JP4247955B2 - Abrasive composition for hard and brittle materials and polishing method using the same - Google Patents

Abrasive composition for hard and brittle materials and polishing method using the same Download PDF

Info

Publication number
JP4247955B2
JP4247955B2 JP2002123771A JP2002123771A JP4247955B2 JP 4247955 B2 JP4247955 B2 JP 4247955B2 JP 2002123771 A JP2002123771 A JP 2002123771A JP 2002123771 A JP2002123771 A JP 2002123771A JP 4247955 B2 JP4247955 B2 JP 4247955B2
Authority
JP
Japan
Prior art keywords
polishing
phosphate
hard
ions
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002123771A
Other languages
Japanese (ja)
Other versions
JP2003313543A (en
Inventor
邦明 前島
慎介 宮部
昌宏 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002123771A priority Critical patent/JP4247955B2/en
Publication of JP2003313543A publication Critical patent/JP2003313543A/en
Application granted granted Critical
Publication of JP4247955B2 publication Critical patent/JP4247955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、硬脆材料用精密研磨組成物もしくは硬脆材料の精密研磨方法に係り、特に、タンタル酸リチウム単結晶材料やニオブ酸リチウム単結晶材料の如き硬脆材料の表面を、精密に研磨加工せしめるために用いられる硬脆材料用精密研磨組成物、並びにそれを用いて、かかる硬脆材料を高能率で精密研磨仕上げする方法に関するものである。
【0002】
【従来の技術】
従来より、テレビの中間周波数フィルタや共振器等のエレクトロニクス部品として、圧電体における圧電効果により発生する弾性表面波を利用した弾性表面波デバイスが、広く用いられてきており、これまでに、かかる弾性表面波デバイスを構成する圧電体ウェーハの材料としては、圧電体セラミックス、圧電体薄膜等の各種の圧電性物質の採用が検討され、特に、近年においては、タンタル酸リチウム単結晶材料やニオブ酸リチウム単結晶材料といった硬脆材料が優れた特徴を有しているところから、広く採用されている。
そして、そのような硬脆材料からなる弾性表面波デバイス用ウェーハにあっては、通常、電極が写真印刷せしめられる表面には、精密研磨加工が施されて、該表面が鏡面と為されるのであって、具体的には、ポリウレタン等からなる研磨布を貼った定盤を用いて、かかる定盤を回転せしめると共に、スラリー状の研磨材を研磨布面上に供給しつつ、被加工材料としてのウェーハを研磨布面に押圧せしめることにより、ウェーハ表面がポリッシングされるように為し、以て精密研磨加工が施されるのである。
【0003】
この精密研磨加工においては、コロイダルシリカを砥粒成分として含むシリコンウェーハ用研磨材を、硬脆材料からなるウェーハの研磨に応用する手法が、採用されてきた。そのため、シリコンウェーハと異なり硬脆材料からなるウェーハの研磨は、研磨速度が低いため長時間を要している。しかも、そのような研磨材は、経済的な理由から、一般に、その一定量を循環させることにより、繰り返し使用されており、そのような使用に際しては、経時的に研磨速度が低下し、所定時間毎に、研磨材のうちの一部を新しい研磨材と交換したり、或いはまた、所定の研磨時間の経過後に、その全てを新しいものに交換する必要性が生じる。このため、作業効率や作業性に不具合があったり、また研磨材や設備にかかるコストが高額になっているといった問題があった。このように、コロイダルシリカ研磨材にあっては、研磨面の精度を高度に達成し得るという特徴を保ったまま、研磨速度が高く、その研磨速度が長時間に亘って一定に維持され得ることが、要請されている。
【0004】
シリコンウェーハを対象とした研磨剤の改良は多数提案されており、米国特許第3328141号公報では、該懸濁液のpHを10.5〜12.5の範囲内にすることにより、研磨速度が増大する事が開示されている。米国特許第4169337号公報では、アミン類を研磨用組成物に添加することが開示されている。特開平2−158684号公報には、水、コロイダルシリカ、分子量10万以上の水溶性高分子、水溶性塩類からなる研磨用組成物が開示されている。更に特開平5−154760号公報では、水溶性アミンの一種であるピペラジンを、シリカゾルまたはシリカゲルのシリカ基準にて、10〜80重量%含む研磨組成物を使用した研磨方法を開示している。
【0005】
これら開示されている方法は、アルカリ性の母液にシリカの微細粒子を分散させたスラリーやコロイダルシリカに、様々な添加剤を加えることにより研磨剤の分散性を上げたり、加工力の安定性を図ったり、加工速度を増加するものであるが、シリコンウェーハと異なり硬脆材料からなるウェーハの研磨に要求される研磨性能すなわち、高速でかつ安定した研磨速度や研磨面の平坦性等に十分対応できるものではなかった。
また、層間絶縁膜の二酸化珪素の研磨において、研磨剤を繰り返し使用をして研磨する方法として、特開平10−172936号公報には、塩基性カリウム化合物を添加したコロイダルシリカが開示されている。特開平10−172937号公報には、含窒素塩基性化合物を添加したコロイダルシリカが開示されている。しかし、これらの方法は単にデバイス汚染の原因となるナトリウムを使用しないと言う目的は達成されているが、硬脆材料からなるウェーハの研磨には研磨速度が不十分である。
【0006】
特開平11−315273号公報、特開平11−302635号公報、特開平11−302634号公報および特開2000−158329号公報には、酸解離定数の逆数の対数値が8.0〜12.0の弱酸及び/または弱塩基を使用して、弱酸と強塩基、強酸と弱塩基あるいは弱酸と弱塩基の何れかの組み合わせのものを添加することによりpHの緩衝作用を有する緩衝溶液としたコロイダルシリカ組成物が開示されている。緩衝液の使用は、外的条件の変化によるpHの変化が少なく、繰り返し使用においても変化の少ない安定した研磨用組成物を提供しているが、タンタル酸リチウム単結晶材料やニオブ酸リチウム単結晶材料を研磨するには研磨速度が低く、さらなる改良が望まれていた。
