下であると研磨速度が本発明の実施例
4、5の約半分になってしまい、好ましくない。
In Table 2, Comparative Examples 3 and 4 show the particle size ratio B /
A is an example in which A is larger than the present invention range 1.4,
Comparative Example 5 is an example in which the primary particle diameter is smaller than 40 nm, which is the range of the present invention. As is clear from the results in Table 2, when the particle size ratio B / A exceeds 1.4, scratches are generated, which is not preferable, and when the primary particle size is 40 nm or less, the polishing rate is reduced according to the present invention. About half of Examples 4 and 5, which is not preferable.

【0022】[0022]

【表3】 [Table 3]

【0023】表3においては、添加剤を硝酸塩あるいは
炭酸塩としたものの実施例を示す。いずれの例において
も良好な研磨速度と面粗さを得ることができる。
Table 3 shows examples in which the additives were nitrates or carbonates. In each case, a good polishing rate and surface roughness can be obtained.

【0024】[0024]

【発明の効果】以上の実施例および比較例の結果から示
される通り、本発明になる研磨用組成物を用いれば、例
えば硬質のタンタル酸リチウム、ニオブ酸リチウムなど
の酸化物単結晶ウェーハの鏡面仕上げ研磨において、従
来のものより倍以上の高い研磨速度が得られることは明
らかであり、しかも表面粗さについては、高精度の鏡面
仕上げの面を得ることが可能である。本発明になる研磨
用組成物により、従来多大な時間と手間を要していた鏡
面仕上げ研磨(ポリッシング)工程の時間短縮および効
率の向上を図ることが可能となり、そのことが例えば移
動体通信の重要部品である弾性表面波素子や電気光学素
子の生産性向上とコスト引き下げに多大に寄与するもの
である。
As can be seen from the results of the above Examples and Comparative Examples, when the polishing composition according to the present invention is used, for example, a mirror surface of a hard oxide single crystal wafer such as lithium tantalate or lithium niobate can be obtained. It is clear that a higher polishing rate than conventional one can be obtained in the final polishing, and it is possible to obtain a mirror-finished surface with high precision in terms of surface roughness. The polishing composition according to the present invention makes it possible to reduce the time and efficiency of the mirror finish polishing (polishing) process, which has conventionally required a great deal of time and labor, and this can be achieved, for example, in mobile communication. This greatly contributes to productivity improvement and cost reduction of surface acoustic wave devices and electro-optical devices, which are important components.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市川 真也 神奈川県綾瀬市早川2647 スピードファ ム・アイペック株式会社内 (72)発明者 小島 孝仁 神奈川県綾瀬市早川2647 スピードファ ム・アイペック株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shinya Ichikawa 2647 Hayakawa Hayakawa, Ayase City, Kanagawa Prefecture Inside (72) Inventor Takahito Kojima 2647 Hayakawa Hayakawa, Ayase City, Kanagawa Prefecture Inside Speed Fam Ipec Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】BET法により測定した比表面積より真球
換算で算出した平均一次粒子径Aが40〜150nmで
あり、かつマイクロトラックUPAによるレーザー散乱
法で測定した平均二次粒子径Bとの径の比率B/Aが1
以上1.4未満の酸化珪素粒子を含み、該酸化珪素粒子
の溶液全体での含有率が3〜25重量%のコロイド溶液
であり、更に25℃における導電率が酸化珪素1重量%
あたり10mS/m以上であるように導電性を与える成
分を含有し、かつ、pHが8〜11の間にあることを特
徴とする酸化物単結晶ウェーハ用研磨用組成物。
1. An average primary particle diameter A of 40 to 150 nm calculated as a sphere from a specific surface area measured by a BET method, and an average secondary particle diameter B measured by a laser scattering method using Microtrac UPA. Diameter ratio B / A is 1
A colloidal solution containing silicon oxide particles of at least 1.4 and having a total content of the silicon oxide particles of 3 to 25% by weight, and a conductivity at 25 ° C. of 1% by weight of silicon oxide
A polishing composition for an oxide single crystal wafer, comprising a component that imparts conductivity so as to be 10 mS / m or more per unit area, and having a pH of 8 to 11.
【請求項2】導電性を与える成分が、アルカリ金属、コ
リン、テトラメチルアンモニウムまたはアンモニウムの
塩のうち少なくとも一つであることを特徴とする請求項
第1項記載の酸化物単結晶ウェーハ用研磨組成物。
2. The polishing method for an oxide single crystal wafer according to claim 1, wherein the component imparting conductivity is at least one of alkali metal, choline, tetramethylammonium and ammonium salts. Composition.
【請求項3】請求項第1項ないし第2項記載の酸化物単
結晶ウェーハ用の研磨組成物において、酸化物単結晶ウ
ェーハが、タンタル酸リチウムあるいはニオブ酸リチウ
ムの単結晶ウェーハであることを特徴とする酸化物単結
晶ウェーハ用研磨組成物。
3. The polishing composition for an oxide single crystal wafer according to claim 1, wherein the oxide single crystal wafer is a lithium tantalate or lithium niobate single crystal wafer. A polishing composition for an oxide single crystal wafer, which is characterized in that:
【請求項4】上下両面あるいは片面に、合成樹脂発泡
体、合成皮革あるいは不織布等からなるポリッシングパ
ッドを貼付した回転可能な定盤を有する研磨機に、酸化
物単結晶ウェーハを載置押圧し、請求項第1項ないし請
求項第3項に記載の研磨用組成物を供給しつつ、前記定
盤および酸化物単結晶ウェーハの双方あるいはそのいず
れか一方を回転することにより、前記酸化物単結晶ウェ
ーハ用の研磨を行なう方法。
4. An oxide single crystal wafer is placed and pressed on a polishing machine having a rotatable platen having a polishing pad made of synthetic resin foam, synthetic leather or non-woven fabric adhered to both upper and lower surfaces or one surface, The oxide single crystal is formed by rotating both or one of the platen and the oxide single crystal wafer while supplying the polishing composition according to claim 1. A method for polishing a wafer.
JP33137799A 1999-11-22 1999-11-22 Composition and process for grinding oxide single crystal wafer Withdrawn JP2001152134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33137799A JP2001152134A (en) 1999-11-22 1999-11-22 Composition and process for grinding oxide single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33137799A JP2001152134A (en) 1999-11-22 1999-11-22 Composition and process for grinding oxide single crystal wafer

