JPH04187512A - Silica sol and its production - Google Patents

Silica sol and its production

Info

Publication number
JPH04187512A
JPH04187512A JP31741790A JP31741790A JPH04187512A JP H04187512 A JPH04187512 A JP H04187512A JP 31741790 A JP31741790 A JP 31741790A JP 31741790 A JP31741790 A JP 31741790A JP H04187512 A JPH04187512 A JP H04187512A
Authority
JP
Japan
Prior art keywords
silica sol
concentration
silicic acid
solution
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31741790A
Other languages
Japanese (ja)
Other versions
JPH085657B2 (en
Inventor
Hiroyasu Nishida
広泰 西田
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP31741790A priority Critical patent/JPH085657B2/en
Publication of JPH04187512A publication Critical patent/JPH04187512A/en
Publication of JPH085657B2 publication Critical patent/JPH085657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve bonding strength in use as a binder and eliminate occurrence of cracks when formed into films by regulating a silica sol so that the gradient of a straight line indicating correlation between the silica concentration and reduced viscosity thereof may satisfy a specific relationship. CONSTITUTION:In the aforementioned silica sol, the gradient ( [log(etasp/C)]/ C) of a straight line indicating the correlation between the reduced viscosity (etasp/C) and the silica concentration (C) satisfies a relationship of 0.02<= [log(etasp/ C)]/ C<=0.20. The above-mentioned silica sol is obtained by the following steps. That is (a) a step for adding silicic acid liquid to an aqueous solution of an alkali metallic silicate at 0.05-5.0wt.% concentration expressed in terms of SiO2 and regulating the SiO2/M2O (molar ratio, M is alkali metal or quaternary ammonium) to 30-60, (b) a step for adding one or two or more metallic compounds selected from Ca, Mg, Al, Ti, Cu, rare earth metals, etc., before, during or after the step for adding the silicic acid liquid, (c) a step for keeping the resultant mixture solution at an optional temperature of >=60 deg.C for a prescribed time and (d) a step for reading the silicic acid liquid to the reaction solution and keeping the SiO2/M2O (molar ratio) in the reaction solution at 60-100.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、新規なシリカゾルとその製法に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a novel silica sol and a method for producing the same.

〔従来技術〕[Prior art]

無機物の結合剤、プラスチックのフィラーまたはコート
剤等にシリカゾルが用いられているが、従来のシリカゾ
ル中の分散シリカ粒子の形状はいずれも球状またはそれ
に近いものである。
Silica sol is used as a binder for inorganic materials, a filler for plastics, a coating agent, etc., and the shape of the dispersed silica particles in conventional silica sol is all spherical or close to spherical.

これらのシリカゾルの製法は、例えば、アルカリ金属ケ
イ酸塩水溶液にケイ酸液を添加する方法が知られている
(特開昭47−1964.58−15022゜62−7
622号公報参照)。
As a method for producing these silica sols, for example, a method of adding a silicic acid solution to an aqueous solution of an alkali metal silicate is known (Japanese Patent Application Laid-Open No. 1964-1964.58-15022゜62-7).
(See Publication No. 622).

これら従来のシリカゾルは、鋳造のための砂型または無
機繊維の結節剤などに該シリカゾルを結合剤として使用
して作ったときに結合強度が充分でなかったり、また、
該シリカゾルで被膜を作ったとき、その被膜にクラック
が生じる等の問題点があった。
These conventional silica sols do not have sufficient bonding strength when used as a binder in sand molds for casting or as binders for inorganic fibers.
When a film was formed using the silica sol, there were problems such as cracks occurring in the film.

これらの問題点を解決するために、細長い形状のシリカ
粒子からなるシリカゾルおよ・びその製造法が提案され
ている(特開平1−317115号公報参照)が、これ
以外の方法はいまだ知られていない。
In order to solve these problems, a silica sol made of elongated silica particles and a method for producing the same have been proposed (see Japanese Patent Application Laid-open No. 1-317115), but no other methods are known yet. do not have.

〔目  的〕〔the purpose〕

本発明の目的は、前述のように結合剤として使用したと
きの結合強度の不充分さ、被膜としたときのクラックの
発生、といった問題点を解消した新しいタイプのシリカ
ゾルとその製法を提供する点にある。
The purpose of the present invention is to provide a new type of silica sol and a method for producing the same, which solves the above-mentioned problems such as insufficient bonding strength when used as a binder and occurrence of cracks when formed into a film. It is in.

本発明の他の目的は、細長い形状のシリカ粒子よりなる
新しいタイプのシリカゾルを製造するための新しい方法
を提供する点にある。
Another object of the present invention is to provide a new method for producing a new type of silica sol consisting of elongated silica particles.

〔構  成〕〔composition〕

本発明の第1は、還元粘度(ηSρ/C)とシリ、力濃
度(C,)との相関を示す直線の勾配(△[log(η
sp/C)]/ΔC)が次の関係を満足することを特徴
とするシリカゾルに関する。
The first aspect of the present invention is the slope of the straight line (△[log(η
The present invention relates to a silica sol characterized in that sp/C)]/ΔC) satisfies the following relationship.

0.02≦Δ [log(71SP/C)]/ΔC≦0
.20本発明の第2は、S10□として0.05〜5.
0L1t%のアルカリ金属ケイ酸塩水溶液に。
0.02≦Δ [log(71SP/C)]/ΔC≦0
.. 20 The second aspect of the present invention is S10□ of 0.05 to 5.
0L1t% alkali metal silicate aqueous solution.

(a)  ケイ酸液を添加して混合液の5j02/Mz
O(モル比、Mはアルカリ金属又は第4級アンモニウム
)を30〜60とする工程 (b)  ケイ酸液添加工程の前、添加工程中または添
加工程後に、Ca、Mg、AL  In、Tj。
(a) 5j02/Mz of the mixed liquid by adding silicic acid liquid
Step (b) in which O (molar ratio, M is an alkali metal or quaternary ammonium) is 30 to 60: Ca, Mg, AL In, Tj before, during or after the silicic acid solution addition step.

Zr、Sn、Si、Sb、Fe、Cuおよび希土類金属
からなる群から選ばれた1種または2種以上の金属の化
合物を添加する工程   ′(C)  この混合液を6
0℃以上の任意の温度で一定時間維持する工程 (d)  この反応液に再びケイ酸液を添加して反応液
中の5i02/M20(モル比)を60〜100とする
工程 からなるシリカゾルの製造方法に関する。
Step of adding a compound of one or more metals selected from the group consisting of Zr, Sn, Si, Sb, Fe, Cu, and rare earth metals'(C) Adding this mixed solution to 6
Step (d) of maintaining at an arbitrary temperature of 0° C. or higher for a certain period of time: Adding a silicic acid solution to the reaction solution again to adjust the 5i02/M20 (molar ratio) in the reaction solution to 60 to 100. Regarding the manufacturing method.