【0007】
【発明が解決しようとする課題】
本発明者等は上述の、従来の研磨用組成物が持つ問題点に鑑み、鋭意研究を行ない、特定の粒度を有する酸化珪素の粒子を含む水性コロイド溶液よりなり、リン酸塩化合物を含み、かつpHの緩衝作用を有する研磨用組成物を用いることにより、安定して高い研磨速度が達成できることを見出し、本発明を完成した。その目的となすところは、研磨速度が高く、繰り返しの使用においても安定した研磨を達成できる研磨用組成物を提供すること及び該研磨用組成物を使用した研磨方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、平均一次粒子径が30〜200nmの範囲にある酸化珪素粒子を5〜40重量%含有する水性コロイド溶液より成り、リン酸3ナトリウム、リン酸2ナトリウム、リン酸1ナトリウム、リン酸3カリウム、リン酸2カリウム、リン酸1カリウム、リン酸を水酸化テトラメチルアンモニウムで中和した混合溶液リン酸塩化合物から選ばれる少なくとも1種からなる水溶性リン酸塩化合物を含み、pH9.0〜11.0の範囲でpHが緩衝作用を呈する緩衝溶液として調整されたことを特徴とする研磨用組成物によって達成される。
【発明の実施の形態】
【0009】
酸化珪素の微粒子はその製法から気相法酸化珪素と液相法酸化珪素に二分される。気相法酸化珪素としてはフュームドシリカを水性媒体に分散させたスラリーが半導体研磨に多用されてきたが、この微粒子は粒度分布が広く、更に凝集して二次粒子を構成し、典型的な多分散系である。液相法酸化珪素は水ガラスを原料とした一般のコロイダルシリカと、有機珪素化合物の加水分解法によって得られる高純度コロイダルシリカがある。本発明に用いる酸化珪素微粒子のコロイド溶液は、この一般のコロイダルシリカと高純度コロイダルシリカである。特に水ガラスを原料とした一般のコロイダルシリカは安価であり、研磨速度も速く、好適に用いられる。
【0010】
本発明に用いるコロイド溶液に含まれる酸化珪素の微粒子は平均一次粒子径が30〜200nmの酸化珪素粒子であり、好ましくは50〜100nmのものが用いられる。ここで言う平均一次粒子径とは、窒素吸着BET法により測定される比表面積を、球状粒子の直径に換算したものである。コロイダルシリカのBET法粒径(比表面積)については、THE CHEMISTRY OF SILICA Solubility,Polymerization, Colloid and Surface Properties,and Biochemistry(P344-354,RALPH K.ILER著,A Wiley-Interscience Publication JOHN WILEY & SONS P )に詳細に記載されている。計算式は粒子径(nm)=2720/比表面積(m2/g)である。
【0011】
平均一次粒子径が、30nmより小さい粒子の使用は緩衝液成分の電解質濃度を高くしたときにコロイド溶液が凝集し易く、研磨用組成物としての安定性が低下し、さらに研磨速度が低く好ましくない。また、平均一次粒子径が、200nm以上の粒子の使用は、複数枚の研磨に循環使用する際には、研磨屑やパッド屑の濾過除去が必要となるが、200nm以上の粒子では、屑との分離が困難になる。また、他の用途でも、粗大粒子が沈降し製品の経時安定性確保が難しくまた、価格的にも不利である。
【0012】
コロイダルシリカの酸化珪素粒子は単一の粒度である単分散の粒子であっても、複数の粒度の粒子が混在している多分散の粒子であっても良い。ここで言う、単分散とは、電子顕微鏡法、遠心沈降法、レーザー光散乱法等の一般のコロイド粒子径測定法で測定された、個数平均径(Dn)と体積平均径(Dv)または重量平均径(Dw)の比(Dv/Dn)または(Dw/Dn)が1.00〜1.50の範囲にあることと定義する。単分散のコロイダルシリカとしては日本化学工業(株)製「シリカドール」、多摩化学工業(株)製「TCSOL703」、扶桑化学工業(株)製「超高純度コロイダルシリカPL−7」等がある。多分散のコロイダルシリカとしては、DuPontAirProducts NanoMaterials L.L.C.社の「Syton」、「Mazin」、「Ascend」等がある。
【0013】
酸化珪素の濃度は、実際の研磨加工時において5〜40重量%であることが肝要であり、より好ましい範囲は、10〜25重量%が良い。研磨時の酸化珪素の濃度が、5重量%未満であると研磨加工速度は低くなり実用的ではない。研磨時の酸化珪素濃度が高くなれば研磨加工速度自体は増大するが約40重量%を越えると研磨中に研磨用組成物の粘度が増大し、安定した研磨速度が得られない。
【0014】
さらに、本発明においては、研磨用組成物中に水溶性リン酸塩化合物が含まれることが必要である。水溶性リン酸塩化合物としては特に限定されないが、リン酸3ナトリウム、リン酸2ナトリウム、リン酸1ナトリウム、リン酸3カリウム、リン酸2カリウム、リン酸1カリウム、リン酸を水酸化テトラメチルアンモニウムで中和した混合溶液などが使用できる。要点は、後述のpHの範囲でリン酸イオンが存在することにある。リン酸塩化合物は、酸化珪素1Kg当たり、リン酸として0.01〜0.5モル(モル/Kg−SiO2)含まれることが好ましく、0.03〜0.2モル/Kg−SiO2含まれることがより好ましい。
リン酸塩化合物が0.01モル/Kg−SiO2未満では充分な研磨速度が得られず、0.5モル/Kg−SiO2より多いとコロイドの安定性が確保できず、安定した研磨速度が得られないし、スクラッチやピットの発生原因となる。
リン酸塩はいわゆる正リン酸塩であることが必須で、縮合リン酸塩では効果がない。
【0015】
本発明においては研磨用組成物のpH9.0〜11.0の範囲にあることが肝要である。更に好ましくはpH9.5〜10.5の範囲にあることが好ましい。
pHが9.0以下であると研磨速度は著しく低下し実用の範囲からは外れる。また、pHが11.0以上になると、研磨用組成物の安定性が低下し研磨中に粘度が上昇する。そしてまた、このpHは摩擦、熱、外気との接触あるいは他の成分との混合等、考えられる外的条件の変化により容易に変化するようなものであってはならないが、本発明においては研磨用組成物溶液自体を、外的条件の変化に対してpHの変化幅が少ない、いわゆる緩衝作用の強い液とすることをその必要条件とするものである。
【0016】
水溶性リン酸塩化合物はpHの緩衝能力を持つが、pH9.0〜11.0の範囲でpHをより安定させるためには、pH9.0〜11.0の範囲で強く緩衝溶液を形成する成分を併用することも好ましい。
pH9.0〜11.0の範囲で強く緩衝溶液を形成するイオンとしては、陽イオンが四級アンモニウムイオンとアルカリ金属イオンの混合物もしくはその一方であり、陰イオンが炭酸イオンと炭酸水素イオンの混合物もしくはホウ酸イオン、もしくはフェノールであり、またその混合物であってもかまわない。特に好適なのは炭酸イオンと炭酸水素イオンの混合物、あるいはホウ酸イオンである。