Publications (1)

Publication Number Publication Date
JP2001152134A true JP2001152134A (en) 2001-06-05

Family

ID=18243016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33137799A Withdrawn JP2001152134A (en) 1999-11-22 1999-11-22 Composition and process for grinding oxide single crystal wafer

Country Status (1)

Country Link
JP (1) JP2001152134A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187876A (en) * 1999-12-28 2001-07-10 Nec Corp Slurry for chemical mechanical polishing
JP2003313543A (en) * 2002-04-25 2003-11-06 Nippon Chem Ind Co Ltd Polishing composition for rigid and brittle material and polishing method using the same
WO2004048265A1 (en) * 2002-11-22 2004-06-10 Nippon Aerosil Co., Ltd High-concentration silica slurry
JP2005068312A (en) * 2003-08-26 2005-03-17 Mitsui Mining & Smelting Co Ltd Fluorine-containing cerium-based abrasive and method for manufacturing the same
JP2008072094A (en) * 2006-08-14 2008-03-27 Nippon Chem Ind Co Ltd Polishing composition for semiconductor wafer, production method thereof, and polishing method
JP2015189965A (en) * 2014-03-31 2015-11-02 株式会社フジミインコーポレーテッド Composition for polishing
CN108655965A (en) * 2017-03-28 2018-10-16 福吉米株式会社 Composition for polishing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187876A (en) * 1999-12-28 2001-07-10 Nec Corp Slurry for chemical mechanical polishing
JP2003313543A (en) * 2002-04-25 2003-11-06 Nippon Chem Ind Co Ltd Polishing composition for rigid and brittle material and polishing method using the same
WO2004048265A1 (en) * 2002-11-22 2004-06-10 Nippon Aerosil Co., Ltd High-concentration silica slurry
JPWO2004048265A1 (en) * 2002-11-22 2006-03-23 日本アエロジル株式会社 High concentration silica slurry
KR100688300B1 (en) * 2002-11-22 2007-03-02 닛폰 에어로실 가부시키가이샤 High-concentration silica slurry
US7192461B2 (en) 2002-11-22 2007-03-20 Nippon Aerosil Co., Ltd. High concentration silica slurry
CN1328163C (en) * 2002-11-22 2007-07-25 日本艾罗西尔股份有限公司 High concentration silica slurry
JP2005068312A (en) * 2003-08-26 2005-03-17 Mitsui Mining & Smelting Co Ltd Fluorine-containing cerium-based abrasive and method for manufacturing the same
JP2008072094A (en) * 2006-08-14 2008-03-27 Nippon Chem Ind Co Ltd Polishing composition for semiconductor wafer, production method thereof, and polishing method
JP2015189965A (en) * 2014-03-31 2015-11-02 株式会社フジミインコーポレーテッド Composition for polishing
CN108655965A (en) * 2017-03-28 2018-10-16 福吉米株式会社 Composition for polishing

Similar Documents

Publication Publication Date Title
JP4113282B2 (en) Polishing composition and edge polishing method using the same
JP4163785B2 (en) Polishing composition and polishing method
KR100429940B1 (en) Improved ceria powder
KR100698396B1 (en) Abrasive and meth0d 0f p0lishing
SG190703A1 (en) Composition and method for polishing polysilicon
KR20120102792A (en) Polishing liquid for cmp and polishing method using the same
JP2000080349A (en) Abrasive composition and processing method of silicon wafer using same
WO2012036087A1 (en) Polishing agent and polishing method
JP2003297777A (en) Composition for polishing, method for modifying the same and method for polishing the same
WO2011058816A1 (en) Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
JPWO2005090511A1 (en) Polishing composition and polishing method
JP2001152134A (en) Composition and process for grinding oxide single crystal wafer
JP2001093866A (en) Oxide single-crystal wafer processing/polishing composition and method of polishing the oxide single- crystal wafer
JP2002329688A (en) Polishing suspension containing moisture holding agent
JP4346712B2 (en) Wafer edge polishing method
JP2001031951A (en) Abrasive and method for polishing substrate
CN109913133B (en) Efficient high-quality chemical mechanical polishing solution for yttrium aluminum garnet crystals
JP6436018B2 (en) Polishing slurry for oxide single crystal substrate and method for producing the same
JP2011161570A (en) Abrasive and polishing method
JP2001118815A (en) Polishing composition for polishing semiconductor wafer edge, and polishing machining method
JP4163788B2 (en) Polishing composition and polishing method
JP4396963B2 (en) Polishing composition, method for preparing the same, and method for polishing a wafer using the same
JP4291665B2 (en) Abrasive composition for siliceous material and polishing method using the same
JP2014039054A (en) Polishing liquid composition for sapphire substrate, and polishing method of sapphire substrate
JP4247955B2 (en) Abrasive composition for hard and brittle materials and polishing method using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206