〔本発明のシリカゾルの特徴〕[Characteristics of the silica sol of the present invention]

本発明のシリカゾルの還元粘度は濃度依存性があり、シ
リカ濃度が高くなるに従って還元粘度も高くなる。これ
に対して、従来のシリカゾルは、濃度依存性が小さいか
、あるいはほとんど無い。
The reduced viscosity of the silica sol of the present invention is concentration dependent, and as the silica concentration increases, the reduced viscosity also increases. In contrast, conventional silica sols have little or no concentration dependence.

還元粘度=(比粘度)/(シリカ濃度)一般に、高分子
ゾル中の高分子の形状とゾルの還元粘度については、そ
の形状が球状の場合は還元粘度は高分子濃度に依存せず
一定の値をとる。一方、鎖状または線状の場合は濃度依
存性があり、高分子濃度が大きくなるに従って還元粘度
も大きくなる。
Reduced viscosity = (specific viscosity) / (silica concentration) In general, regarding the shape of the polymer in a polymer sol and the reduced viscosity of the sol, if the shape is spherical, the reduced viscosity is constant regardless of the polymer concentration. Takes a value. On the other hand, in the case of chain or linear polymers, there is concentration dependence, and as the polymer concentration increases, the reduced viscosity also increases.

本発明のシリカゾルも、従来の球状シリカ粒子が分散し
たシリカゾルとは異なり、高分子ゾルの場合と同様の傾
向を示し1本発明のシリカ粒子は鎖状あるいは線状の粒
子が分散したシリカゾルと考えられる。そして、このこ
とは@顕写真によっても認められる。
The silica sol of the present invention is different from the conventional silica sol in which spherical silica particles are dispersed, and shows the same tendency as in the case of polymer sol.1 The silica particles of the present invention are considered to be silica sol in which chain or linear particles are dispersed. It will be done. And this is also confirmed by @photography.

本発明のシリカゾルは、従来の球状シリカゾルと比較し
て、同一濃度でも粘度が高く、高粘度にかかわらず安定
であるに れは、本発明のシリカゾルが従来の球状粒子ではなく、
鎖状(線状)粒子が分散したゾルであることに由来する
と考えられる。
The silica sol of the present invention has a higher viscosity than the conventional spherical silica sol even at the same concentration, and is stable despite the high viscosity.
This is thought to be due to the fact that it is a sol in which chain (linear) particles are dispersed.

本発明のシリカゾルの還元粘度(ηs p / C+C
,P、/lyt%)と濃度(C,wt%)の相関を、第
1図に示すように縦軸に対数目盛で還元粘度を。
Reduced viscosity of the silica sol of the present invention (ηs p / C+C
, P, /lyt%) and concentration (C, wt%), and the vertical axis shows the reduced viscosity on a logarithmic scale, as shown in Figure 1.

横軸に等差目盛で濃度で表わすと直線状になり、その勾
配Δ[log(77SP/ C)]/ΔCは、0.02
〜0゜20の範囲にある。
When expressed as concentration on an arithmetic scale on the horizontal axis, it becomes a straight line, and its slope Δ[log(77SP/C)]/ΔC is 0.02
~0°20.

また、本発明のシリカゾルは、動的光散乱法で測定した
平均粒径D1が4On+n未満、N2ガス吸着法で測定
した平均粒径をD2としたときD1/D2く5のもので
ある。なお、前記特開平1−317115号公報のシリ
カ粒子はこのD1/D2≧5であり、本発明とはり、/
D2の関係において正反対のものである。
Furthermore, the silica sol of the present invention has an average particle diameter D1 of less than 4On+n as measured by a dynamic light scattering method, and a ratio of D1/D2×5, where D2 is the average particle diameter measured by a N2 gas adsorption method. Note that the silica particles of JP-A-1-317115 have this D1/D2≧5, and the present invention has /
They are exactly the opposite in relation to D2.

動的光散乱法による粒子径の測定法は、ジャーナル・オ
ブ・ケミカル・フィジックス(Journalof C
hemical Physjcs)第57巻第11号(
1972年12月)第4814頁に説明されており、例
えば、市販の米国Coulter社製N4と呼ばれる装
置により容易に粒子径を測定することができる。通常の
BET法によって測定された比表面積Sm2/gから 
D2=□の式によって与えられる粒径D2mμは、細長
い形状のコロイダルシリカ粒子の比表面積と同し比表面
積Sm2/gを有する仮想の球状コロイダルシリカ粒子
の直径を意味する。従って、上記動的光散乱法によって
測定された粒子径り、mμと上記り、mμとの比Dユ/
D2の大きさは、細長い形状のコロイダルシリカ粒子の
同一平面内の伸長度を意味する。
A method for measuring particle size using dynamic light scattering is described in the Journal of Chemical Physics (Journalof C
Chemical Physjcs) Volume 57 No. 11 (
(December 1972), page 4814, and the particle size can be easily measured, for example, using a commercially available device called N4 manufactured by Coulter, Inc. in the United States. From the specific surface area Sm2/g measured by the normal BET method
The particle size D2mμ given by the formula D2=□ means the diameter of a hypothetical spherical colloidal silica particle having the same specific surface area Sm2/g as the elongated colloidal silica particle. Therefore, the ratio of the particle diameter mμ measured by the above dynamic light scattering method to the above mμ
The size of D2 means the degree of elongation of the elongated colloidal silica particles in the same plane.

〔製造方法〕〔Production method〕

アルカリ金属ケイ酸塩水溶液は、ケイ酸ナトリウム、ケ
イ酸カリウム等の水溶液で、通常はSl、02 / M
20 (モル比、M:アルカリ金属又は第4級アンモニ
ウム)が約1〜4.5のものが用いられる。
The aqueous alkali metal silicate solution is an aqueous solution of sodium silicate, potassium silicate, etc., and is usually Sl, 02/M
20 (molar ratio, M: alkali metal or quaternary ammonium) is about 1 to 4.5.

ケイ酸液とは、前記と同じアルカリ金属ケイ酸塩水溶液
を陽イオン交換樹脂で処理するなどの方法で脱アルカリ
して得られるケイ酸の低重合物の水溶液である。この種
のケイ酸液は、通常pHは2〜4.SjO□濃度約7w
t%以下のものが比較的安定なことから好ましい原料で
ある。
The silicic acid solution is an aqueous solution of a low polymer of silicic acid obtained by dealkalizing the same alkali metal silicate aqueous solution as described above by a method such as treatment with a cation exchange resin. This type of silicic acid solution usually has a pH of 2 to 4. SjO□ concentration approximately 7w
Those with a content of t% or less are preferable raw materials because they are relatively stable.

ケイ酸液の添加は、50℃以下、好ましくは40°C以
下で行い、添加後の混合液のSiO2/M2Oを30〜
60、好ましくは35〜55の範囲になるように添加す
る。
The addition of the silicic acid liquid is carried out at 50°C or lower, preferably 40°C or lower, and the SiO2/M2O of the mixed liquid after addition is 30~30°C.
60, preferably in the range of 35 to 55.

SiO2/M2O (モル比)30未満では最終ゾル中
の分散粒子の形状が球状に近いものになり、60を越え
るとゾルの安定性が悪くなる。
If the SiO2/M2O (mole ratio) is less than 30, the shape of the dispersed particles in the final sol will be close to spherical, and if it exceeds 60, the stability of the sol will deteriorate.

本発明で用いる金属化合物としては、Sl。The metal compound used in the present invention includes Sl.

Zr、 Al、 Ti、 In、 Sb、 Sn、 F
e、 Cu。
Zr, Al, Ti, In, Sb, Sn, F
e, Cu.

Mg、Ca、希土類等の無機、有機の塩、アルコキシド
等の有機化合物が挙げら汎る。また、水和金属酸化物等
のコロイドであってもよい。
Examples include inorganic and organic salts such as Mg, Ca, and rare earths, and organic compounds such as alkoxides. It may also be a colloid such as a hydrated metal oxide.

金属化合物は通常1種または2種以上の混合物の水溶液
として添加する。
The metal compound is usually added as an aqueous solution of one type or a mixture of two or more types.

これら金属化合物の添加時期は、金属化合物がコロイド
の場合は、ケイ酸液の添加前、同時添加、添加後、いず
れでも良い。しかし、コロイド以外の形で使用する場合
、金属化合物の水溶液が酸性のときはケイ酸液添加前に
配合すると、混合液が不安定になり易いのでケイ酸液と
同時に添加するのが良い。
When the metal compound is a colloid, the metal compound may be added before, simultaneously with, or after the addition of the silicic acid solution. However, when using the metal compound in a form other than a colloid, if the aqueous solution of the metal compound is acidic, it is better to add it at the same time as the silicic acid solution, since if it is blended before adding the silicic acid solution, the mixed solution tends to become unstable.

コロイドと他の金属塩を添加する場合、同時に添加して
も良く、または、あらかじめアルカリ金属ケイ酸塩水溶
液にコロイドを添加しておき、ついで、ケイ酸液と他の
金属塩水溶液を添加する等の方法をとることもできる。
When adding colloids and other metal salts, they may be added at the same time, or the colloids may be added to an aqueous alkali metal silicate solution in advance, and then the silicate solution and other metal salts may be added. You can also take the following method.

金属化合物の添加量としては、最終生成物中の全固形分
に対し、酸化物として0.5〜5(ht%、好ましくは
5〜30すt%である。
The amount of the metal compound added is 0.5 to 5 (ht%, preferably 5 to 30t%) as an oxide based on the total solid content in the final product.

金属化合物が金属塩の場合は、ゾル中の残存塩量が多く
なると安定性が悪くなるので金属塩としでは酸化物とし
て約5ut%を越えないようにすることが好ましい。
When the metal compound is a metal salt, the stability deteriorates as the amount of residual salt in the sol increases, so it is preferable that the amount of the metal salt as an oxide does not exceed about 5 ut%.

ケイ酸液および金属化合物を添加した混合液は、次いで
、60℃以上、好ましくは80〜95℃で30分以上撹
拌する。
The mixed liquid to which the silicic acid liquid and the metal compound have been added is then stirred at 60°C or higher, preferably 80 to 95°C for 30 minutes or more.

この操作により混合液の熟成と1粒子成長のため核形成
と核の連結が行われる。
Through this operation, nucleation and nucleation are carried out for ripening of the mixed solution and single particle growth.

熟成工程後、再びケイ酸液を添加する。このとき、−度
に所定量を添加するとゲル化を起すことがあるので、徐
々に添加することが好ましい。熟成工程により連結した
核の安定化が計られ、ケイ酸液の再添加により連結した
核の強化が達成される。
After the aging process, silicic acid solution is added again. At this time, since gelation may occur if a predetermined amount is added at a time, it is preferable to add it gradually. The maturing step stabilizes the connected nuclei, and the re-addition of the silicic acid solution strengthens the connected nuclei.

ケイ酸液添加量は、最終ゾル中の5i02/M20(モ
ル比)が60〜100になるようにする。また温度は6
0℃以上である。
The amount of silicic acid solution added is such that 5i02/M20 (molar ratio) in the final sol is 60 to 100. Also, the temperature is 6
The temperature is 0°C or higher.

以上のようにして得られたシリカゾルは、このまま目的
の用途に供されることもあり、また、用途によっては、
限外濾過、蒸発等の手段によって濃縮する。また、溶媒
置換等の方法によって、アルコール、グリコール等の有
機溶媒と置換し、有機ゾルとすることもできる。
The silica sol obtained as described above may be used as is for the intended purpose, or depending on the purpose,
Concentrate by ultrafiltration, evaporation, etc. Furthermore, by a method such as solvent substitution, an organic solvent such as alcohol or glycol can be substituted to obtain an organic sol.

〔実施例〕〔Example〕

実施例−1 還流器および撹拌機付5Ωセパラブルフラスコに24w
t%(5in2としての濃度)のケイ酸ソーダ(Sin
、 / Na2Oモル比3)21.5gを入れ、さらに
水300gを添加した。
Example-1 24w in a 5Ω separable flask with reflux and stirrer
t% (concentration as 5in2) of sodium silicate (Sin
, / Na2O molar ratio 3) 21.5 g was added, and further 300 g of water was added.

次いで、この溶液に、3wt%のケイ酸ソーダ(Sin
2/ Na2Oモル比3)を陽イオン交換樹脂塔に通し
て調製することにより得られた3wt%のケイ酸液(p
H2,5) 2408gとIIIIt%(Al□03と
しての濃度)の塩化アルミニウム水溶液31gを混合し
たものを徐々に撹拌しながら添加して、S10□/Na
2Oモル比44.9の液を得た。
Next, 3 wt% sodium silicate (Sin) was added to this solution.
2/Na2O molar ratio 3) was prepared by passing it through a cation exchange resin tower.
A mixture of 2408 g of H2,5) and 31 g of an aluminum chloride aqueous solution of IIIt% (concentration as Al□03) was gradually added with stirring to obtain S10□/Na.
A liquid with a 2O molar ratio of 44.9 was obtained.