【0017】
また、一般的には酸化珪素濃度25〜65%の高濃度の組成物を調製しておき、水あるいは、水と有機溶媒の混合物で希釈して使用することが便利である。 高濃度の組成物には酸化珪素以外の上記必須成分のうちいずれかを欠いておき、希釈時に添加することもできる。
本発明の研磨組成物の物性を改良するため、界面活性剤、分散剤などを併用することができる。また、本発明の研磨組成物は基本的には水溶液としているが、有機溶媒を添加してもかまわない。
【0018】
本発明の第2の目的は、上下両面あるいは片面に、合成樹脂発泡体、合成皮革あるいは不織布等からなる研磨布を貼付した回転可能な定盤を有する研磨装置に、ウエーハ等の被加工物を載置押圧し、前記定盤及び被加工物の双方あるいは一方を回転することにより、上述の研磨用組成物を用いて、前記被加工物の研磨を行なう方法により達成される。
【0019】
【実施例】
次に実施例及び比較例をあげて本発明の研磨用組成物、およびそれを用いた研磨加工方法を具体的に説明するが、特にこれにより限定を行なうものではない。
【0020】
実施例1〜5および比較例1〜3にタンタル酸リチウム単結晶ウェーハの表面研磨の実施例を示す。表に示した組成となるよう調整した研磨用組成物を用いて研磨試験を実施した。
実施例では、酸化珪素濃度40%で平均一次粒子径40nmのコロイダルシリカは、日本化学工業(株)製「シリカドール40G」を使用し、酸化珪素濃度40%で平均一次粒子径80nmのコロイダルシリカは、日本化学工業(株)製「シリカドール40G80」を使用し、酸化珪素濃度40%で平均一次粒子径120nmのコロイダルシリカは「シリカドール40G−120」を使用し、比較例では酸化珪素濃度40%で平均一次粒子径20nmのコロイダルシリカとして日本化学工業(株)製「シリカドール40」を使用した。その他の平均一次粒子径のコロイダルシリカは水ガラスを原料として製作した。
リン酸水素2カリウムは日本化学工業(株)製の「食添用第二燐酸カリ」を用いた。
【0021】
また、水酸化テトラメチルアンモニウム(以下TMAHと略記)としては市販の20%水溶液を使用した。また、上記TMAH水溶液を炭酸ガスで中和して炭酸水素テトラメチルアンモニウム(以下TMA2CO3と略記)を作成した。作成方法は以下のようにした。20%TMAH水溶液を500mlのガス洗浄瓶に入れ、炭酸ガスを微細泡状にして12時間吹き込み、TMAH水溶液に吸収させTMA2CO3C溶液を得た。炭酸化の定量は、希塩酸で中和滴定を行い滴定曲線の変曲点より計算し、中和度は97%であった。
pHの緩衝溶液形成には、試薬の炭酸ナトリウム、四ホウ酸ナトリウム十水塩,水酸化カリウム、炭酸水素カリウムを使用した。
【0022】
研磨条件は以下の方法で鏡面研磨を実施した。
研磨装置: (株)マルトー製 卓上小型研磨機ドクターラップ
定盤回転数:100rpm
研磨布:SUBA600(ロデールニッタ社製)
研磨組成物流量:15ml/分
加工荷重:350gf/cm2
加工時間:100分
ワーク:25mm角形
研磨速度は、タンタル酸リチウム単結晶ウェーハの研磨前後の重量差より求めμm/分に換算した。研磨組成物のpHはpHメーターを用い測定した。研磨面の評価は、集光灯下で肉眼にて表面状態を観察した。
【0023】
実施例1〜6および比較例1〜3:平均一次粒子径80nmのコロイダルシリカを使用し、主に酸化珪素濃度とリン酸塩濃度を変えた場合のタンタル酸リチウム単結晶ウェーハの表面研磨の実施例を示す。結果は表1に示したように、実施例では良好な研磨性能が得られたが、緩衝組成を形成しない比較例1〜3では良好な研磨性能が得られなかった。特に実施例1〜6の表面状態は良好であった。
【表1】

Figure 0004247955
【0024】
実施例7〜12および比較例4〜6:酸化珪素濃度とリン酸塩濃度を一定にして使用し、主にコロイダルシリカの平均一次粒子径を変えた場合のタンタル酸リチウム単結晶ウェーハの表面研磨の実施例を示す。
結果は第2表に示したように、実施例7〜12では良好な研磨性能が得られたが、緩衝組成を形成しない比較例4〜6では良好な研磨性能が得られなかった。特に比較例4〜6の研磨速度は実施例7〜12と比べて低い値となった。
【0025】
【表2】
Figure 0004247955
【0026】
実施例13と比較例7:実施例3と比較例1の研磨組成液を循環使用したタンタル酸リチウム単結晶ウェーハの表面研磨の実施例を示す。研磨は450mlの研磨組成液を使用して、1枚のウェーハを4時間研磨し、30分目、60分目、90分目、120分目、180分目、最終240分目で、研磨組成物のpHを測定し、ウェーハ重量から研磨速度を測定した。結果は表3に示した。実施例13のpHは比較例7と比べて240分まで変化が少なく、研磨速度も高い値を保っている。
【表3】
Figure 0004247955
【発明の効果】
以上の説明で示される通り、本発明は、平均一次粒子径が30〜200nmの範囲にある酸化珪素粒子を5〜40重量%含有する水性コロイド溶液より成り、リン酸塩化合物を酸化珪素1Kg当たり、リン酸として0.01〜0.5モル含み、pH9.0〜11.0の範囲でpHが緩衝作用を呈する緩衝溶液として調整されたことを特徴とする研磨用組成物を使用することにより、高い研磨速度にかかわらず、良好な表面状態を得られる事が判明した。本発明の研磨組成物を使いタンタル酸リチウム単結晶ウェーハを研磨表面の品質を落とさず、安定に高速研磨する事が出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a precise polishing composition for hard and brittle materials or a precise polishing method for hard and brittle materials, and in particular, precisely grinds the surface of hard and brittle materials such as lithium tantalate single crystal materials and lithium niobate single crystal materials. The present invention relates to a precision polishing composition for hard and brittle materials used for processing, and a method for precisely polishing and finishing such hard and brittle materials using the composition.
[0002]
[Prior art]
