JP2001118815A - Polishing composition for polishing semiconductor wafer edge, and polishing machining method - Google Patents

Polishing composition for polishing semiconductor wafer edge, and polishing machining method

Info

Publication number
JP2001118815A
JP2001118815A JP30032499A JP30032499A JP2001118815A JP 2001118815 A JP2001118815 A JP 2001118815A JP 30032499 A JP30032499 A JP 30032499A JP 30032499 A JP30032499 A JP 30032499A JP 2001118815 A JP2001118815 A JP 2001118815A
Authority
JP
Japan
Prior art keywords
polishing
particle diameter
polishing composition
semiconductor wafer
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30032499A
Other languages
Japanese (ja)
Inventor
Hiroaki Tanaka
弘明 田中
Akitoshi Yoshida
明利 吉田
Yoshihisa Ogawa
佳久 小川
Yusuke Inoue
裕介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SpeedFam Co Ltd
Original Assignee
SpeedFam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SpeedFam Co Ltd filed Critical SpeedFam Co Ltd
Priority to JP30032499A priority Critical patent/JP2001118815A/en
Publication of JP2001118815A publication Critical patent/JP2001118815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing composition for effectively and stably polishing and machining the edge of a semiconductor wafer that is made of a silicon wafer, a compound wafer, or the like. SOLUTION: In the polishing composition for polishing a semiconductor wafer edge, an average primary particle diameter being calculated by full sphere conversion from a specific surface area being measured by the BET method ranges from 8 to 50 nm, an average secondary particle diameter B being measured by the laser scattering method using a micro track UPA ranges from 12 to 200 nm, a ratio B/A of the average primary particle diameter A to the average secondary particle diameter B ranges from 1.4 to 12, the concentration of a silicon oxide particle for entire solution is 2-30 wt.% in a colloidal solution, and also a buffering operation is achieved between pH 8-11 containing a buffering solution where a weak acid in that the logarithmic value of the inverse number of an acid dissociation constant at 25 deg.C ranges from 8.0 to 12.5 and a strong base are combined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、シリコンウェーハ
あるいは化合物ウェーハ等よりなる半導体ウェーハのエ
ッジ部分の研磨加工を行なうウェーハエッジ研磨用研磨
組成物に関する。更に本発明は前記ウェーハエッジ研磨
用研磨組成物を使用して半導体ウェーハのエッジ部分の
鏡面加工を行なう方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing composition for polishing the edge of a semiconductor wafer such as a silicon wafer or a compound wafer. Furthermore, the present invention relates to a method for mirror-finishing an edge portion of a semiconductor wafer using the polishing composition for polishing a wafer edge.

【0002】[0002]

【従来の技術】シリコン単結晶等半導体素材を原材料と
したIC、LSIあるいは超LSI等の電子部品は、シ
リコンあるいはその他の化合物半導体の単結晶のインゴ
ットを薄い円板状にスライスしたウェーハに多数の微細
な電気回路を書き込み分割した小片状の半導体素子チッ
プを基に製造されるものである。インゴットからスライ
スされたウェーハは、ラッピング、エッチング、更には
ポリッシングという工程を経て、少なくともその片面が
鏡面に仕上げられた鏡面ウェーハに加工される。ウェー
ハは、その後のデバイス工程にてその鏡面仕上げされた
表面に微細な電気回路が形成されて行くのであるが、半
導体素子チップに分割されるまではウェーハは最初の円
板状の形状を保ったまま加工されるのであり、各加工程
の間には洗浄、乾燥、搬送等の工程が入る。その間ウェ
ーハの外周側面エッジの形状が切り立ったままでかつ未
加工の粗な状態の面であると、そこが各工程中に装置や
他物体と接触し微小破壊が起こり微細粒子が発生した
り、その粗な状態の面の中に汚染粒子を巻き込み、その
後の工程でそれが散逸して精密加工を施した面を汚染
し、製品の歩留まりや品質に大きな影響を与えたりする
ことが多い。これを防止するために、ウェーハ加工の初
期段階でエッジ部分の面取り(べべリング)を行ない更
にその部分を鏡面仕上げ(エッジポリッシング)するこ
とが一般に行なわれている。
2. Description of the Related Art Electronic components such as ICs, LSIs, and super LSIs, which are made of a semiconductor material such as a silicon single crystal as a raw material, are formed on a wafer obtained by slicing a silicon or other compound semiconductor single crystal ingot into a thin disk shape. It is manufactured based on a small semiconductor element chip obtained by writing and dividing a fine electric circuit. The wafer sliced from the ingot is processed into a mirror-finished wafer having at least one surface mirror-finished through a process of lapping, etching, and polishing. In the subsequent device process, fine electric circuits are formed on the mirror-finished surface in the subsequent device process, but the wafer kept the original disk shape until it was divided into semiconductor element chips It is processed as it is, and steps such as cleaning, drying, and transporting are inserted between each processing step. During that time, if the shape of the outer peripheral side edge of the wafer is a steep and unprocessed rough surface, it contacts equipment and other objects during each process, causing microdestruction and generating fine particles, Contaminant particles are often entangled in rough surfaces, which are dissipated in subsequent steps and contaminate the precision-machined surfaces, greatly affecting product yield and quality. In order to prevent this, it is a common practice to chamfer (bevel) the edge portion at the initial stage of wafer processing and further mirror-finish the edge portion (edge polishing).

【0003】上述のエッジポリッシングは、一般的には
回転可能なドラムの表面に、合成樹脂発泡体、合成皮革
あるいは不織布等からなるポリッシングパッドを貼付し
た研磨加工機に、工作物であるべべリングを施したシリ
コンウェーハ等のエッジ部分を回転させつつ傾斜押圧
し、コロイダルシリカを主成分とした研磨用組成物溶液
を供給しつつ、エッジ部分の研磨加工を行なう方法で行
われる。しかして、この際用いられる研磨用組成物はウ
ェーハの表面ポリッシングに用いられるものと同等のも
のが用いられる。
[0003] In the edge polishing described above, generally, a beveling, which is a workpiece, is attached to a polishing machine in which a polishing pad made of synthetic resin foam, synthetic leather, nonwoven fabric, or the like is attached to a rotatable drum surface. The edge portion of the applied silicon wafer or the like is inclinedly pressed while rotating, and the edge portion is polished while supplying a polishing composition solution containing colloidal silica as a main component. The polishing composition used here is the same as that used for polishing the surface of the wafer.

【0004】研磨用組成物としては、アルカリ成分を含
んだ溶液に微細なコロイド状酸化珪素微粒子を分散した
溶液が一般的に使用される。この加工は、その前の工程
までの、例えばダイヤモンド砥石を使用したり、あるい
は硬質なアルミナ系砥粒を用いた所謂機械的な加工とは
異なるものであって、その成分であるアルカリの化学的
作用、具体的にはシリコンウェーハ等被加工物に対する
浸蝕性を応用したものである。すなわち、アルカリの腐
食性により、ウェーハ等被加工物表面に薄い軟質の浸蝕
層が形成される。その薄層を微細なコロイド状酸化珪素
粒子の機械的作用により除去してゆくことにより加工が
進むのである。
As a polishing composition, a solution in which fine colloidal silicon oxide fine particles are dispersed in a solution containing an alkali component is generally used. This processing is different from the so-called mechanical processing using, for example, a diamond grindstone or using hard alumina-based abrasive grains up to the previous step, and the chemical processing of the alkali as its component is performed. The function, specifically, the erosion of a workpiece such as a silicon wafer is applied. That is, a thin soft erosion layer is formed on the surface of a workpiece such as a wafer due to the corrosiveness of the alkali. Processing proceeds by removing the thin layer by mechanical action of fine colloidal silicon oxide particles.