そして、得られた液を加温し、80℃の温度で30分間
熟成した。その後、さらに80℃に保持した状態で、こ
の液に3wt%のケイ酸液1427gを6.4g/分の
速度で添加して、pH1O,oで固形分濃度2.89w
t%のシリカゾルを得た。
Then, the obtained liquid was heated and aged at a temperature of 80° C. for 30 minutes. Thereafter, while the temperature was further maintained at 80°C, 1427 g of 3 wt% silicic acid solution was added to this solution at a rate of 6.4 g/min, and the solid content was 2.89 w at pH 1 O.
A silica sol of t% was obtained.

次いで、このシリカゾルをエバポレーターにて固形分濃
度20wt%まで濃縮してシリカゾルAを調製した。
Next, this silica sol was concentrated using an evaporator to a solid content concentration of 20 wt% to prepare silica sol A.

このシリカゾルAについて、水で希釈して固形分濃度(
C,wt%)を変えて25℃における粘度(ηc、p)
を回転振動型粘度計〔ビスコメイトVM−LA、山−電
機工業(株)製〕で測定し、還元粘度(ηsp/C)の
値を求めた。還元粘度(ηsp/C)と濃度(C)との
関係を表−1及び第1図に示す。第1図は、縦軸に対数
目盛で還元粘度(ηsp/C)を、横軸に等差目盛で濃
度(C’)を表わしている。シリカゾルAの還元粘度(
ηsp/C)と濃度(C)との相関を示す直mAの勾配
△[log(rt sp/C)]/ΔCの値は、0;0
4であった。
This silica sol A is diluted with water to give a solid concentration (
Viscosity (ηc, p) at 25°C by changing C, wt%)
was measured using a rotational vibration viscometer (Viscomate VM-LA, manufactured by Yama-Denki Kogyo Co., Ltd.) to determine the value of reduced viscosity (ηsp/C). The relationship between reduced viscosity (ηsp/C) and concentration (C) is shown in Table 1 and FIG. 1. In FIG. 1, the vertical axis represents the reduced viscosity (ηsp/C) on a logarithmic scale, and the horizontal axis represents the concentration (C') on an arithmetic scale. Reduced viscosity of silica sol A (
The value of the straight mA slope Δ[log(rt sp/C)]/ΔC, which shows the correlation between ηsp/C) and concentration (C), is 0;
It was 4.

実施例−2 還流器および撹拌機付5gセパラブルフラスコに24t
<t%(S10□としての濃度)のケイ酸ソーダ、(5
io2/ Na2Oモル比3)21.5gを入れ、さら
に水300 gを添加した。
Example-2 24t in a 5g separable flask with reflux and stirrer
<t% (concentration as S10□) of sodium silicate, (5
io2/Na2O molar ratio 3) 21.5 g was added, and further 300 g of water was added.

次いで、このケイ酸ソーダ水溶液に、1irt%(A1
20.としての濃度)のアルミン酸ソーダ水溶液100
gを添加した。そして、この溶液に3t=t%のケイ酸
ソーダを陽イオン交換樹脂塔に通して調製することによ
り得られた3wt%のケイ酸液(pH2,5) 240
8gを撹拌しながら添加して、5in2/ Na2Oモ
ル比31.3の液を得た。
Next, 1irt% (A1
20. Sodium aluminate aqueous solution with a concentration of 100
g was added. Then, 3 wt % silicic acid solution (pH 2,5) obtained by passing 3 t = t % sodium silicate into this solution through a cation exchange resin tower was prepared.
8 g was added with stirring to obtain a solution with a 5in2/Na2O molar ratio of 31.3.

そして、得られた液を加温し、80℃の温度で30分間
熟成した。その後、さらに80℃に保持した状態で、こ
の液に3111g%のケイ酸液3800 gを6.4 
、7分の速度で添加して、p)19.5で固形分濃度2
.9vt%のシリカゾルを得た。
Then, the obtained liquid was heated and aged at a temperature of 80° C. for 30 minutes. After that, 6.4 g of 3800 g of 3111 g% silicic acid solution was added to this solution while the temperature was further maintained at 80°C.
, added at a rate of 7 minutes to achieve a solids concentration of 2 at p) 19.5.
.. A 9vt% silica sol was obtained.

次いで、このシリカゾルをエバポレーターにて、固形分
濃度2(ht%まで濃縮してシリカゾルBを調製した。
Next, this silica sol was concentrated to a solid content concentration of 2 (ht%) using an evaporator to prepare silica sol B.

このシリカゾルBについて実施例1と同様にして還元濃
度(ηsp/C)と濃度(C)との関係を求めた。その
結果を表−1及び第1図に示す。
Regarding this silica sol B, the relationship between the reduction concentration (ηsp/C) and the concentration (C) was determined in the same manner as in Example 1. The results are shown in Table 1 and Figure 1.

このシリカゾルBの還元粘度と濃度との相関を示す直g
Bの勾配△E log(ηSJ)/C)]/ΔCの値は
、0.19であった。
Direct graph showing the correlation between the reduced viscosity and concentration of this silica sol B
The value of the slope ΔE log(ηSJ)/C)]/ΔC of B was 0.19.

比較例−1 還流器および撹拌機付5Qセパラブルフラスコに24t
at%(SiO□としての濃度)のケイ酸ソーダ(Sx
O□/ Na2Oモル比3)21.5gを入れ、さらに
水300 gを添加した。
Comparative Example-1 24t in 5Q separable flask with reflux and stirrer
at% (concentration as SiO□) of sodium silicate (Sx
21.5 g of O□/Na2O molar ratio 3) was added, and further 300 g of water was added.

次いで、この液を加温し、80℃の温度で30分間熟成
した。さらに、この液に、80℃に保持した状態で、3
txt%のケイ酸ソーダ(Sin2/ Na2Oモル比
3)を陽イオン交換樹脂塔に通して調製することにより
得られた3wt%のケイ酸液(pH2,5) 3835
gとl警t%(A1203としての濃度)の塩化アルミ
ニウム水溶液31gを混合したものを6.4g/分の速
度で添加して、 p)110.1で固形分濃度2.9w
t%のシリカゾルを得た。
Next, this liquid was heated and aged at a temperature of 80° C. for 30 minutes. Furthermore, add 3
3wt% silicic acid solution (pH 2,5) obtained by preparing txt% sodium silicate (Sin2/Na2O molar ratio 3) through a cation exchange resin tower 3835
A mixture of 31 g of aluminum chloride aqueous solution of g and t% (concentration as A1203) was added at a rate of 6.4 g/min, and the solid content concentration was 2.9 w at p) 110.1.
A silica sol of t% was obtained.