Conventionally, surface acoustic wave devices using surface acoustic waves generated by piezoelectric effects in piezoelectric bodies have been widely used as electronic components such as television intermediate frequency filters and resonators. Various piezoelectric materials such as piezoelectric ceramics and piezoelectric thin films have been studied as materials for piezoelectric wafers constituting surface wave devices. In particular, in recent years, lithium tantalate single crystal materials and lithium niobate materials have been studied. Since hard and brittle materials such as single crystal materials have excellent characteristics, they are widely adopted.
In a surface acoustic wave device wafer made of such a hard and brittle material, the surface on which the electrode is photo-printed is usually subjected to precision polishing, and the surface is made into a mirror surface. Specifically, using a surface plate with an abrasive cloth made of polyurethane or the like, while rotating the surface plate, supplying slurry-like abrasive onto the surface of the abrasive cloth, By pressing the wafer against the surface of the polishing cloth, the surface of the wafer is polished so that a precision polishing process is performed.
[0003]
In this precision polishing process, a technique of applying a polishing material for silicon wafer containing colloidal silica as an abrasive component to polishing of a wafer made of a hard and brittle material has been adopted. Therefore, unlike a silicon wafer, polishing of a wafer made of a hard and brittle material requires a long time because the polishing rate is low. Moreover, such an abrasive is generally used repeatedly by circulating a certain amount thereof for economic reasons, and in such use, the polishing rate decreases with time, and a predetermined time. Every time, it becomes necessary to replace some of the abrasives with new ones, or to replace all of them with new ones after a predetermined polishing time. For this reason, there existed a problem that there existed a malfunction in work efficiency and workability | operativity, and the cost concerning an abrasive | polishing material and an installation became expensive. Thus, in the colloidal silica abrasive, the polishing rate is high and the polishing rate can be kept constant over a long period of time while maintaining the characteristic that the accuracy of the polishing surface can be achieved to a high degree. Is requested.
[0004]
Many improvement of the abrasive | polishing agent for silicon wafers has been proposed. In US Pat. No. 3,328,141, the polishing rate is reduced by setting the pH of the suspension within the range of 10.5 to 12.5. Increasing is disclosed. U.S. Pat. No. 4,169,337 discloses adding amines to the polishing composition. JP-A-2-158684 discloses a polishing composition comprising water, colloidal silica, a water-soluble polymer having a molecular weight of 100,000 or more, and a water-soluble salt. Further, JP-A-5-154760 discloses a polishing method using a polishing composition containing 10 to 80% by weight of piperazine, which is a kind of water-soluble amine, based on silica sol or silica gel of silica gel.