【0005】このような加工においては、コロイダルシ
リカの形状は重要なファクターとなる。すなわち、被加
工物表面はアルカリによって腐食され薄層が形成されて
ゆくのであるが、この薄層の除去速度はコロイダルシリ
カの形状によって大きく変化する。コロイダルシリカの
粒子径を大きくすれば、除去速度は速くなるが、研磨面
にスクラッチが発生しやすくなる。ゆえに、その粒子は
適度なサイズを有し、容易に破壊したり、あるいは高次
に凝集してゲル化するものであってはならない。すなわ
ち、酸化珪素粒子はアルカリにより形成された浸蝕層を
機械的作用により効果的に除去してゆくものである。従
って、除去後の新しい研磨面に何らかの影響を与えるよ
うなものであってはならないのである。
In such processing, the shape of colloidal silica is an important factor. That is, the surface of the workpiece is corroded by the alkali to form a thin layer, and the removal rate of the thin layer greatly changes depending on the shape of the colloidal silica. If the particle diameter of the colloidal silica is increased, the removal rate is increased, but scratches are easily generated on the polished surface. Therefore, the particles must be of a suitable size and must not be easily broken or aggregated and gelled to a higher degree. That is, the silicon oxide particles effectively remove the erosion layer formed by the alkali by mechanical action. Therefore, it must not affect the new polished surface after the removal.

【0006】従来より様々な研磨組成物がウェーハ等の
研磨剤として提案されている。たとえば、米国特許第3
170273号公報では、シリカゾル及びシリカゲルが
研磨剤として提案されている。さらに米国特許第332
8141号公報では、該懸濁液のpHを10.5〜1
2.5の範囲内にすることにより、研磨速度が増大する
事が開示されている。米国特許第4169337号公報
では、アミン類を研磨用組成物に添加することが開示さ
れている。特開平2−158684号公報には、水、コ
ロイダルシリカ、分子量10万以上の水溶性高分子、水
溶性塩類からなる研磨用組成物が開示されている。更に
特開平5−154760号公報では、水溶性アミンの一
種であるピペラジンを、シリカゾルまたはシリカゲルの
シリカ基準にて、10〜80重量%含む研磨用組成物を
使用した研磨方法を開示している。
Conventionally, various polishing compositions have been proposed as polishing agents for wafers and the like. For example, US Pat.
In Japanese Patent No. 170273, silica sol and silica gel are proposed as abrasives. See also US Pat.
No. 8141 discloses that the pH of the suspension is from 10.5 to 1
It is disclosed that the polishing rate is increased by setting the ratio within the range of 2.5. U.S. Pat. No. 4,169,337 discloses adding amines to the polishing composition. JP-A-2-158684 discloses a polishing composition comprising water, colloidal silica, a water-soluble polymer having a molecular weight of 100,000 or more, and water-soluble salts. Further, Japanese Patent Application Laid-Open No. 5-154760 discloses a polishing method using a polishing composition containing 10 to 80% by weight of piperazine, which is a kind of water-soluble amine, based on silica of silica sol or silica gel.

【0007】シリコンウェーハあるいは化合物ウェーハ
等よりなる半導体ウェーハのエッジ部分の研磨加工と、
シリコンウェーハあるいは化合物ウェーハ等の平面ポリ
ッシング条件を比較すると、後者に比較し前者は、エッ
ジ部分に接触するポリッシングパッドの時間が短いた
め、加工面にかかる圧力を高く、かつ加工面に対するポ
リッシングパッドの線速度も速くしてある。すなわち、
平面ポリッシングに比べ、エッジ部分の研磨加工工程は
大変過酷な条件であるといえる。半導体ウェーハのエッ
ジ部分は1000番程度のべべリング用砥石で研磨され
た状態で供給されるので、その面粗さは大変粗い。この
ような加工条件下において、従来の半導体ウェーハ等の
平面ポリッシング用研磨用組成物を用いても十分な研磨
速度と面粗さは得られない。
Polishing an edge portion of a semiconductor wafer such as a silicon wafer or a compound wafer;
When comparing the planar polishing conditions of silicon wafers or compound wafers, the former has a shorter polishing pad contact time with the edge part, so the polishing pad has a higher pressure applied to the processing surface, and the line of the polishing pad to the processing surface is shorter than the latter. The speed is also faster. That is,
It can be said that the polishing process of the edge portion is a very severe condition as compared with the planar polishing. Since the edge portion of the semiconductor wafer is supplied in a state of being polished with a # 1000 beveling grindstone, its surface roughness is very rough. Under such processing conditions, a sufficient polishing rate and surface roughness cannot be obtained even with a conventional polishing composition for planar polishing of a semiconductor wafer or the like.

【0008】[0008]

【発明が解決しようとする課題】本発明者等は、前述の
従来の研磨用組成物及び研磨方法が持つ問題点に鑑み、
研磨用組成物溶液として、微細な酸化珪素の砥粒を含む
コロイド、即ちコロイダルシリカの水溶液であって、平
均一次径が8〜50nm、平均二次粒子径が12〜20
0nmであり、かつ平均一次粒子径と平均二次粒子径の
比、平均二次粒子径/平均一次粒子径が1.4〜12の
間にある酸化珪素粒子を2〜30重量%を含むコロイド
溶液からなり、pHが8〜11の間でpHを緩衝する作
用を有する研磨用組成物を用いることにより、シリコン
ウェーハ等の半導体ウェーハのエッジ部分の鏡面研磨加
工が効果的に行なえることを見出し、本発明を完成する
に到ったものであり、その目的と成す所は、研磨速度が
速く、かつ良好な面粗さが得られる半導体ウェーハのエ
ッジ部分の鏡面研磨加工を行なうウェーハエッジ研磨用
研磨組成物を提供することにある。さらに本発明の他の
目的は、前述のウェーハエッジ研磨用研磨組成物を用い
た、半導体ウェーハのエッジ部分の鏡面研磨方法を提供
することにある。
SUMMARY OF THE INVENTION In view of the problems of the above-mentioned conventional polishing composition and polishing method, the present inventors,
As the polishing composition solution, a colloid containing fine silicon oxide abrasive grains, that is, an aqueous solution of colloidal silica, having an average primary diameter of 8 to 50 nm and an average secondary particle diameter of 12 to 20
A colloid containing 0 to 30% by weight of silicon oxide particles having a ratio of average primary particle diameter to average secondary particle diameter, average secondary particle diameter / average primary particle diameter of 1.4 to 12; It has been found that the mirror polishing of the edge portion of a semiconductor wafer such as a silicon wafer can be effectively performed by using a polishing composition comprising a solution and having an action of buffering the pH between 8 and 11. The purpose of the present invention is to achieve a high polishing rate, and a wafer edge polishing for performing a mirror polishing of an edge portion of a semiconductor wafer capable of obtaining a good surface roughness. It is to provide a polishing composition. Still another object of the present invention is to provide a method for mirror-polishing an edge portion of a semiconductor wafer using the above-described polishing composition for polishing a wafer edge.