次いで、このシリカゾルをエバポレーターにて、固形分
濃度20vt%まで濃縮してシリカゾルCを調製した。
Next, this silica sol was concentrated to a solid content concentration of 20 vt% using an evaporator to prepare silica sol C.

このシリカゾルCについて実施例1と同様にして還元粘
度(ηsp/C)と濃度(C)との関係を求めた。その
結果を表−1及び第1図に示す。
Regarding this silica sol C, the relationship between reduced viscosity (ηsp/C) and concentration (C) was determined in the same manner as in Example 1. The results are shown in Table 1 and Figure 1.

このシリカゾルCの還元粘度と濃度との相関を示す直線
Cの勾配△[log(ηsp/C)]/ΔCの値は、0
.00であった。
The value of the slope Δ[log(ηsp/C)]/ΔC of the straight line C showing the correlation between the reduced viscosity and the concentration of this silica sol C is 0.
.. It was 00.

実施例−3 実施例−2において、1tst%(Al□03としての
濃度)のアルミン酸ソーダ水溶液100gを添加するか
わりに、1wt%(A 120−とじての濃度)のアル
ミン酸ソーダ水溶液10gと1tvt%(ZrO2とし
ての濃度)の炭酸ジルコニルアンモニウム水溶液21g
を添加した外は、実施例2と全く同様にしてシリカゾル
Dを調製した。
Example-3 In Example-2, instead of adding 100 g of 1 tst% (concentration as Al□03) sodium aluminate aqueous solution, 10 g of 1 wt% (concentration as A120-) sodium aluminate aqueous solution was added. 21 g of 1tvt% (concentration as ZrO2) zirconyl ammonium carbonate aqueous solution
Silica sol D was prepared in exactly the same manner as in Example 2, except that .

実施例1と同様にして、還元粘度と濃度との関係から求
めたこのシリカゾルDについての直線の勾配△[log
(ηsp/C)]/ΔCの値などの性状を表−2に示す
In the same manner as in Example 1, the slope of the straight line Δ[log
Properties such as the value of (ηsp/C)]/ΔC are shown in Table 2.

実施例−4〜9 実施例=1において、塩化アルミニウム水溶液を添加す
るかわりに、表−2に示す金属化合物の水溶液を添加し
た外は、実施例−1と全く同様にしてそれぞれのシリカ
ゾルE〜1Jを調製した。これらシリカゾルの性状を表
−2に示す。
Examples 4 to 9 Silica sols E to 9 were prepared in exactly the same manner as in Example 1, except that instead of adding the aluminum chloride aqueous solution in Example 1, an aqueous solution of the metal compound shown in Table 2 was added. 1J was prepared. The properties of these silica sols are shown in Table-2.

実施例−10 実施例−2において、アルミン酸ソーダ水溶液を添加す
るかわりに表−2に示す金属化合物の水溶液を添加した
外、加温後のケイ酸液の添加量を1427 gとした外
は、実施例−2と全く同様にしてシリカゾルKを調製し
た。このゾルの性状を表−2に示す。
Example 10 In Example 2, an aqueous solution of the metal compound shown in Table 2 was added instead of adding an aqueous solution of sodium aluminate, and the amount of silicic acid solution added after heating was changed to 1427 g. , Silica sol K was prepared in exactly the same manner as in Example-2. The properties of this sol are shown in Table 2.

実施例−11 実施例−2において、アルミン酸ソーダ水溶液を添加す
るかわりに、表−2に示す金属化合物の水溶液を添加し
た外は、実施例−2と全く同様にしてシリカツルLを調
製した。このシリカゾルの性状を表−2に示す、 実施例−12 還流器および撹拌機付5Qセパラブルフラスコに24−
t%(Sj02としての濃度)のケイ酸ソーダ(Sin
2/ Na2Oモル比3)2]、5gを入れ、さらに水
300gを添加した。
Example 11 Silica vine L was prepared in exactly the same manner as in Example 2, except that instead of adding the sodium aluminate aqueous solution, an aqueous solution of the metal compound shown in Table 2 was added. The properties of this silica sol are shown in Table 2.
t% (concentration as Sj02) of sodium silicate (Sin
2/Na2O molar ratio 3)2], 5 g was added, and further 300 g of water was added.

次いで、この溶液に、3wt%のケイ酸ソーダ(S]0
2 / Na2Oモル比3)を陽イオン交換樹脂塔に通
して調製することにより得られた3wt%のケイm液(
pH2,5) 1900g 、!l: 1 wt% (
Al□0. トシての濃度)の塩化アルミニウム水溶液
3]、gを混合したものを徐々に撹拌しながら添加して
、S]0□/Na2Oモル比36.1の液を得た。
Next, 3 wt% of sodium silicate (S]0 was added to this solution.
2/Na2O molar ratio 3) was prepared by passing it through a cation exchange resin column.
pH2,5) 1900g,! l: 1 wt% (
Al□0. A mixture of aluminum chloride aqueous solution 3], g of a specific concentration) was gradually added with stirring to obtain a solution with a S]0□/Na2O molar ratio of 36.1.

そして、得られた液を加温し、70 ’Cの温度で30
分間熟成した。その後、さらに70℃に保持した状態で
、この液に、3tyt%のケイ酸液]935gを6.4
 g 7分の速度で添加して、PH10,0で固形分濃
度”l 、 9wt%のシリカゾルを得た。
Then, the obtained liquid was heated to a temperature of 70'C for 30
Aged for minutes. Thereafter, while the temperature was further maintained at 70°C, 6.4 g of 3tyt% silicic acid solution was added to this solution.
g at a rate of 7 minutes to obtain a silica sol with a pH of 10.0 and a solid content concentration of 9 wt%.

次いで、このシリカゾルを実施例−1と同様に処理して
シリカゾルMを調製した。このシリカゾルの性状を表−
2に示す。
Next, this silica sol was treated in the same manner as in Example-1 to prepare silica sol M. The properties of this silica sol are shown below.
Shown in 2.

実施例−13 還流器および撹拌機付5βセパラブルフラスコに24−
t%(S]02としての濃度)のケイ酸ソーダ(Sin
2/ Na2(]モル比3)21.5gを入れ、さらに
水300 gを添加した。
Example-13 24-
t% (concentration as S]02) of sodium silicate (Sin
21.5 g of 2/Na2 (molar ratio 3) was added, and further 300 g of water was added.