[0005]
In these disclosed methods, various additives are added to a slurry in which fine silica particles are dispersed in an alkaline mother liquor or colloidal silica to increase the dispersibility of the abrasive or to stabilize the processing force. Unlike the silicon wafer, the polishing performance required for polishing a wafer made of a hard and brittle material, that is, a high speed and stable polishing speed, flatness of the polishing surface, etc., can be sufficiently handled. It was not a thing.
In addition, as a method of polishing by repeatedly using an abrasive in polishing silicon dioxide of an interlayer insulating film, Japanese Patent Laid-Open No. 10-172936 discloses colloidal silica to which a basic potassium compound is added. JP-A-10-172937 discloses colloidal silica to which a nitrogen-containing basic compound is added. However, these methods have achieved the objective of simply not using sodium, which causes device contamination, but the polishing rate is insufficient for polishing a wafer made of a hard and brittle material.
[0006]
In JP-A-11-315273, JP-A-11-302635, JP-A-11-302634, and JP-A-2000-158329, the logarithm of the reciprocal of the acid dissociation constant is 8.0 to 12.0. Colloidal silica having a buffering action of pH by adding any combination of weak acid and strong base, strong acid and weak base, or weak acid and weak base, using weak acid and / or weak base A composition is disclosed. The use of a buffer solution provides a stable polishing composition with little change in pH due to changes in external conditions and little change in repeated use. However, lithium tantalate single crystal materials and lithium niobate single crystals are provided. In order to polish the material, the polishing rate is low, and further improvement has been desired.
[0007]
[Problems to be solved by the invention]
In view of the problems of the above-described conventional polishing composition, the present inventors have conducted intensive research and are composed of an aqueous colloidal solution containing silicon oxide particles having a specific particle size, including a phosphate compound, In addition, the present inventors have found that a high polishing rate can be stably achieved by using a polishing composition having a pH buffering action, and completed the present invention. An object of the invention is to provide a polishing composition having a high polishing rate and capable of achieving stable polishing even in repeated use, and to provide a polishing method using the polishing composition.
[0008]
[Means for Solving the Problems]
The present invention comprises an aqueous colloidal solution containing 5 to 40% by weight of silicon oxide particles having an average primary particle size in the range of 30 to 200 nm, and includes trisodium phosphate, disodium phosphate, monosodium phosphate, and phosphoric acid. A water-soluble phosphate compound comprising at least one selected from 3 potassium, 2 potassium phosphate, 1 potassium phosphate, and a mixed solution phosphate compound obtained by neutralizing phosphoric acid with tetramethylammonium hydroxide ; This is achieved by a polishing composition characterized in that the pH is adjusted as a buffer solution exhibiting a buffering action in the range of 0 to 11.0.
DETAILED DESCRIPTION OF THE INVENTION
[0009]
The fine particles of silicon oxide are divided into a gas phase silicon oxide and a liquid phase silicon oxide in accordance with the production method. As a vapor phase silicon oxide, a slurry in which fumed silica is dispersed in an aqueous medium has been widely used for semiconductor polishing. However, these fine particles have a wide particle size distribution and further aggregate to form secondary particles. Polydisperse system. Liquid phase silicon oxide includes general colloidal silica using water glass as a raw material and high-purity colloidal silica obtained by a hydrolysis method of an organic silicon compound. The colloidal solution of silicon oxide fine particles used in the present invention is this general colloidal silica and high-purity colloidal silica. In particular, general colloidal silica using water glass as a raw material is inexpensive, has a high polishing rate, and is preferably used.
[0010]
The silicon oxide fine particles contained in the colloidal solution used in the present invention are silicon oxide particles having an average primary particle diameter of 30 to 200 nm, preferably 50 to 100 nm. The average primary particle size referred to here is a value obtained by converting a specific surface area measured by a nitrogen adsorption BET method into a diameter of a spherical particle. For BET particle size (specific surface area) of colloidal silica, THE CHEMISTRY OF SILICA Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (P344-354, RALPH K. ILER, A Wiley-Interscience Publication JOHN WILEY & SONS P ) Is described in detail. The calculation formula is: particle diameter (nm) = 2720 / specific surface area (m 2 / g).
[0011]
Use of particles having an average primary particle size of less than 30 nm is not preferable because the colloidal solution tends to aggregate when the electrolyte concentration of the buffer component is increased, the stability as a polishing composition is lowered, and the polishing rate is low. . In addition, the use of particles having an average primary particle size of 200 nm or more requires filtration removal of polishing debris and pad debris when circulating for use in polishing a plurality of sheets. Separation becomes difficult. In other applications, coarse particles settle and it is difficult to ensure stability of the product over time, and it is disadvantageous in terms of price.
[0012]
The silicon oxide particles of colloidal silica may be monodispersed particles having a single particle size or polydispersed particles in which particles of a plurality of particle sizes are mixed. As used herein, monodispersion means number average diameter (Dn) and volume average diameter (Dv) or weight measured by a general colloidal particle diameter measuring method such as electron microscopy, centrifugal sedimentation, or laser light scattering. It is defined that the ratio (Dv / Dn) or (Dw / Dn) of the average diameter (Dw) is in the range of 1.00 to 1.50. Monodispersed colloidal silica includes “Silica Doll” manufactured by Nippon Chemical Industry Co., Ltd., “TCSOL703” manufactured by Tama Chemical Industry Co., Ltd., “Ultra High Purity Colloidal Silica PL-7” manufactured by Fuso Chemical Industry Co., Ltd. . Polydispersed colloidal silica includes DuPont Air Products Nano Materials L.M. L. C. “Syton”, “Mazin”, “Ascend”, etc.
