JP2002338232A - Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same - Google Patents

Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same

Info

Publication number
JP2002338232A
JP2002338232A JP2001148974A JP2001148974A JP2002338232A JP 2002338232 A JP2002338232 A JP 2002338232A JP 2001148974 A JP2001148974 A JP 2001148974A JP 2001148974 A JP2001148974 A JP 2001148974A JP 2002338232 A JP2002338232 A JP 2002338232A
Authority
JP
Japan
Prior art keywords
colloidal silica
particles
silica
particle diameter
aggregated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001148974A
Other languages
Japanese (ja)
Inventor
Kuniaki Maejima
邦明 前島
Shinsuke Miyabe
慎介 宮部
Masahiro Izumi
昌弘 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2001148974A priority Critical patent/JP2002338232A/en
Publication of JP2002338232A publication Critical patent/JP2002338232A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce secondary flocculated colloidal silica which ensures a high polishing speed when used as an abrasive for a semiconductor device or the like, and to provide a method for producing the colloidal silica at a low cost. SOLUTION: The secondary flocculated colloidal silica is obtained by adding a flocculant for silica particles to monodisperse colloidal silica to form spherical flocculated secondary particles and by further adding active silicic acid to integrate the flocculated particles. The secondary flocculated colloidal silica particles have surface ruggedness, the ratio Y (X1/X2) of the geometric average particle diameter (X1) obtained from TEM (transmission electron microscope) transmission projected images to the equivalent particle diameter (X2) calculated from the surface areas of the silica particles is in the range of 1.3-2.5 and the geometric average particle diameter is in the range of 20-200 nm. The silica particles have superior properties as an abrasive in the surface polishing of electronic materials such as a semiconductor device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウエハ、
化合物半導体ウェハ、半導体デバイスウェハ、磁気ディ
スク基板、水晶基板等の電子材料の研磨加工時に用いら
れる二次凝集コロイダルシリカ、及びそれを低コストで
製造できる製造方法に関する。
TECHNICAL FIELD The present invention relates to a silicon wafer,
The present invention relates to secondary aggregated colloidal silica used in polishing of electronic materials such as a compound semiconductor wafer, a semiconductor device wafer, a magnetic disk substrate, and a quartz substrate, and a method of manufacturing the same at low cost.

【0002】[0002]

【従来の技術】従来より市販の珪酸アルカリを原料とし
て製造されるコロイダルシリカはシリコンウエハの研磨
剤、ブラウン管製造における蛍光体の接着バインダー、
電池中の電解液のゲル化剤および揺変や飛散防止剤など
様々な用途に用いられてきた。このような用途に一般に
使用されているコロイダルシリカのシリカ粒子の形状は
真球状かそれに近いものであるため、研磨剤の用途では
研磨特性の向上を目的として、また、バインダー用途で
は密着性や造膜性の向上を目的としてシリカ粒子の形状
を球形から変化させたり,凝集させて粒子径を大きくす
る試みがなされてきた。
2. Description of the Related Art Colloidal silica conventionally manufactured using commercially available alkali silicate as a raw material is used as an abrasive for silicon wafers, an adhesive binder for a phosphor in the manufacture of cathode ray tubes,
It has been used for various purposes such as a gelling agent for electrolyte in a battery and a thixotropic or scattering inhibitor. The shape of the silica particles of colloidal silica generally used for such an application is a true spherical shape or a shape close thereto, so that the purpose of the polishing agent is to improve the polishing characteristics, and in the case of the binder, the adhesion or the forming property is improved. For the purpose of improving the film properties, attempts have been made to change the shape of the silica particles from spherical to spherical or to increase the particle size by agglomeration.

【0003】例えばバインダー用途では,特開平4-1875
12号公報や特開平7-118008号公報にCa塩等を添加して
製造した球状でない細長い形状の粒子が、特開平4-2140
22号公報に扁平な粒子が開示されている。また,特開20
01-11433号公報にはCa塩等を添加して細長い数珠状の
形状の粒子を製造し,これが良好な研磨特性を有すると
述べられている。一方、球状に凝集したコロイダルシリ
カに関しては米国特許第3591518号公報に金属シ
リコンよりの製法が記載されている。また、米国特許第
3607774号公報には、光散乱法による測定粒子径
とシアーズ法による測定粒子径が数倍異なる凝集コロイ
ダルシリカの製法が記載されている。
[0003] For example, in the case of binders,
No. 12 and JP-A-7-118008, non-spherical and elongated particles produced by adding a Ca salt or the like are disclosed in JP-A-4-2140.
No. 22 discloses flat particles. In addition, JP
JP-A-01-11433 states that slender beads are produced by adding Ca salt or the like, and that the particles have good polishing properties. On the other hand, as to colloidal silica aggregated in a spherical shape, US Pat. No. 3,591,518 describes a method for producing from metallic silicon. U.S. Pat. No. 3,607,774 describes a method for producing agglomerated colloidal silica in which the measured particle size by the light scattering method and the measured particle size by the Sears method are several times different.

【0004】[0004]

【発明が解決しようとする課題】シリコンウエハ、化合
物半導体ウェハ、半導体デバイスウェハ、磁気ディスク
基板、水晶基板等の電子材料の研磨剤としてコロイダル
シリカが使用されているが、研磨速度の高速化の要求に
対応して、次第に粒径の大きいグレードが好まれるよう
になってきた。しかし、真球状のコロイダルシリカの場
合、単一粒子のままで粒子径の大きいものを製造するに
は、粒子の表面に更にシリカを沈着させて粒子を成長さ
せる、いわゆるビルドアップの工程に長い時間を必要と
し、粒子の製造価格が高くなる。前記の電子材料の研磨
処理においては、研磨時間の短縮化と共に、研磨費用の
低減化も要求されており、従って短時間で効率的な研磨
ができかつ安価な比較的大きい粒子径を持ったコロイダ
ルシリカ、あるいは粒子径がさほど大きくなくても高速
研磨の出来るコロイダルシリカが求められている。
Colloidal silica has been used as a polishing agent for electronic materials such as silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates, and quartz substrates. In response to this, grades having a large particle size have been increasingly preferred. However, in the case of true spherical colloidal silica, in order to produce a single particle having a large particle diameter as it is, a so-called build-up process in which silica is further deposited on the surface of the particle to grow the particle, which is a long time, is required. And the production cost of the particles is high. In the above-mentioned polishing treatment of electronic materials, a reduction in polishing time and a reduction in polishing cost are also required. Therefore, a colloidal material having a relatively large particle diameter, which can be efficiently polished in a short time and is inexpensive. There is a need for silica or colloidal silica that can be polished at a high speed even if the particle diameter is not so large.

【0005】比較的低コストでコロイダルシリカの粒子
径を大きくする方法として、シリカ粒子を凝集させる方
法が米国特許第3591518号公報に記載されている
が、この金属シリコンから製造する製法は、一次粒子径
が8nmと小さく、凝集体の表面の凹凸は平滑に近いた
め研磨特性の向上は期待できない。また、米国特許第3
607774号公報には、光散乱法による測定粒子径と
シアーズ法による測定粒子径とが数倍異なるコロイダル
シリカの製法が記載されている。光散乱法で測定した粒
子径とシアーズ法で測定した比表面積から算出した相当
径が数倍異なることは粒子形状が球形でないことを示唆
するが,米国特許第3607774号には粒子形状につ
いての具体的な記載がなく、また製法の原理も不明確で
あり、大量の水を蒸発させる工程があるなど実用不可能
に近い製法である。なお、シアーズ法は、G.W.Se
ars,Jr.が”Analytical Chemistry” 28,1981〜
1983(1956)に記載している異形状粒子の相当径を求める
方法であり、1.5gのSiO2に相当するコロイダル
シリカをpH4からpH9まで滴定するのに必要とした
0.1N−NaOHの量からコロイダルシリカの比表面
積を求め、これから算出した相当径である。
As a method for increasing the particle size of colloidal silica at a relatively low cost, a method of aggregating silica particles is described in US Pat. No. 3,591,518. Since the diameter is as small as 8 nm and the irregularities on the surface of the aggregate are almost smooth, improvement in polishing characteristics cannot be expected. Also, US Patent No. 3
Japanese Patent No. 607774 describes a method for producing colloidal silica in which the measured particle size by the light scattering method and the measured particle size by the Sears method are several times different. The fact that the particle diameter measured by the light scattering method and the equivalent diameter calculated from the specific surface area measured by the Sears method are several times different suggests that the particle shape is not spherical, but US Pat. There is no specific description, the principle of the production method is unclear, and there is a step of evaporating a large amount of water. The Sears method is described in G. W. Se
ars, Jr. Is “Analytical Chemistry” 28,1981〜
1983 (1956) is a method for determining the equivalent diameter of the irregular-shaped particles are described in, for 0.1 N-NaOH was required to titrate from pH4 to pH9 colloidal silica corresponding to SiO 2 of 1.5g The specific surface area of the colloidal silica was determined from the amount, and the equivalent diameter was calculated from this.