次いで、この溶液に、3wt%のケイ跡ソーダ(Sj0
2/Na2Oモル比3)を陽イオン交換梗脂塔に通して
調製することにより得られた3wt%のケイ酸液(pH
2,5) 3]00gと]ut%(A120.としての
濃度)の塩化アルミニウム水溶液31gを混合したもの
を徐々に撹拌しながら添加して、S]02/Na2Oモ
ル比57.0の液を得た。
Then, 3 wt% of silica soda (Sj0
3 wt% silicic acid solution (pH
2,5) A mixture of 3]00 g and 31 g of an aluminum chloride aqueous solution of ]ut% (concentration as A120.) was gradually added with stirring to form a solution with a S]02/Na2O molar ratio of 57.0. Obtained.

ぞして、得られた液を加温し、90’Cの温度で30分
間熟成した。その後、さらに90’Cj二保持した状態
で、この液に、3wt%のケイ酸液7.3.”+gを6
.4g/分の速度で添加し、で、pH9,9で固形分濃
度2.9wt%のシリカゾルを得た。
The resulting liquid was then heated and aged at a temperature of 90'C for 30 minutes. Thereafter, 7.3% of 3 wt% silicic acid solution was added to this solution while maintaining 90'Cj2. ”+g to 6
.. It was added at a rate of 4 g/min to obtain a silica sol with a pH of 9.9 and a solid content concentration of 2.9 wt%.

次いで、このシリカゾルを実施例−1と同様に処理して
シリカゾルNを調製した。このシリカゾルの性状を表−
2に示す、 実施例−]4 還流器および撹拌機付5fjセパラブルフラスコに24
−t%(Sin2としての濃度)のケイ酸ソーダ(Si
n2/\a20モル比3)30.0gを入れ、さらに水
300 gを添加した。
Next, this silica sol was treated in the same manner as in Example-1 to prepare silica sol N. The properties of this silica sol are shown below.
2, Example-] 4 In a 5FJ separable flask with a reflux device and a stirrer, 24
-t% (concentration as Sin2) of sodium silicate (Si
30.0 g of n2/\a20 molar ratio 3) was added, and further 300 g of water was added.

次いで、このケイ酸ソーダ水溶液に平均粒子径が170
人の4kt%(SiO□としての濃度)シリカゾル〔触
媒化成工業(株)製、カタロイド5I−40) 45g
を添加した。そして、この液に3wt%のケイ酸ソーダ
を陽イオン交換樹脂塔に通して調製することにより得ら
れた3wt%のケイ酸液(pH2,5) 1808 g
を徐々に撹拌しながら添加した後、さらに、2wt%(
ZrO□としての濃度)炭酸ジルコニルアンモニウム水
溶液50gを添加して、SiO□/N820モル比30
.8の液を得た。
Next, this sodium silicate aqueous solution had an average particle size of 170
4kt% (concentration as SiO□) Silica sol [Catalyst Chemical Industry Co., Ltd., Cataloid 5I-40] 45g
was added. Then, 1808 g of 3 wt % silicic acid solution (pH 2,5) obtained by passing 3 wt % sodium silicate into this liquid through a cation exchange resin column.
was gradually added with stirring, and then 2 wt% (
Concentration as ZrO□) Add 50g of zirconyl ammonium carbonate aqueous solution to make SiO□/N820 molar ratio 30
.. A liquid No. 8 was obtained.

次いで、得られた液を加温し、80’Cの温度で30分
間熟成した。その後、80°Cに保持した状態で、この
液に、3vt%のケイ酸液3000 gを6.4g/分
の速度で添加して、pH9,5で固形分濃度2゜9vt
%のシリカゾルを得た。
The resulting liquid was then heated and aged at a temperature of 80'C for 30 minutes. Thereafter, while maintaining the temperature at 80°C, 3000 g of 3vt% silicic acid solution was added to this solution at a rate of 6.4g/min to obtain a solid content concentration of 2°9vt at pH 9.5.
% of silica sol was obtained.

次いで、このシリカゾルを実施例−1と同様に処理して
シリカゾル○を調製した。このシリカゾルの性状を表−
2に示す。
Next, this silica sol was treated in the same manner as in Example-1 to prepare silica sol ○. The properties of this silica sol are shown below.
Shown in 2.

比較例−2 10Qのオートクレーブ容器に24−t%(SiO□と
しての濃度)のケイ酸ソーダ(SjO2/\820モル
比3)21.5gを入れ、さらに水300 gを添加し
た。
Comparative Example-2 21.5 g of 24-t% (concentration as SiO□) sodium silicate (SjO2/\820 molar ratio 3) was placed in a 10Q autoclave container, and 300 g of water was added.

次いで、この溶液に、3wt%のケイ酸ソーダ(Sin
2/ Na2Oモル比3)を陽イオン交換樹脂塔に通し
て調製することにより得られた3wt%のケイ酸液(p
H2,5) 3835 gを添加した。そして。
Next, 3 wt% sodium silicate (Sin) was added to this solution.
2/Na2O molar ratio 3) was prepared by passing it through a cation exchange resin tower.
H2,5) 3835 g were added. and.

この液を150℃の温度で60分間加熱して、pH9,
3で固形分濃度2 * 9 b t%のシリカゾルを得
た。
This solution was heated at a temperature of 150°C for 60 minutes, and the pH was adjusted to 9.
3, a silica sol with a solid content concentration of 2*9 bt% was obtained.

次いで、このシリカゾルをエバポレーターにて固形分濃
度20t;t%まで濃縮してシリカゾルPを調製した。
Next, this silica sol was concentrated using an evaporator to a solid content concentration of 20t; t% to prepare silica sol P.

このシリカゾルの性状を表−2に示す。The properties of this silica sol are shown in Table-2.

比較例−3 還流器および撹拌機付5Qセパラブルフラスコに24w
t%(Sin2としての濃度)のケイ酸ソーダ(510
2/ 11ia20モル比3)21.5gを入れ、さら
に水300gを添加した。
Comparative Example-3 24w in a 5Q separable flask with reflux and stirrer
t% (concentration as Sin2) of sodium silicate (510
2/11ia20 molar ratio 3) 21.5g was added, and further 300g of water was added.

次いで、この溶液に、3tpt%のケイ酸ソーダ(Si
O□/\a20モル比3)を陽イオン交換樹脂塔に通し
て調製することにより得られた3警t%のケイ酸液(p
H2,5) 3835gと11℃%(A’l□03とし
ての濃度)の塩化アルミニウム水溶液31gを混合した
ものを徐々に撹拌しながら添加して、SiO□/Na2
Oモル比69.8の液を得た。
Next, 3 tpt% of sodium silicate (Si) was added to this solution.
3 t% silicic acid liquid (p
H2,5) A mixture of 3835 g and 31 g of aluminum chloride aqueous solution at 11°C% (concentration as A'l□03) was gradually added with stirring to form SiO□/Na2.
A liquid with an O molar ratio of 69.8 was obtained.

そして、得られた液を加温し、80℃で30分間熟成し
た後、さらにエバポレーターにて固形分濃度2(ht%
まで濃縮したところ、この液はゲル化した。
Then, the obtained liquid was heated and aged at 80°C for 30 minutes, and then further heated to a solid content concentration of 2 (ht%) using an evaporator.
When the solution was concentrated to 100%, the solution turned into a gel.

表−11 〔効  果〕 本発明により、結合剤として使用したとき結合強度が高
く、被膜として使用したとき被膜にクランクが発生しな
いすぐれた性質を有する新しいタイプのシリカゾルとそ
の製法を提供することができた。
Table 11 [Effects] According to the present invention, it is possible to provide a new type of silica sol having excellent properties such as high bonding strength when used as a binder and no cranking in the film when used as a film, and a method for producing the same. did it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1および2、比較例1で得られたシリ
カゾルの還元粘度と濃度の相関をそれぞれ示すグラフで
ある。 第2図は、実施例1で得られたシリカゾルAのシリカ粒
子構造の透過型電子顕微鏡写真であり、第3図は、比較
例2で得られたシリカゾルPのシリカ粒子構造の透過型
電子顕微鏡写真である。 特許出願人 触媒化成工業株式会社 診。 代理人弁理士 友  松  英  爾  ・′・、−2
効 一 第1図 □濃度C(w?%) 第3図
FIG. 1 is a graph showing the correlation between reduced viscosity and concentration of the silica sols obtained in Examples 1 and 2 and Comparative Example 1, respectively. FIG. 2 is a transmission electron micrograph of the silica particle structure of silica sol A obtained in Example 1, and FIG. 3 is a transmission electron micrograph of the silica particle structure of silica sol P obtained in Comparative Example 2. It's a photo. Patent applicant: Catalysts Chemical Industry Co., Ltd. Representative Patent Attorney Eiji Tomo Matsu ・′・, -2
Effect Figure 1 □ Concentration C (w?%) Figure 3

Claims (1)

【特許請求の範囲】 1、還元粘度(ηsp/C)とシリカ濃度(C)との相
関を示す直線の勾配(Δ[log(ηsp/C)]/Δ
C)が次の関係を満足することを特徴とするシリカゾル
。 0.02≦Δ[log(ηsp/C)]/ΔC≦0.2
02.SiO_2として0.05〜5.0wt%のアル
カリ金属ケイ酸塩水溶液に、 (a)ケイ酸液を添加して混合液のSiO_2/M_2
O(モル比、Mはアルカリ金属又は第4級ア ンモニウム)を30〜60とする工程 (b)ケイ酸液添加工程の前、添加工程中または添加工
程後に、Ca、Mg、Al、In、Ti、Zr、Sn、
Si、Sb、Fe、Cuおよび希土類金属からなる群か
ら選ばれた1種 または2種以上の金属の化合物を添加する 工程 (c)この混合液を60℃以上の任意の温度で一定時間
維持する工程 (d)この反応液に再びケイ酸液を添加して反応液中の
SiO_2/M_2O(モル比)を60〜100とする
工程 からなるシリカゾルの製造方法。
[Claims] 1. The slope of the straight line showing the correlation between reduced viscosity (ηsp/C) and silica concentration (C) (Δ[log(ηsp/C)]/Δ
A silica sol characterized in that C) satisfies the following relationship. 0.02≦Δ[log(ηsp/C)]/ΔC≦0.2
02. (a) Silicic acid solution is added to an aqueous alkali metal silicate solution containing 0.05 to 5.0 wt% as SiO_2 to form a mixed solution of SiO_2/M_2
Step (b) of setting O (molar ratio, M is an alkali metal or quaternary ammonium) to 30 to 60: Ca, Mg, Al, In, Ti before, during or after the silicic acid solution addition step. , Zr, Sn,
Step of adding a compound of one or more metals selected from the group consisting of Si, Sb, Fe, Cu, and rare earth metals (c) Maintaining this mixed solution at an arbitrary temperature of 60 ° C. or higher for a certain period of time Step (d) A method for producing silica sol comprising the step of adding a silicic acid solution to the reaction solution again to adjust the SiO_2/M_2O (molar ratio) in the reaction solution to 60 to 100.
JP31741790A 1990-11-21 1990-11-21 Silica sol and its manufacturing method Expired - Lifetime JPH085657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31741790A JPH085657B2 (en) 1990-11-21 1990-11-21 Silica sol and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31741790A JPH085657B2 (en) 1990-11-21 1990-11-21 Silica sol and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH04187512A true JPH04187512A (en) 1992-07-06
JPH085657B2 JPH085657B2 (en) 1996-01-24

Family

ID=18088002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31741790A Expired - Lifetime JPH085657B2 (en) 1990-11-21 1990-11-21 Silica sol and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH085657B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597512A (en) * 1993-10-15 1997-01-28 Nissan Chemical Industries, Ltd. Method for preparing elongated-shaped silica sol
WO2000006654A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Rayon Co., Ltd. Coating material and molded resin with coating layer
JP2002338232A (en) * 2001-05-18 2002-11-27 Nippon Chem Ind Co Ltd Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
WO2004099074A1 (en) * 2003-05-12 2004-11-18 Catalysts & Chemicals Industries Co., Ltd. Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
JP2005186435A (en) * 2003-12-25 2005-07-14 Catalysts & Chem Ind Co Ltd Base material with hard coat film and coating solution for forming hard coat film
US8114178B2 (en) 2007-04-23 2012-02-14 Nippon Chemical Industrial Co., Ltd. Polishing composition for semiconductor wafer and polishing method
US8118898B2 (en) 2006-10-12 2012-02-21 Jgc Catalysts And Chemicals Ltd. Spinous silica-based sol and method of producing the same
US8187351B2 (en) 2006-11-30 2012-05-29 Jgc Catalysts And Chemicals Ltd. Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol
KR20130009584A (en) 2011-07-06 2013-01-23 후지제롯쿠스 가부시끼가이샤 Silica particles, manufacturing method thereof and resin particles
US8871344B2 (en) 2010-06-25 2014-10-28 Fuji Xerox Co., Ltd. Hydrophobization treatment of silica particles
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
JP2015086102A (en) * 2013-10-30 2015-05-07 日揮触媒化成株式会社 Production method of silica particle, and polishing agent including the silica particle
US9187502B2 (en) 2010-06-24 2015-11-17 Fuji Xerox Co., Ltd. Silica particles and method for producing the same
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9272916B2 (en) 2007-11-30 2016-03-01 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US9416015B2 (en) 2010-06-23 2016-08-16 Fuji Xerox Co., Ltd. Method of producing silica particles
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
KR20200124249A (en) 2018-02-26 2020-11-02 닛산 가가쿠 가부시키가이샤 Method for producing silica sol with elongated particle shape
KR20200125603A (en) 2018-02-26 2020-11-04 닛산 가가쿠 가부시키가이샤 Method for producing silica sol with elongated particle shape
WO2021153502A1 (en) 2020-01-28 2021-08-05 三菱ケミカル株式会社 Silica particles, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer, and method for manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5591530B2 (en) 2009-06-24 2014-09-17 日揮触媒化成株式会社 Method for producing silica-based fine particle dispersed sol, silica-based fine particle dispersed sol, coating composition containing the dispersed sol, curable coating film, and substrate with curable coating film