[0013]
It is important that the silicon oxide concentration is 5 to 40% by weight during actual polishing, and a more preferable range is 10 to 25% by weight. When the concentration of silicon oxide at the time of polishing is less than 5% by weight, the polishing processing speed becomes low and it is not practical. If the silicon oxide concentration at the time of polishing is increased, the polishing rate itself increases, but if it exceeds about 40% by weight, the viscosity of the polishing composition increases during polishing, and a stable polishing rate cannot be obtained.
[0014]
Furthermore, in the present invention, it is necessary that the polishing composition contains a water-soluble phosphate compound. The water-soluble phosphate compound is not particularly limited, but trisodium phosphate, disodium phosphate, monosodium phosphate, tripotassium phosphate, dipotassium phosphate, monopotassium phosphate and phosphoric acid are converted to tetramethyl hydroxide. A mixed solution neutralized with ammonium can be used. The main point is that phosphate ions exist in the pH range described later. The phosphate compound is preferably contained as phosphoric acid in an amount of 0.01 to 0.5 mol (mol / Kg-SiO2), and 0.03 to 0.2 mol / Kg-SiO2 per 1 kg of silicon oxide. Is more preferable.
When the phosphate compound is less than 0.01 mol / Kg-SiO2, a sufficient polishing rate cannot be obtained, and when it is more than 0.5 mol / Kg-SiO2, the stability of the colloid cannot be ensured and a stable polishing rate is obtained. This will cause scratches and pits.
It is essential that the phosphate is a so-called normal phosphate, and there is no effect with the condensed phosphate.
[0015]
In the present invention, it is important that the polishing composition is in the range of pH 9.0 to 11.0. More preferably, it is in the range of pH 9.5 to 10.5.
When the pH is 9.0 or less, the polishing rate is remarkably lowered and deviates from the practical range. Moreover, when pH becomes 11.0 or more, stability of polishing composition will fall and a viscosity will increase during grinding | polishing. In addition, this pH should not easily change due to possible changes in external conditions such as friction, heat, contact with outside air, or mixing with other components. It is a necessary condition that the composition solution itself is a so-called buffering solution having a small pH change range with respect to a change in external conditions.
[0016]
The water-soluble phosphate compound has a buffering ability of pH, but in order to make the pH more stable in the range of pH 9.0 to 11.0, a buffer solution is strongly formed in the range of pH 9.0 to 11.0. It is also preferable to use the components in combination.
The ion forming the strongly buffered solution in the range of PH9.0~11.0, cations have mixtures or while quaternary ammonium ions and alkali metal ions, anions of carbonate ion and bicarbonate ion It is a mixture, borate ion, or phenol, or a mixture thereof. Particularly preferred is a mixture of carbonate ions and bicarbonate ions, or borate ions.
[0017]
In general, it is convenient to prepare a high-concentration composition having a silicon oxide concentration of 25 to 65% and dilute it with water or a mixture of water and an organic solvent. The high-concentration composition lacks any of the above essential components other than silicon oxide, and can be added at the time of dilution.
In order to improve the physical properties of the polishing composition of the present invention, a surfactant, a dispersant and the like can be used in combination. The polishing composition of the present invention is basically an aqueous solution, but an organic solvent may be added.
[0018]
A second object of the present invention is to apply a workpiece such as a wafer to a polishing apparatus having a rotatable surface plate in which a polishing cloth made of synthetic resin foam, synthetic leather, nonwoven fabric or the like is attached to both upper and lower surfaces or one surface. This is achieved by a method of polishing the workpiece using the above-described polishing composition by placing and pressing and rotating both or one of the surface plate and the workpiece.
[0019]
【Example】
Next, the polishing composition of the present invention and the polishing method using the same will be specifically described with reference to examples and comparative examples, but the present invention is not particularly limited thereto.
[0020]
Examples 1-5 and Comparative Examples 1-3 show examples of surface polishing of lithium tantalate single crystal wafers. A polishing test was conducted using the polishing composition adjusted to the composition shown in the table.
In the examples, colloidal silica having a silicon oxide concentration of 40% and an average primary particle diameter of 40 nm is “Silica Doll 40G” manufactured by Nippon Chemical Industry Co., Ltd., and the silicon oxide concentration is 40% and the colloidal silica having an average primary particle diameter of 80 nm is used. Used “Silica Dole 40G80” manufactured by Nippon Chemical Industry Co., Ltd., and “Silica Dole 40G-120” was used for colloidal silica having a silicon oxide concentration of 40% and an average primary particle size of 120 nm. As a colloidal silica having an average primary particle diameter of 20 nm at 40%, “Silica Dole 40” manufactured by Nippon Chemical Industry Co., Ltd. was used. Other colloidal silica having an average primary particle size was produced from water glass.
Dipotassium hydrogen phosphate manufactured by Nippon Chemical Industry Co., Ltd. was used as dipotassium hydrogen phosphate.