【0009】[0009]

【課題を解決するための手段】上述の目的は、BET法
により測定した比表面積より真球換算で算出した平均一
次粒子径Aが8〜50nmであり、マイクロトラックU
PAによるレーザー散乱法で測定した平均二次粒子径B
が12〜200nmの範囲にあり、かつ前記平均一次粒
子径Aと平均二次粒子径Bの比B/Aが1.4から12
の範囲にあって、更に溶液全体に対する濃度が2〜30
重量%である酸化珪素粒子のコロイド溶液であり、か
つ、25℃における酸解離定数の逆数の対数値が8.0
〜12.5の弱酸および強塩基を組み合わせた緩衝溶液
を含むことによって、pH8〜11の間で緩衝作用を有
することを特徴とする半導体ウェーハエッジ研磨用研磨
組成物にて達成される。本発明にいう半導体ウェーハと
は、シリコンウェーハ、化合物ウェーハで表面に被膜を
施していない所謂ベアーウェーハのほか、表面に二酸化
珪素等の絶縁膜を形成したもの、あるいはポリシリコン
等の半導体膜、更には銅薄膜等の金属導体膜を施したも
のも指す。
An object of the present invention is to provide a microtrack U having an average primary particle diameter A of 8 to 50 nm, calculated as a sphere, from a specific surface area measured by the BET method.
Average secondary particle size B measured by laser scattering method with PA
Is in the range of 12 to 200 nm, and the ratio B / A of the average primary particle diameter A to the average secondary particle diameter B is 1.4 to 12
And the concentration with respect to the whole solution is 2-30.
It is a colloidal solution of silicon oxide particles in weight%, and the logarithm of the reciprocal of the acid dissociation constant at 25 ° C. is 8.0.
By including a buffer solution combining a weak acid and a strong base of 〜12.5, a polishing composition for polishing a semiconductor wafer edge characterized by having a buffering action between pH 8 and 11 is achieved. The semiconductor wafer according to the present invention includes a silicon wafer, a compound wafer, and a so-called bare wafer having no surface coated with a compound wafer, a semiconductor film having an insulating film such as silicon dioxide formed on the surface, or a semiconductor film such as polysilicon. Also refers to those provided with a metal conductor film such as a copper thin film.

【0010】更に本発明の他の目的は、合成樹脂発泡
体、合成皮革あるいは不織布等からなるポリッシングパ
ッドを貼付した回転可能なドラムを有するエッジ研磨加
工機に、被加工体である半導体ウェーハを載置押圧し、
前述の半導体ウェーハエッジ研磨用研磨組成物を供給し
つつ、前記ドラム及び被加工物の双方あるいはその一方
を回転して研磨することを特徴とする半導体ウェーハの
エッジ研磨加工方法にて達成される。
Still another object of the present invention is to mount a semiconductor wafer to be processed on an edge polishing machine having a rotatable drum to which a polishing pad made of synthetic resin foam, synthetic leather or non-woven fabric is attached. Press
The present invention is attained by a method for edge polishing a semiconductor wafer, characterized in that while the polishing composition for polishing an edge of a semiconductor wafer is supplied, both or one of the drum and the workpiece is rotated and polished.

【0011】[0011]

【発明の実施の形態】本発明においては、半導体ウェー
ハエッジ研磨用研磨組成物中に含まれる研磨材をある特
定の粒子径と分布を持った酸化珪素微粒子を使用し、更
にその微粒子を含む母液をある特定のpH範囲で緩衝作
用を有する緩衝液とすることを特徴とするものである。
すなわち、酸化珪素微粒子の平均一次粒子径Aを8〜5
0nmとし、その二次凝集をした平均二次粒子径Bを1
2〜200nmの範囲までに抑制し、更にその一次粒子
径Aと二次粒子径Bとの比率B/Aを1.4から12の
範囲に置くことによって始めて優れたエッジ鏡面加工が
行なわれるのである。かかるサイズの酸化珪素微粒子を
含んだ溶液はコロイド状の溶液を形成する。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a polishing agent contained in a polishing composition for polishing a semiconductor wafer edge is prepared by using silicon oxide fine particles having a specific particle size and distribution, and further comprising a mother liquor containing the fine particles. Is a buffer having a buffering action in a specific pH range.
That is, the average primary particle diameter A of the silicon oxide fine particles is set to 8 to 5
0 nm, and the average secondary particle diameter B of the secondary aggregation is 1
An excellent edge mirror surface processing can be performed only by controlling the primary particle diameter A and the secondary particle diameter B in the range of 1.4 to 12 by controlling the primary particle diameter A to the secondary particle diameter B in the range of 1.4 to 12. is there. A solution containing silicon oxide fine particles of such a size forms a colloidal solution.

【0012】酸化珪素の微粒子は平均一次粒子径が8n
mより小さいとコロイド溶液が凝集し易く研磨用組成物
としての安定性が低下する。また、平均一次粒子径が、
50nm以上の場合、研磨用組成物としての性能に影響
はないが、二次凝集粒子を安定して製造することは難し
い。平均一次粒子径Aと平均二次粒子径Bの比、B/A
が1.4以下の場合、二次凝集していない酸化珪素の微
粒子と研磨速度の差はない。B/Aが12以上の場合、
高次に凝集した酸化珪素の微粒子が生成して、スクラッ
チを生じやすくなる。平均二次粒子径は、200nm以
下が望ましい。平均二次粒子径が、200nmを越える
と、粒子の沈降性が増加し好ましくない。酸化珪素の濃
度は、実際の研磨加工時において2〜30重量%である
ことが望ましい。
The fine particles of silicon oxide have an average primary particle diameter of 8n.
If it is smaller than m, the colloid solution is likely to aggregate and the stability as a polishing composition is reduced. In addition, the average primary particle size,
When it is 50 nm or more, the performance as a polishing composition is not affected, but it is difficult to stably produce the secondary aggregated particles. Ratio of average primary particle diameter A to average secondary particle diameter B, B / A
Is 1.4 or less, there is no difference between the polishing rate and the fine particles of silicon oxide that are not secondary aggregated. When B / A is 12 or more,
Fine particles of silicon oxide aggregated in a high order are generated, and scratches are likely to occur. The average secondary particle diameter is desirably 200 nm or less. If the average secondary particle diameter exceeds 200 nm, the sedimentation of the particles increases, which is not preferable. It is desirable that the concentration of silicon oxide be 2 to 30% by weight during actual polishing.