【0006】一方、Ca塩等を添加することによりシリ
カ粒子を細長い数珠状の形状として研磨特性を向上させ
る方法(特開2001-11433号公報)は、シリカ成分以外に
高濃度のCa塩等が不可避的に存在することから、それ
による研磨対象の電子材料の汚染や、研磨工程でのコロ
イダルシリカの循環使用時の濾過器の目詰まりが問題と
なる。従って、本発明の目的は、このように、シリコン
ウエハ、化合物半導体ウェハ、半導体デバイスウェハ、
磁気ディスク基板、水晶基板等の電子材料の研磨剤とし
て使用されるコロイダルシリカとして、安価に製造する
ことができ、かつ粒子形状が球形でなく比較的大きな粒
子径を有する、従って研磨効率に優れた研磨剤として好
適なコロイダルシリカ粒子、及びその製造方法を提供す
ることである。
On the other hand, a method of improving the polishing characteristics by adding a Ca salt or the like to make the silica particles into an elongated bead shape (Japanese Patent Laid-Open No. 2001-11433) discloses a method in which a high concentration of Ca salt or the like is used in addition to the silica component. Since it is inevitable, contamination of the electronic material to be polished thereby and clogging of the filter at the time of circulating use of colloidal silica in the polishing step become problems. Accordingly, the objects of the present invention are thus silicon wafers, compound semiconductor wafers, semiconductor device wafers,
As a colloidal silica used as an abrasive for electronic materials such as magnetic disk substrates and quartz substrates, it can be manufactured at low cost, and has a relatively large particle size rather than a spherical particle shape, and therefore has excellent polishing efficiency. An object of the present invention is to provide colloidal silica particles suitable as an abrasive and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るために、本発明の発明者らは、鋭意研究した結果、単
分散のコロイダルシリカの凝集した、比較的大きな粒子
径を有し、かつシリカ粒子表面に凹凸があるシリカ粒
子、及びこのようなシリカ粒子を含有するコロイダルシ
リカを得る製造方法を見出した。
Means for Solving the Problems In order to achieve such an object, the inventors of the present invention have conducted intensive studies and found that monodispersed colloidal silica has a relatively large particle diameter, Further, the present inventors have found a method for producing silica particles having irregularities on the surface of the silica particles, and a colloidal silica containing such silica particles.

【0008】即ち、本発明は、コロイダルシリカのシリ
カ粒子の電子線による透過投影像より求めた幾何学的平
均粒子径(X1)と、シリカ粒子の表面積より算出した
相当粒子径(X2)との比Y(X1/X2)が1.3か
ら2.5の範囲であり、かつその幾何学的平均粒子径が
20〜200nmの範囲であることを特徴とする二次凝
集コロイダルシリカである。また、本発明は、単分散の
コロイダルシリカにシリカ粒子の凝集剤を添加してほぼ
球状の凝集二次粒子を作り、次いで活性珪酸を添加して
凝集粒子を一体化することを特徴とする二次凝集コロイ
ダルシリカの製造方法である。更に、本発明は、コロイ
ダルシリカのシリカ粒子の電子線による透過投影像より
求めた幾何学的平均粒子径(X1)と、シリカ粒子の表
面積より算出した相当粒子径(X2)との比Y(X1/
X2)が1.3から2.5の範囲であり、かつその幾何
学的平均粒子径が20〜200nmの範囲にある二次凝
集コロイダルシリカを含有することを特徴とする電子材
料用の研磨剤組成物である。
That is, the present invention relates to a method of calculating the geometric average particle diameter (X1) obtained from a transmission projection image of colloidal silica particles by an electron beam and the equivalent particle diameter (X2) calculated from the surface area of the silica particles. The secondary aggregated colloidal silica is characterized in that the ratio Y (X1 / X2) is in the range of 1.3 to 2.5 and the geometric average particle size is in the range of 20 to 200 nm. In addition, the present invention is characterized in that a coagulant of silica particles is added to monodisperse colloidal silica to form substantially spherical aggregated secondary particles, and then active silica is added to integrate the aggregated particles. This is a method for producing aggregated colloidal silica. Furthermore, the present invention provides a ratio Y () of a geometric average particle diameter (X1) obtained from a transmission projection image of colloidal silica silica particles by an electron beam and an equivalent particle diameter (X2) calculated from the surface area of the silica particles. X1 /
X2) is in the range of 1.3 to 2.5, and contains a secondary aggregated colloidal silica having a geometric average particle size in the range of 20 to 200 nm. A composition.

【0009】[0009]

【発明の実施の形態】本発明の二次凝集コロイダルシリ
カは、シリカ粒子の表面に一次粒子に起因した凹凸があ
る数個乃至十数個のシリカ一次粒子が凝集したシリカ粒
子を含有する二次凝集コロイダルシリカであって、シリ
カ粒子の電子線による透過投影像より求めた幾何学的平
均粒子径(X1)と窒素吸着BET法で測定したシリカ
粒子の表面積より算出した相当粒子径(X2)との比Y
(X1/X2)が1.3以上2.5以下のものであり、
かつその幾何学的平均粒子径が20〜200nmの範囲
であることが特徴である。また別の表現によれば本発明
の二次凝集コロイダルシリカは、粒子表面に凹凸があ
る、いわゆる「いがぐり状」の形状をしたシリカ粒子を
含有するコロイダルシリカであって、シリカ粒子の電子
線による透過投影像より求めた幾何学的平均粒子径(X
1)とシアーズ法で測定した粒子の表面積より算出した
相当粒子径(X2)との比Y(X1/X2)が1.3以
上2.5以下であり、かつその幾何学的平均粒子径が2
0〜200nmの範囲であることが特徴である。
BEST MODE FOR CARRYING OUT THE INVENTION The secondary agglomerated colloidal silica of the present invention is a secondary agglomerated colloidal silica containing silica particles in which several to a dozen or more silica primary particles having irregularities caused by primary particles on the surface of the silica particles are aggregated. Agglomerated colloidal silica, the geometric mean particle diameter (X1) determined from a transmission projection image of the silica particles by an electron beam, and the equivalent particle diameter (X2) calculated from the surface area of the silica particles measured by the nitrogen adsorption BET method. The ratio Y
(X1 / X2) is not less than 1.3 and not more than 2.5,
The feature is that the geometric average particle diameter is in the range of 20 to 200 nm. According to another expression, the secondary agglomerated colloidal silica of the present invention is a colloidal silica containing silica particles having irregularities on the particle surface, a so-called `` shag-like '' shape, and an electron beam of the silica particles. The geometric mean particle size (X
The ratio Y (X1 / X2) between 1) and the equivalent particle size (X2) calculated from the surface area of the particles measured by the Sears method is 1.3 or more and 2.5 or less, and the geometric average particle size is 2
Characteristically, it is in the range of 0 to 200 nm.

【0010】ここで、比Yはシリカ粒子表面の凹凸の程
度を表わすものであり、比Yが1.3以上2.5以下の
範囲にあれば、表面に一定の程度の凹凸があり全体がほ
ぼ球状の形状をした粒子、即ち粒子1個あたり数個ない
し十数個の凸部を有する凝集粒子であり、例えば板状の
ものや紐状のもののような特殊な形状のものはこの値が
2.5を越え、本発明の粒子には含まれない。また、比
Yが1.0であれば完全な真球状の形状であるが、本発
明の粒子はこのような真球状のものは含まず、必ず粒子
の表面に一定の程度の凹凸を持つ、即ち粒子1個あたり
数個ないし十数個の凸部を有する凝集粒子で、いわゆる
「いがぐり状」の形状の粒子である。
Here, the ratio Y represents the degree of unevenness of the surface of the silica particles. If the ratio Y is in the range of 1.3 or more and 2.5 or less, the surface has a certain degree of unevenness and the whole Substantially spherical particles, that is, agglomerated particles having several to tens of protrusions per particle, for example, those having a special shape such as plate-like or string-like particles have this value. It exceeds 2.5 and is not included in the particles of the present invention. Further, if the ratio Y is 1.0, it is a perfect spherical shape, but the particles of the present invention do not include such a true spherical shape, and necessarily have a certain degree of unevenness on the surface of the particles, That is, it is an agglomerated particle having several to several tens of protrusions per particle, and is a so-called "giggle-shaped" particle.

【0011】この比Yは、シリカ粒子の電子線による透
過投影像より求めた幾何学的平均粒子径(X1)と、シ
リカ粒子の表面積を測定して算出した相当粒子径(X
2)を求めて、この比(X1/X2)を求めることによ
って得られる。まず、電子線による透過投影像より求め
た幾何学的平均粒子径とは、例えば、透過型電子顕微鏡
(TEM)写真よって、複数の箇所での全てのほぼ球形
の二次凝集したシリカ粒子の直径を計測し、これらの値
を平均して得られる数値である。尚、TEM写真による
方法では、真の凝集粒子と試料の調製時の乾燥による凝
集粒子が区別しにくい場合があるが、ここでは、粒子濃
度を限界まで薄くすることと、その希釈にイソプロピル
アルコールを使用することで、これらの誤認を避けてい
る。具体的には、例えば、試料のコロイダルシリカを、
イソプロピルアルコールを用いてシリカ濃度が0.1%
まで希釈した溶液を使用し、まず10000倍のTEM
(透過型電子顕微鏡)写真を撮影し、その視野内より1
0個以上のシリカ粒子が存在する部分を4箇所選択し、
このそれぞれの部分を40000倍で撮影する。これら
の写真映像から、端面にかかっていないすべての粒子の
直径を測定して、その平均値を求めて幾何学的平均粒子
径(X1)とする。
The ratio Y is obtained by calculating the geometric average particle diameter (X1) obtained from a transmission projection image of the silica particles by an electron beam and the equivalent particle diameter (X1) calculated by measuring the surface area of the silica particles.
2), and this ratio (X1 / X2) is obtained. First, the geometric mean particle diameter determined from a transmission projection image by an electron beam is, for example, the diameter of all substantially spherical secondary aggregated silica particles at a plurality of locations, as shown in a transmission electron microscope (TEM) photograph. Is measured, and these values are averaged. Incidentally, in the method based on the TEM photograph, it may be difficult to distinguish the true aggregated particles and the aggregated particles due to drying at the time of preparing the sample, but here, the particle concentration is reduced to the limit and isopropyl alcohol is used for the dilution. Use avoids these misconceptions. Specifically, for example, the colloidal silica of the sample,
0.1% silica concentration using isopropyl alcohol
Using a solution diluted to 10,000 times,
(Transmission electron microscope) Take a picture
Select four places where 0 or more silica particles are present,
Each part is photographed at a magnification of 40,000. From these photographic images, the diameters of all the particles that do not cover the end face are measured, and the average value is determined to be the geometric average particle diameter (X1).