[0021]
A commercially available 20% aqueous solution was used as tetramethylammonium hydroxide (hereinafter abbreviated as TMAH). Further, the TMAH aqueous solution was neutralized with carbon dioxide gas to prepare tetramethylammonium hydrogen carbonate (hereinafter abbreviated as TMA2CO3). The creation method was as follows. A 20% TMAH aqueous solution was put into a 500 ml gas washing bottle, carbon dioxide was finely bubbled for 12 hours, and absorbed in the TMAH aqueous solution to obtain a TMA2CO3C solution. Carbonation was quantified by neutralization titration with dilute hydrochloric acid and calculated from the inflection point of the titration curve. The degree of neutralization was 97%.
Reagents such as sodium carbonate, sodium tetraborate decahydrate, potassium hydroxide, and potassium bicarbonate were used to form a pH buffer solution.
[0022]
The polishing conditions were mirror polishing by the following method.
Polishing device: Maruto Co., Ltd. Desktop small polishing machine Doctor wrap surface plate rotation speed: 100 rpm
Polishing cloth: SUBA600 (Rodel Nitta)
Polishing composition flow rate: 15 ml / min Processing load: 350 gf / cm 2
Processing time: 100 minutes Workpiece: 25 mm Square polishing rate was determined from the weight difference before and after polishing of the lithium tantalate single crystal wafer and converted to μm / min. The pH of the polishing composition was measured using a pH meter. For the evaluation of the polished surface, the surface state was observed with the naked eye under a condenser lamp.
[0023]
Examples 1 to 6 and Comparative Examples 1 to 3: Surface polishing of a lithium tantalate single crystal wafer using colloidal silica having an average primary particle diameter of 80 nm and mainly changing the silicon oxide concentration and phosphate concentration An example is shown. As shown in Table 1, good polishing performance was obtained in the examples, but good polishing performance was not obtained in Comparative Examples 1 to 3 in which no buffer composition was formed. In particular, the surface conditions of Examples 1 to 6 were good.
[Table 1]
Figure 0004247955
[0024]
Examples 7 to 12 and Comparative Examples 4 to 6: Surface polishing of lithium tantalate single crystal wafers when the silicon oxide concentration and the phosphate concentration are used constant and the average primary particle diameter of colloidal silica is mainly changed. Examples will be shown.
As shown in Table 2, good polishing performance was obtained in Examples 7 to 12, but good polishing performance was not obtained in Comparative Examples 4 to 6 in which no buffer composition was formed. In particular, the polishing rates of Comparative Examples 4 to 6 were lower than those of Examples 7 to 12.
[0025]
[Table 2]
Figure 0004247955
[0026]
Example 13 and Comparative Example 7: An example of surface polishing of a lithium tantalate single crystal wafer using the polishing composition liquids of Example 3 and Comparative Example 1 in circulation is shown. Polishing is performed using 450 ml of a polishing composition liquid, and a single wafer is polished for 4 hours, and then the polishing composition is obtained at 30 minutes, 60 minutes, 90 minutes, 120 minutes, 180 minutes, and finally 240 minutes. The pH of the product was measured, and the polishing rate was measured from the wafer weight. The results are shown in Table 3. The pH of Example 13 is less changed up to 240 minutes than that of Comparative Example 7, and the polishing rate is kept high.
[Table 3]
Figure 0004247955
【The invention's effect】
As shown in the above description, the present invention is composed of an aqueous colloidal solution containing 5 to 40% by weight of silicon oxide particles having an average primary particle size in the range of 30 to 200 nm, and the phosphate compound is added to 1 kg of silicon oxide. By using a polishing composition characterized in that it contains 0.01 to 0.5 mol of phosphoric acid and the pH is adjusted as a buffer solution exhibiting a buffering action in the range of pH 9.0 to 11.0. It has been found that a good surface condition can be obtained regardless of the high polishing rate. The polishing composition of the present invention can be used to stably and rapidly polish a lithium tantalate single crystal wafer without deteriorating the quality of the polished surface.

Claims (4)

平均一次粒子径が30〜200nmの範囲にあるコロイダルシリカを5〜40重量%含有する水性コロイド溶液より成り、リン酸3ナトリウム、リン酸2ナトリウム、リン酸1ナトリウム、リン酸3カリウム、リン酸2カリウム、リン酸1カリウム、リン酸を水酸化テトラメチルアンモニウムで中和した混合溶液リン酸塩化合物から選ばれる少なくとも1種からなる水溶性リン酸塩化合物を酸化珪素1Kg当たり、リン酸として0.01〜0.5モル含み、pH9.0〜11.0の範囲でpHが緩衝作用を呈する緩衝溶液として調整されたことを特徴とする硬脆材料用研磨用組成物。An aqueous colloidal solution containing 5 to 40% by weight of colloidal silica having an average primary particle size in the range of 30 to 200 nm , comprising trisodium phosphate, disodium phosphate, monosodium phosphate, tripotassium phosphate, phosphoric acid At least one water-soluble phosphate compound selected from a mixed solution phosphate compound obtained by neutralizing 2 potassium, 1 potassium phosphate, and phosphoric acid with tetramethylammonium hydroxide is 0 as phosphoric acid per 1 kg of silicon oxide. A polishing composition for hard and brittle materials , comprising 0.01 to 0.5 mol and having a pH adjusted as a buffer solution in a pH range of 9.0 to 11.0. pH9.0〜11.0の範囲でpHが緩衝作用を呈する緩衝溶液を形成する成分として、陽イオンが四級アンモニウムイオンとアルカリ金属イオンの混合物もしくはその一方であり、陰イオンが炭酸イオンと炭酸水素イオンの混合物もしくはホウ酸イオンであることを特徴とする請求項第1項記載の硬脆材料用研磨用組成物。As a component that forms a buffer solution having a pH buffering action in the range of pH 9.0 to 11.0, the cation is a mixture of quaternary ammonium ions and alkali metal ions or one of them, and the anions are carbonate ions and carbonates. The polishing composition for hard and brittle materials according to claim 1, which is a mixture of hydrogen ions or borate ions. 上下両面あるいは片面に、合成樹脂発泡体、合成皮革あるいは不織布等からなる研磨布を貼付した回転可能な定盤を有する研磨装置に、被加工物を載置押圧し、前記定盤及び被加工物の双方あるいは一方を回転させながら、前記請求項第1項または第2項記載の研磨用組成物を用いて、被加工物を研磨することを特徴とする硬脆材料の研磨方法。The workpiece is placed and pressed on a polishing apparatus having a rotatable surface plate with a polishing cloth made of synthetic resin foam, synthetic leather, nonwoven fabric, or the like on both upper and lower surfaces or one surface, and the surface plate and the workpiece. A method for polishing a hard and brittle material, comprising polishing the workpiece using the polishing composition according to claim 1 or 2 while rotating both or one of the above. 前記硬脆材料が、タンタル酸リチウム単結晶材料またはニオブ酸リチウム単結晶材料である請求項第項記載の研磨方法。The polishing method according to claim 3 , wherein the hard and brittle material is a lithium tantalate single crystal material or a lithium niobate single crystal material.