【0013】本発明に使用されるコロイダルシリカは、
水ガラスより脱イオン化して製造したもの、ヒュームド
シリカを水等に分散させたもの、有機ケイ素化合物を加
水分解して製造したもの等が使用できる。酸化珪素の微
粒子の平均一次粒子径は、酸化珪素微粒子の乾燥物の比
表面積より、真球換算を行うことにより算出した。比表
面積はBET法により測定した。酸化珪素の微粒子の平
均二次粒子径は、マイクロトラックUPA(HONEW
ELL社)レーザー散乱式粒度分布測定装置を利用して
測定を行なった。測定した体積平均粒子径を平均二次粒
子径とした。
The colloidal silica used in the present invention is:
Those produced by deionization from water glass, those obtained by dispersing fumed silica in water or the like, those produced by hydrolyzing an organosilicon compound, and the like can be used. The average primary particle diameter of the silicon oxide fine particles was calculated from the specific surface area of the dried silicon oxide fine particles in terms of a sphere. The specific surface area was measured by the BET method. The average secondary particle diameter of the fine particles of silicon oxide is determined by Microtrac UPA (HONEW
The measurement was performed using a laser scattering particle size distribution analyzer. The measured volume average particle diameter was defined as the average secondary particle diameter.

【0014】本発明においては、安定な研磨力を持続す
るためには、溶液全体のpHを8〜11の範囲に保つこ
とが肝要である。pHが8以下であると研磨速度は著し
く低下し実用の範囲からは外れる。また、pHが11以
上になると、コロイダルシリカが凝集を始めるため研磨
組成物の安定性が低下しこれも実用の範囲から外れる。
そしてまた、このpHは摩擦、熱、外気との接触あるい
は他の成分との混合等、考えられる外的条件により容易
に変化するようなものであってはならない。従って、本
発明においては研磨組成物溶液自体を、外的条件の変化
に対してpH変化の幅が少ない、所謂緩衝作用の強い液
とすることが必要である。緩衝溶液を形成するために
は、25℃における酸解離定数(Ka)の逆数の対数値
(pKa)が8.0〜12.5の範囲にある弱酸および
強塩基を組合わせて使用することが必要である。25℃
における酸解離定数の逆数対数値が8.0以下の場合、
pHを上昇させるために、弱酸及び強塩基を大量に添加
することが必要となるため好ましくない。25℃におけ
る酸解離定数の逆数の対数値が12.5より大きいとp
Hを8〜11の範囲で安定させる大きな緩衝作用を持つ
緩衝溶液を形成することができない。
In the present invention, it is important to maintain the pH of the whole solution in the range of 8 to 11 in order to maintain stable polishing power. When the pH is 8 or less, the polishing rate is remarkably reduced and is out of a practical range. Further, when the pH is 11 or more, colloidal silica starts to agglomerate, so that the stability of the polishing composition is lowered, which is also out of a practical range.
Also, the pH should not be such that it readily changes due to possible external conditions, such as friction, heat, contact with outside air, or mixing with other components. Therefore, in the present invention, it is necessary that the polishing composition solution itself be a liquid having a so-called strong buffering action, which has a small pH change with respect to a change in external conditions. To form a buffer solution, a combination of a weak acid and a strong base having a logarithmic value (pKa) of the reciprocal of the acid dissociation constant (Ka) at 25 ° C. in the range of 8.0 to 12.5 is used. is necessary. 25 ° C
When the reciprocal logarithm of the acid dissociation constant in is 8.0 or less,
In order to raise the pH, it is necessary to add a large amount of a weak acid and a strong base, which is not preferable. If the logarithm of the reciprocal of the acid dissociation constant at 25 ° C. is larger than 12.5, p
It is impossible to form a buffer solution having a large buffering action for stabilizing H in the range of 8 to 11.

【0015】本発明の緩衝作用を有する研磨用組成物溶
液の形成に使用する弱酸としては、炭酸(pKa=6.
35、10.33)、ホウ酸(pKa=9.24)、燐
酸(pKa=2.15、7.20、12.35)類及び
水溶性の有機酸等があげられ、またその混合物であって
もかまわない。また、強塩基としては、アルカリ金属の
水酸化物、四級アンモニウム、アンモニウムなどが使用
できる。本発明で述べる緩衝溶液とは、上述の組合せで
形成され、溶液の中で弱酸が価数の異なるイオンとして
解離している状態または、解離状態と未解離状態が共存
している溶液を示し、少量の酸または、塩基が混入して
もpHの変化が少ないことが特徴である。
The weak acid used for forming the polishing composition solution having a buffering action of the present invention is carbonic acid (pKa = 6.
35, 10.33), boric acid (pKa = 9.24), phosphoric acid (pKa = 2.15, 7.20, 12.35), water-soluble organic acids and the like, and mixtures thereof. It doesn't matter. Further, as the strong base, an alkali metal hydroxide, quaternary ammonium, ammonium or the like can be used. The buffer solution described in the present invention refers to a solution formed in the above-described combination, in which a weak acid is dissociated as an ion having a different valence in the solution, or a solution in which a dissociated state and an undissociated state coexist. It is characterized by little change in pH even if a small amount of acid or base is mixed.

【0016】本発明においては、研磨用組成物溶液の導
電率を高くすることにより、研磨加工速度を著しく向上
することができる。導電率とは液中の電気の通り易さを
示す数値であり、単位長さあたりの電気抵抗値の逆数値
である。本発明においては単位長あたりの導電率の数値
(micro・Siemens)を酸化珪素1重量%当
たりに換算した数値で示す。本発明においては、25℃
における導電率が20mS/m/1%−SiO2以上で
あれば研磨加工速度の向上に対して好ましく、25mS
/m/1%−SiO2以上であれば更に好ましい。導電
率を上昇させる方法としては、次の二方法がある。一つ
は緩衝溶液の濃度を高くする方法、もう一つは塩類を添
加する方法である。緩衝溶液の濃度を高くするには、酸
と塩基のモル比を変えずに濃度のみを高くすればよい。
塩類を添加する方法に用いる塩類は、酸と塩基の組み合
わせより構成されるが、酸としては、強酸、弱酸いずれ
であってもかまわず、鉱酸および、有機酸が使用できそ
の混合物でも良い。塩基としては、強塩基、弱塩基いず
れであっても良く、アルカリ金属の水酸化物、水溶性の
四級アンモニウムの水酸化物、水溶性アミンが使用でき
その混合物であってもかまわない。弱酸と強塩基、強酸
と弱塩基、弱酸と弱塩基の組み合わせで添加する場合
は、緩衝溶液のpHを変化させることがあるため、大量
に添加することは望ましくない。前述の二方法を併用し
てもかまわない。
In the present invention, the polishing rate can be significantly improved by increasing the conductivity of the polishing composition solution. The electrical conductivity is a numerical value indicating the ease of passing electricity in the liquid, and is a reciprocal value of the electric resistance per unit length. In the present invention, the numerical value of the conductivity per unit length (micro-Siemens) is shown as a numerical value converted to 1% by weight of silicon oxide. In the present invention, 25 ° C
Is preferably 20 mS / m / 1% -SiO 2 or more for improving the polishing rate.
/ M / 1% -SiO 2 or more is more preferable. There are the following two methods for increasing the conductivity. One is to increase the concentration of the buffer solution, and the other is to add salts. In order to increase the concentration of the buffer solution, only the concentration needs to be increased without changing the molar ratio between the acid and the base.
The salts used in the method of adding salts are composed of a combination of an acid and a base. The acid may be a strong acid or a weak acid, and a mineral acid or an organic acid may be used, and a mixture thereof may be used. The base may be either a strong base or a weak base, and may be an alkali metal hydroxide, a water-soluble quaternary ammonium hydroxide, or a water-soluble amine, and may be a mixture thereof. When adding a combination of a weak acid and a strong base, a strong acid and a weak base, or a combination of a weak acid and a weak base, the pH of the buffer solution may be changed. The above two methods may be used in combination.

【0017】本発明の研磨用組成物の物性を改良するた
め、界面活性剤、分散剤、沈降防止剤などを併用するこ
とができる。界面活性剤、分散剤、沈降防止剤として
は、水溶性の有機物、無機層状化合物などがあげられ
る。また、本発明の研磨用組成物は水溶液としている
が、有機溶媒を添加してもかまわない。本発明の研磨用
組成物は、研磨時にコロイダルシリカ及び、塩基と添加
剤と水を混合して調製してもよい。また、一般的にはコ
ロイダルシリカとして、15〜65%の高濃度の組成物
を調製しておき、水あるいは、水と有機溶媒の混合物で
希釈して使用することが多い。
In order to improve the physical properties of the polishing composition of the present invention, a surfactant, a dispersant, an antisettling agent and the like can be used in combination. Examples of the surfactant, dispersant, and antisettling agent include water-soluble organic substances and inorganic layered compounds. Although the polishing composition of the present invention is in the form of an aqueous solution, an organic solvent may be added. The polishing composition of the present invention may be prepared by mixing colloidal silica, a base, an additive and water during polishing. In general, a composition having a high concentration of 15 to 65% is prepared as colloidal silica, and is often used after being diluted with water or a mixture of water and an organic solvent.

【0018】エッジポリッシングの場合、一般的には回
転可能なドラムの表面に、合成樹脂発泡体、合成皮革あ
るいは不織布等からなるポリッシングパッドを貼付した
研磨加工機に、ワーク(被加工物)であるべべリングを
施したシリコンウェーハ等のエッジ部分を回転させつつ
傾斜押圧し、研磨用組成物溶液を供給しながら、エッジ
部分の研磨加工を行なう方法で行われる。本発明に用い
るエッジポリッシング用加工機とは、例えばスピードフ
ァム・アイペック社製EP−IV型エッジポリッシュ装置
に示されるようなものであり、表面にポリッシングパッ
ドを貼付した回転可能なドラムと、ワークを把持し回転
し任意の角度で傾斜させる把持部とからなり、該把持部
に取り付けられたワークのエッジ部分を前記ドラムに押
圧し、研磨用組成物の液を供給しながらワークとドラム
の双方を回転せしめ、ワークのエッジ部分の鏡面研磨加
工を行なう。即ち、回転しつつ少しずつ上昇あるいは下
降して位置を変えてゆくドラムに、ワークを回転させな
がら一定の角度で押しあて、研磨組成物の液を加工部分
に滴下しながらポリッシングを行なう。本発明の研磨用
組成物を用いた半導体ウェーハエッジの具体的研磨加工
方法は以下に述べる実施例にて明らかにされよう。
In the case of edge polishing, a work (workpiece) is generally formed on a polishing machine in which a polishing pad made of synthetic resin foam, synthetic leather or non-woven fabric is adhered to the surface of a rotatable drum. The edge portion of a beveled silicon wafer or the like is inclinedly pressed while rotating, and the edge portion is polished while supplying a polishing composition solution. The processing machine for edge polishing used in the present invention is, for example, as shown in an EP-IV type edge polishing device manufactured by Speed Fam Ipec Co., Ltd., and a rotatable drum having a polishing pad attached to the surface, and a work. A grip portion that is gripped, rotated and tilted at an arbitrary angle, and presses an edge portion of the work attached to the grip portion to the drum, and supplies both the work and the drum while supplying a polishing composition liquid. Then, the workpiece is mirror-polished at the edge of the work. That is, the work is rotated and pressed at a fixed angle to a drum that gradually moves up or down to change the position while rotating, and the polishing is performed while the polishing composition liquid is dropped onto the processed portion. The specific method of polishing a semiconductor wafer edge using the polishing composition of the present invention will be clarified in the examples described below.

【0019】[0019]

【実施例】次に実施例及び比較例をあげて本発明の半導
体ウェーハエッジ研磨用組成物、およびそれを用いた研
磨加工方法を具体的に説明するが、特にこれにより限定
を行なうものではない。本発明に使用した半導体ウェー
ハエッジ研磨装置およびそれによる研磨条件は以下の通
りである。 研磨装置:スピードファム・アイペック株式会社製、E
P−200−V型 ドラム回転数:1800RPM ドラム上下速度:0.8mm/sec 研磨布:SUBA400(ロデールニッタ社製) 研磨用組成物流量:600ml/分 加工時間:片面90秒ずつ計3分間 研磨組成物のpHはpHメーターを用いて測定した。測
定にあたっては、pH6.86と9.18のpH標準溶
液であらかじめpH電極の校正を行なった後測定した。
導電率は導電率計にて測定した。また、研磨面の評価
は、集光灯下で目視にてヘイズ及ピットの状態を観察し
た。また、研磨速度は、研磨前後のシリコンウェーハの
重量差より求めた。研磨面の評価は、サーフコムプロフ
ァイラーM2000(チャップマン、インスツルメント
社製)を使用してエッジ面の表面粗さを測定した。エッ
ジポリッシュが不完全であることによて発生するスレ残
りは、光学顕微鏡を用い、800倍の倍率で加工後のワ
ーク全周を調べた。
EXAMPLES Next, the composition for polishing a semiconductor wafer edge and the polishing method using the same according to the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not particularly limited thereto. . The semiconductor wafer edge polishing apparatus used in the present invention and polishing conditions by the apparatus are as follows. Polishing equipment: Speed Fam IPEC Co., Ltd., E
P-200-V type Drum rotation speed: 1800 RPM Drum vertical speed: 0.8 mm / sec Abrasive cloth: SUBA400 (manufactured by Rodel Nitta) Polishing composition flow rate: 600 ml / min Processing time: 90 seconds on one side for a total of 3 minutes Polishing composition The pH of the product was measured using a pH meter. In the measurement, the pH electrode was calibrated in advance with pH standard solutions of pH 6.86 and 9.18, and then measured.
The conductivity was measured with a conductivity meter. In the evaluation of the polished surface, haze and pit states were visually observed under a condensing lamp. The polishing rate was determined from the difference in weight between the silicon wafer before and after polishing. For the evaluation of the polished surface, the surface roughness of the edge surface was measured using Surfcom Profiler M2000 (manufactured by Chapman Instruments). The remaining thread generated due to incomplete edge polishing was examined by using an optical microscope at 800 times magnification over the entire circumference of the processed workpiece.

【0020】実施例および比較例で用いた研磨用組成物
は、平均一次粒子径17nm、平均二次粒子径28nm
の試作品の酸化珪素微粒子、及び、平均一次粒子径18
nm、平均二次粒子径180nmのヒュームドシリカの
いずれかを用いた。これを実験用の研磨剤として、シリ
カ分として必要量分取し、撹拌しながら、表1〜表5に
示す種類と量の添加剤を所定量添加し、純水を加え濃度
を調整して本発明の研磨用組成物とした。添加物のう
ち、炭酸テトラメチルアンモニウム、炭酸水素テトラメ
チルアンモニウム、炭酸カルシウム、炭酸水素カルシウ
ム、炭酸ナトリウム及び炭酸水素ナトリウムは弱酸とし
ての炭酸(pKa=10.33)と強塩基との組み合わ
せになる塩であり本発明の緩衝溶液である。また、硫酸
カルシウム及びジエタノールアミンは、導電率を上げる
ための添加物である。上述の方法にて各々半導体ウエー
ハの研磨実験を行なった。実施例1では、表面に2μm
のポリシリコン膜を付与した8インチのシリコンウエー
ハを使用した。
The polishing compositions used in Examples and Comparative Examples had an average primary particle diameter of 17 nm and an average secondary particle diameter of 28 nm.
Silicon oxide fine particles of the prototype of the above, and an average primary particle diameter of 18
fumed silica having an average secondary particle diameter of 180 nm. This was used as an experimental polishing agent, and a required amount was collected as silica, and while stirring, a predetermined amount of the type and amount of the additives shown in Tables 1 to 5 was added, and pure water was added to adjust the concentration. This was a polishing composition of the present invention. Among the additives, tetramethylammonium carbonate, tetramethylammonium bicarbonate, calcium carbonate, calcium bicarbonate, sodium carbonate and sodium bicarbonate are salts which form a combination of carbonic acid (pKa = 10.33) as a weak acid and a strong base. And the buffer solution of the present invention. Calcium sulfate and diethanolamine are additives for increasing electric conductivity. Each of the semiconductor wafers was polished by the above-described method. In Example 1, 2 μm
An 8-inch silicon wafer to which a polysilicon film was applied was used.

【0021】実施例1〜10、比較例1〜5 表面に2μmのポリシリコン膜を付与した8インチのシ
リコンウエーハをワークとし、表1〜表3に示した研磨
組成物を用いてエッジ部分の鏡面研磨加工試験を行なっ
た。結果を表1〜表3に併記する。なお、表中において
使用する略号は次のものを示す。 TMA2CO3:炭酸テトラメチルアンモニウム TMAHCO3:炭酸水素テトラメチルアンモニウム DEA:ジエタノールアミン また、表中における単位は以下の通りである。 *1(添加剤濃度):M/Kg−SiO2 *2(導電率):mS/m/1%−SiO
Examples 1 to 10 and Comparative Examples 1 to 5 An 8-inch silicon wafer having a surface coated with a 2 μm polysilicon film was used as a work, and the edge portions were formed using the polishing compositions shown in Tables 1 to 3. A mirror polishing test was performed. The results are shown in Tables 1 to 3. The abbreviations used in the table indicate the following. TMA 2 CO 3 : tetramethylammonium carbonate TMAHCO 3 : tetramethylammonium hydrogen carbonate DEA: diethanolamine The units in the table are as follows. * 1 (additive concentration): M / Kg-SiO 2 * 2 (conductivity): mS / m / 1% -SiO 2

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】表1および表2の実施例に示す結果から明
らかなようにB/Aが1.4〜12の範囲内にあり、酸
化珪素の濃度が2〜30重量%であり、かつ25℃にお
ける酸解離定数の逆数の対数値が8.0〜12.5の弱
酸および強塩基を組み合わせた緩衝溶液を含むpH8〜
11の間で緩衝作用を有するようにした研磨用組成物
で、表面に2μmのポリシリコン膜を付与した8インチ
のシリコンウエーハのエッジ部分の加工を行なった実験
においては、研磨速度、表面粗さともに満足し得る結果
が得られ、また、表面の品質にも重大な欠陥がなく良好
であった。これに対し、表3の比較例に示すようにB/
Aが本発明の範囲を逸脱したり、緩衝作用を持たない研
磨用組成物を用いたりした場合、研磨速度が低くまた、
特に研磨が不十分であるため面粗さが向上せず、もとの
粗い面が残っていてポリッシングされていないことは明
らかである。また欠陥も顕著に現れるようになる。
As is clear from the results shown in the examples of Tables 1 and 2, B / A is in the range of 1.4 to 12, the concentration of silicon oxide is 2 to 30% by weight, and 25 ° C. Logarithm of the reciprocal of the acid dissociation constant in pH 8.0 to 12.5 including a buffer solution in which a weak acid and a strong base are combined.
In an experiment in which an edge portion of an 8-inch silicon wafer provided with a 2 μm polysilicon film on a surface thereof was processed with a polishing composition having a buffering effect between 11 and 11, a polishing rate and a surface roughness were measured. In both cases, satisfactory results were obtained, and the surface quality was good without any serious defects. On the other hand, as shown in the comparative example of Table 3, B /
A deviates from the scope of the present invention, or when using a polishing composition having no buffering action, the polishing rate is low,
In particular, it is clear that the surface roughness is not improved due to insufficient polishing, and the original rough surface remains and is not polished. Defects also appear significantly.

【0026】実施例11〜15、比較例6〜10 エッジ部分を1000番のべべリング用砥石で加工した
8インチのシリコンウエーハの表面に0.3μmの膜厚
の低温熱酸化酸化珪素膜を施与したものをワークとし
て、前述の条件で、表4〜表5に示した研磨組成物を用
いてエッジ部分の鏡面研磨加工試験を行なった。結果を
表4〜表5に併記する。
Examples 11 to 15 and Comparative Examples 6 to 10 A low-temperature thermally oxidized silicon oxide film having a thickness of 0.3 μm was formed on the surface of an 8-inch silicon wafer whose edges were machined with a # 1000 beveling grindstone. Using the applied composition as a workpiece, a mirror polishing test of the edge portion was performed using the polishing compositions shown in Tables 4 and 5 under the conditions described above. The results are shown in Tables 4 and 5.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】表4に示した実施例の結果から明らかな通
り、本発明の範囲内にある研磨用組成物を用いた場合
は、酸化膜付きのシリコンウェーハのエッジ研磨におい
て良好な結果を示すが、表5の比較例に示すようにB/
Aが本発明の範囲を逸脱したり、その他の条件が充足さ
れていない研磨用組成物を用いた場合、高硬質の酸化膜
に対する研磨力が低くまた、特に研磨が不十分であるた
め面粗さが向上せず、もとの粗い面が残っていてポリッ
シングがほとんど進んでいないことは明らかである。ま
た欠陥も顕著に現れるようになる。特に、比較例10に
示すように十分に凝集した酸化珪素を使用してもアミン
を添加しただけでは十分な研磨速度は得られず、酸化膜
のスレ残りが観察された。
As is clear from the results of the examples shown in Table 4, when the polishing composition within the scope of the present invention was used, good results were obtained in edge polishing of a silicon wafer having an oxide film. As shown in the comparative example of Table 5, B /
When A deviates from the scope of the present invention or uses a polishing composition that does not satisfy the other conditions, the polishing power for a highly hard oxide film is low, and the surface roughness is particularly low due to insufficient polishing. It is apparent that the polishing has not progressed and the original rough surface remains and polishing has hardly progressed. Defects also appear significantly. In particular, as shown in Comparative Example 10, even if silicon oxide which was sufficiently aggregated was used, a sufficient polishing rate could not be obtained only by adding the amine, and a thread residue of the oxide film was observed.

【0030】[0030]

【発明の効果】以上述べた通り、本発明による研磨用組
成物を用いれば、シリコンウェーハ等のエッジ研磨にお
いて卓越した効果が得られることは明らかであり、特に
酸化膜等を施与した難削性のシリコンウェーハに対して
も良好な結果を得ることができる。本発明により、従来
比較的対策が不十分であった、ウェーハのエッジ部分の
鏡面研磨加工において優れた研磨力とその持続性をもっ
た研磨用組成物が得られたものであり、関連業界に及ぼ
す効果は極めて大である。
As described above, it is clear that the use of the polishing composition according to the present invention provides an excellent effect in edge polishing of silicon wafers and the like, and particularly, difficult-to-cut materials provided with an oxide film or the like. Good results can be obtained even for a silicon wafer having a good quality. According to the present invention, a polishing composition having excellent polishing power and its durability in mirror polishing of the edge portion of a wafer, which has been relatively inadequate in the past, has been obtained. The effect is extremely large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 3/14 550 C09K 3/14 550Z (72)発明者 小川 佳久 神奈川県綾瀬市早川2647 スピードファ ム・アイペック株式会社内 (72)発明者 井上 裕介 神奈川県綾瀬市早川2647 スピードファ ム・アイペック株式会社内 Fターム(参考) 3C049 AA07 AA09 CA05 CB01 3C058 AA06 AA07 AA09 AC04 CB10 DA02 DA12 DA17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09K 3/14 550 C09K 3/14 550Z (72) Inventor Yoshihisa Ogawa 2647 Hayakawa Hayakawa, Ayase City, Kanagawa Prefecture Inside IPEC Corporation (72) Inventor Yusuke Inoue 2647 Hayakawa, Ayase-shi, Kanagawa Prefecture F-term in Ipec Corporation (Reference) 3C049 AA07 AA09 CA05 CB01 3C058 AA06 AA07 AA09 AC04 CB10 DA02 DA12 DA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】BET法により測定した比表面積より真球
換算で算出した平均一次粒子径Aが8〜50nmであ
り、マイクロトラックUPAによるレーザー散乱法で測
定した平均二次粒子径Bが12〜200nmの範囲にあ
り、かつ前記平均一次粒子径Aと平均二次粒子径Bの比
B/Aが1.4から12の範囲にあって、更に溶液全体
に対する濃度が2〜30重量%である酸化珪素粒子のコ
ロイド溶液であり、かつ、25℃における酸解離定数の
逆数の対数値が8.0〜12.5の弱酸および強塩基を
組み合わせた緩衝溶液を含むことによって、pH8〜1
1の間で緩衝作用を有することを特徴とする半導体ウェ
ーハエッジ研磨用研磨組成物。
1. An average primary particle diameter A calculated from a specific surface area measured by a BET method in terms of a sphere is 8 to 50 nm, and an average secondary particle diameter B measured by a laser scattering method using Microtrac UPA is 12 to 50 nm. It is in the range of 200 nm, the ratio B / A of the average primary particle diameter A to the average secondary particle diameter B is in the range of 1.4 to 12, and the concentration in the whole solution is 2 to 30% by weight. A buffer solution containing a combination of a weak acid and a strong base, which is a colloid solution of silicon oxide particles and has a logarithm of the reciprocal of the acid dissociation constant at 25 ° C. of 8.0 to 12.5, has a pH of 8 to 1
1. A polishing composition for polishing a semiconductor wafer edge, wherein the polishing composition has a buffering action between 1 and 2.
【請求項2】25℃における導電率が、酸化珪素粒子1
重量部あたり20ms/m以上であることを特徴とする
請求項第1項に記載の半導体ウェーハエッジ研磨用研磨
組成物。
2. The method according to claim 1, wherein the conductivity at 25.degree.
2. The polishing composition for polishing a semiconductor wafer edge according to claim 1, wherein the polishing composition is at least 20 ms / m per part by weight.
【請求項3】弱酸を構成する陰イオンが炭酸イオン、炭
酸水素イオンであり、かつ強塩基を構成する陽イオンが
アルカリ金属イオン、コリンイオン、テトラメチルアン
モニウムイオンまたはアンモニウムイオンのうち少なく
とも一つであることを特徴とする請求項第1項ないし請
求項第2項に記載の半導体ウェーハエッジ研磨用研磨組
成物。
3. An anion constituting a weak acid is a carbonate ion or a bicarbonate ion, and a cation constituting a strong base is at least one of an alkali metal ion, a choline ion, a tetramethylammonium ion and an ammonium ion. 3. The polishing composition for polishing a semiconductor wafer edge according to claim 1, wherein the polishing composition is provided.
【請求項4】合成樹脂発泡体、合成皮革あるいは不織布
等からなるポリッシングパッドを貼付した回転可能なド
ラムを有するエッジ研磨加工機に、被加工物である半導
体ウェーハを載置押圧し、請求項第1項ないし請求項第
3項のいずれかに記載の半導体ウェーハエッジ研磨用研
磨組成物を供給しつつ、前記ドラム及び被加工物の双方
あるいはその一方を回転して研磨することを特徴とする
半導体ウェーハのエッジ研磨加工方法。
4. A semiconductor wafer as a workpiece is placed and pressed on an edge polishing machine having a rotatable drum to which a polishing pad made of synthetic resin foam, synthetic leather or non-woven fabric is attached. A semiconductor, wherein the polishing composition for polishing a semiconductor wafer edge according to any one of claims 1 to 3 is supplied, and the drum and / or the workpiece is rotated and polished. Edge polishing method for wafers.
JP30032499A 1999-10-22 1999-10-22 Polishing composition for polishing semiconductor wafer edge, and polishing machining method Pending JP2001118815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30032499A JP2001118815A (en) 1999-10-22 1999-10-22 Polishing composition for polishing semiconductor wafer edge, and polishing machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30032499A JP2001118815A (en) 1999-10-22 1999-10-22 Polishing composition for polishing semiconductor wafer edge, and polishing machining method

Publications (1)

Publication Number Publication Date
JP2001118815A true JP2001118815A (en) 2001-04-27

Family

ID=17883413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30032499A Pending JP2001118815A (en) 1999-10-22 1999-10-22 Polishing composition for polishing semiconductor wafer edge, and polishing machining method

Country Status (1)

Country Link
JP (1) JP2001118815A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338232A (en) * 2001-05-18 2002-11-27 Nippon Chem Ind Co Ltd Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
JP2004253696A (en) * 2003-02-21 2004-09-09 Speedfam Co Ltd Method and device for semiconductor processing
JP2005120180A (en) * 2003-10-15 2005-05-12 Nippon Chem Ind Co Ltd Polishing agent composition for siliceous material and polishing method using the same
JP2006104354A (en) * 2004-10-06 2006-04-20 Nippon Chem Ind Co Ltd Polishing composition, method for producing the same and polishing method using the polishing composition
JP2007013070A (en) * 2005-06-02 2007-01-18 Nippon Chem Ind Co Ltd Polishing composition for polishing device wafer edge, its manufacturing method and polishing work method
US7481950B2 (en) * 2002-09-30 2009-01-27 Fujimi Incorporated Polishing composition and polishing method using the same
JP2010080499A (en) * 2008-09-24 2010-04-08 Fujifilm Corp Polishing solution
CN1670116B (en) * 2004-03-19 2010-09-22 福吉米株式会社 Polishing composition and polishing method
JP2017101248A (en) * 2017-01-13 2017-06-08 株式会社フジミインコーポレーテッド Polishing composition, manufacturing method of polishing composition and manufacturing method of polished article
CN115504678A (en) * 2022-11-03 2022-12-23 业泓科技(成都)有限公司 Thinning method of touch identification module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320379B2 (en) * 1975-12-05 1978-06-26
JPH04313224A (en) * 1991-04-11 1992-11-05 Asahi Denka Kogyo Kk Silicon-wafer abrasives
JPH0885051A (en) * 1994-09-14 1996-04-02 Komatsu Electron Metals Co Ltd Chamfered part polishing method for semiconductor silicon substrate
JPH08197414A (en) * 1994-10-06 1996-08-06 Cabot Corp Chemically and mechanically abrading slurry for metal layer
JPH09193004A (en) * 1995-11-10 1997-07-29 Tokuyama Corp Abrasive powder
JPH10172934A (en) * 1996-12-05 1998-06-26 Fujimi Inkooporeetetsudo:Kk Composition for polishing
WO1998047976A1 (en) * 1997-04-17 1998-10-29 Merck Patent Gmbh Buffer solutions for suspensions used in chemical-mechanical polishing
JPH11315273A (en) * 1998-05-07 1999-11-16 Hiroaki Tanaka Polishing composition and edge polishing method using the same
JP2000158329A (en) * 1998-11-20 2000-06-13 Hiroaki Tanaka Wafer edge polishing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320379B2 (en) * 1975-12-05 1978-06-26
JPH04313224A (en) * 1991-04-11 1992-11-05 Asahi Denka Kogyo Kk Silicon-wafer abrasives
JPH0885051A (en) * 1994-09-14 1996-04-02 Komatsu Electron Metals Co Ltd Chamfered part polishing method for semiconductor silicon substrate
JPH08197414A (en) * 1994-10-06 1996-08-06 Cabot Corp Chemically and mechanically abrading slurry for metal layer
JPH09193004A (en) * 1995-11-10 1997-07-29 Tokuyama Corp Abrasive powder
JPH10172934A (en) * 1996-12-05 1998-06-26 Fujimi Inkooporeetetsudo:Kk Composition for polishing
WO1998047976A1 (en) * 1997-04-17 1998-10-29 Merck Patent Gmbh Buffer solutions for suspensions used in chemical-mechanical polishing
JPH11315273A (en) * 1998-05-07 1999-11-16 Hiroaki Tanaka Polishing composition and edge polishing method using the same
JP2000158329A (en) * 1998-11-20 2000-06-13 Hiroaki Tanaka Wafer edge polishing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338232A (en) * 2001-05-18 2002-11-27 Nippon Chem Ind Co Ltd Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
KR101062618B1 (en) * 2002-09-30 2011-09-07 가부시키가이샤 후지미 인코포레이티드 Polishing composition and polishing method using same
US7481950B2 (en) * 2002-09-30 2009-01-27 Fujimi Incorporated Polishing composition and polishing method using the same
JP4499365B2 (en) * 2003-02-21 2010-07-07 スピードファム株式会社 Semiconductor processing method
JP2004253696A (en) * 2003-02-21 2004-09-09 Speedfam Co Ltd Method and device for semiconductor processing
JP2005120180A (en) * 2003-10-15 2005-05-12 Nippon Chem Ind Co Ltd Polishing agent composition for siliceous material and polishing method using the same
CN1670116B (en) * 2004-03-19 2010-09-22 福吉米株式会社 Polishing composition and polishing method
JP2006104354A (en) * 2004-10-06 2006-04-20 Nippon Chem Ind Co Ltd Polishing composition, method for producing the same and polishing method using the polishing composition
JP2007013070A (en) * 2005-06-02 2007-01-18 Nippon Chem Ind Co Ltd Polishing composition for polishing device wafer edge, its manufacturing method and polishing work method
JP2010080499A (en) * 2008-09-24 2010-04-08 Fujifilm Corp Polishing solution
JP2017101248A (en) * 2017-01-13 2017-06-08 株式会社フジミインコーポレーテッド Polishing composition, manufacturing method of polishing composition and manufacturing method of polished article
CN115504678A (en) * 2022-11-03 2022-12-23 业泓科技(成都)有限公司 Thinning method of touch identification module
CN115504678B (en) * 2022-11-03 2023-09-29 业泓科技(成都)有限公司 Thinning method of touch recognition module

Similar Documents

Publication Publication Date Title
JP4113282B2 (en) Polishing composition and edge polishing method using the same
JP2592401B2 (en) Composition and method for polishing and planarizing a surface
KR100429940B1 (en) Improved ceria powder
US7452481B2 (en) Polishing slurry and method of reclaiming wafers
US6325705B2 (en) Chemical-mechanical polishing slurry that reduces wafer defects and polishing system
JP4163785B2 (en) Polishing composition and polishing method
JP2008235481A (en) Semiconductor wafer polishing composition, manufacturing method thereof, and polishing processing method
KR19980063805A (en) Polishing Ingredients and Methods
US6238272B1 (en) Polishing compound and a polishing method for silicon wafer
JPH11116942A (en) Abrasive composition
JP2006278981A (en) Abrasive for single crystal surface and polishing method
JP2007300070A (en) Etchant composition for polishing semiconductor wafer, manufacturing method of polishing composition using same, and polishing method
JP2003297777A (en) Composition for polishing, method for modifying the same and method for polishing the same
JP2001118815A (en) Polishing composition for polishing semiconductor wafer edge, and polishing machining method
JP2004165424A (en) Polishing agent composition and polishing method using the same
JP4346712B2 (en) Wafer edge polishing method
JPWO2005029563A1 (en) Silicon wafer polishing composition and polishing method
JP2000243733A (en) Element isolation forming method
JP4163788B2 (en) Polishing composition and polishing method
JP4955253B2 (en) Polishing composition for polishing device wafer edge, method for producing the same, and polishing method
JP4396963B2 (en) Polishing composition, method for preparing the same, and method for polishing a wafer using the same
JP2001284296A (en) Polishing slurry and its use
JP4159304B2 (en) Polishing method
JP5373250B2 (en) Method for producing semiconductor wafer polishing composition
JP4042906B2 (en) Polishing composition, method for adjusting polishing composition, and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090330

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707