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597512A (en) * 1993-10-15 1997-01-28 Nissan Chemical Industries, Ltd. Method for preparing elongated-shaped silica sol
WO2000006654A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Rayon Co., Ltd. Coating material and molded resin with coating layer
US6348537B2 (en) 1998-07-31 2002-02-19 Mitsubishi Rayon Co., Ltd. Coating agent, and resin molded article having coated layer
JP2002338232A (en) * 2001-05-18 2002-11-27 Nippon Chem Ind Co Ltd Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
JP4837376B2 (en) * 2003-05-12 2011-12-14 日揮触媒化成株式会社 Coating liquid for forming transparent film, substrate with transparent film, and display device
WO2004099074A1 (en) * 2003-05-12 2004-11-18 Catalysts & Chemicals Industries Co., Ltd. Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
JPWO2004099074A1 (en) * 2003-05-12 2006-07-13 触媒化成工業株式会社 Coating liquid for forming transparent film, substrate with transparent film, and display device
US7625635B2 (en) 2003-05-12 2009-12-01 Jgc Catalysts And Chemicals Ltd. Transparent film-forming coating liquid, substrate with transparent film, and display device
JP4540979B2 (en) * 2003-12-25 2010-09-08 日揮触媒化成株式会社 Base material with hard coat film and coating liquid for forming hard coat film
JP2005186435A (en) * 2003-12-25 2005-07-14 Catalysts & Chem Ind Co Ltd Base material with hard coat film and coating solution for forming hard coat film
US8118898B2 (en) 2006-10-12 2012-02-21 Jgc Catalysts And Chemicals Ltd. Spinous silica-based sol and method of producing the same
US8187351B2 (en) 2006-11-30 2012-05-29 Jgc Catalysts And Chemicals Ltd. Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol
US8114178B2 (en) 2007-04-23 2012-02-14 Nippon Chemical Industrial Co., Ltd. Polishing composition for semiconductor wafer and polishing method
US10160894B2 (en) 2007-11-30 2018-12-25 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
US9272916B2 (en) 2007-11-30 2016-03-01 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
US9416015B2 (en) 2010-06-23 2016-08-16 Fuji Xerox Co., Ltd. Method of producing silica particles
US9187502B2 (en) 2010-06-24 2015-11-17 Fuji Xerox Co., Ltd. Silica particles and method for producing the same
US8871344B2 (en) 2010-06-25 2014-10-28 Fuji Xerox Co., Ltd. Hydrophobization treatment of silica particles
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US8431633B2 (en) 2011-07-06 2013-04-30 Fuji Xerox Co., Ltd. Silica particles, manufacturing method thereof and resin particles
KR20130009584A (en) 2011-07-06 2013-01-23 후지제롯쿠스 가부시끼가이샤 Silica particles, manufacturing method thereof and resin particles
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
JP2015086102A (en) * 2013-10-30 2015-05-07 日揮触媒化成株式会社 Production method of silica particle, and polishing agent including the silica particle
KR20200124249A (en) 2018-02-26 2020-11-02 닛산 가가쿠 가부시키가이샤 Method for producing silica sol with elongated particle shape
KR20200125603A (en) 2018-02-26 2020-11-04 닛산 가가쿠 가부시키가이샤 Method for producing silica sol with elongated particle shape
US11814295B2 (en) 2018-02-26 2023-11-14 Nissan Chemical Corporation Method for producing silica sol having elongated particle shape
US11897774B2 (en) 2018-02-26 2024-02-13 Nissan Chemical Corporation Method for producing silica sol having elongated particle shape
WO2021153502A1 (en) 2020-01-28 2021-08-05 三菱ケミカル株式会社 Silica particles, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer, and method for manufacturing semiconductor device
KR20220131926A (en) 2020-01-28 2022-09-29 미쯔비시 케미컬 주식회사 Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JPH085657B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
JPH04187512A (en) Silica sol and its production
US5597512A (en) Method for preparing elongated-shaped silica sol
US5221497A (en) Elongated-shaped silica sol and method for preparing the same
US6569908B2 (en) Dispersion of silica particle agglomerates and process for producing the same
DK175640B1 (en) Stable silica sol and process for making same
JP5339701B2 (en) Method for concentrating silica sol and mixture obtained by said method
US3492137A (en) Siliceous compositions
TW201018644A (en) Non-orbicular silica sol, preparation method thereof and polishing composition using the same
JP3463328B2 (en) Method for producing acidic silica sol
JPH0455969B2 (en)
JP2926915B2 (en) Elongated silica sol and method for producing the same
JPS63159214A (en) Production of silica compound oxide powder
JPH0455126B2 (en)
JP2002003212A (en) Silica-alumina coated chain silica sol and its production method
JP2000178020A (en) High purity silica aqueous sol and its production
JP2003012320A (en) Organosol of silica base inorganic compound
JPH0457604B2 (en)
JPH05294612A (en) Silica sol and its production
JPS6345114A (en) Production of silica sol
JP4421003B2 (en) Method for producing lithium silicate
JP2535972B2 (en) Method for producing silica sol
JP4471838B2 (en) Siloxane sol containing guanidine carbonate
JPS6345113A (en) Silica sol having low turbidity and low viscosity
JP3338720B2 (en) Method for producing composite oxide sol
JPH04214022A (en) Production of flat silica sol