【0012】一方、シリカ粒子の表面積から求める相当
径は以下のように算出する。一般に試料表面に大きさの
わかった分子やイオンを吸着させて,その吸着量から粒
子の比表面積を求める方法が知られている。BET法で
は気相で吸着剤として窒素ガスを,シアーズ法では液相
で吸着剤としてNaイオンを吸着させる。シアーズ法に
ついては、前述の通りG.W.Sears,Jr.”An
alytical Chemistry”28,1981〜1983(1956)に記載して
いる。
On the other hand, the equivalent diameter determined from the surface area of the silica particles is calculated as follows. In general, a method is known in which molecules or ions of a known size are adsorbed on a sample surface, and the specific surface area of the particles is determined from the amount of adsorption. In the BET method, nitrogen gas is adsorbed in the gas phase as an adsorbent, and in the Sears method, Na ions are adsorbed in the liquid phase as an adsorbent. The Sears method is described in G. W. Sears, Jr. ”An
alytical Chemistry ", 28, 1981-1983 (1956).

【0013】比表面積は単位質量の粉体の全粒子表面積
を意味し,粉体は粉砕されると新たな表面が生成される
ので,粉砕が進行し粒子が細かくなるにつれて粉体の比
表面積も大きくなる。ここで,粉体が直径x、密度ρの
n個の球よりなると考えると、全粒子表面積はnπ
2,粉体の質量はρnπx3/6となるので、次の(1)
式の関係が導かれる。 比表面積S(m2/g)=6/{密度ρ(g/cm3)×直径x(cm)} (1) これをコロイダルシリカに適用すると、その密度ρが
2.2g/cm3であるので、単位をそろえて書き換え
ると次の(2)式のようになる。 直径x(nm)=2720/比表面積S(m2/g) (2) このようにBET法およびシアーズ法で測定したコロイ
ダルシリカの比表面積から相当径xを算出することがで
きる。
The specific surface area means the total particle surface area of a unit mass of powder. When the powder is pulverized, a new surface is formed. As the pulverization proceeds and the particles become finer, the specific surface area of the powder also increases. growing. Here, assuming that the powder is composed of n spheres having a diameter x and a density ρ, the total particle surface area is nπ
x 2, since the powder mass becomes ρnπx 3/6, the following (1)
An equation relationship is derived. Specific surface area S (m 2 / g) = 6 / {density ρ (g / cm 3 ) × diameter x (cm)} (1) When this is applied to colloidal silica, the density ρ is 2.2 g / cm 3 . Therefore, if the unit is rewritten with the unit aligned, it becomes the following equation (2). Diameter x (nm) = 2720 / specific surface area S (m 2 / g) (2) Thus, the equivalent diameter x can be calculated from the specific surface area of the colloidal silica measured by the BET method and the Sears method.

【0014】尚、コロイダルシリカの粒子径と比表面積
については、”THE CHEMISTRY OF SILICA Solubility,
Polymerization, Colloid and Surface Properties an
d Biochemistry”(P344-354, RALPH K. ILER著, A Wile
y-Interscience PublicationJOHN WILEY & SONS P )に
詳細に記載されている。
The particle size and specific surface area of colloidal silica are described in "THE CHEMISTRY OF SILICA Solubility,
Polymerization, Colloid and Surface Properties an
d Biochemistry ”(P344-354, by RALPH K. ILER, A Wile
y-Interscience Publication JOHN WILEY & SONS P).

【0015】こうして求めた幾何学的平均粒子径(X
1)と比表面積より算出した相当径(X2)の比Yは粒
子が完全に真球の形状の場合は1となるが、本発明の凝
集粒子を一体化させたシリカ粒子は、ほぼ球形の粒子で
あるが表面に凹凸があるため比表面積は真球の場合より
大きくなり、上記の(2)式より算出される相当径は小さ
い値となる。従って、粒子の表面の凹凸の程度が大きい
ほどYの値は1から大きくなっていく。一般的に入手で
きる単分散したコロイダルシリカのYの値は1.05か
ら1.11であるのに対し、本発明の凝集・一体化した
表面に凹凸のあるコロイダルシリカ粒子のYの値は、
1.3以上で2.5以下であり、より好ましくは1.3
5から2.2の範囲である。
The geometric mean particle diameter (X
The ratio Y of 1) and the equivalent diameter (X2) calculated from the specific surface area is 1 when the particles are perfectly spherical, but the silica particles obtained by integrating the aggregated particles of the present invention have a substantially spherical shape. Although the particles are particles, the specific surface area is larger than that of a true sphere due to the unevenness of the surface, and the equivalent diameter calculated from the above equation (2) is a small value. Therefore, the value of Y increases from 1 as the degree of irregularities on the surface of the particle increases. The commonly available monodispersed colloidal silica has a Y value of 1.05 to 1.11, while the agglomerated / integrated colloidal silica particles of the present invention have a Y value of:
1.3 or more and 2.5 or less, more preferably 1.3
The range is from 5 to 2.2.

【0016】本発明の凝集・一体化したコロイダルシリ
カ粒子の幾何学的平均粒子径は、出発原料となる単分散
したコロイダルシリカのシリカ粒子の粒径と凝集させる
個数により決まるが、本発明の電子材料の研磨用途とし
ては、出発原料となる単分散したコロイダルシリカのシ
リカ粒子は5〜50nmであり、それらを数個〜十数個
を凝集・一体化させて得た本発明の二次凝集コロイダル
シリカ粒子の幾何学的平均粒子径は20〜200nm、
好ましくは30〜100nmである。
The geometric mean particle size of the aggregated and integrated colloidal silica particles of the present invention is determined by the particle size of the monodispersed colloidal silica silica particles as a starting material and the number of particles to be aggregated. As a polishing application of the material, the monodispersed colloidal silica particles serving as a starting material have a silica particle of 5 to 50 nm, and the secondary aggregated colloidal of the present invention obtained by aggregating and integrating several to a dozen or more of them. The geometric mean particle size of the silica particles is 20 to 200 nm,
Preferably it is 30 to 100 nm.

【0017】このような本発明の凝集・一体化したコロ
イダルシリカ粒子は、単分散のコロイダルシリカにシリ
カ粒子の凝集剤を添加してほぼ球状の凝集二次粒子を作
り、次いで活性珪酸を添加して凝集粒子を一体化するこ
とによって製造することができる。
The aggregated and integrated colloidal silica particles of the present invention are prepared by adding a flocculant of silica particles to monodisperse colloidal silica to form substantially spherical aggregated secondary particles, and then adding active silicic acid. By integrating the aggregated particles.

【0018】まず、本発明の使用する単分散のコロイダ
ルシリカの原料としては、珪酸アルカリ水溶液が用いら
れ、通常水ガラス(水ガラス1号〜4号等)と呼ばれる
珪酸ナトリウム水溶液が好適に用いられる。このものは
比較的安価であり、容易に手に入れることができる。ま
た、Naイオンの存在が好ましくない半導体用途の製品
に使用する場合には、珪酸カリウム水溶液が高純度化の
対象にふさわしい。
First, as a raw material of the monodispersed colloidal silica used in the present invention, an aqueous solution of alkali silicate is used, and an aqueous solution of sodium silicate usually called water glass (water glass No. 1 to 4) is preferably used. . It is relatively inexpensive and can be easily obtained. In addition, when used for a product for a semiconductor in which the presence of Na ions is not preferable, an aqueous solution of potassium silicate is suitable for a target of high purification.

【0019】本発明に使用する単分散のコロイダルシリ
カとしては、このような珪酸アルカリ水溶液をイオン交
換することによって得られるコロイダルシリカを使用す
ることもできる。このイオン交換法によるコロイダルシ
リカの製造工程では、まず珪酸アルカリ水溶液をシリカ
濃度3〜10%に水希釈し、次いでH型強酸性陽イオン
交換樹脂に接触させて脱アルカリし、必要に応じてOH
型強塩基性陰イオン交換樹脂に接触させて脱アニオン
し、活性珪酸を作成する。イオン交換樹脂の種類や諸条
件については既に様々な提案があり、それら公知のいか
なる方法も適用できる。次いで、常法に準じてコロイド
粒子を成長させる。即ち、この活性珪酸の水溶液にpH
が8以上となるようアルカリ剤を添加し60〜240℃
に加熱するか、pHが8以上の60〜240℃の種ゾル
に活性珪酸を添加していくビルドアップの方法か、或い
は、希釈した珪酸アルカリ水溶液に活性珪酸を添加して
いくビルドアップの方法の何れの方法でも良い。ここで
使用するアルカリ剤としてはNaOH、KOHなどのア
ルカリ金属水酸化物や、アミン、第4級アンモニウム水
酸化物などの有機塩基を使用することができる。またそ
れらの珪酸アルカリ水溶液も使用することができる。
As the monodispersed colloidal silica used in the present invention, it is possible to use colloidal silica obtained by ion-exchanging such an aqueous alkali silicate solution. In the production process of colloidal silica by this ion exchange method, first, an aqueous solution of an alkali silicate is diluted with water to a silica concentration of 3 to 10%, and then contacted with an H-type strongly acidic cation exchange resin to remove alkali.
It is anion-exchanged by contact with a strong basic anion exchange resin to form active silicic acid. Various proposals have already been made regarding the type and various conditions of the ion exchange resin, and any of those known methods can be applied. Next, colloid particles are grown according to a conventional method. That is, the pH of this aqueous solution of activated silicic acid is
The alkali agent is added so that the temperature is 8 or more.
Or a build-up method in which active silicic acid is added to a seed sol having a pH of 8 or more at 60 to 240 ° C., or a method in which active silicic acid is added to a diluted aqueous solution of alkali silicate. Any of these methods may be used. As the alkali agent used here, alkali metal hydroxides such as NaOH and KOH, and organic bases such as amines and quaternary ammonium hydroxides can be used. Also, their aqueous alkali silicate solutions can be used.