JP2002123771A 2002-04-25 2002-04-25 Abrasive composition for hard and brittle materials and polishing method using the same Expired - Fee Related JP4247955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123771A JP4247955B2 (en) 2002-04-25 2002-04-25 Abrasive composition for hard and brittle materials and polishing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123771A JP4247955B2 (en) 2002-04-25 2002-04-25 Abrasive composition for hard and brittle materials and polishing method using the same

Publications (2)

Publication Number Publication Date
JP2003313543A JP2003313543A (en) 2003-11-06
JP4247955B2 true JP4247955B2 (en) 2009-04-02

Family

ID=29538969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123771A Expired - Fee Related JP4247955B2 (en) 2002-04-25 2002-04-25 Abrasive composition for hard and brittle materials and polishing method using the same

Country Status (1)

Country Link
JP (1) JP4247955B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291665B2 (en) * 2003-10-15 2009-07-08 日本化学工業株式会社 Abrasive composition for siliceous material and polishing method using the same
JP4808394B2 (en) * 2004-10-29 2011-11-02 株式会社フジミインコーポレーテッド Polishing composition
JP5062581B2 (en) * 2005-03-28 2012-10-31 独立行政法人理化学研究所 Lithium tantalate substrate, method for producing the same, and surface treatment method for lithium tantalate substrate
CN107075345B (en) * 2014-10-14 2019-03-12 花王株式会社 Sapphire plate grinding Liquid composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172937A (en) * 1996-12-05 1998-06-26 Fujimi Inkooporeetetsudo:Kk Composition for polishing
JP2001093866A (en) * 1999-09-20 2001-04-06 Speedfam Co Ltd Oxide single-crystal wafer processing/polishing composition and method of polishing the oxide single- crystal wafer
JP4657408B2 (en) * 1999-10-13 2011-03-23 株式会社トクヤマ Metal film abrasive
JP2001152134A (en) * 1999-11-22 2001-06-05 Speedfam Co Ltd Composition and process for grinding oxide single crystal wafer
JP4156175B2 (en) * 2000-05-31 2008-09-24 山口精研工業株式会社 Precision polishing composition for lithium tantalate / lithium niobate single crystal materials
KR100398141B1 (en) * 2000-10-12 2003-09-13 아남반도체 주식회사 Chemical mechanical polishing slurry composition and planarization method using same for semiconductor device

Also Published As

Publication number Publication date
JP2003313543A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
KR100429940B1 (en) Improved ceria powder
US5264010A (en) Compositions and methods for polishing and planarizing surfaces
JP4983603B2 (en) Cerium oxide slurry, cerium oxide polishing liquid, and substrate polishing method using the same
JP6273281B2 (en) How to polish sapphire surface
JP3437900B2 (en) Abrasive
JP4113282B2 (en) Polishing composition and edge polishing method using the same
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
JP4963825B2 (en) Polishing silica sol and polishing composition containing the same
JP4113288B2 (en) Polishing composition and silicon wafer processing method using the same
JP4163785B2 (en) Polishing composition and polishing method
JP2002338232A (en) Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
JP2003297777A (en) Composition for polishing, method for modifying the same and method for polishing the same
KR101357328B1 (en) Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
JP4247955B2 (en) Abrasive composition for hard and brittle materials and polishing method using the same
JPWO2005090511A1 (en) Polishing composition and polishing method
JP4291665B2 (en) Abrasive composition for siliceous material and polishing method using the same
JP3754986B2 (en) Abrasive composition and method for preparing the same
JP2011161570A (en) Abrasive and polishing method
JP4346712B2 (en) Wafer edge polishing method
JP5464834B2 (en) Polishing silica sol, polishing composition, and method for producing polishing silica sol
JP2001118815A (en) Polishing composition for polishing semiconductor wafer edge, and polishing machining method
JP2001093866A (en) Oxide single-crystal wafer processing/polishing composition and method of polishing the oxide single- crystal wafer
JP2001152134A (en) Composition and process for grinding oxide single crystal wafer
JP4396963B2 (en) Polishing composition, method for preparing the same, and method for polishing a wafer using the same
JP2001277106A (en) Polishing method and polishing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4247955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees