WO2008072637A1 - Method for producing colloidal silica - Google Patents

Method for producing colloidal silica Download PDF

Info

Publication number
WO2008072637A1
WO2008072637A1 PCT/JP2007/073884 JP2007073884W WO2008072637A1 WO 2008072637 A1 WO2008072637 A1 WO 2008072637A1 JP 2007073884 W JP2007073884 W JP 2007073884W WO 2008072637 A1 WO2008072637 A1 WO 2008072637A1
Authority
WO
WIPO (PCT)
Prior art keywords
colloidal silica
acid
silica
producing
aqueous solution
Prior art date
Application number
PCT/JP2007/073884
Other languages
French (fr)
Japanese (ja)
Inventor
Taku Konishi
Original Assignee
Fuso Chemical Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuso Chemical Co. Ltd. filed Critical Fuso Chemical Co. Ltd.
Priority to CN200780044771.9A priority Critical patent/CN101547860B/en
Priority to JP2008549324A priority patent/JP5155185B2/en
Publication of WO2008072637A1 publication Critical patent/WO2008072637A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/1412Preparation of hydrosols or aqueous dispersions by oxidation of silicon in basic medium

Definitions

  • the present invention relates to a method for producing a novel colloidal silica that is suitably used as a polishing agent for substrates such as silicon wafer compound semiconductors, glass, and hard disks, and more specifically, metal silicon in an aqueous solution containing an alkaline catalyst and a dispersant.
  • the present invention relates to a method for producing a colloidal shear force including a step of reacting (Si) with water to obtain colloidal silica.
  • colloidal silica has been used as a polishing agent or anti-slip agent for metal materials.
  • the colloidal silica can be produced by hydrolyzing and polycondensing an alkoxysilane using metal silicon as a raw material, or by neutralizing or reacting an ion exchange resin or the like with water glass in which metal silicon is alkali-dissolved. Examples thereof include a method obtained by acidification, and a method in which an aqueous solution containing an inorganic alkali monovalent metal compound, ammonia and an amine is heated, and a metal silicon powder or lump is mixed and reacted.
  • the production methods described in Patent Documents !! to 4 include a step of obtaining silicon dioxide by reacting metal silicon with water, and colloidal silica can be obtained in one reaction step, so that the number of steps is small. Therefore, it is advantageous compared with other manufacturing methods.
  • Patent Document 5 includes a method for producing colloidal silica using metal silicon as a raw material, and a method for obtaining colloidal shear force at a high concentration of about 30% and a high yield of 80% or more by only the reaction step.
  • Being! / Scheme for obtaining a silicon dioxide described in this document are as follows der dissolution reaction: Si + 2_Rei_H- + H_ ⁇ ⁇ Si_ ⁇ 2 - + 2H ⁇ (1)
  • Patent Document 6 describes a method of increasing the concentration of colloidanol silica by adding an inorganic salt such as sodium sulfate or sodium chloride.
  • an inorganic salt such as sodium sulfate or sodium chloride.
  • this method can obtain a certain level of high colloidal silica, it is not a method of obtaining colloidal silica by reacting metal silicon powder with an alkaline aqueous solution. That is, the production method described in Patent Document 6 is such that colloidal silica particles are formed in a predetermined size through a very complicated process, and then the inorganic salt is added and concentrated to a high concentration.
  • the inorganic salt is not added to the reaction liquid during the reaction, and is limited after the production of silica particles, so that the production efficiency is low. If a dispersing agent is added before the formation of silica particles, not only a low-viscosity and high-concentration colloidal silica can be produced, but also the working efficiency is extremely lowered due to the increase in viscosity.
  • the silica contained in colloidal silica used for binders such as precision forging molds, ceramic smoker molding, and refractory molding preferably has a small particle size with a strong binding force.
  • the silica contained in colloidal silica used for matte paint fillers, substrate abrasives, anti-slip agents for paper products and fibers, etc. should have a large particle size. Large particle size silica provides high shielding and anti-slip effects.
  • Patent Documents 1 to 4 With regard to particle size control, the methods described in Patent Documents 1 to 4 efficiently use metallic silicon. Regarding the method of dissolving and solling, there is no mention of adjusting the particle size. For example, in Patent Document 7, the size of heel particles in the aqueous colloidal silica is increased by adding metal silicon to the water (original particles) of the aqueous colloidal silica containing ammonium hydroxide, thereby controlling the particles. A method for producing colloidal silica is described.
  • colloidal silica produced using metal silicon as a raw material is required to be a simple production method with a reduced number of steps, and to adjust the particle size of silica contained in the colloidal silica in the reaction step.
  • the present situation is that such inventions have been created.
  • a so-called ion exchange method a dilute water glass is treated with a cation exchange resin to produce a sodium free active silicate aqueous solution. A part of the particles is heat-aged to produce nuclei of silica particles, and the activated silicic acid aqueous solution is added over time to the stirring of the heated dispersion containing the nuclei. The method of making it grow in a shape is mentioned. According to this method, colloidal silica containing silica having an arbitrary particle size from small particles to large particles is produced.
  • dilute colloidal silica having a silica concentration of 2 to 5% by weight is concentrated by evaporation or ultrafiltration.
  • an aqueous colloidal silica having a silica concentration of 20 to 50% by weight is obtained (see Non-Patent Document 1).
  • Non-Patent Document 1 limits the molar ratio (SiO 2 / Na 2 O) of the heated dispersion containing the nuclei of silica particles, and controls the addition rate of the silicic acid aqueous solution.
  • Patent Document 1 U.S. Pat.No. 2,614,993
  • Patent Document 2 U.S. Pat.No. 2,614,994
  • Patent Document 3 U.S. Patent No. 2614995
  • Patent Document 4 Japanese Patent Publication No.49 4637
  • Patent Document 5 JP-A-49 64595
  • Patent Document 6 Japanese Patent Publication No. 37-9961
  • Patent Document 7 Japanese Patent Publication No. 48-13833
  • Non-Patent Document 1 Akiyoshi Yoshida, Chemistry and Industry, Vol. 45, No. 5, p45 (1992)
  • An object of the present invention is to produce colloidal silica having a high concentration and a low viscosity in a method for producing colloidal silica using metal silicon as a raw material.
  • Another object of the present invention is to provide an unreacted residue in a high yield in a short time without concentrating the colloidal silica obtained by the reaction between metal silicon and water in the method for producing colloidal silica using metal silicon as a raw material. It is intended to provide a method for producing colloidal silica, which can be purified by filtration.
  • Another object of the present invention is to provide a particle diameter of silica contained in colloidal silica simply and with a small number of steps in the production process of obtaining colloidal silica by reacting water and metal silicon in a reaction solution containing an alkaline aqueous solution and metallic silicon. It is intended to provide a method for producing colloidal silica containing silica from small particles to large particles. Means for solving the problem
  • the invention according to claim 1 is characterized in that metallic silicon is used in an aqueous solution containing an alkaline catalyst and a dispersant.
  • the present invention relates to a force manufacturing method.
  • the invention according to claim 2 is characterized in that the dispersant is one or more inorganic acids selected from hydrochloric acid, nitric acid or sulfuric acid and / or a salt thereof.
  • the dispersant is an inorganic acid salt, and the salt is selected from a salt with Na, K, Li, NH, ammine or a quaternary ammonium hydroxide. That is more
  • the invention according to claim 4 is characterized in that the dispersant is oxalic acid, citrate, malic acid, maleic acid, tartaric acid, gnoretaric acid, adipic acid, pimelic acid, succinic acid, malonic acid, fumaric acid, phthalic acid, formic acid, Acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-peptanoic acid, 2-methylhexanoic acid N -octanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, or lactic acid, one or more organic acids selected from lactic acid and / or a salt thereof, The production of colloidal silica according to claim 1 Regarding the method.
  • the dispersant is an organic acid salt
  • the salt is Na, K, Li, NH.
  • the invention according to claim 6 is a mixture of one or more metal monohydric hydroxides containing the alkaline catalytic power sodium (Na), potassium (K) or lithium (Li).
  • the present invention relates to a method for producing colloidal silica according to any one of 1 to 5.
  • claim 1 to 6 have a kinematic viscosity after filtration is purified by a membrane filter of the colloidal silica having a pore size 1 [I m is equal to or less than 4 mm 2 / s
  • the present invention relates to a method for producing colloidal silica according to any one of the above.
  • the invention according to claim 8 relates to the method for producing colloidal silica according to any one of claims 1 to 7, wherein the silica concentration of the colloidal silica is 20% by weight or more.
  • the invention according to claim 9 relates to a method for producing colloidanol silica according to claim 1, comprising at least the following steps.
  • Step 1 Prepare an aqueous solution containing water, alkaline catalyst and dispersant
  • Step 2 Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water
  • Step 3 Add the slurry liquid or metal silicon prepared in Step 2 to the aqueous solution obtained in Step 1 at a substantially constant rate, or add the slurry prepared in Step 2 to the aqueous solution obtained in Step 1.
  • the alkaline catalyst is added at a substantially constant rate.
  • the invention according to claim 10 is characterized in that, in the step 3, colloidal silica containing silica having a desired particle diameter is obtained by controlling the addition rate of the slurry liquid or metal silicon. It is related with the manufacturing method of the colloidal silica of description.
  • the invention according to claim 11 is characterized in that, as the addition rate, the addition amount of metal silicon per hour: the amount of reaction liquid per hour;! To 9.5% by weight Claim
  • the invention according to claim 12 is characterized in that the particle size of the silica contained in the colloidal silica obtained in the step 3 is 6 to 80 nm as its primary particle size.
  • the present invention relates to a method for producing colloidal silica.
  • the invention according to claim 13 relates to a method for producing colloidal silica comprising at least the following steps.
  • Step I Prepare an aqueous solution containing water and alkaline catalyst
  • Step II Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water
  • Step III Add the slurry liquid or metal silicon prepared in Step II to the aqueous solution obtained in Step I at a substantially constant rate, or add the slurry prepared in Step II to the aqueous solution obtained in Step I.
  • an alkaline catalyst is added at a substantially constant rate.
  • the invention according to claim 14 is to obtain colloidal silica containing silica having a desired particle size by controlling the rate of addition of a slurry-like liquid in which metallic silicon is dispersed in water or metallic silicon in the step III. 14. The method for producing colloidal silica according to claim 13, wherein the colloidal silica is produced.
  • the method for producing colloidal silica of the present invention is a method for producing colloidal silica force using metallic silicon (Si) as a raw material, and reacts metallic silicon and water in an aqueous solution containing an alkaline catalyst and a dispersant.
  • a reaction step of obtaining colloidal silica A reaction step of obtaining colloidal silica.
  • the resulting colloidal silica has a high concentration and a low viscosity.
  • colloidal silica is used for the silica concentration. Considering the intended use, it is preferably 20% by weight or more and 50% by weight or less.
  • colloidal silica can be industrially produced by a method for producing colloidal silica using metal silicon as a raw material.
  • the dispersant can be used either before or after the formation of silica particles, so that the working efficiency is high. Even if a dispersant is added before the formation of silica particles, the viscosity of the colloidal silica does not increase.
  • the production method of the present invention is a production method of colloidal silica using metal silicon (Si) as a raw material, and it is possible to adjust the particle size of silica contained in the colloidal silica in the reaction step. Therefore, since the particle size adjusting step is not included after the colloidal silica is formed, the force S can be easily used to manufacture colloidal silica containing silica having a desired particle size in a small number of steps.
  • Si metal silicon
  • the method for producing colloidal silica of the present invention includes a step of obtaining colloidal silica by reacting metal silicon (Si) with water in an aqueous solution containing at least an alkaline catalyst and a dispersant.
  • metal silicon Si
  • aqueous solution containing at least an alkaline catalyst and a dispersant aqueous solution containing at least an alkaline catalyst and a dispersant.
  • the colloidal silica according to the present invention is preferably produced by the following four process forces.
  • process (1) Metal silicon graining process (hereinafter sometimes simply referred to as process (1))
  • process (2) Metal silicon inactive treatment process (hereinafter, simply referred to as process (2))
  • process (3) Metal silicon and water reaction process (Hereafter, it may be simply referred to as process (3))
  • the step (1) is a step of forming metal silicon as a raw material into particles.
  • the metal silicon used as a raw material is not particularly limited, and an alloy may be used. However, since the metal silicon used directly affects the purity of the colloidal silica produced, it is preferable to use high-purity metal silicon.
  • the method for forming metal silicon particles in the step (1) is not particularly limited, but a method of pulverizing metal silicon is preferable.
  • the particle size is 2-40 111 Is done. The reason for this is that if the length is less than 2 m, a great amount of labor and cost are required for grinding, whereas if it exceeds 40 111, the reaction tends to hardly proceed.
  • the step (2) is a step of inactivating the metal particles obtained in the step (1).
  • the inactivation treatment include surface oxidation treatment using an oxidizing gas or the like.
  • this step (3) is an essential step included in the method for producing colloidal silica of the present invention.
  • colloidal silica is obtained by reacting metal silicon with water in an aqueous solution containing an alkaline catalyst and a dispersant.
  • the water, alkaline catalyst, and dispersant that are preferably used in the step (3) are as follows.
  • metallic silicon particles subjected to the step (1) and the step (2) are preferably used.
  • the water used in step (3) may be ultrapure water, but tap water, natural water, industrial water, recovered water and the like containing a large amount of ionic impurities are also preferably used.
  • the alkaline catalyst used in step (3) is not particularly limited, but a basic metal-valent hydroxide is preferably used. Specifically, sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide or rubidium hydroxide can be used, and these may be used alone or in combination. In particular, it is preferable to use a strong base such as a metal hydroxide such as sodium hydroxide, potassium hydroxide or lithium hydroxide. Most preferably, sodium hydroxide is used. This is because these metal hydroxides are excellent in solubility of metal silicon.
  • the dispersant used in the step (3) is not particularly limited as long as it is an ionic substance selected from an inorganic acid, an inorganic acid salt, an organic acid, and an organic acid salt. Preferably, this ionic substance is used. Can reduce the viscosity of colloidal silica using water as a dispersion medium.
  • the dispersants according to the present invention may be used alone or in combination of two or more. However, colloidal silica Aggregation occurs when the pH of the colloidal silica is 7 or less. Therefore, it is preferable to add colloidal silica so that the pH of the colloidal silica is 7 or less! /.
  • Inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, alkyl phosphoric acid ester, boric acid, pyrophosphoric acid, borofluoric acid, tetrafluoroboric acid, hexafluorophosphoric acid, and benzene
  • Examples thereof include sulfonic acid and naphthalenesulfonic acid, among which hydrochloric acid, nitric acid and sulfuric acid are preferably used.
  • Organic acids include citrate, oxalate, malic acid, maleic acid, tartaric acid, tartaric acid, adipic acid, pimelic acid, succinic acid, malonic acid, fumaric acid, phthalic acid, formic acid, acetic acid, propionic acid, butyric acid , Valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-Ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid and lactic acid.
  • the salt of the inorganic acid and organic acid is preferably Na, K, Li, NH, ammine, quaternary.
  • Examples thereof include salts with high-grade ammonium hydroxide.
  • Preferred inorganic acid salts include inorganic ammonium salts such as ammonium sulfate, ammonium hydrochloride, ammonium nitrate, monoammonium phosphate, diammonium hydrogen phosphate, and ammonium borate octahydrate.
  • Organic acid salts include the organic ammonium salts, ammonium benzoate, ammonium citrate, ammonium citrate, ammonium oxalate, ammonium formate, ammonium formate, ammonium salicinoleate, ammonium adipate, acetic acid Ammonium and tetramethylammonium taenoate.
  • the most preferably used dispersant is triammonium citrate, sodium sulfate, ammonium nitrate and / or sodium chloride.
  • the dispersant according to the present invention has an advantage that a more effective substance can be freely selected from an inorganic acid, an organic acid or a salt thereof in consideration of the use of colloidal silica.
  • the temperature of the reaction solution for reacting metal silicon and water in an aqueous solution containing an alkaline catalyst and a dispersant is preferably relatively high. This is because the higher the temperature, the higher the yield of colloidal silica. Specifically, the temperature of the reaction solution is Preferably, it is adjusted to a range of 60 to 90 ° C.
  • reaction liquid refers to an aqueous solution obtained by further reacting metal silicon with water in an aqueous solution containing an alkaline catalyst and a dispersant.
  • the addition amount of the alkaline catalyst in the step (3) is set as follows.
  • the molar ratio of the total amount of metal silicon and sodium hydroxide: Si / NaOH is preferably between 10 and 100.
  • sodium hydroxide may be included in the reaction solution in an amount of 0.15 to 1.7% by weight. preferable.
  • the concentration of sodium hydroxide in the reaction solution is preferably kept constant to some extent by adding sodium hydroxide to the reaction solution during the reaction.
  • the alkaline catalyst is preferably divided addition in which the catalyst is added during the reaction.
  • the amount of the dispersant added in step (3) is not particularly limited, but is within the range of 0.;! To 2.5% by weight with respect to the total amount of metal silicon used. The reason for this is that even if added in excess of 2.5% by weight, no further dispersing effect is observed, and if it is less than 0.1% by weight, the effect as a dispersing agent cannot be expected, which is preferable in any case. Because there is no.
  • the dispersant in the reaction step (3) may be added at the beginning, middle or end of the reaction step, or may be added in multiple portions. Preferably, it is added before and / or during the reaction. For example, when no increase in viscosity is observed during the reaction process, it may be added after the reaction is completed and colloidal silica is produced.
  • step (3) preferably, the following procedure A or procedure B is employed.
  • Step 1 Prepare an aqueous solution containing water, alkaline catalyst and dispersant.
  • Step 2 Disperse metallic silicon in water to prepare slurry liquid or metallic silicon.
  • Step 3 Add the slurry liquid or metal silicon prepared in Step 2 to the aqueous solution obtained in Step 1 at a substantially constant rate, or add the slurry prepared in Step 2 to the aqueous solution obtained in Step 1.
  • the alkaline catalyst is added at a substantially constant rate.
  • Step 2 the metal silicon is dispersed in water in advance to form a slurry, and then added to an aqueous solution containing an alkaline catalyst, so that the rapid reaction that occurs when the metal silicon and the alkaline catalyst react directly in contact with each other. Heat generation and foaming can be prevented.
  • Step 3 the slurry-like solution or metal silicon prepared in Step 2 is added to the aqueous solution in Step 1, and the rate of addition is substantially constant using a metering pump or the like. It is preferable to keep.
  • the concentration of the alkaline catalyst in the aqueous solution prepared in Step 1 is preferably 0.05 to 4.0% by weight.
  • sodium hydroxide has a concentration of 0.;! To 2.0% by weight, and in the case of other metal hydroxides, it is desirable that the concentration be comparable to the chemical equivalent and alkali strength.
  • Step 3 the slurry solution or metal silicon prepared in Step 2 is added to the aqueous solution obtained in Step 1 at a substantially constant rate to prepare a reaction solution.
  • metal silicon and water react to produce colloidal silica.
  • the alkaline catalyst is preferably added to the reaction solution at a substantially constant rate. Specifically, in order to keep the concentration of the alkaline catalyst in the reaction solution within the range of 0.;! To 2.0% by weight in the case of sodium hydroxide, sodium hydroxide is added in parallel with the addition of metal silicon. Add.
  • the addition of the alkaline catalyst to the reaction solution is preferably performed using a metering pump or the like.
  • Procedure B has the following configuration. [Step a] An aqueous solution containing water, an alkaline catalyst and a dispersant is prepared.
  • Step b Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water.
  • Step c Add the slurry liquid or metal silicon prepared in step b to the aqueous solution obtained in step a at a substantially constant rate, or add the slurry prepared in step b to the aqueous solution obtained in step a.
  • the step of adding the alkaline catalyst at a substantially constant rate is desired to control the addition rate of the slurry liquid or metal silicon. Colloidal silica containing silica with a particle size of is obtained.
  • Procedure A the difference between Procedure A and Procedure B is that in Step B of Procedure B, it is intentionally controlled by controlling the silica particle size acceleration.
  • the addition rate is as follows: the addition amount power S of metallic silicon per hour, the reaction liquid amount per hour;! To 9.5% by weight.
  • the particle size is approximately 6 to A 19 nm relatively small silica particle is formed.
  • the particle size is roughly 20 to 80 nm. Large particles. Accordingly, it is possible to obtain colloidal silica having a desired particle size by controlling the rate of addition of the slurry liquid or metal silicon to the reaction liquid.
  • the addition rate is too high, hydrogen is generated remarkably and lacks in safety, and if it is too slow, the reactivity becomes worse, which is not preferable. Accordingly, it is desirable that the addition rate be 1 to 9.5% by weight of the reaction liquid amount per hour.
  • the amount of metal silicon added per hour is 3 to 5.7% by weight of the reaction liquid amount per hour.
  • the power S is desirable.
  • colloidal silica of 40 to 80 nm uses the polishing power due to the hardness of the particles. Used for finish polishing of thermal oxide film substrates and silicon wafers.
  • colloidal silica having a particle diameter of 40 nm, preferably 30 nm or less, is highly used as a filler for improving the hardness of plastic because of its high transparency.
  • An aqueous solution containing water, an alkaline catalyst and a dispersing agent is prepared in steps 1 and a in steps A and B above, and metal silicon is dispersed in water in steps 2 and b.
  • Prepared slurry-like liquid or metallic silicon is prepared.
  • steps 1 and a an aqueous solution containing water and an alkaline catalyst is prepared, and in steps 2 and b, a slurry-like liquid in which a dispersant and metal silicon are dispersed in water is prepared. May be.
  • a slurry-like liquid containing metallic silicon and a dispersing agent is added at a substantially constant rate to an aqueous solution containing water and an alkaline catalyst.
  • colloidal silica having a high concentration and low viscosity can be produced.
  • the colloidal silica can be separated from the unreacted residue by filtration in a short period of time! Can be purified.
  • the colloidal silica obtained in the step (3) according to the present invention has a high concentration and a low viscosity.
  • the method for producing the colloidal silica of the present invention may be a production method not including the concentration step.
  • this colloidal silica has a low viscosity, it can be refined in a short time with a good filterability and in a high yield. Therefore, colloidal silica is industrially produced by a method for producing colloidal silica using metal silicon as a raw material. Can be manufactured.
  • the dispersant used in step (3) may be added before or after the formation of silica particles, the working efficiency is high. That is, even if a dispersant is added before the formation of silica particles, the viscosity of colloidal silica does not increase.
  • step (3) when the procedure B is adopted, in addition to the advantages described above, The particle diameter of silica can be adjusted during the reaction process of water and metallic silicon. Therefore, since the particle size adjusting step is not included after the colloidal silica is formed, colloidal silica having a desired particle size and containing sili- cal force can be easily produced with few steps. Further, since the reaction solution contains a dispersant, the produced silica has high dispersibility, and therefore, the particle size can be controlled efficiently.
  • the colloidal silica produced by this procedure B has a low viscosity and a high concentration of colloidal silica, and can be freely designed with a force and a particle size of several nanometers to about lOOnm. Therefore, it can be used in a wide range of applications from fillers that require high concentration and transparency to abrasive grains that emphasize the polishing rate.
  • step (3) After step (3) is completed (after the addition of the slurry-like liquid or metal silicon to the reaction liquid), the reaction liquid is held for a certain period of time to promote the dissolution reaction of metal silicon, and then cooled.
  • the holding time for the dissolution reaction is not particularly limited, but is preferably 2 to 10 hours after hydrogen generation is stopped.
  • the silica concentration of the colloidal silica in the reaction solution obtained in the step (3) is preferably 20 to 50% by weight.
  • colloidal silica is produced by a production method comprising Procedure C comprising the following steps ⁇ ⁇ to ⁇ .
  • the alkaline catalyst, water, and metallic silicon used are preferably the same as those in the above-mentioned procedure ⁇ and procedure ⁇ .
  • Step I Prepare an aqueous solution containing water and alkaline catalyst
  • Step II Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water
  • Step III Add the slurry liquid or metal silicon prepared in Step II to the aqueous solution obtained in Step I at a substantially constant rate, or add the slurry prepared in Step II to the aqueous solution obtained in Step I.
  • the addition rate of metal silicon per hour is 1 to 9.5 wt% of the reaction liquid amount per hour. It is desirable that the weight be
  • the particle size is approximately 6 to A 19 nm relatively small silica particle is formed.
  • the particle size is roughly 20 to 80 nm. Large particles. Therefore, it is possible to obtain colloidal silica having a desired particle diameter of preferably 6 to 80 nm by controlling the rate of addition of the slurry liquid or metal silicon to the reaction liquid.
  • step (4) will be described.
  • reaction solution obtained in step (3) may be filtered to separate it from unreacted residues to purify colloidal silica (step (4)).
  • the filtration method is not particularly limited, and examples thereof include filter filtration, vacuum filtration, and pressure filtration. Specifically, the method of reducing the pressure and separating the cake residue is preferable not only because the work is easy, but also in order to increase the yield of colloidal silica.
  • the yield of colloidal silica obtained in the filtration and purification step of this step (4) is the same as that of the colloidal silica having a silica concentration of 20-50% by weight obtained in step (3) at 25 ° C with a pore size of 1 ⁇ m and a diameter of 90 mm.
  • the yield based on the filtration amount for 10 minutes is 60% or more, more desirably 80% or more.
  • the “yield” in the present specification is calculated by (the amount of generated silica mol / the amount of added metal silicon mol) ⁇ 100 (%).
  • the colloidal silica obtained after the step (4) preferably has an extremely high silica concentration of 30 wt% or more, more desirably 35 wt% or more. Further, the kinematic viscosity is 4 mm 2 / s or less, preferably 2.73 mm 2 / s or less, and the viscosity is low.
  • the primary particle diameter of the silica particles contained in the colloidal silica is 7 to 80 nm, preferably 10 to 40 nm, and the secondary particle diameter is 10 to 150 nm, preferably 12 to 120 nm.
  • Colloidal silica containing silica particles of these particle sizes is low in viscosity and very stable, and is highly useful and has high commercial value.
  • the primary particle size is an average particle size calculated from the specific surface area determined by the nitrogen adsorption method (BET method), and the secondary particle size is the optical scattering method (measuring instrument).
  • BET method nitrogen adsorption method
  • optical scattering method measuring instrument. The average particle size measured by ELS-8000 manufactured by Otsuka Electronics Co., Ltd. is shown.
  • the colloidal silica obtained in the step (4) is used as a binder for precision fabrication, refractory, ceramic fiber, etc., as an anti-slip agent for textiles, plastics, etc.
  • an irritant it is suitably used as a polishing agent for substrates such as silicon wafer compound semiconductors, glass, and hard disks, or as a catalyst, catalyst carrier, soil hardening agent, or the like.
  • Metal silicon powder having an average particle size of 40 11 m was pulverized to produce metal silicon having an average particle size of 5 11 m. This metal silicon was oxidized by a drier in the atmosphere and subjected to an inert treatment.
  • the dissolution reaction was further continued for 2 hours. After cooling, the reaction mixture was filtered off from the unreacted residue by vacuum filtration at 0.075 mPa with a 1,90 diamm membrane filter.
  • the produced colloidal silica was monodispersed particles having a concentration of 34.7% by weight, a primary particle diameter of 22 nm, and a secondary particle diameter of 33 nm, and had a kinematic viscosity of 2.73 mm 2 / s.
  • the filtration amount for 10 minutes by vacuum filtration was 214.6 g, and the yield was 81%.
  • Example 2 instead of adding ammonium nitrate as a dispersing agent, sodium chloride was added (same chemical equivalent as ammonium nitrate), and the procedure was the same as in Example 1 except that.
  • the produced colloidal silica was monodispersed particles having a concentration of 34.34% by weight, a primary particle size of 23.46 nm, and a secondary particle size of 47.4 nm.
  • the kinematic viscosity was 2.49 mm 2 / s.
  • the filtration amount in 10 minutes by vacuum filtration was 228.8 g, and the yield was 80%.
  • triammonium citrate was added (same chemical equivalent as ammonium nitrate), and the procedure was the same as in Example 1.
  • the produced colloidal silica was monodispersed particles having a concentration of 31.26% by weight, a primary particle diameter of 19 nm, and a secondary particle diameter of 27.8 nm.
  • the kinematic viscosity was 3.54 mm 2 / s.
  • the filtration amount for 10 minutes by vacuum filtration was 220.4 g, and the yield was 81%.
  • Example 2 instead of adding ammonium nitrate as a dispersing agent, sodium sulfate was added (same chemical equivalent as ammonium nitrate), and the other procedures were carried out in the same manner as in Example 1.
  • the produced colloidal silica was a particle having a concentration of 32.08% by weight, a primary particle size of 19.45 nm, and a secondary particle size of 30.7 nm.
  • the kinematic viscosity was 2.44 mm 2 / s.
  • the filtration amount for 10 minutes by vacuum filtration was 208.8 g, and the yield was 80%.
  • aqueous potassium nitrate solution 6. Og was added and mixed, and the dissolution reaction was continued for another 2 hours. After cooling, the mixture was cooled and filtered with 0.090mPa vacuum filter using a 90diam membrane filter. did.
  • the resulting colloidal silica has a concentration of 23.2% by weight, a primary particle size of 18 nm, and a secondary particle size of 26 ⁇ . m monodisperse particles with a kinematic viscosity of 2.15 mm 2 / s. The filtration amount for 10 minutes by vacuum filtration was 145.8 g, and the yield was 83%.
  • This colloidal silica was a stable low-viscosity sol with a viscosity of 2.28 mm 2 / s, almost unchanged after storage at room temperature for 3 months.
  • the procedure was the same as Example 1 except that no dispersant was added.
  • the produced colloidal silica was monodispersed particles having a concentration of 29% by weight, a primary particle diameter of 21 nm, and a secondary particle diameter of 22 nm.
  • the kinematic viscosity was as high as 4.95 mPa, and the filtration amount for 10 minutes by vacuum filtration was 6.5 g, and the yield was 58%.
  • the same procedure as in Example 5 was performed except that no dispersant was added.
  • the produced colloidal silica was a monodispersed particle having a concentration of 19.6% by weight, a primary particle diameter of 18 nm, and a secondary particle diameter of 28 nm.
  • the kinematic viscosity was 2.60 mPa, which was very strong.
  • the filtration amount for 10 minutes by vacuum filtration was 131. Og, and the yield was 74.6%.
  • This colloidal silica was a sol that increased in viscosity after storage at room temperature for 3 months and increased in viscosity to 6.34 mm 2 / s.
  • Metal silicon powder with an average particle size of 40 ⁇ was pulverized to produce metal silicon with an average particle size of 5 ⁇ .
  • This metal silicon was oxidized by a drier in the atmosphere and subjected to an inert treatment. Otherwise, the procedure was as described in Example 1. Based on the method described in Example 1, changes in filterability with changes in the amount of dispersant added were confirmed. The results are shown in Table 1. In Table 1, the amount of ammonium nitrate added (% by weight) is relative to the amount of metallic silicon added.
  • the added amount of the dispersant is 0.54 to; 1.71% by weight based on the total amount of metal silicon used, a yield of 73% or more, 3.592 mm 2 / A kinematic viscosity of s or less and a filterability of 63. lg or more were confirmed.
  • Example 6 and Comparative Example 3 were prepared as follows, and the relationship between the silica particle diameter and the addition rate of metallic silicon was examined.
  • Metallic silicon powder with an average particle size of 40 was pulverized to produce metal silicon with an average particle size of 5 ⁇ .
  • This metal silicon was oxidized with an air atmosphere drier and subjected to an inert treatment.
  • a slurry solution was prepared by dispersing 98.8 g of the obtained metal silicon powder in 334.8 g of ultrapure water.
  • a Teflon-lined reaction flask equipped with a 1 L stirrer and a reflux apparatus was charged with 166.43 g of an ultrapure aqueous solution containing 8 wt% NaOHO at a liquid temperature of 80 ° C. Thereto, all of the slurry solution was added at a constant rate using a metering pump over 4 hours. In parallel with this, 29.9 g of 10% by weight NaOH in water was added at a constant rate over 4 hours using a metering pump.
  • the dissolution reaction was further continued for 2 hours. After cooling, the reaction mixture was separated from unreacted residue by filtration under reduced pressure of 0.075 mPa with a 111, 90 diamm membrane filter.
  • the primary particle diameter of silica contained in the produced colloidal silica was 22 nm.
  • Metallic silicon with an average particle size of 40 ⁇ m and Si content of 97% or more was crushed to produce metallic silicon with an average particle size of 5 ⁇ m.
  • This metallic silicon was oxidized by a drier in the air atmosphere and inactivated.
  • a slurry-like solution was prepared by dispersing 45.2 g of the obtained metal silicon powder in 531.69 g of ultrapure water.
  • a Teflon-lined reaction flask equipped with a 1 L stirrer and a reflux apparatus was charged with 223 g of an ultrapure aqueous solution containing 5 wt% NaOHO at a liquid temperature of 100 ° C. Thereto, all of the slurry solution was added at a constant rate using a metering pump over 1 hour.
  • the dissolution reaction was further continued for 4 hours. After cooling, 0.075 mPa was filtered under reduced pressure using a 1111, 90diamm membrane filter, and unreacted residues were separated by filtration to produce a high purity colloidal silica force.
  • the colloidal silica had a particle size of 21.6 nm and a purity of 98%.
  • Example 7 The same procedure as in Example 7 was performed except that all of the slurry solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 10 minutes.
  • the particle size of silica contained in the produced colloidal silica was 8.5 nm.
  • Example 7 The same procedure as in Example 7 was performed except that all of the slurry-like solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 20 minutes.
  • the particle size of silica contained in the produced colloidal silica was 17.7 nm.
  • Example 10 The same procedure as in Example 7 was performed except that all of the slurry solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 3 hours.
  • the particle diameter of silica contained in the produced colloidal silica was 24.6 nm.
  • Example 7 The same procedure as in Example 7 was conducted, except that all of the slurry solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 4 hours.
  • the particle diameter of silica contained in the produced colloidal silica was 28.2 nm.
  • Example 7 The same procedure as in Example 7 was performed, except that all of the slurry solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 2 hours.
  • the particle diameter of silica contained in the produced colloidal silica was 22.6 nm.
  • Table 7 shows the addition time, primary particle size and yield of the metal silicon slurries of Examples 7 to 12
  • the primary particle size of the resulting colloidal silica can be adjusted by controlling the rate of addition of the slurry-like solution containing metallic silicon. That is, the faster the speed, the smaller the particles are produced, and the slower! /, The larger particles are produced! /.
  • the primary particle size of the resulting colloidal silica can be adjusted by controlling the rate of addition of metallic silicon to the alkaline aqueous solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a method for producing a colloidal silica using silicon metal as a raw material, which enables to produce a colloidal silica having high concentration and low viscosity. Also disclosed a method for producing a colloidal silica using silicon metal as a raw material, which enables to produce a colloidal silica in short time with high yield without comprising a concentration step. Further disclosed is a method for producing a colloidal silica, which enables to easily control the particle size of silica contained in a colloidal silica. Specifically disclosed is a method for producing a colloidal silica comprising a step for obtaining a colloidal silica by reacting silicon metal (Si) with water in an aqueous solution containing an alkaline catalyst and a dispersing agent, wherein the dispersing agent is composed of one or more ionic substances selected from inorganic acids, organic acids and their salts. Also specifically disclosed is a method for producing a colloidal silica comprising a step for controlling the particle size of silica by adjusting the addition rate of silicon metal into an aqueous solution containing an alkaline catalyst and a dispersing agent.

Description

明 細 書  Specification
コロイダルシリカの製造方法  Method for producing colloidal silica
技術分野  Technical field
[0001] シリコンウェハー化合物半導体、ガラス、ハードデスク等の基板の研磨剤等として好 適に用いられる新規コロイダルシリカの製造方法に関し、詳細には、アルカリ性触媒 及び分散剤を含む水溶液中で、金属珪素(Si)と水を反応させてコロイダルシリカを 得る工程を含むコロイダルシリ力の製造方法に関する。  [0001] The present invention relates to a method for producing a novel colloidal silica that is suitably used as a polishing agent for substrates such as silicon wafer compound semiconductors, glass, and hard disks, and more specifically, metal silicon in an aqueous solution containing an alkaline catalyst and a dispersant. The present invention relates to a method for producing a colloidal shear force including a step of reacting (Si) with water to obtain colloidal silica.
背景技術  Background art
[0002] 従来、金属材料の研磨剤や滑り防止剤等には、コロイダルシリカが使用されている 。このコロイダルシリカの製造方法としては、金属珪素を原料としたアルコキシシラン を加水分解 ·重縮合することによって得る方法、金属珪素をアルカリ溶解した水ガラス にイオン交換樹脂等を作用させることにより中性又は酸性化することによって得る方 法、及び無機アルカリ一価金属化合物、アンモニア、アミンを含んだ水溶液を加温し 、金属珪素の粉末または塊を混合して反応させる方法が挙げられる。特許文献;!〜 4 に記載の製造方法は、金属珪素と水を反応させて二酸化珪素を得る工程を含み、一 つの反応工程でコロイダルシリカを得ることができるため、工程数が少ないという点に おいて、他の製造方法と比較して有利である。  Conventionally, colloidal silica has been used as a polishing agent or anti-slip agent for metal materials. The colloidal silica can be produced by hydrolyzing and polycondensing an alkoxysilane using metal silicon as a raw material, or by neutralizing or reacting an ion exchange resin or the like with water glass in which metal silicon is alkali-dissolved. Examples thereof include a method obtained by acidification, and a method in which an aqueous solution containing an inorganic alkali monovalent metal compound, ammonia and an amine is heated, and a metal silicon powder or lump is mixed and reacted. The production methods described in Patent Documents !! to 4 include a step of obtaining silicon dioxide by reacting metal silicon with water, and colloidal silica can be obtained in one reaction step, so that the number of steps is small. Therefore, it is advantageous compared with other manufacturing methods.
[0003] 特許文献 5には、金属珪素を原料とするコロイダルシリカの製造方法で、反応工程 のみで約 30 %の高濃度で且つ 80 %以上の高収率でコロイダルシリ力を得る方法が 挙げられて!/、る。この文献に記載される二酸化珪素を得る反応式は以下の通りであ 溶解反応: Si + 2〇H— + H〇→Si〇 2— + 2H † (1) [0003] Patent Document 5 includes a method for producing colloidal silica using metal silicon as a raw material, and a method for obtaining colloidal shear force at a high concentration of about 30% and a high yield of 80% or more by only the reaction step. Being! / Scheme for obtaining a silicon dioxide described in this document are as follows der dissolution reaction: Si + 2_Rei_H- + H_〇 → Si_〇 2 - + 2H † (1)
2 3 2  2 3 2
重合反応: Si〇 2— + H 0→SiO +2〇H— (2) Polymerization reaction: Si ○ 2 — + H 0 → SiO +20 H — (2)
3 2 2  3 2 2
総括反応式: Si + 2H〇→Si〇 + 2H †(3)  Overall reaction formula: Si + 2H〇 → Si〇 + 2H † (3)
2 2 2  2 2 2
反応が完全に進行すれば(3)式に示すように、アルカリ性触媒の存在下で、金属 珪素からコロイダルシリカが生成し、この場合、金属珪素 lmolに対し水 2molが消費 され、 lmolのシリカと 2molの水素が生成することになる。 [0004] しかしながら、この製造方法は、水と金属珪素の反応工程にお!/、て、反応液が高濃 度になるにつれて、その粘度が上昇するという問題を有している。そして、この粘度上 昇は、反応液を未反応残渣と濾別する精製工程において、濾過性と収率の低下を引 き起こす。 If the reaction proceeds completely, as shown in formula (3), colloidal silica is produced from metallic silicon in the presence of an alkaline catalyst. In this case, 2 mol of water is consumed per lmol of metallic silicon, 2 mol of hydrogen will be produced. [0004] However, this production method has a problem that the viscosity of the reaction solution increases as the concentration of the reaction solution increases in the reaction step of water and metal silicon. This increase in viscosity causes a decrease in filterability and yield in the purification step of separating the reaction solution from unreacted residues.
逆に、コロイダルシリカの濾過性や収率を向上させるために、低粘度で且つ高濃度 のコロイダルシリカを得ようとすると、反応液の濃縮工程を、別途踏む必要があり、余 計な経費と時間を要するとレ、う問題を有してレ、た。  On the other hand, in order to improve the filterability and yield of colloidal silica, it is necessary to separately carry out the concentration step of the reaction solution to obtain a low viscosity and high concentration colloidal silica. If it takes time, I have a problem.
[0005] 特許文献 6には、硫酸ナトリウムや塩化ナトリウムなどの無機塩の添加でコロイダノレ シリカを高濃度化させる方法が記載されている。し力、しながら、この方法は、ある程度 の高濃度のコロイダルシリカを得ることは出来るものの、金属珪素粉末とアルカリ水溶 液を反応させてコロイダルシリカを得る方法ではない。つまり、特許文献 6に記載の製 造方法は、非常に複雑な工程を経てコロイダルシリカ粒子を所定の大きさに生成した 後、前記無機塩を添加し高濃度に濃縮するというものである。即ち、特許文献 6に記 載の方法においては、その無機塩は、反応中の反応液に添加されるものではなぐ シリカ粒子生成後に限定されるため、製造効率が低い。もし、シリカ粒子生成前に分 散剤が添加されると、低粘度で且つ高濃度なコロイダルシリカを製造することができ ないばかりか、粘度上昇により、作業効率が極端に低下する。 [0005] Patent Document 6 describes a method of increasing the concentration of colloidanol silica by adding an inorganic salt such as sodium sulfate or sodium chloride. However, although this method can obtain a certain level of high colloidal silica, it is not a method of obtaining colloidal silica by reacting metal silicon powder with an alkaline aqueous solution. That is, the production method described in Patent Document 6 is such that colloidal silica particles are formed in a predetermined size through a very complicated process, and then the inorganic salt is added and concentrated to a high concentration. That is, in the method described in Patent Document 6, the inorganic salt is not added to the reaction liquid during the reaction, and is limited after the production of silica particles, so that the production efficiency is low. If a dispersing agent is added before the formation of silica particles, not only a low-viscosity and high-concentration colloidal silica can be produced, but also the working efficiency is extremely lowered due to the increase in viscosity.
即ち、金属珪素を原料としてコロイダルシリカを製造するにあたり、工程数を最小限 に抑えて簡便な製造方法を提供するために、濃縮することなく高濃度及び低粘度な コロイダルシリカを生成できる製造方法の発明は、未だ創出されてはいない。  That is, in producing colloidal silica using metal silicon as a raw material, in order to provide a simple production method while minimizing the number of steps, a production method capable of producing high-concentration and low-viscosity colloidal silica without concentration. The invention has not yet been created.
[0006] 更に言えば、様々な用途に適用するコロイダルシリカを製造するにあたり、これに含 まれるシリカの粒子径の調節が必要となってくる。例えば、精密铸造铸型、セラミック スフアイバー成型、耐火物成型などのバインダーに使用されるコロイダルシリカに含ま れるシリカは、結合力の強い小粒子径が好ましい。一方、つや消しペイントのフィラー や基板の研磨剤、紙製品や繊維の滑り防止剤等に使用されるコロイダルシリカに含 まれるシリカは大粒子径が望まれる。大粒子径のシリカは、高い陰蔽性や滑り防止効 果をもたらす。  [0006] Furthermore, in the production of colloidal silica to be applied to various uses, it is necessary to adjust the particle diameter of silica contained therein. For example, the silica contained in colloidal silica used for binders such as precision forging molds, ceramic smoker molding, and refractory molding preferably has a small particle size with a strong binding force. On the other hand, the silica contained in colloidal silica used for matte paint fillers, substrate abrasives, anti-slip agents for paper products and fibers, etc. should have a large particle size. Large particle size silica provides high shielding and anti-slip effects.
[0007] 粒子径制御に関して言えば、特許文献 1〜4に記載の方法は、金属珪素を効率よく 溶解しゾル化する手法に関し、粒子の大きさを調節することは何ら述べられてなレ、。 例えば、特許文献 7には、水酸化アンモニゥムを含有する水性コロイダルシリカのヒ ール(元粒子)に金属珪素を添加することによって水性コロイダルシリカ中のヒール粒 子の大きさを積み上げて、粒子調節できるコロイダルシリカの製造方法が紹介されて いる。 [0007] With regard to particle size control, the methods described in Patent Documents 1 to 4 efficiently use metallic silicon. Regarding the method of dissolving and solling, there is no mention of adjusting the particle size. For example, in Patent Document 7, the size of heel particles in the aqueous colloidal silica is increased by adding metal silicon to the water (original particles) of the aqueous colloidal silica containing ammonium hydroxide, thereby controlling the particles. A method for producing colloidal silica is described.
[0008] しかしながら、この特許文献 7に記載の発明によると、コロイダルシリカの粒子調節 は、コロイダルシリカを製造した後に、粒子調節工程を必要とするものであり、余計な 時間や経費がかかるとレ、う問題を有して!/、た。  [0008] However, according to the invention described in Patent Document 7, the particle adjustment of colloidal silica requires a particle adjustment step after the production of colloidal silica. Have a problem!
即ち、金属珪素を原料として製造されるコロイダルシリカにおいて、工程数を抑えて 簡便な製造方法であるとともに、反応工程においてコロイダルシリカに含まれるシリカ の粒子径を調節できることが求められている。し力もながら、そのような発明は創出さ れてレ、なレ、のが現状である。  That is, colloidal silica produced using metal silicon as a raw material is required to be a simple production method with a reduced number of steps, and to adjust the particle size of silica contained in the colloidal silica in the reaction step. However, the present situation is that such inventions have been created.
[0009] また、汎用コロイダルシリカの製造法として、所謂イオン交換法として良く知られてい るところの、希薄水ガラスを陽イオン交換樹脂で処理し、脱ナトリウムした活性珪酸水 溶液を作り、これの一部を熱熟成してシリカ粒子の核を生成させ、この核を含む加熱 分散液を攪拌しているところに、前記活性珪酸水溶液を、時間をかけて添加すること により、シリカ粒子を雪ダルマ状に成長させる方法が挙げられる。この方法によると、 小粒子から大粒子の任意の粒子径のシリカを含むコロイダルシリカを製造し、最終的 には、このシリカ濃度 2〜5重量%の希薄コロイダルシリカを蒸発濃縮や限外ろ過濃 縮によりシリカ濃度 20〜50重量%の水性コロイダルシリカが得られる(非特許文献 1 参照)。  [0009] In addition, as a method for producing general-purpose colloidal silica, a so-called ion exchange method, a dilute water glass is treated with a cation exchange resin to produce a sodium free active silicate aqueous solution. A part of the particles is heat-aged to produce nuclei of silica particles, and the activated silicic acid aqueous solution is added over time to the stirring of the heated dispersion containing the nuclei. The method of making it grow in a shape is mentioned. According to this method, colloidal silica containing silica having an arbitrary particle size from small particles to large particles is produced. Finally, dilute colloidal silica having a silica concentration of 2 to 5% by weight is concentrated by evaporation or ultrafiltration. By shrinking, an aqueous colloidal silica having a silica concentration of 20 to 50% by weight is obtained (see Non-Patent Document 1).
つまり、非特許文献 1に記載のコロイダルシリカの製造方法は、シリカ粒子の核を含 む加熱分散液のモル比(SiO /Na O)を限定し、珪酸水溶液の添加速度をコント口  In other words, the method for producing colloidal silica described in Non-Patent Document 1 limits the molar ratio (SiO 2 / Na 2 O) of the heated dispersion containing the nuclei of silica particles, and controls the addition rate of the silicic acid aqueous solution.
2 2  twenty two
ールすることにより粒子径を制御するものである。これにより、所望の粒子径を有する シリカを含むコロイダルシリカを得ることができるものの、熱熟成やイオン交換処理の 工程、さらにはシリカ濃度を上げるための濃縮操作等の工程を踏む必要があり、結局 、所望の粒径のコロイダルシリカを得るためには、余計な時間や経費がかかるという 問題を有する。 特許文献 1 :米国特許第 2614993号 By controlling the particle size, the particle size is controlled. As a result, although colloidal silica containing silica having a desired particle size can be obtained, it is necessary to take steps such as thermal aging and ion exchange treatment, and further a concentration operation for increasing the silica concentration. In order to obtain colloidal silica having a desired particle size, there is a problem that extra time and cost are required. Patent Document 1: U.S. Pat.No. 2,614,993
特許文献 2 :米国特許第 2614994号  Patent Document 2: U.S. Pat.No. 2,614,994
特許文献 3 :米国特許第 2614995号  Patent Document 3: U.S. Patent No. 2614995
特許文献 4 :特公昭 49 4637号  Patent Document 4: Japanese Patent Publication No.49 4637
特許文献 5:特開昭 49 64595号公報  Patent Document 5: JP-A-49 64595
特許文献 6:特公昭 37— 9961号公報  Patent Document 6: Japanese Patent Publication No. 37-9961
特許文献 7:特公昭 48— 13833号  Patent Document 7: Japanese Patent Publication No. 48-13833
非特許文献 1 :吉田明利著,化学と工業, 第 45巻第 5号 p45 (1992)  Non-Patent Document 1: Akiyoshi Yoshida, Chemistry and Industry, Vol. 45, No. 5, p45 (1992)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明の課題は、金属珪素を原料とするコロイダルシリカの製造方法において、高 濃度で且つ低粘度のコロイダルシリカを生成することにある。 An object of the present invention is to produce colloidal silica having a high concentration and a low viscosity in a method for producing colloidal silica using metal silicon as a raw material.
本発明の他の課題は、金属珪素を原料とするコロイダルシリカの製造方法において 、金属珪素と水との反応により得られたコロイダルシリカを濃縮することなぐ短時間で 高い収率で、未反応残渣と濾別してコロイダルシリカを精製することができるコロイダ ルシリカの製造方法を提供することである。  Another object of the present invention is to provide an unreacted residue in a high yield in a short time without concentrating the colloidal silica obtained by the reaction between metal silicon and water in the method for producing colloidal silica using metal silicon as a raw material. It is intended to provide a method for producing colloidal silica, which can be purified by filtration.
本発明の他の課題は、アルカリ性水溶液及び金属珪素を含む反応液中で水と金 属珪素を反応させてコロイダルシリカを得る製造過程において、少ない工程で簡便 にコロイダルシリカに含まれるシリカの粒子径を調節し小粒子から大粒子のシリカを 含むコロイダルシリカの製造方法を提供することである。 課題を解決するための手段  Another object of the present invention is to provide a particle diameter of silica contained in colloidal silica simply and with a small number of steps in the production process of obtaining colloidal silica by reacting water and metal silicon in a reaction solution containing an alkaline aqueous solution and metallic silicon. It is intended to provide a method for producing colloidal silica containing silica from small particles to large particles. Means for solving the problem
[0011] 請求項 1に係る発明は、アルカリ性触媒及び分散剤を含む水溶液中で、金属珪素 [0011] The invention according to claim 1 is characterized in that metallic silicon is used in an aqueous solution containing an alkaline catalyst and a dispersant.
(Si)と水を反応させてコロイダルシリカを得る工程を含み、前記分散剤は、無機酸、 有機酸又はそれらの塩から選ばれる一種以上のイオン性物質であることを特徴とす るコロイダルシリ力の製造方法に関する。  A step of obtaining colloidal silica by reacting (Si) with water, wherein the dispersant is one or more ionic substances selected from inorganic acids, organic acids or salts thereof. The present invention relates to a force manufacturing method.
請求項 2に係る発明は、前記分散剤が、塩酸、硝酸又は硫酸から選ばれる一種以 上の無機酸及び/又はその塩であることを特徴とする請求項 1に記載のコロイダルシ リカの製造方法に関する。 [0012] 請求項 3に係る発明は、前記分散剤が無機酸塩であって、該塩が、 Na、 K、 Li、 N H、ァミン又は第四級アンモニゥム水酸化物との塩から選ばれる一種以上であることThe invention according to claim 2 is characterized in that the dispersant is one or more inorganic acids selected from hydrochloric acid, nitric acid or sulfuric acid and / or a salt thereof. About. [0012] The invention according to claim 3 is that the dispersant is an inorganic acid salt, and the salt is selected from a salt with Na, K, Li, NH, ammine or a quaternary ammonium hydroxide. That is more
4 Four
を特徴とする請求項 2に記載のコロイダルシリカの製造方法に関する。  The method for producing colloidal silica according to claim 2, wherein:
請求項 4に係る発明は、前記分散剤が、シユウ酸、クェン酸、リンゴ酸、マレイン酸、 酒石酸、グノレタル酸、アジピン酸、ピメリン酸、コハク酸、マロン酸、フマル酸、フタル 酸、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、 2—メチル酪酸、 n—へキサン酸、 3, 3—ジメチル酪酸、 2—ェチル酪酸、 4ーメチルペンタン酸、 n—ぺプタン酸、 2—メチ ルへキサン酸、 n—オクタン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸又 は乳酸から選ばれる一種以上の有機酸及び/又はその塩であることを特徴とする請 求項 1に記載のコロイダルシリカの製造方法に関する。 The invention according to claim 4 is characterized in that the dispersant is oxalic acid, citrate, malic acid, maleic acid, tartaric acid, gnoretaric acid, adipic acid, pimelic acid, succinic acid, malonic acid, fumaric acid, phthalic acid, formic acid, Acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-peptanoic acid, 2-methylhexanoic acid N -octanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, or lactic acid, one or more organic acids selected from lactic acid and / or a salt thereof, The production of colloidal silica according to claim 1 Regarding the method.
[0013] 請求項 5に係る発明は、前記分散剤が有機酸塩であって、該塩が Na、 K、 Li、 NH [0013] In the invention according to claim 5, the dispersant is an organic acid salt, and the salt is Na, K, Li, NH.
、ァミン又は第四級アンモニゥム水酸化物との塩から選ばれる一種以上であることを , One or more selected from salts with amines or quaternary ammonium hydroxides
4 Four
特徴とする請求項 4に記載のコロイダルシリカの製造方法に関する。  5. The method for producing colloidal silica according to claim 4, wherein the colloidal silica is produced.
請求項 6に係る発明は、前記アルカリ性触媒力 ナトリウム(Na)、カリウム (K)又は リチウム(Li)を含む金属一価水酸化物の 1種または複数の混合物であることを特徴と する請求項 1乃至 5いずれかに記載のコロイダルシリカの製造方法に関する。  The invention according to claim 6 is a mixture of one or more metal monohydric hydroxides containing the alkaline catalytic power sodium (Na), potassium (K) or lithium (Li). The present invention relates to a method for producing colloidal silica according to any one of 1 to 5.
[0014] 請求項 7に係る発明は、前記コロイダルシリカを孔径 1 [I mのメンブランフィルターで 濾過精製した後の動粘度が 4mm2/s以下であることを特徴とする請求項 1乃至 6い ずれかに記載のコロイダルシリカの製造方法に関する。 [0014] The invention according to claim 7, claim 1 to 6 have a kinematic viscosity after filtration is purified by a membrane filter of the colloidal silica having a pore size 1 [I m is equal to or less than 4 mm 2 / s The present invention relates to a method for producing colloidal silica according to any one of the above.
請求項 8に係る発明は、前記コロイダルシリカのシリカ濃度が 20重量%以上である ことを特徴とする請求項 1乃至 7いずれかに記載のコロイダルシリカの製造方法に関 する。  The invention according to claim 8 relates to the method for producing colloidal silica according to any one of claims 1 to 7, wherein the silica concentration of the colloidal silica is 20% by weight or more.
[0015] 請求項 9に係る発明は、少なくとも下記の段階を備える請求項 1に記載のコロイダノレ シリカの製造方法に関する。  [0015] The invention according to claim 9 relates to a method for producing colloidanol silica according to claim 1, comprising at least the following steps.
[段階 1] 水、アルカリ性触媒及び分散剤を含む水溶液を作製する  [Step 1] Prepare an aqueous solution containing water, alkaline catalyst and dispersant
[段階 2] 金属珪素を水に分散させたスラリー状液又は金属珪素を準備する  [Step 2] Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water
[段解 3] 段階 1で得られた水溶液に、段階 2で準備したスラリー状液又は金属珪素 を略一定速度で添加する、又は段階 1で得られた水溶液に、段階 2で準備したスラリ 一状液又は金属珪素を略一定速度で添加することと並行してアルカリ性触媒を略一 定速度で添加する [Step 3] Add the slurry liquid or metal silicon prepared in Step 2 to the aqueous solution obtained in Step 1 at a substantially constant rate, or add the slurry prepared in Step 2 to the aqueous solution obtained in Step 1. In parallel to adding the liquid or metal silicon at a substantially constant rate, the alkaline catalyst is added at a substantially constant rate.
請求項 10に係る発明は、前記段階 3において、前記スラリー状液又は金属珪素の 添加速度を制御することにより所望の粒子径のシリカを含むコロイダルシリカを得るこ とを特徴とする請求項 9に記載のコロイダルシリカの製造方法に関する。  The invention according to claim 10 is characterized in that, in the step 3, colloidal silica containing silica having a desired particle diameter is obtained by controlling the addition rate of the slurry liquid or metal silicon. It is related with the manufacturing method of the colloidal silica of description.
[0016] 請求項 11に係る発明は、前記添加速度として、 1時間あたりの金属珪素の添カロ量 力 1時間あたりの反応液量の;!〜 9. 5重量%の重量であることを特徴とする請求項[0016] The invention according to claim 11 is characterized in that, as the addition rate, the addition amount of metal silicon per hour: the amount of reaction liquid per hour;! To 9.5% by weight Claim
9又は 10に記載のコロイダルシリカの製造方法に関する。 The method for producing colloidal silica according to 9 or 10.
請求項 12に係る発明は、前記段階 3で得られるコロイダルシリカに含まれるシリカの 粒子径が、その一次粒子径として 6〜80nmであることを特徴とする請求項 9乃至 11 いずれかに記載のコロイダルシリカの製造方法に関する。  The invention according to claim 12 is characterized in that the particle size of the silica contained in the colloidal silica obtained in the step 3 is 6 to 80 nm as its primary particle size. The present invention relates to a method for producing colloidal silica.
[0017] 請求項 13に係る発明は、少なくとも下記の段階を備えるコロイダルシリカの製造方 法に関する。 [0017] The invention according to claim 13 relates to a method for producing colloidal silica comprising at least the following steps.
[段階 I] 水及びアルカリ性触媒を含む水溶液を作製する  [Step I] Prepare an aqueous solution containing water and alkaline catalyst
[段階 II] 金属珪素を水に分散させたスラリー状液又は金属珪素を準備する  [Step II] Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water
[段階 III] 段階 Iで得られた水溶液に、段階 IIで準備したスラリー状液又は金属珪素 を略一定速度で添加する、又は段階 Iで得られた水溶液に、段階 IIで準備したスラリ 一状液又は金属珪素を略一定速度で添加することと並行してアルカリ性触媒を略一 定速度で添加する  [Step III] Add the slurry liquid or metal silicon prepared in Step II to the aqueous solution obtained in Step I at a substantially constant rate, or add the slurry prepared in Step II to the aqueous solution obtained in Step I. In parallel with adding liquid or metallic silicon at a substantially constant rate, an alkaline catalyst is added at a substantially constant rate.
請求項 14に係る発明は、前記段階 IIIにおいて、金属珪素を水に分散させたスラリ 一状液又は金属珪素の添加速度を制御することにより所望の粒子径のシリカを含む コロイダルシリカを得ることを特徴とする請求項 13に記載のコロイダルシリカの製造方 法に関する。  The invention according to claim 14 is to obtain colloidal silica containing silica having a desired particle size by controlling the rate of addition of a slurry-like liquid in which metallic silicon is dispersed in water or metallic silicon in the step III. 14. The method for producing colloidal silica according to claim 13, wherein the colloidal silica is produced.
発明の効果  The invention's effect
[0018] 本発明のコロイダルシリカの製造方法は、金属珪素(Si)を原料とするコロイダルシリ 力の製造方法であって、アルカリ性触媒及び分散剤を含む水溶液中で、金属珪素と 水を反応させてコロイダルシリカを得る反応工程を含む。得られたコロイダルシリカは 高濃度で且つ低粘度である。詳細には、そのシリカ濃度は、コロイダルシリカが利用 される用途を考慮した場合、好ましくは 20重量%以上で 50重量 %以下である。従って 、反応工程の後、コロイダルシリカを濃縮する必要がないから経済的である、また、こ のコロイダルシリカが低粘度であるため、濾過性が良ぐ短時間で且つ高い収率で精 製できるから、金属珪素を原料とするコロイダルシリカの製造方法によって、コロイダ ルシリカを工業的に製造することができる。 [0018] The method for producing colloidal silica of the present invention is a method for producing colloidal silica force using metallic silicon (Si) as a raw material, and reacts metallic silicon and water in an aqueous solution containing an alkaline catalyst and a dispersant. A reaction step of obtaining colloidal silica. The resulting colloidal silica has a high concentration and a low viscosity. Specifically, colloidal silica is used for the silica concentration. Considering the intended use, it is preferably 20% by weight or more and 50% by weight or less. Therefore, it is economical because it is not necessary to concentrate the colloidal silica after the reaction step, and since the colloidal silica has a low viscosity, it can be purified in a short time and with a high yield with good filterability. Thus, colloidal silica can be industrially produced by a method for producing colloidal silica using metal silicon as a raw material.
本発明の製造方法によると、分散剤をシリカ粒子生成の前でも後でも使用してもよ いから、作業効率が高い。たとえ、シリカ粒子生成の前に分散剤が添加されても、コロ ィダルシリカの粘度が上昇しない。  According to the production method of the present invention, the dispersant can be used either before or after the formation of silica particles, so that the working efficiency is high. Even if a dispersant is added before the formation of silica particles, the viscosity of the colloidal silica does not increase.
さらに、本発明の製造方法によると、金属珪素(Si)を原料とするコロイダルシリカの 製造方法であって、反応工程においてコロイダルシリカに含まれるシリカの粒子径を 調節すること力 Sできる。従って、コロイダルシリカ生成後に粒子径調節工程を含まない ため、所望の粒子径を有するシリカを含むコロイダルシリカを少ない工程で簡便に製 造すること力 Sでさる。  Furthermore, according to the production method of the present invention, it is a production method of colloidal silica using metal silicon (Si) as a raw material, and it is possible to adjust the particle size of silica contained in the colloidal silica in the reaction step. Therefore, since the particle size adjusting step is not included after the colloidal silica is formed, the force S can be easily used to manufacture colloidal silica containing silica having a desired particle size in a small number of steps.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明のコロイダルシリカの製造方法は、少なくとも、アルカリ性触媒及び分散剤を 含む水溶液中で、金属珪素(Si)と水を反応させてコロイダルシリカを得る工程を含む ことを特徴とする。以下、本発明のコロイダルシリカの製造方法を詳細に説明する。  [0019] The method for producing colloidal silica of the present invention includes a step of obtaining colloidal silica by reacting metal silicon (Si) with water in an aqueous solution containing at least an alkaline catalyst and a dispersant. Hereinafter, the manufacturing method of the colloidal silica of this invention is demonstrated in detail.
[0020] 本発明に係るコロイダルシリカは、好ましくは以下の 4つの工程力、ら製造される。  [0020] The colloidal silica according to the present invention is preferably produced by the following four process forces.
(1)金属珪素の粒子化工程 (以下、単に工程(1)という場合がある)  (1) Metal silicon graining process (hereinafter sometimes simply referred to as process (1))
(2)金属珪素の不活性処理工程 (以下、単に工程(2)という場合がある)  (2) Metal silicon inactive treatment process (hereinafter, simply referred to as process (2))
(3)金属珪素と水の反応工程 (以下、単に工程(3)という場合がある)  (3) Metal silicon and water reaction process (Hereafter, it may be simply referred to as process (3))
(4)コロイダルシリカの濾過精製工程 (以下、単に工程 (4)という場合がある)  (4) Filtration purification process of colloidal silica (hereinafter sometimes simply referred to as process (4))
[0021] 前記工程(1)は、原料となる金属珪素を粒子化する工程である。 [0021] The step (1) is a step of forming metal silicon as a raw material into particles.
原料として使用する金属珪素は特に限定されず、合金を使用しても良い。但し、使 用される金属珪素が、作製されるコロイダルシリカの純度に直接影響するため、好ま しくは純度の高い金属珪素を使用する。  The metal silicon used as a raw material is not particularly limited, and an alloy may be used. However, since the metal silicon used directly affects the purity of the colloidal silica produced, it is preferable to use high-purity metal silicon.
工程(1)において金属珪素を粒子化する方法は特に限定されないが、好ましくは 金属珪素を粉砕する方法が挙げられる。この工程で、好ましくは粒径が 2〜40 111と される。この理由は、 2 m未満の場合は、粉砕に多大な労力と経費がかかり、一方 、 40 111を超える場合は、反応が進行しにくい傾向になるからである。 The method for forming metal silicon particles in the step (1) is not particularly limited, but a method of pulverizing metal silicon is preferable. In this step, preferably the particle size is 2-40 111 Is done. The reason for this is that if the length is less than 2 m, a great amount of labor and cost are required for grinding, whereas if it exceeds 40 111, the reaction tends to hardly proceed.
[0022] 前記工程(2)は、工程(1)で得られた金属粒子を不活性化する工程である。 [0022] The step (2) is a step of inactivating the metal particles obtained in the step (1).
工程(1)で粉砕されて粒子状となった金属珪素は、特に粉砕直後の金属珪素は、 そのまま使用すると、表面活性が高すぎる為、工程 (3)の前に、金属珪素に不活性 化処理を施すことが望ましい。前記不活性化処理としては、例えば、酸化ガスなどを 用いる表面酸化処理が挙げられる。  Metallic silicon that has been pulverized in step (1), especially metal silicon immediately after pulverization, is deactivated to metallic silicon before step (3) because its surface activity is too high if used as it is. It is desirable to perform processing. Examples of the inactivation treatment include surface oxidation treatment using an oxidizing gas or the like.
[0023] 次に、工程(3)の金属珪素と水の反応工程について説明する。本発明のコロイダル シリカの製造方法において、この工程(3)は本発明のコロイダルシリカの製造方法に 含まれる必須工程である。 Next, the reaction step of metal silicon and water in step (3) will be described. In the method for producing colloidal silica of the present invention, this step (3) is an essential step included in the method for producing colloidal silica of the present invention.
工程(3)において、アルカリ性触媒及び分散剤を含む水溶液中で、金属珪素と水 を反応させてコロイダルシリカを得る。工程(3)で好適に使用される水、アルカリ性触 媒、分散剤は下記のとおりである。  In the step (3), colloidal silica is obtained by reacting metal silicon with water in an aqueous solution containing an alkaline catalyst and a dispersant. The water, alkaline catalyst, and dispersant that are preferably used in the step (3) are as follows.
[0024] 工程(3)で使用される金属珪素としては、工程(1)及び工程(2)を施した金属珪素 粒子が好適に使用される。 [0024] As the metallic silicon used in the step (3), metallic silicon particles subjected to the step (1) and the step (2) are preferably used.
工程(3)で使用される水は、超純水でも構わないが、イオン性不純物質を多く含ん でなる水道水、天然水、工業用水、回収水なども好適に使用される。  The water used in step (3) may be ultrapure water, but tap water, natural water, industrial water, recovered water and the like containing a large amount of ionic impurities are also preferably used.
工程(3)で使用されるアルカリ性触媒は特に限定されないが、好ましくは塩基性金 属ー価水酸化物が使用される。詳細には、水酸化ナトリウム、水酸化カリウム、水酸 化リチウム、水酸化セシウム又は水酸化ルビジウムが挙げられ、これらを単独で、或 いは混合して使用してもよい。とりわけ、水酸化ナトリウム、水酸化カリウム、水酸化リ チウムなどの金属水酸化物のような強塩基を用いることが好ましぐ最も好ましくは、 水酸化ナトリウムを用いる。この理由は、これらの金属水酸化物は金属珪素の溶解性 に優れるためである。  The alkaline catalyst used in step (3) is not particularly limited, but a basic metal-valent hydroxide is preferably used. Specifically, sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide or rubidium hydroxide can be used, and these may be used alone or in combination. In particular, it is preferable to use a strong base such as a metal hydroxide such as sodium hydroxide, potassium hydroxide or lithium hydroxide. Most preferably, sodium hydroxide is used. This is because these metal hydroxides are excellent in solubility of metal silicon.
[0025] 工程(3)で使用される分散剤としては、無機酸、無機酸塩、有機酸、有機酸塩から 選ばれるイオン性物質であれば特に限定されないが、好ましくは、このイオン性物質 は、水を分散媒とするコロイダルシリカの粘度を低減しうる。本発明に係る分散剤は、 単独で、或いは複数種を組み合わせて用いても構わない。ただし、コロイダルシリカ の pHが 7以下になると凝集が起こるため、分散剤を添加した後もコロイダルシリカの p Hが 7以下にならな!/、ように添加することが好まし!/、。 [0025] The dispersant used in the step (3) is not particularly limited as long as it is an ionic substance selected from an inorganic acid, an inorganic acid salt, an organic acid, and an organic acid salt. Preferably, this ionic substance is used. Can reduce the viscosity of colloidal silica using water as a dispersion medium. The dispersants according to the present invention may be used alone or in combination of two or more. However, colloidal silica Aggregation occurs when the pH of the colloidal silica is 7 or less. Therefore, it is preferable to add colloidal silica so that the pH of the colloidal silica is 7 or less! /.
無機酸としては、塩酸、硝酸、硫酸、リン酸、亜リン酸、次亜リン酸、アルキルリン酸 エステル、ホウ酸、ピロリン酸、ホウフッ酸、 4フッ化ホウ酸、 6フッ化リン酸、ベンゼンス ルホン酸及びナフタレンスルホン酸が挙げられ、このうち、塩酸、硝酸、硫酸が好まし く用いられる。  Inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, alkyl phosphoric acid ester, boric acid, pyrophosphoric acid, borofluoric acid, tetrafluoroboric acid, hexafluorophosphoric acid, and benzene Examples thereof include sulfonic acid and naphthalenesulfonic acid, among which hydrochloric acid, nitric acid and sulfuric acid are preferably used.
有機酸としては、クェン酸、シユウ酸、リンゴ酸、マレイン酸、酒石酸、ダルタル酸、ァ ジピン酸、ピメリン酸、コハク酸、マロン酸、フマル酸、フタル酸、ギ酸、酢酸、プロピオ ン酸、酪酸、吉草酸、 2—メチル酪酸、 n—へキサン酸、 3, 3—ジメチル酪酸、 2—ェ チル酪酸、 4ーメチルペンタン酸、 n—ヘプタン酸、 2—メチルへキサン酸、 n—ォクタ ン酸、 2—ェチルへキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸及 び乳酸が挙げられる。  Organic acids include citrate, oxalate, malic acid, maleic acid, tartaric acid, tartaric acid, adipic acid, pimelic acid, succinic acid, malonic acid, fumaric acid, phthalic acid, formic acid, acetic acid, propionic acid, butyric acid , Valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-Ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid and lactic acid.
前記無機酸及び有機酸の塩としては、好ましくは、 Na、 K、 Li、 NH、ァミン、第四  The salt of the inorganic acid and organic acid is preferably Na, K, Li, NH, ammine, quaternary.
4  Four
級アンモニゥム水酸化物との塩が例示できる。  Examples thereof include salts with high-grade ammonium hydroxide.
好ましく使用される無機酸塩としては、無機アンモニゥム塩である硫酸アンモニゥム 、塩酸アンモニゥム、硝酸アンモニゥム、リン酸一アンモニゥム、リン酸水素二アンモ 二ゥム、ホウ酸アンモニゥム八水和物などが挙げられる。有機酸塩としては、有機アン モニゥム塩である安息香酸アンモニゥム、クェン酸三アンモニゥム、クェン酸水素二 アンモニゥム、シユウ酸アンモニゥム一水和物、ギ酸アンモニゥム、サリチノレ酸アンモ 二ゥム、アジピン酸アンモニゥム、酢酸アンモニゥム及びタエン酸テトラメチルアンモ ユウムが挙げられる。  Preferred inorganic acid salts include inorganic ammonium salts such as ammonium sulfate, ammonium hydrochloride, ammonium nitrate, monoammonium phosphate, diammonium hydrogen phosphate, and ammonium borate octahydrate. Organic acid salts include the organic ammonium salts, ammonium benzoate, ammonium citrate, ammonium citrate, ammonium oxalate, ammonium formate, ammonium formate, ammonium salicinoleate, ammonium adipate, acetic acid Ammonium and tetramethylammonium taenoate.
前記分散剤のうち、最も好ましく用いられる分散剤は、クェン酸三アンモニゥム、硫 酸ナトリウム、硝酸アンモニゥム及び/又は塩化ナトリウムである。  Among the dispersants, the most preferably used dispersant is triammonium citrate, sodium sulfate, ammonium nitrate and / or sodium chloride.
[0026] 本発明に係る分散剤は、コロイダルシリカの用途を考慮して、より効果的な物質を 無機酸、有機酸又はその塩の中から自由に選択できるという利点がある。  The dispersant according to the present invention has an advantage that a more effective substance can be freely selected from an inorganic acid, an organic acid or a salt thereof in consideration of the use of colloidal silica.
[0027] 工程(3)において、アルカリ性触媒及び分散剤を含む水溶液中で、金属珪素と水 を反応させる反応液の温度は、比較的高いことが好ましい。この理由は、高い温度で ある程コロイダルシリカの収率が向上するからである。詳細には、反応液の温度は、 好ましくは、 60〜90°Cの範囲に調整される。尚、本明細書でいう「反応液」とは、アル カリ性触媒及び分散剤を含む水溶液にさらに金属珪素が含まれてなり、金属珪素と 水が反応してレ、る水溶液のことをレ、う。 [0027] In the step (3), the temperature of the reaction solution for reacting metal silicon and water in an aqueous solution containing an alkaline catalyst and a dispersant is preferably relatively high. This is because the higher the temperature, the higher the yield of colloidal silica. Specifically, the temperature of the reaction solution is Preferably, it is adjusted to a range of 60 to 90 ° C. As used herein, the term “reaction liquid” refers to an aqueous solution obtained by further reacting metal silicon with water in an aqueous solution containing an alkaline catalyst and a dispersant. Uh.
[0028] 工程(3)における、アルカリ性触媒の添加量は以下のように設定される。本発明の 製造方法において、アルカリ性触媒として水酸化ナトリウムが使用される場合、金属 珪素および水酸化ナトリウムの全量のモル比: Si/NaOH (mol比)が 10〜100の間 とされることが好ましい。このモル比を実現するために、例えば、 30重量%のコロイダ ルシリカを作製する場合、反応液に対し、水酸化ナトリウムが 0. 15〜; 1. 7重量%とな るように含まれることが好ましい。他の金属水酸化物をアルカリ性触媒として使用した 場合、反応性を保つ為に化学当量に匹敵する量を添加することが望ましい。  [0028] The addition amount of the alkaline catalyst in the step (3) is set as follows. In the production method of the present invention, when sodium hydroxide is used as the alkaline catalyst, the molar ratio of the total amount of metal silicon and sodium hydroxide: Si / NaOH (mol ratio) is preferably between 10 and 100. . In order to achieve this molar ratio, for example, when 30% by weight of colloidal silica is prepared, sodium hydroxide may be included in the reaction solution in an amount of 0.15 to 1.7% by weight. preferable. When other metal hydroxides are used as alkaline catalysts, it is desirable to add an amount equivalent to the chemical equivalent in order to maintain reactivity.
尚、反応液中の水酸化ナトリウムの濃度は、反応途中に反応液へ水酸化ナトリウム を添加することにより、好ましくは、ある程度一定に保たれる。アルカリ性触媒は工程( 3)の反応速度及び金属珪素の溶解性を向上させ、常に一定な収率を得るためには 、反応途中にも触媒を添加する分割添加が好ましい。  The concentration of sodium hydroxide in the reaction solution is preferably kept constant to some extent by adding sodium hydroxide to the reaction solution during the reaction. In order to improve the reaction rate of step (3) and the solubility of metallic silicon and to always obtain a constant yield, the alkaline catalyst is preferably divided addition in which the catalyst is added during the reaction.
[0029] 工程(3)における、分散剤の添加量は特に限定されないが、使用される金属珪素 全量に対して、 0.;!〜 2. 5重量%の範囲内とされる。この理由は、 2. 5重量%を超え て添加してもそれ以上の分散効果は見られず、また 0. 1重量%未満の場合は分散 剤としての効果が期待できないためいずれの場合も好ましくないからである。また、反 応工程(3)における分散剤の添加は、反応工程のはじめ、途中、終わりのいずれで 添加してもよく、また分割して複数回添加してもよい。好ましくは、反応前及び/又は 反応途中に添加される。例えば、反応工程中で特に粘度の上昇が見られない場合 は、反応が終了してコロイダルシリカが生成した後添加しても構わない。  [0029] The amount of the dispersant added in step (3) is not particularly limited, but is within the range of 0.;! To 2.5% by weight with respect to the total amount of metal silicon used. The reason for this is that even if added in excess of 2.5% by weight, no further dispersing effect is observed, and if it is less than 0.1% by weight, the effect as a dispersing agent cannot be expected, which is preferable in any case. Because there is no. In addition, the dispersant in the reaction step (3) may be added at the beginning, middle or end of the reaction step, or may be added in multiple portions. Preferably, it is added before and / or during the reaction. For example, when no increase in viscosity is observed during the reaction process, it may be added after the reaction is completed and colloidal silica is produced.
[0030] 工程(3)において、好ましくは、以下の手順 A又は手順 Bが採用される。  [0030] In step (3), preferably, the following procedure A or procedure B is employed.
(手順 A)  (Procedure A)
[段階 1]水、アルカリ性触媒及び分散剤を含む水溶液を作製する。  [Step 1] Prepare an aqueous solution containing water, alkaline catalyst and dispersant.
[段階 2]金属珪素を水に分散させてスラリー状液又は金属珪素を準備する。  [Step 2] Disperse metallic silicon in water to prepare slurry liquid or metallic silicon.
[段階 3]段階 1で得られた水溶液に、段階 2で準備したスラリー状液又は金属珪素 を略一定速度で添加する、又は段階 1で得られた水溶液に、段階 2で準備したスラリ 一状液又は金属珪素を略一定速度で添加することと並行してアルカリ性触媒を略一 定速度で添加する [Step 3] Add the slurry liquid or metal silicon prepared in Step 2 to the aqueous solution obtained in Step 1 at a substantially constant rate, or add the slurry prepared in Step 2 to the aqueous solution obtained in Step 1. In parallel to adding the liquid or metal silicon at a substantially constant rate, the alkaline catalyst is added at a substantially constant rate.
[0031] 前記段階 1及び段階 2は、 V、ずれを先に行っても構わな!/、。段階 2におレ、て、予め 金属珪素を水で分散させてスラリー状としてからアルカリ性触媒を含む水溶液に添カロ することにより、金属珪素とアルカリ性触媒が直接接触して反応した際に生じる急激 な発熱、発泡を防ぐことができる。  [0031] In steps 1 and 2, V may be shifted first. In Step 2, the metal silicon is dispersed in water in advance to form a slurry, and then added to an aqueous solution containing an alkaline catalyst, so that the rapid reaction that occurs when the metal silicon and the alkaline catalyst react directly in contact with each other. Heat generation and foaming can be prevented.
[0032] 段階 3にお!/、て、段階 1の水溶液に、段階 2で準備されたスラリー状溶液又は金属 珪素が添加されるが、この添加速度は、定量ポンプ等を用いて略一定に保つことが 好ましい。  [0032] In Step 3, the slurry-like solution or metal silicon prepared in Step 2 is added to the aqueous solution in Step 1, and the rate of addition is substantially constant using a metering pump or the like. It is preferable to keep.
[0033] 前述のとおり、反応液に対するアルカリ性触媒の含量を実現するために、好ましく は、段階 1において作製される水溶液のアルカリ性触媒の濃度は、 0. 05-4. 0重量 %が好ましぐ特に水酸化ナトリウムの場合は 0. ;!〜 2. 0重量%、他の金属水酸化 物の場合も、大体その化学当量とアルカリの強さに匹敵する濃度であることが望まし い。  [0033] As described above, in order to realize the content of the alkaline catalyst in the reaction solution, the concentration of the alkaline catalyst in the aqueous solution prepared in Step 1 is preferably 0.05 to 4.0% by weight. In particular, sodium hydroxide has a concentration of 0.;! To 2.0% by weight, and in the case of other metal hydroxides, it is desirable that the concentration be comparable to the chemical equivalent and alkali strength.
[0034] 段階 3にお!/、て、段階 1で得られた水溶液に、段階 2で準備したスラリー状液又は 金属珪素を略一定速度で添加して反応液を作成する。この反応液において、金属珪 素と水が反応して、コロイダルシリカが生成される。  [0034] In Step 3, the slurry solution or metal silicon prepared in Step 2 is added to the aqueous solution obtained in Step 1 at a substantially constant rate to prepare a reaction solution. In this reaction solution, metal silicon and water react to produce colloidal silica.
前述の如ぐ反応液中のアルカリ性触媒濃度は、ある程度一定にすることが望まし いから、段階 3において、好ましくは、前記反応液に、アルカリ性触媒を略一定速度 で添加する。詳細には、反応液中のアルカリ性触媒の濃度を、水酸化ナトリウムの場 合、 0. ;!〜 2. 0重量%の範囲内に保っために、金属珪素の添加と平行して水酸化 ナトリウムを添加する。反応液へのアルカリ性触媒の添加は、好ましくは定量ポンプ 等を使用して行われる。  Since it is desirable that the concentration of the alkaline catalyst in the reaction solution as described above is desired to be constant to some extent, in Step 3, the alkaline catalyst is preferably added to the reaction solution at a substantially constant rate. Specifically, in order to keep the concentration of the alkaline catalyst in the reaction solution within the range of 0.;! To 2.0% by weight in the case of sodium hydroxide, sodium hydroxide is added in parallel with the addition of metal silicon. Add. The addition of the alkaline catalyst to the reaction solution is preferably performed using a metering pump or the like.
例えば、反応液中のアルカリ濃度が急激に上昇した場合(即ち、アルカリ性触媒を 添加速度が速すぎる場合)は、激しく発熱がおこり、水素がおびただしく発生するた め、安全性に欠ける。また、アルカリ濃度が前記濃度範囲を下回る場合、反応性が悪 くなるためいずれの場合も好ましくない。  For example, when the alkali concentration in the reaction solution suddenly increases (that is, when the addition rate of the alkaline catalyst is too high), heat is generated violently and hydrogen is generated abundantly. In addition, when the alkali concentration is lower than the above-described concentration range, the reactivity is deteriorated, which is not preferable in any case.
[0035] 次に手順 Bについて説明する。手順 Bは以下の構成を有する。 [段階 a]水、アルカリ性触媒及び分散剤を含む水溶液を作製する。 Next, procedure B will be described. Procedure B has the following configuration. [Step a] An aqueous solution containing water, an alkaline catalyst and a dispersant is prepared.
[段階 b]金属珪素を水に分散させたスラリー状液又は金属珪素を準備する。  [Step b] Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water.
[段階 c]段階 aで得られた水溶液に、段階 bで準備したスラリー状液又は金属珪素 を略一定速度で添加する、又は段階 aで得られた水溶液に、段階 bで準備したスラリ 一状液又は金属珪素を略一定速度で添加することと並行してアルカリ性触媒を略一 定速度で添加する段階にお!/、て、前記スラリー状液又は金属珪素の添加速度を制 御して所望の粒子径のシリカを含むコロイダルシリカを得る。  [Step c] Add the slurry liquid or metal silicon prepared in step b to the aqueous solution obtained in step a at a substantially constant rate, or add the slurry prepared in step b to the aqueous solution obtained in step a. In parallel with the addition of the liquid or metal silicon at a substantially constant rate, the step of adding the alkaline catalyst at a substantially constant rate is desired to control the addition rate of the slurry liquid or metal silicon. Colloidal silica containing silica with a particle size of is obtained.
[0036] 前記段階 a及び段階 bの順序、及び段階 cにお!/、て略一定速度で添加されるアル力 リ性触媒の添加速度及び添加量は、前述の手順 Aで述べたものが好適に採用される[0036] The order of the steps a and b and the addition rate and amount of the alkaline catalyst added to the step c at a substantially constant rate are the same as those described in the procedure A above. Adopted suitably
Yes
[0037] 段階 cにおける、添加速度の制御によるシリカの粒子径の調節について説明する。  [0037] The adjustment of the particle size of the silica by controlling the addition rate in step c will be described.
即ち、手順 Aと手順 Bの異なる点は、手順 Bの段階 cにおいてシリカの粒子径カ 添 加速度の制御により意図的に制御されるという点である。  In other words, the difference between Procedure A and Procedure B is that in Step B of Procedure B, it is intentionally controlled by controlling the silica particle size acceleration.
[0038] 詳細には、添加速度として、 1時間あたりの金属珪素の添加量力 S、 1時間あたりの反 応液量の;!〜 9. 5重量%の重量であることが望ましい。  [0038] Specifically, it is desirable that the addition rate is as follows: the addition amount power S of metallic silicon per hour, the reaction liquid amount per hour;! To 9.5% by weight.
例えば、金属珪素の 1時間あたりの添加量力 1時間あたりの反応液量の 4. 3〜9. 5重量%の重量とした場合、即ち、添加速度を比較的速めると、粒子径がおおよそ 6 〜; 19nmの比較的小さなシリカ粒子が出来る。  For example, when the amount of metal silicon added per hour is 4.3 to 9.5% by weight of the reaction liquid amount per hour, that is, when the addition rate is relatively high, the particle size is approximately 6 to A 19 nm relatively small silica particle is formed.
一方、金属珪素の 1時間あたりの添加量力 1時間あたりの反応液量の 1〜4.2重 量%の重量とした場合、即ち、添加速度を比較的遅くすると、粒子径がおおよそ 20 〜80nmの比較的大きな粒子が出来る。従って、スラリー状液又は金属珪素の反応 液への添加速度を制御することで所望の粒子径を有するコロイダルシリカを得ること が可能となる。  On the other hand, when the addition amount of metallic silicon is 1 to 4.2% by weight of the reaction liquid amount per hour, that is, when the addition rate is relatively slow, the particle size is roughly 20 to 80 nm. Large particles. Accordingly, it is possible to obtain colloidal silica having a desired particle size by controlling the rate of addition of the slurry liquid or metal silicon to the reaction liquid.
[0039] 添加速度が速すぎると、水素が著しく発生し、安全性に欠け、遅すぎると反応性が 悪くなるため好ましくない。従って、添加速度として、 1時間あたりの金属珪素の添カロ 量力 1時間あたりの反応液量の 1〜9. 5重量%の重量とすることが望ましい。  [0039] If the addition rate is too high, hydrogen is generated remarkably and lacks in safety, and if it is too slow, the reactivity becomes worse, which is not preferable. Accordingly, it is desirable that the addition rate be 1 to 9.5% by weight of the reaction liquid amount per hour.
詳細には、アルカリ性水溶液に水酸化ナトリウム水溶液を用いた場合は、 1時間あ たりの金属珪素の添加量が、 1時間あたりの反応液量の 3〜5. 7重量%の重量とす ること力 S望ましい。前記の如く粒子径を制御することにより、粒子径がおおよそ 6〜80 nmであるシリカを含むコロイダルシリカが効率よく製造できる。 Specifically, when a sodium hydroxide aqueous solution is used as the alkaline aqueous solution, the amount of metal silicon added per hour is 3 to 5.7% by weight of the reaction liquid amount per hour. The power S is desirable. By controlling the particle diameter as described above, colloidal silica containing silica having a particle diameter of approximately 6 to 80 nm can be efficiently produced.
反応終了後、フィルター濾過により未反応金属珪素残渣を濾別し、コロイダルシリカ を生成する。  After completion of the reaction, unreacted metal silicon residue is filtered off by filtration to produce colloidal silica.
粒子径によって様々な用途に展開でき、特に 40〜80nmのコロイダルシリカは粒子 の硬さに起因する研磨力を利用して、好ましくは、研磨性と表面精度のバランスのよ さからアルミディスク、ガラス、熱酸化膜基板、シリコンウェハー等の仕上げ研磨に使 用される。また、 40nm、好ましくは 30nm以下の粒子径のコロイダルシリカは透明度 が高いため、プラスチックの硬度を向上させるフイラ一として好適に用いられている。  Depending on the particle size, it can be used in various applications. Especially, colloidal silica of 40 to 80 nm uses the polishing power due to the hardness of the particles. Used for finish polishing of thermal oxide film substrates and silicon wafers. In addition, colloidal silica having a particle diameter of 40 nm, preferably 30 nm or less, is highly used as a filler for improving the hardness of plastic because of its high transparency.