【0020】これらの方法を用いてシリカの粒子径が5
〜50nmとなるように成長させる。シリカ粒子の分散
状態は単分散であるが、二次凝集が存在していてもよ
く、用途に応じて使い分けることが出来る。単分散した
シリカ粒子の形状は真球状であるが、二次凝集した非球
形状のものを含んでもよく用途に応じて使い分けること
が出来る。このようなイオン交換法によるコロイダルシ
リカを使用する代わりに、出発原料となるコロイダルシ
リカとして、市販のコロイダルシリカを利用することも
できる。この場合は、市販品をシリカ濃度3〜20%に
希釈して使用する。
Using these methods, silica particles having a particle size of 5
It is grown to have a thickness of about 50 nm. Although the dispersion state of the silica particles is monodisperse, secondary aggregation may be present, and the silica particles can be used properly depending on the application. The shape of the monodispersed silica particles is a true sphere, but may include a secondary agglomerated non-spherical shape and may be properly used depending on the application. Instead of using the colloidal silica obtained by the ion exchange method, a commercially available colloidal silica can be used as the starting material. In this case, a commercially available product is used after being diluted to a silica concentration of 3 to 20%.

【0021】以上のような単分散のコロイダルシリカを
含む希薄なコロイダルシリカの水溶液に、シリカ粒子の
凝集剤を添加して凝集二次粒子を作成する。本発明で使
用される凝集剤としては、ポリ塩化アルミニウム、硫酸
アルミニウムのようなアルミニウム化合物、塩基性塩化
鉄、硫酸鉄のような鉄化合物、石灰や苦灰石のようなア
ルカリ土類金属化合物、等の水に可溶性の無機化合物、
或いはポリエチレンアミンのようなポリアミン、水酸化
テトラメチルアンモニウムのような4級アンモニウム
塩、等のカチオン性高分子などがある。これらはいずれ
も電荷による吸着型の凝集剤であって、適切な量の添加
であれば、コロイド全体をゲル化させることなく、シリ
カ粒子複数個の凝集二次粒子をつくり、二次粒子の安定
なコロイド状態を得ることが出来る。その添加量は凝集
剤によってまちまちである。例えば、ポリ塩化アルミニ
ウムではppmオーダーで充分であり過剰の添加は沈殿
物の発生やコロイド全体のゲル化を生じる。ポリアミ
ン、4級アンモニウム塩の場合は、%オーダーでの添加
が適量域である。また、これらの凝集剤には最適pH域
があり、良好な凝集性能を得るためには、添加に先立っ
てコロイダルシリカのpHを調節することが好ましい。
例えば、ポリ塩化アルミニウムの最適pH域はpH7〜
9であり、水酸化テトラメチルアンモニウムではpH9
〜11である。ポリ塩化アルミニウムは安価であり、少
量で効果が大きく、アルカリ域で使用出来るため、本発
明に使用する凝集剤として特に好ましい。
A coagulant for silica particles is added to a dilute aqueous solution of colloidal silica containing monodisperse colloidal silica as described above to form aggregated secondary particles. As the coagulant used in the present invention, polyaluminum chloride, aluminum compounds such as aluminum sulfate, basic iron chloride, iron compounds such as iron sulfate, alkaline earth metal compounds such as lime and dolomite, Water-soluble inorganic compounds such as
Alternatively, cationic polymers such as polyamines such as polyethyleneamine, and quaternary ammonium salts such as tetramethylammonium hydroxide may be used. These are all adsorption-type flocculants based on electric charge, and if added in an appropriate amount, can form aggregated secondary particles of a plurality of silica particles without causing the entire colloid to gel, and stabilize the secondary particles. A good colloidal state can be obtained. The amount added varies depending on the coagulant. For example, in the case of polyaluminum chloride, the order of ppm is sufficient, and excessive addition causes generation of precipitates and gelation of the entire colloid. In the case of polyamines and quaternary ammonium salts, addition in the order of% is an appropriate amount range. Further, these flocculants have an optimum pH range, and it is preferable to adjust the pH of the colloidal silica prior to addition in order to obtain good flocculation performance.
For example, the optimum pH range of polyaluminum chloride is pH7 ~
9 and pH 9 for tetramethylammonium hydroxide.
~ 11. Polyaluminum chloride is particularly preferable as a coagulant used in the present invention because it is inexpensive, has a large effect in a small amount, and can be used in an alkaline region.

【0022】次いで、得られた凝集二次粒子に活性珪酸
を添加して凝集二次粒子を一体化する。この凝集二次粒
子の一体化とは、凝集二次粒子の水分散液にpHが8以
上、好ましくはpH9〜10を保つようにアルカリ剤を
添加しながら、60〜240℃、好ましくは90〜10
0℃に加温した状態で、活性珪酸をその目的とする粒子
径に相当する添加量に応じた時間をかけて添加すること
により凝集二次粒子の表面にシリカを沈着させて、凝集
した粒子を更に成長させ、補強するためのものである。
このようにして凝集二次粒子を成長させる方法は、元の
コロイダルシリカをそのまま成長させる場合と比べて、
短い時間で大きな粒子径を得ることができる。ここで使
用するアルカリ剤としては、前記したものと同一のもの
が使用することができる。
Next, activated silica is added to the obtained aggregated secondary particles to integrate the aggregated secondary particles. The integration of the aggregated secondary particles means that the pH of the aqueous dispersion of the aggregated secondary particles is maintained at 60 to 240 ° C., preferably 90 to 240 ° C. while adding an alkaline agent so as to maintain the pH at 8 or more, preferably at pH 9 to 10. 10
In a state of being heated to 0 ° C., silica is deposited on the surface of the aggregated secondary particles by adding active silicic acid over a period of time corresponding to the added amount corresponding to the target particle diameter, and the aggregated particles are added. For further growth and reinforcement.
The method of growing the aggregated secondary particles in this way, compared with the case of growing the original colloidal silica as it is,
A large particle size can be obtained in a short time. As the alkali agent used here, the same one as described above can be used.

【0023】次いで、限外濾過膜によってシリカの濃度
が10〜60%となるように濃縮し、精製する。ただ
し、この工程は余分なイオンの洗い出し効果もあるの
で、必要に応じて、目標濃度に達した後も純水を加える
などして、更に洗い出し除去を行って、余分なイオンの
除去率を高める作業を行うこともできる。
Next, it is concentrated and purified by an ultrafiltration membrane so that the concentration of silica becomes 10 to 60%. However, since this step also has the effect of washing out excess ions, if necessary, pure water is added even after reaching the target concentration to further wash out and remove, thereby increasing the removal rate of excess ions. You can also do work.

【0024】限外濾過膜が適用される分離は対象粒子が
1nmから数ミクロンであるが、溶解した高分子物質を
も対象とするため、ナノメータ域では濾過精度を分画分
子量で表現している。本発明によるコロイダルシリカの
濃縮では、分画分子量15000以下の限外濾過膜を使
用する。この範囲の膜を使用すると1nm以上の粒子を
分離することが出来る。更に好ましくは分画分子量30
00〜15000の限外濾過膜を使用する。3000未
満の膜では濾過抵抗が大きすぎて処理時間が長くなり不
経済であり、15000以上では精製の程度が低くなり
目的を達成できない。膜の材質はポリスルホン、ポリア
クリルニトリル、燒結金属、セラミック、カーボンなど
あり、いずれも使用できるが、耐熱性や濾過速度などか
らポリスルホン製の膜が使用しやすい。膜の形状はスパ
イラル型、チューブラー型、中空糸型などあり、どれで
も使用できるが、中空糸型がコンパクトで使用しやす
い。
The separation to which the ultrafiltration membrane is applied has a target particle size of 1 nm to several microns. However, since the target is also for a dissolved high molecular substance, in the nanometer range, the filtration accuracy is expressed by a fraction molecular weight. . In the concentration of the colloidal silica according to the present invention, an ultrafiltration membrane having a cut-off molecular weight of 15,000 or less is used. When a film in this range is used, particles of 1 nm or more can be separated. More preferably, the molecular weight cut off is 30.
An ultrafiltration membrane of 00-15000 is used. If the membrane is less than 3,000, the filtration resistance is too large, and the treatment time becomes longer, which is uneconomical. The material of the membrane is polysulfone, polyacrylonitrile, sintered metal, ceramic, carbon, etc., and any of them can be used. However, a membrane made of polysulfone is easy to use because of heat resistance and filtration speed. The shape of the membrane can be any type such as a spiral type, a tubular type and a hollow fiber type, and any type can be used, but the hollow fiber type is compact and easy to use.

【0025】また、限外濾過膜による濃縮の前後いずれ
かに、必要に応じてイオン交換樹脂による精製工程を加
えることができる。即ち、H型強酸性陽イオン交換樹脂
に接触させて粒子成長工程で使用したアルカリを除去す
ることができ、OH型強塩基性陰イオン交換樹脂に接触
させて脱アニオンして精製することで、一層の高純度化
を計ることができる。
Further, before or after the concentration by the ultrafiltration membrane, a purification step using an ion exchange resin can be added if necessary. That is, the alkali used in the particle growth step can be removed by contacting with an H-type strongly acidic cation exchange resin, and by contacting with an OH-type strongly basic anion exchange resin to be deanionized and purified, Further purification can be achieved.

【0026】また、本発明は、このようにして得られる
本発明の二次凝集コロイダルシリカを含有する電子材料
用研磨剤組成物である。本発明の二次凝集コロイダルシ
リカは、単分散コロイダルシリカの一次粒子が数個乃至
十数個凝集し、一体化されたもので、その表面が凹凸状
をした、いわゆるいがぐり状の形状の粒子であり、かつ
平均粒子径が20nm乃至200nmと比較的大きな粒
子である。このような特殊な形状を有し比較的大きな凝
集粒子であるため、電子材料用の研磨加工に使用すると
優れた研磨特性を発揮する。
Further, the present invention is a polishing composition for electronic materials containing the secondary aggregated colloidal silica of the present invention thus obtained. The secondary agglomerated colloidal silica of the present invention is a monodisperse colloidal silica in which several to a dozen or more primary particles are agglomerated and integrated, and the surface thereof has an irregular shape, and is a so-called rag-shaped particle. It is a relatively large particle having an average particle diameter of 20 nm to 200 nm. Since the particles have such a special shape and are relatively large agglomerated particles, they exhibit excellent polishing characteristics when used for polishing for electronic materials.

【0027】本発明の電子材料用研磨剤組成物は、この
二次凝集コロイダルシリカを1〜15重量%、好ましく
は1〜10重量%の割合で含むコロイダルシリカ粒子の
水性分散液である。本発明の電子材料用研磨剤組成物に
は、更に研磨対象の材料の種類や研磨条件等に応じて、
その他のコロイド、例えばアルミナゾル、酸化セリウム
ゾル、酸化ジルコニウムゾルなども加えることもでき、
それらの微粒子粉体を加えることもできる。また、研磨
面やパッドの濡れ性の改善には、界面活性剤や水溶性高
分子を加えることができる。同様に、酸化剤、キレート
剤、腐食防止剤、殺菌剤などを必要に応じて加えること
ができる。本発明の研磨剤が使用できる研磨対象材料は
種々の電子材料であるが、特にシリコンウエハ、化合物
半導体ウェハ、半導体デバイスウェハ、磁気ディスク基
板、又は水晶基板の研磨に有用である。
The abrasive composition for an electronic material of the present invention is an aqueous dispersion of colloidal silica particles containing the secondary aggregated colloidal silica in a proportion of 1 to 15% by weight, preferably 1 to 10% by weight. The abrasive composition for electronic materials of the present invention, further depending on the type of material to be polished and the polishing conditions,
Other colloids such as alumina sol, cerium oxide sol, zirconium oxide sol and the like can also be added,
Those fine particle powders can also be added. In order to improve the wettability of the polished surface or the pad, a surfactant or a water-soluble polymer can be added. Similarly, oxidizing agents, chelating agents, corrosion inhibitors, bactericides and the like can be added as needed. The polishing target material to which the polishing slurry of the present invention can be used is various electronic materials, and is particularly useful for polishing a silicon wafer, a compound semiconductor wafer, a semiconductor device wafer, a magnetic disk substrate, or a quartz substrate.

【0028】[0028]

【実施例】以下に、実施例によって本発明をさらに詳細
に説明する。実施例中「%」は重量基準である。
The present invention will be described in more detail with reference to the following examples. In the examples, "%" is based on weight.

【0029】実施例1:脱イオン水5450gにJIS
3号珪酸ソーダ(SiO2 :29.0%、Na 2O:
9.7%、H2O:61.3%)1000gを加えて均
一に混合し、SiO 2を4.5%含む希釈珪酸ソーダを
作成した。この希釈珪酸ソーダを予め塩酸によって再生
したH型強酸性陽イオン交換樹脂のカラムに通して脱ア
ルカリし、シリカ濃度3.8%でpH2.9の活性珪酸
7250gを得た。活性珪酸の一部の330gに攪拌下
10%NaOHを添加してpHを8.0とし、95℃に
加熱して1時間この温度を保った後、残部の活性珪酸6
920gを8時間かけて添加した。添加中は95℃を保
ち、pHも10を保つように10%NaOHを30分お
きに添加した。活性珪酸の添加終了後95℃に1時間保
った。このようにしてコロイダルシリカの一次粒子を形
成させた。この時点でのシリカの粒子径は、TEM映像
によると20nm、BET法によると19nmで、コロ
イド液は青白味を帯びた透明であった。次いで、1N−
HClを滴下してpHを8.5とし、凝集剤としてAl
23で1%の濃度のポリ塩化アルミニウム水溶液(日本
化学工業(株)製ポリ塩化アルミニウム(Al23;1
0重量%)の10倍希釈液)を30g添加した。添加に
よりコロイド液は白色が濃くなり半透明となった。
Example 1: JIS was added to 5450 g of deionized water.
No. 3 sodium silicate (SiOTwo : 29.0%, Na TwoO:
9.7%, HTwoO: 61.3%)
Mixed together and mixed with SiO TwoDiluted sodium silicate containing 4.5%
Created. Regenerate this diluted sodium silicate with hydrochloric acid in advance
Through a column of strong H-type cation exchange resin
Activated silicic acid with pH 3.8 and silica concentration 3.8%
7250 g were obtained. Under stirring 330g of activated silica
Add 10% NaOH to pH 8.0 and bring to 95 ° C.
After heating and maintaining this temperature for 1 hour, the remaining activated silica 6
920 g were added over 8 hours. Keep 95 ° C during addition.
Then, add 10% NaOH for 30 minutes to maintain the pH at 10.
Was added. After addition of activated silica, keep at 95 ° C for 1 hour.
Was. In this way, the primary particles of colloidal silica are formed.
Was completed. The particle size of silica at this point is shown in the TEM image
At 20 nm according to the BET method,
The id solution was pale and transparent. Then, 1N-
HCl was added dropwise to adjust the pH to 8.5, and Al was used as a flocculant.
TwoOThree1% polyaluminum chloride aqueous solution (Japan
Chemical Industry Co., Ltd. poly aluminum chloride (AlTwoOThree1
30% of a 10-fold diluted solution (0% by weight). For addition
The colloid liquid became more white and translucent.

【0030】次に、このコロイド液に攪拌下10%Na
OHを添加してpHを10に戻し、再び活性珪酸200
0gを2時間かけて添加した。添加中は95℃を保ち、
pHも10を保つように10%NaOHを30分おきに
添加した。添加終了後も95℃に加熱して1時間この温
度を保った後、50℃まで放冷した。このようにして凝
集シリカ粒子の一体化処理を行なって、本発明の二次凝
集コロイダルシリカ分散液を得た。得られた二次凝集コ
ロイダルシリカ分散液を、分画分子量6000の中空糸
型限外濾過膜(旭化成(株)製マイクローザUFモジュ
ールSIP−1013)を用いてポンプ循環送液による
加圧濾過を行い、シリカ濃度30%の二次凝集コロイダ
ルシリカ約900gを得た。このコロイダルシリカはT
EM映像によると一次粒子数個が凝集した二次粒子を構
成し、粒子表面には凹凸があり、幾何学的粒子径の平均
値(X1)は40nmであった。また、窒素吸着BET
法による粒子径(X2)は21nmであり、その比Y
(X1/X2)が1.90であった。
Next, 10% Na was added to the colloid solution while stirring.
OH was added to bring the pH back to 10, and again activated silica was added.
0 g was added over 2 hours. Keep 95 ° C during the addition,
10% NaOH was added every 30 minutes to keep the pH at 10. After completion of the addition, the mixture was heated to 95 ° C. and maintained at this temperature for 1 hour, and then allowed to cool to 50 ° C. In this way, the aggregated silica particles were integrated to obtain a secondary aggregated colloidal silica dispersion of the present invention. The obtained secondary aggregated colloidal silica dispersion was subjected to pressure filtration by pump circulation using a hollow fiber type ultrafiltration membrane having a molecular weight cutoff of 6000 (Microza UF module SIP-1013 manufactured by Asahi Kasei Corporation). Then, about 900 g of secondary aggregated colloidal silica having a silica concentration of 30% was obtained. This colloidal silica is T
According to the EM image, secondary particles formed by agglomeration of several primary particles were formed, the surface of the particles was uneven, and the average value (X1) of the geometric particle diameter was 40 nm. In addition, nitrogen adsorption BET
The particle diameter (X2) by the method is 21 nm, and the ratio Y
(X1 / X2) was 1.90.

【0031】尚、透過型電子顕微鏡(TEM)による幾
何学的平均粒子径の測定は以下のようにして行なった。
まず、試料をイソプロピルアルコールを用いてシリカ濃
度が0.1%まで希釈し、この希釈液を10000倍で
TEM写真を撮影した。次に、その視野内より10個以
上の粒子の存在する部分を4箇所選択し、それらの部分
をそれぞれ40000倍で撮影した。これらの写真か
ら、画面の端部にかかっていないすべての粒子の直径を
測定して平均値を求めた。測定した粒子の総個数は50
個前後であった。実施例1について得られた凝集粒子の
40000倍のTEM写真を図1に示す。
The measurement of the geometric average particle diameter by a transmission electron microscope (TEM) was performed as follows.
First, the sample was diluted with isopropyl alcohol to a silica concentration of 0.1%, and a TEM photograph of the diluted solution was taken at 10,000 times. Next, four portions where 10 or more particles were present were selected from the visual field, and those portions were photographed at a magnification of 40,000. From these photographs, the diameters of all particles that did not cover the edges of the screen were measured and averaged. The total number of particles measured is 50
Was around. FIG. 1 shows a TEM photograph of the aggregated particles obtained in Example 1 at a magnification of 40,000.

【0032】実施例2:脱イオン水13.0kgにJI
S3号珪酸ソーダ(SiO2:28.8%、Na 2O:
9.7%、H2O:61.5%)2.4kgを加えて均
一に混合し、SiO 2を4.5%含む希釈珪酸ソーダを
作成した。この希釈珪酸ソーダを予め塩酸によって再生
したH型強酸性陽イオン交換樹脂のカラムに通して脱ア
ルカリし、シリカ濃度3.8%でpH2.9の活性珪酸
18kgを得た。活性珪酸の一部の1.0kgに攪拌下
10%水酸化テトラメチルアンモニウムを添加してpH
を10とし、95℃に加熱して1時間この温度を保った
後、残部の活性珪酸14kgを8時間かけて添加した。
添加中は95℃を保ち、pHも10を保つように10%
水酸化テトラメチルアンモニウムを30分おきに添加し
た。活性珪酸の添加終了後95℃に1時間保った後、5
0℃まで放冷した。次いで分画分子量6000の中空糸
型限外濾過膜(旭化成(株)製マイクローザUFモジュ
ールSIP−1013)を用いてポンプ循環送液による
加圧濾過を行い、シリカ濃度10%まで濃縮した。この
ようにしてコロイダルシリカの一次粒子を形成させた。
このコロイダルシリカのシリカの粒子径は、TEM映像
によると20nm、シアーズ法によると18nmであ
り、pHは9.8であった。
Example 2: JI in 13.0 kg of deionized water
S3 sodium silicate (SiOTwo: 28.8%, Na TwoO:
9.7%, HTwo(O: 61.5%)
Mixed together and mixed with SiO TwoDiluted sodium silicate containing 4.5%
Created. Regenerate this diluted sodium silicate with hydrochloric acid in advance
Through a column of strong H-type cation exchange resin
Activated silicic acid with pH 3.8 and silica concentration 3.8%
18 kg were obtained. Under agitation to 1.0 kg of activated silica
Add 10% tetramethylammonium hydroxide to pH
To 10 and heated to 95 ° C. and kept at this temperature for 1 hour
Thereafter, the remaining 14 kg of active silicic acid was added over 8 hours.
Maintain 95 ° C during the addition and maintain 10% pH at 10
Add tetramethylammonium hydroxide every 30 minutes
Was. After the addition of activated silicic acid, the temperature was maintained at 95 ° C for 1 hour,
It was allowed to cool to 0 ° C. Next, a hollow fiber having a cut-off molecular weight of 6000
Type ultrafiltration membrane (Microza UF module manufactured by Asahi Kasei Corporation)
By pump circulating liquid using
The solution was filtered under pressure and concentrated to a silica concentration of 10%. this
Thus, primary particles of colloidal silica were formed.
The particle size of the colloidal silica is shown in the TEM image.
20 nm according to the method and 18 nm according to the Sears method.
PH was 9.8.

【0033】このコロイダルシリカ5000gに1N−
HClを滴下してpHを8.7とし、凝集剤としてAl
23で1%の濃度のポリ塩化アルミニウム水溶液(日本
化学工業(株)製ポリ塩化アルミニウム(Al23;1
0%)の10倍希釈液)を60g添加した。添加後のp
Hは7.9となり、コロイド液は白色が濃くなり半透明
となった。これに活性珪酸3kgを加えた後、10%水
酸化テトラメチルアンモニウムを加えてpHを10と
し、160℃、620kPaに加熱して1時間この温度
を保った。放冷後、上記と同じ限外濾過器を用いてポン
プ循環送液による加圧濾過を行い、シリカ濃度40%ま
で濃縮した。このようにして凝集シリカ粒子の一体化処
理を行なって、本発明の二次凝集コロイダルシリカ分散
液を得た。このコロイダルシリカは、TEM映像による
と大半の粒子が一次粒子数個の凝集二次粒子で、粒子表
面には凹凸があり、幾何学的粒子径の平均値(X1)は
40nmであった。また、シアーズ法による粒子径(X
2)は19nmであり、その比Y(X1/X2)は2.
11であった。
1N- is added to 5000 g of the colloidal silica.
HCl was added dropwise to adjust the pH to 8.7, and Al was used as a flocculant.
1% concentration of aqueous polyaluminum chloride solution at 2 O 3 (Nippon Chemical Industrial Co., Ltd. polyaluminum chloride (Al 2 O 3; 1
60% of a 10-fold diluted solution (0%) was added. P after addition
H became 7.9, and the colloid liquid became dark and translucent. After adding 3 kg of activated silicic acid thereto, 10% tetramethylammonium hydroxide was added to adjust the pH to 10, and the temperature was maintained at 160 ° C. and 620 kPa for 1 hour. After allowing to cool, pressure filtration was performed by pump circulation using the same ultrafilter as described above, and concentrated to a silica concentration of 40%. In this way, the aggregated silica particles were integrated to obtain a secondary aggregated colloidal silica dispersion of the present invention. According to the TEM image, most of the colloidal silica was agglomerated secondary particles having a few primary particles. The particle surface had irregularities, and the average value (X1) of the geometric particle diameter was 40 nm. The particle size (X
2) is 19 nm and the ratio Y (X1 / X2) is 2.
It was 11.

【0034】実施例3:市販のコロイダルシリカ(日本
化学工業(株)製「シリカドール40L」SiO2;4
0重量%、シリカの粒子径は、TEM映像によると20
nm、BET法によると21nmであり、pHは9.
9)5kgに、脱イオン水15kgを加えてSiO2
度10%に希釈し、攪拌下1N−HClを滴下してpH
を8.7とし、凝集剤としてAl23として1%の濃度
のポリ塩化アルミニウム水溶液(日本化学工業(株)製
ポリ塩化アルミニウム(Al23;10%)の10倍希
釈液)を250g添加した。添加後のpHは7.9とな
り、コロイド液は白色が濃くなり半透明の凝集コロイダ
ルシリカを得た。
Example 3 Commercially available colloidal silica ("Silica Doll 40L" manufactured by Nippon Chemical Industry Co., Ltd., SiO2; 4)
0% by weight, the particle size of silica was 20 according to the TEM image.
nm, 21 nm according to the BET method, and pH 9.
9) To 5 kg, add 15 kg of deionized water to dilute to a SiO 2 concentration of 10%, and add 1N-HCl dropwise while stirring to adjust the pH.
8.7 and a 1% aqueous solution of polyaluminum chloride as Al 2 O 3 (10-fold diluted solution of polyaluminum chloride (Al 2 O 3 ; 10%) manufactured by Nippon Chemical Industry Co., Ltd.) as a coagulant. 250 g were added. After the addition, the pH became 7.9, and the colloidal liquid became deeper in white color to obtain translucent aggregated colloidal silica.

【0035】別途、脱イオン水149kgに市販の珪酸
カリウム水溶液(日本化学工業(株)製「A珪酸カリ」
SiO2;26.5%、K2O;13.5%)26.4k
gを添加し均一に混合し、SiO2を4.0%含む希釈
珪酸カリを作成した。この希釈珪酸カリを予め塩酸によ
って再生したH型強酸性陽イオン交換樹脂のカラムに通
して脱アルカリし、シリカ濃度3.5%でpH2.8の
活性珪酸200kgを得た。先の凝集コロイダルシリカ
を攪拌下98℃に加熱して、この温度を保つようにし、
活性珪酸と10%KOHをSiO2/K2Oのモル比が4
0となる割合で同時添加を行った。活性珪酸200kg
と10%KOH3268gを約7時間で添加した。添加
終了後95℃に1時間保った後、放冷した。次いで分画
分子量10000の中空糸型限外濾過膜(旭化成(株)
製マイクローザUFモジュールSLP−3053)を用
いてポンプ循環送液による加圧濾過を行い、シリカ濃度
30%まで濃縮した。このようにして凝集シリカ粒子の
一体化処理を行なって、本発明の二次凝集コロイダルシ
リカ分散液を得た。
Separately, a commercially available aqueous solution of potassium silicate (“A potassium silicate” manufactured by Nippon Chemical Industry Co., Ltd.) was added to 149 kg of deionized water.
SiO 2 ; 26.5%, K 2 O; 13.5%) 26.4k
g was added and mixed uniformly to prepare a diluted potassium silicate containing 4.0% of SiO 2 . The diluted potassium silicate was passed through a column of a strongly acidic cation exchange resin regenerated with hydrochloric acid in advance to remove alkali, thereby obtaining 200 kg of activated silica having a silica concentration of 3.5% and a pH of 2.8. The agglomerated colloidal silica is heated to 98 ° C. with stirring to maintain this temperature,
Activated silicic acid and 10% KOH are mixed with SiO 2 / K 2 O at a molar ratio of 4
Simultaneous addition was performed at a rate of 0. Activated silicic acid 200kg
And 3268 g of 10% KOH were added in about 7 hours. After completion of the addition, the mixture was kept at 95 ° C. for 1 hour and allowed to cool. Next, a hollow fiber type ultrafiltration membrane having a molecular weight cut off of 10,000 (Asahi Kasei Corporation)
Pressure filtration was performed by pump circulation using a Microza UF module (SLP-3053 manufactured by Fuji Electric Co., Ltd.), and concentrated to a silica concentration of 30%. In this way, the aggregated silica particles were integrated to obtain a secondary aggregated colloidal silica dispersion of the present invention.

【0036】このコロイダルシリカはTEM映像による
と一次粒子数個が凝集した二次粒子を構成し、粒子表面
には凹凸があり、幾何学的粒子径の平均値(X1)は4
5nmであった。また、窒素吸着BET法による粒子径
(X2)は33nmであり、その比Y(X1/X2)が
1.36であった。実施例3で得られた二次凝集コロイ
ダルシリカ粒子の10000倍と40000倍のTEM
写真をそれぞれ図2及び図3に示す。
According to a TEM image, this colloidal silica constitutes secondary particles in which several primary particles are aggregated, the particle surface has irregularities, and the average geometric particle diameter (X1) is 4
It was 5 nm. The particle diameter (X2) measured by the nitrogen adsorption BET method was 33 nm, and the ratio Y (X1 / X2) was 1.36. TEM of 10,000 times and 40,000 times of the secondary aggregated colloidal silica particles obtained in Example 3
The photographs are shown in FIGS. 2 and 3, respectively.

【0037】実施例4:実施例1〜3で得た本発明のコ
ロイダルシリカ及び市販のコロイダルシリカを用いて、
表1に示す研磨剤組成物を調製した。
Example 4: Using the colloidal silica of the present invention obtained in Examples 1 to 3 and a commercially available colloidal silica,
Polishing compositions shown in Table 1 were prepared.

【0038】[0038]

【表1】 [Table 1]

【0039】これらの研磨剤組成物1〜4を用いて、下
記の研磨条件で、シリコン単結晶(シリコン矩形ミラー
ウェハー、方位:<100>±1゜)の研磨試験を行った。これ
らの結果を表2に示す。 <研磨条件> 研磨機 ; 片面研磨機 研磨パッド; ロデール(株)製SUBA400 定盤回転数; 150rpm 自転数 ; 100rpm 加工圧力; 230g/cm2 研磨時間; 10分 研磨液供給量;20ml/分 <研磨性能の評価> 研磨速度;加工完了後のシリコンを洗浄・乾燥し、加工
前後の重量減から研磨速度を求めた。 研磨痕 ;暗室で目視により研磨痕の有無を判定した。
Using these polishing compositions 1 to 4, a polishing test of a silicon single crystal (silicon rectangular mirror wafer, orientation: <100> ± 1 °) was performed under the following polishing conditions. Table 2 shows the results. <Polishing Conditions> Polishing machine; single-side polishing machine polishing pad; Rodel Co. SUBA400 platen rotational speed; 150 rpm rotation speed; 100 rpm working pressure; 230 g / cm 2 Polishing time: 10 minutes polishing liquid supply amount; 20 ml / min < Evaluation of Polishing Performance> Polishing Rate: The silicon after processing was washed and dried, and the polishing rate was determined from the weight loss before and after processing. Polishing marks: The presence or absence of polishing marks was visually determined in a dark room.

【0040】[0040]

【表2】 [Table 2]

【0041】表2に示したように,本発明のコロイダル
シリカを使用した研磨材組成物(No.1〜3)の研磨
速度は、市販のコロイダルシリカを使用したものと比べ
17〜34%の向上が得られた。
As shown in Table 2, the polishing rate of the abrasive composition (No. 1 to 3) using the colloidal silica of the present invention was 17 to 34% as compared with that using the commercially available colloidal silica. An improvement was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で得た本発明の二次凝集コロイダル
シリカの倍率40000倍の電子顕微鏡写真である。
FIG. 1 is an electron micrograph at a magnification of 40,000 times of the secondary aggregated colloidal silica of the present invention obtained in Example 1.

【図2】 実施例3で得た本発明の二次凝集コロイダル
シリカの倍率10000倍の電子顕微鏡写真である。
FIG. 2 is an electron micrograph of the secondary aggregated colloidal silica of the present invention obtained in Example 3 at a magnification of 10,000.

【図3】 実施例3で得た本発明の二次凝集コロイダル
シリカの倍率40000倍の電子顕微鏡写真である。
FIG. 3 is an electron micrograph at a magnification of 40,000 times of the secondary aggregated colloidal silica of the present invention obtained in Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 泉 昌弘 東京都江東区亀戸9丁目11番1号 日本化 学工業株式会社内 Fターム(参考) 3C058 AA07 CA01 DA02 4G072 AA28 BB05 BB07 CC13 DD06 DD07 EE01 GG01 MM40 TT01 TT06 UU01 UU30  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masahiro Izumi 9-11-1, Kameido, Koto-ku, Tokyo Nippon Kagaku Kogyo Co., Ltd. F term (reference) 3C058 AA07 CA01 DA02 4G072 AA28 BB05 BB07 CC13 DD06 DD07 EE01 GG01 MM40 TT01 TT06 UU01 UU30

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 コロイダルシリカのシリカ粒子の電子線
による透過投影像より求めた幾何学的平均粒子径(X
1)と、シリカ粒子の表面積より算出した相当粒子径
(X2)との比Y(X1/X2)が1.3から2.5の
範囲であり、かつその幾何学的平均粒子径が20〜20
0nmの範囲であることを特徴とする二次凝集コロイダ
ルシリカ。
1. A geometric mean particle diameter (X) determined from an electron beam transmission projection image of colloidal silica silica particles.
The ratio Y (X1 / X2) between 1) and the equivalent particle diameter (X2) calculated from the surface area of the silica particles is in the range of 1.3 to 2.5, and the geometric average particle diameter is 20 to 20
Secondary aggregated colloidal silica having a range of 0 nm.
【請求項2】 シリカ粒子の表面積の測定方法がシアー
ズ法であることを特徴とする、請求項1記載の二次凝集
コロイダルシリカ。
2. The secondary aggregated colloidal silica according to claim 1, wherein the method for measuring the surface area of the silica particles is a Sears method.
【請求項3】 シリカ粒子の表面積の測定方法が窒素吸
着BET法であることを特徴とする、請求項1記載の二
次凝集コロイダルシリカ。
3. The secondary aggregated colloidal silica according to claim 1, wherein the method for measuring the surface area of the silica particles is a nitrogen adsorption BET method.
【請求項4】 電子線による透過投影像より求めた幾何
学的平均粒子径(X1)が、透過型電子顕微鏡の投影像
から求めた粒子の直径の平均値であることを特徴とす
る、請求項1記載の二次凝集コロイダルシリカ。
4. The method according to claim 1, wherein the geometric mean particle diameter (X1) obtained from the transmission projection image by the electron beam is an average value of the diameter of the particles obtained from the projection image of the transmission electron microscope. Item 2. The secondary aggregated colloidal silica according to Item 1.
【請求項5】 単分散のコロイダルシリカにシリカ粒子
の凝集剤を添加してほぼ球状の凝集二次粒子を作り、次
いで活性珪酸を添加して凝集粒子を一体化することを特
徴とする二次凝集コロイダルシリカの製造方法。
5. A secondary particle, characterized in that a coagulant of silica particles is added to monodisperse colloidal silica to form substantially spherical aggregated secondary particles, and then activated silica is added to integrate the aggregated particles. A method for producing aggregated colloidal silica.
【請求項6】 コロイダルシリカのシリカ粒子の電子線
による透過投影像より求めた幾何学的平均粒子径(X
1)と、シリカ粒子の表面積より算出した相当粒子径
(X2)との比Y(X1/X2)が1.3から2.5の
範囲であり、かつその幾何学的平均粒子径が20〜20
0nmの範囲にある二次凝集コロイダルシリカを含有す
ることを特徴とする電子材料用の研磨剤組成物。
6. A geometric mean particle size (X) determined from a transmission projection image of colloidal silica silica particles by an electron beam.
The ratio Y (X1 / X2) between 1) and the equivalent particle diameter (X2) calculated from the surface area of the silica particles is in the range of 1.3 to 2.5, and the geometric average particle diameter is 20 to 20
An abrasive composition for electronic materials, comprising secondary aggregated colloidal silica in a range of 0 nm.
【請求項7】 シリコンウエハ、化合物半導体ウェハ、
半導体デバイスウェハ、磁気ディスク基板、又は水晶基
板用である請求項6記載の研磨剤組成物。
7. A silicon wafer, a compound semiconductor wafer,
The polishing composition according to claim 6, which is used for a semiconductor device wafer, a magnetic disk substrate, or a quartz substrate.
JP2001148974A 2001-05-18 2001-05-18 Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same Pending JP2002338232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148974A JP2002338232A (en) 2001-05-18 2001-05-18 Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148974A JP2002338232A (en) 2001-05-18 2001-05-18 Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same

Publications (1)

Publication Number Publication Date
JP2002338232A true JP2002338232A (en) 2002-11-27

Family

ID=18994200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148974A Pending JP2002338232A (en) 2001-05-18 2001-05-18 Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same

Country Status (1)

Country Link
JP (1) JP2002338232A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153672A (en) * 2005-12-05 2007-06-21 Catalysts & Chem Ind Co Ltd Method for manufacturing anisotropic-shape silica sol
JP2007153692A (en) * 2005-12-06 2007-06-21 Catalysts & Chem Ind Co Ltd Method for manufacturing anisotropic-shape silica sol
US7267604B2 (en) 2004-03-19 2007-09-11 Hitachi Cable, Ltd. Grinding abrasive grains, abrasive, abrasive solution, abrasive solution preparation method, grinding method, and semiconductor device fabrication method
JP2008013655A (en) * 2006-07-05 2008-01-24 Kao Corp Grinding liquid composition for glass substrate
JP2008519177A (en) * 2004-11-08 2008-06-05 アクゾ ノーベル エヌ.ブイ. Pigment composition in the form of an aqueous dispersion
WO2008072637A1 (en) * 2006-12-12 2008-06-19 Fuso Chemical Co. Ltd. Method for producing colloidal silica
JP2008169102A (en) * 2006-10-12 2008-07-24 Catalysts & Chem Ind Co Ltd Confetti-like silica-based sol and method for producing the same
US7507668B2 (en) 2005-09-30 2009-03-24 Sumitomo Electric Industries, Ltd. Polishing slurry, method of treating surface of GaxIn1-xAsyP1-y crystal and GaxIn1-xAsyP1-y crystal substrate
JP2009155180A (en) * 2007-12-27 2009-07-16 Jgc Catalysts & Chemicals Ltd Particle-linked alumina-silica composite sol and method for manufacturing the same
JP2009161371A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Silica sol and manufacturing method thereof
WO2009128494A1 (en) * 2008-04-16 2009-10-22 日立化成工業株式会社 Polishing solution for cmp and polishing method
JP2010024119A (en) * 2008-07-24 2010-02-04 Jgc Catalysts & Chemicals Ltd Method for producing confetti-like silica sol
WO2012050044A1 (en) 2010-10-12 2012-04-19 株式会社 フジミインコーポレーテッド Polishing composition
JP2013091589A (en) * 2011-10-27 2013-05-16 Nissan Chem Ind Ltd Porous secondary aggregated silica sol, and method for producing the same
JP2013227168A (en) * 2012-04-25 2013-11-07 Nippon Chem Ind Co Ltd Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
EP2915859A4 (en) * 2012-10-31 2015-10-28 Fujimi Inc Polishing composition
JP2016011224A (en) * 2014-06-27 2016-01-21 日揮触媒化成株式会社 Hydrophobic silica-based powder, composition for molding rubber comprising the same, and method for producing the same
JP2017105980A (en) * 2015-09-25 2017-06-15 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Stop-on silicon containing layer additive
JP2017527104A (en) * 2014-06-25 2017-09-14 キャボット マイクロエレクトロニクス コーポレイション Colloidal silica chemical mechanical polishing concentrate
JP2018177576A (en) * 2017-04-10 2018-11-15 日揮触媒化成株式会社 Method of manufacturing irregular shape silica particle
CN113436654A (en) * 2017-09-29 2021-09-24 富士胶片株式会社 Magnetic tape and magnetic recording/reproducing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187512A (en) * 1990-11-21 1992-07-06 Catalysts & Chem Ind Co Ltd Silica sol and its production
JPH06316407A (en) * 1993-03-03 1994-11-15 Nissan Chem Ind Ltd Production of silica sol
JP2000178020A (en) * 1998-12-15 2000-06-27 Nippon Chem Ind Co Ltd High purity silica aqueous sol and its production
JP2000247625A (en) * 1999-03-04 2000-09-12 Nippon Chem Ind Co Ltd High purity silica sol and its production
JP2001011433A (en) * 1999-07-02 2001-01-16 Nissan Chem Ind Ltd Composition for abrasion
JP2001118815A (en) * 1999-10-22 2001-04-27 Speedfam Co Ltd Polishing composition for polishing semiconductor wafer edge, and polishing machining method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187512A (en) * 1990-11-21 1992-07-06 Catalysts & Chem Ind Co Ltd Silica sol and its production
JPH06316407A (en) * 1993-03-03 1994-11-15 Nissan Chem Ind Ltd Production of silica sol
JP2000178020A (en) * 1998-12-15 2000-06-27 Nippon Chem Ind Co Ltd High purity silica aqueous sol and its production
JP2000247625A (en) * 1999-03-04 2000-09-12 Nippon Chem Ind Co Ltd High purity silica sol and its production
JP2001011433A (en) * 1999-07-02 2001-01-16 Nissan Chem Ind Ltd Composition for abrasion
JP2001118815A (en) * 1999-10-22 2001-04-27 Speedfam Co Ltd Polishing composition for polishing semiconductor wafer edge, and polishing machining method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267604B2 (en) 2004-03-19 2007-09-11 Hitachi Cable, Ltd. Grinding abrasive grains, abrasive, abrasive solution, abrasive solution preparation method, grinding method, and semiconductor device fabrication method
JP2008519177A (en) * 2004-11-08 2008-06-05 アクゾ ノーベル エヌ.ブイ. Pigment composition in the form of an aqueous dispersion
JP4897694B2 (en) * 2004-11-08 2012-03-14 アクゾ ノーベル ナムローゼ フェンノートシャップ Pigment composition in the form of an aqueous dispersion
US7507668B2 (en) 2005-09-30 2009-03-24 Sumitomo Electric Industries, Ltd. Polishing slurry, method of treating surface of GaxIn1-xAsyP1-y crystal and GaxIn1-xAsyP1-y crystal substrate
JP2007153672A (en) * 2005-12-05 2007-06-21 Catalysts & Chem Ind Co Ltd Method for manufacturing anisotropic-shape silica sol
JP2007153692A (en) * 2005-12-06 2007-06-21 Catalysts & Chem Ind Co Ltd Method for manufacturing anisotropic-shape silica sol
JP2008013655A (en) * 2006-07-05 2008-01-24 Kao Corp Grinding liquid composition for glass substrate
JP2008169102A (en) * 2006-10-12 2008-07-24 Catalysts & Chem Ind Co Ltd Confetti-like silica-based sol and method for producing the same
JP2013047180A (en) * 2006-10-12 2013-03-07 Jgc Catalysts & Chemicals Ltd Spinous silica-based sol
JP5155185B2 (en) * 2006-12-12 2013-02-27 扶桑化学工業株式会社 Method for producing colloidal silica
WO2008072637A1 (en) * 2006-12-12 2008-06-19 Fuso Chemical Co. Ltd. Method for producing colloidal silica
JP2009155180A (en) * 2007-12-27 2009-07-16 Jgc Catalysts & Chemicals Ltd Particle-linked alumina-silica composite sol and method for manufacturing the same
JP2009161371A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Silica sol and manufacturing method thereof
KR101209990B1 (en) 2008-04-16 2012-12-07 히다치 가세고교 가부시끼가이샤 Polishing solution for cmp and polishing method
WO2009128494A1 (en) * 2008-04-16 2009-10-22 日立化成工業株式会社 Polishing solution for cmp and polishing method
JP2014057071A (en) * 2008-04-16 2014-03-27 Hitachi Chemical Co Ltd Polishing liquid for cmp and polishing method
JP5513372B2 (en) * 2008-04-16 2014-06-04 日立化成株式会社 Polishing liquid and polishing method for CMP
JP2010024119A (en) * 2008-07-24 2010-02-04 Jgc Catalysts & Chemicals Ltd Method for producing confetti-like silica sol
WO2012050044A1 (en) 2010-10-12 2012-04-19 株式会社 フジミインコーポレーテッド Polishing composition
JP2013091589A (en) * 2011-10-27 2013-05-16 Nissan Chem Ind Ltd Porous secondary aggregated silica sol, and method for producing the same
JP2013227168A (en) * 2012-04-25 2013-11-07 Nippon Chem Ind Co Ltd Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
EP2915859A4 (en) * 2012-10-31 2015-10-28 Fujimi Inc Polishing composition
JP2017527104A (en) * 2014-06-25 2017-09-14 キャボット マイクロエレクトロニクス コーポレイション Colloidal silica chemical mechanical polishing concentrate
JP2016011224A (en) * 2014-06-27 2016-01-21 日揮触媒化成株式会社 Hydrophobic silica-based powder, composition for molding rubber comprising the same, and method for producing the same
JP2017105980A (en) * 2015-09-25 2017-06-15 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Stop-on silicon containing layer additive
US10144850B2 (en) 2015-09-25 2018-12-04 Versum Materials Us, Llc Stop-on silicon containing layer additive
JP2019049008A (en) * 2015-09-25 2019-03-28 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Stop-on silicon coating layer additive
JP2018177576A (en) * 2017-04-10 2018-11-15 日揮触媒化成株式会社 Method of manufacturing irregular shape silica particle
CN113436654A (en) * 2017-09-29 2021-09-24 富士胶片株式会社 Magnetic tape and magnetic recording/reproducing apparatus
CN113436654B (en) * 2017-09-29 2022-12-02 富士胶片株式会社 Magnetic tape and magnetic recording/reproducing apparatus

Similar Documents

Publication Publication Date Title
JP2002338232A (en) Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
JP5602358B2 (en) Non-spherical silica sol, method for producing the same, and polishing composition
JP5127452B2 (en) Method for producing deformed silica sol
TWI483898B (en) Non-orbicular silica sol, preparation method thereof and polishing composition using the same
US5226930A (en) Method for preventing agglomeration of colloidal silica and silicon wafer polishing composition using the same
JP7206695B2 (en) Silica sol, polishing composition, method for polishing silicon wafer, method for producing silicon wafer, chemical-mechanical polishing composition, and method for producing semiconductor device
JPWO2004074180A1 (en) Alkali-resistant cocoon-type colloidal silica particles and method for producing the same
JP5221517B2 (en) Aluminum modified colloidal silica and method for producing the same
JP2007137972A (en) Silica sol for polishing and polishing composition containing the sol
JP2010058985A (en) Silica sol and method for producing the same
JP2001150334A (en) Semiconductor wafer polishing method and abrasive
JP6207345B2 (en) Method for producing silica particles
WO2006057479A1 (en) Slurry for use in metal-chemical mechanical polishing and preparation method thereof
JP2002338951A (en) Hydrothermally treated colloidal silica for polishing agent
TW201936499A (en) Method for producing silica sol having long and narrow particle form
JP2007061989A (en) Polishing composite-oxide particle and slurry abrasive
TW201936500A (en) Method for producing silica sol having long and narrow particle form
JP2013227168A (en) Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
KR20110014486A (en) A manufacturing method of colloidal silica for chemical mechenical polishing
JP3754986B2 (en) Abrasive composition and method for preparing the same
JP7331437B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP2009184856A (en) Colloidal silica composed of silica particles with fixed ethylenediamine
JP2006202932A (en) Polishing composition, its manufacturing method, and polishing method using the same
JP4291665B2 (en) Abrasive composition for siliceous material and polishing method using the same
JP4247955B2 (en) Abrasive composition for hard and brittle materials and polishing method using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522