[0040] 前述の手順 A及び手順 Bにおける、段階 1と aにお!/、て、水、アルカリ性触媒及び分 散剤を含む水溶液が作成され、段階 2と bにおいては、金属珪素を水に分散させたス ラリー状液又は金属珪素が準備される。しかしながら、本発明の変更例として、段階 1 と aにおいて、水とアルカリ性触媒を含む水溶液が作成され、段階 2と bにおいては、 分散剤と金属珪素を水に分散させたスラリー状液が準備されてもよい。この場合、段 階 3と cにおいて、水、アルカリ性触媒を含む水溶液に、金属珪素と分散剤を含むスラ リー状液が略一定速度で添加される。この変更例においても、高濃度で且つ低粘度 のコロイダルシリカを生成することができ、コロイダルシリカを濃縮することなぐ短時 間で高!/、収率で、未反応残渣と濾別してコロイダルシリカを精製することができる。 [0040] An aqueous solution containing water, an alkaline catalyst and a dispersing agent is prepared in steps 1 and a in steps A and B above, and metal silicon is dispersed in water in steps 2 and b. Prepared slurry-like liquid or metallic silicon is prepared. However, as a modification of the present invention, in steps 1 and a, an aqueous solution containing water and an alkaline catalyst is prepared, and in steps 2 and b, a slurry-like liquid in which a dispersant and metal silicon are dispersed in water is prepared. May be. In this case, in stages 3 and c, a slurry-like liquid containing metallic silicon and a dispersing agent is added at a substantially constant rate to an aqueous solution containing water and an alkaline catalyst. Even in this modified example, colloidal silica having a high concentration and low viscosity can be produced. In a short time without concentrating the colloidal silica, the colloidal silica can be separated from the unreacted residue by filtration in a short period of time! Can be purified.
[0041] 本発明に係る工程(3)で得られたコロイダルシリカは高濃度で且つ低粘度である。 [0041] The colloidal silica obtained in the step (3) according to the present invention has a high concentration and a low viscosity.
従って、この工程の後、コロイダルシリカを濃縮する必要がない(即ち、本発明のコロ ィダルシリカの製造方法は、濃縮工程を含まない製造方法であってもよい)。また、こ のコロイダルシリカが低粘度であるから、濾過性が良ぐ短時間で且つ高い収率で精 製できるから、金属珪素を原料とするコロイダルシリカの製造方法によって、コロイダ ルシリカを工業的に製造することができる。さらに、工程(3)で使用される分散剤は、 シリカ粒子生成の前でも後でも添加してもよいから、作業効率が高い。即ち、たとえ、 シリカ粒子生成の前に分散剤が添加されても、コロイダルシリカの粘度が上昇しない Therefore, it is not necessary to concentrate the colloidal silica after this step (that is, the method for producing the colloidal silica of the present invention may be a production method not including the concentration step). In addition, since this colloidal silica has a low viscosity, it can be refined in a short time with a good filterability and in a high yield. Therefore, colloidal silica is industrially produced by a method for producing colloidal silica using metal silicon as a raw material. Can be manufactured. Furthermore, since the dispersant used in step (3) may be added before or after the formation of silica particles, the working efficiency is high. That is, even if a dispersant is added before the formation of silica particles, the viscosity of colloidal silica does not increase.
Yes
[0042] 本発明に係る工程(3)において、前記手順 Bが採用されると、上記利点に加えて、 水と金属珪素との反応工程中にシリカの粒子径を調節することができる。従って、コロ ィダルシリカ生成後に粒子径調節工程を含まな!/、ため、所望の粒子径を有するシリ 力を含むコロイダルシリカを少ない工程で簡便に製造することができる。また、反応液 には分散剤が含有されているから、生成されたシリカの分散性が高いため、粒子径 制御を効率よく行うことが可能となる。さらに言えば、この手順 Bにより製造されたコロ ィダルシリカは、コロイダルシリカは低粘度且つ高濃度であり、し力、も粒子径が数 nm 微小粒子から lOOnm程度の間で自由に設計できる。従って、高濃度で透明性を必 要とするフィラーから、研磨速度を重視した砥粒まで極めて広!/、用途範囲で利用す ることが可能である。 [0042] In the step (3) according to the present invention, when the procedure B is adopted, in addition to the advantages described above, The particle diameter of silica can be adjusted during the reaction process of water and metallic silicon. Therefore, since the particle size adjusting step is not included after the colloidal silica is formed, colloidal silica having a desired particle size and containing sili- cal force can be easily produced with few steps. Further, since the reaction solution contains a dispersant, the produced silica has high dispersibility, and therefore, the particle size can be controlled efficiently. Furthermore, the colloidal silica produced by this procedure B has a low viscosity and a high concentration of colloidal silica, and can be freely designed with a force and a particle size of several nanometers to about lOOnm. Therefore, it can be used in a wide range of applications from fillers that require high concentration and transparency to abrasive grains that emphasize the polishing rate.
[0043] 工程(3)が完了した後(スラリー状液又は金属珪素の反応液への添加が完了した 後)、反応液は、一定時間保持されて金属珪素の溶解反応を促し、その後冷却され る。前記溶解反応のための保持時間は特に限定されないが、好ましくは水素発生が 収まってから 2〜; 10時間とされる。  [0043] After step (3) is completed (after the addition of the slurry-like liquid or metal silicon to the reaction liquid), the reaction liquid is held for a certain period of time to promote the dissolution reaction of metal silicon, and then cooled. The The holding time for the dissolution reaction is not particularly limited, but is preferably 2 to 10 hours after hydrogen generation is stopped.
工程(3)で得られる反応液のコロイダルシリカのシリカ濃度は、好ましくは 20〜50 重量%である。  The silica concentration of the colloidal silica in the reaction solution obtained in the step (3) is preferably 20 to 50% by weight.
[0044] 尚、前記段階 1又は aで作成される水溶液に分散剤を含まない場合、即ち反応液 中に分散剤を含んでレ、なレ、場合にお!/、ても、添加速度による粒子径制御を行うこと が可能である。このことは、以下の実施例 7乃至 12で示されている。この場合、コロイ ダルシリカは、下記の段階 Ι〜ΠΙを備える手順 Cを含む製造方法により製造される。 使用されるアルカリ性触媒、水、金属珪素は、前述の手順 Α及び手順 Βと同じものが 好適に使用される。  [0044] In the case where the aqueous solution prepared in the step 1 or a does not contain a dispersant, that is, the reaction solution contains a dispersant, in some cases! It is possible to control the particle size. This is illustrated in Examples 7-12 below. In this case, colloidal silica is produced by a production method comprising Procedure C comprising the following steps 段 階 to ΠΙ. The alkaline catalyst, water, and metallic silicon used are preferably the same as those in the above-mentioned procedure Α and procedure Β.
[段階 I] 水及びアルカリ性触媒を含む水溶液を作製する  [Step I] Prepare an aqueous solution containing water and alkaline catalyst
[段階 II] 金属珪素を水に分散させたスラリー状液又は金属珪素を準備する  [Step II] Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water
[段階 III] 段階 Iで得られた水溶液に、段階 IIで準備したスラリー状液又は金属珪素 を略一定速度で添加する、又は段階 Iで得られた水溶液に、段階 IIで準備したスラリ 一状液又は金属珪素を略一定速度で添加することと並行してアルカリ性触媒を略一 定速度で添加する段階にお!/、て、前記スラリー状液又は金属珪素の添加速度を制 御することにより所望の粒子径のシリカを含むコロイダルシリカを得る。 [0045] この手順 Cにおいても、手順 Bの説明で記載したとおり、前記添加速度として、 1時 間あたりの金属珪素の添加量が、 1時間あたりの反応液量の 1〜9. 5重量%の重量 であることが望ましい。 [Step III] Add the slurry liquid or metal silicon prepared in Step II to the aqueous solution obtained in Step I at a substantially constant rate, or add the slurry prepared in Step II to the aqueous solution obtained in Step I. In parallel with the addition of the liquid or metal silicon at a substantially constant rate, at the stage of adding the alkaline catalyst at a substantially constant rate, by controlling the addition rate of the slurry liquid or metal silicon. Colloidal silica containing silica having a desired particle size is obtained. [0045] Also in this procedure C, as described in the explanation of procedure B, the addition rate of metal silicon per hour is 1 to 9.5 wt% of the reaction liquid amount per hour. It is desirable that the weight be
例えば、金属珪素の 1時間あたりの添加量力 1時間あたりの反応液量の 4. 3〜9. 5重量%の重量とした場合、即ち、添加速度を比較的速めると、粒子径がおおよそ 6 〜; 19nmの比較的小さなシリカ粒子が出来る。  For example, when the amount of metal silicon added per hour is 4.3 to 9.5% by weight of the reaction liquid amount per hour, that is, when the addition rate is relatively high, the particle size is approximately 6 to A 19 nm relatively small silica particle is formed.
一方、金属珪素の 1時間あたりの添加量力 1時間あたりの反応液量の 1〜4.2重 量%の重量とした場合、即ち、添加速度を比較的遅くすると、粒子径がおおよそ 20 〜80nmの比較的大きな粒子が出来る。従って、スラリー状液又は金属珪素の反応 液への添加速度を制御することで、好ましくは、粒子径 6〜80nmの間の所望の粒子 径を有するコロイダルシリカを得ることが可能となる。  On the other hand, when the addition amount of metallic silicon is 1 to 4.2% by weight of the reaction liquid amount per hour, that is, when the addition rate is relatively slow, the particle size is roughly 20 to 80 nm. Large particles. Therefore, it is possible to obtain colloidal silica having a desired particle diameter of preferably 6 to 80 nm by controlling the rate of addition of the slurry liquid or metal silicon to the reaction liquid.
[0046] 次に工程 (4)について説明する。 Next, step (4) will be described.
工程(3)で得られた反応液は、必要に応じて、濾過することにより未反応残渣と濾 別してコロイダルシリカを精製する工程(工程 (4) )を加えてもよい。  If necessary, the reaction solution obtained in step (3) may be filtered to separate it from unreacted residues to purify colloidal silica (step (4)).
前記濾過方法は特に限定されないが、フィルター濾過、減圧濾過、加圧濾過等が 挙げられる。詳細には、減圧し、ケーキ残渣にして分離する方法が作業的に容易で あるばかりか、コロイダルシリカの収率を高めるために好ましい。  The filtration method is not particularly limited, and examples thereof include filter filtration, vacuum filtration, and pressure filtration. Specifically, the method of reducing the pressure and separating the cake residue is preferable not only because the work is easy, but also in order to increase the yield of colloidal silica.
この工程 (4)の濾過精製する工程で得られるコロイダルシリカの収率は、工程(3) で得たシリカ濃度 20〜50重量%のコロイダルシリカを、 25°Cにおいて孔径 1 μ m、 直径 90mmのメンブランフィルターで 0. 075mPaの減圧濾過 10分間の濾過量に基 づく収率が 60%以上、より望ましくは収率 80%以上である。  The yield of colloidal silica obtained in the filtration and purification step of this step (4) is the same as that of the colloidal silica having a silica concentration of 20-50% by weight obtained in step (3) at 25 ° C with a pore size of 1 μm and a diameter of 90 mm. With a membrane filter of 0.075 mPa, the yield based on the filtration amount for 10 minutes is 60% or more, more desirably 80% or more.
尚、本明細書中でいう「収率」とは、(生成シリカ量 mol/添加した金属珪素量 mol) X 100 (%)で算出されるものである。  The “yield” in the present specification is calculated by (the amount of generated silica mol / the amount of added metal silicon mol) × 100 (%).
[0047] 前記工程 (4)の後に得られるコロイダルシリカは、好ましくは、シリカ濃度が 30重量 %以上、より望ましくは 35重量%以上であり極めて高濃度である。さらに、その動粘 度は 4mm2/s以下、好ましくは 2. 73mm2/s以下であり低粘度である。 [0047] The colloidal silica obtained after the step (4) preferably has an extremely high silica concentration of 30 wt% or more, more desirably 35 wt% or more. Further, the kinematic viscosity is 4 mm 2 / s or less, preferably 2.73 mm 2 / s or less, and the viscosity is low.
コロイダルシリカに含まれるシリカ粒子の一次粒子径は 7〜80nm、望ましくは 10〜 40nm、その二次粒子径は 10〜150nm、望ましくは 12〜120nmの範囲内である。 これら粒子径のシリカ粒子を含むコロイダルシリカは、低粘度で非常に安定であり、 有用性が高ぐ商品価値が高い。 The primary particle diameter of the silica particles contained in the colloidal silica is 7 to 80 nm, preferably 10 to 40 nm, and the secondary particle diameter is 10 to 150 nm, preferably 12 to 120 nm. Colloidal silica containing silica particles of these particle sizes is low in viscosity and very stable, and is highly useful and has high commercial value.
尚、本明細書でいう一次粒子径とは、窒素吸着法 (BET法)により求められた比表 面積から算出される平均粒径であり、二次粒子径とは、光学散乱法 (測定機器として 大塚電子社製の ELS— 8000を使用)にて測定される平均粒径を示す。  As used herein, the primary particle size is an average particle size calculated from the specific surface area determined by the nitrogen adsorption method (BET method), and the secondary particle size is the optical scattering method (measuring instrument). The average particle size measured by ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) is shown.
[0048] 工程 (4)により得られたコロイダルシリカは、精密铸造、耐火物、セラミックスファイバ 一等のバインダーとして、繊維製品、プラスチックス等の滑り防止剤として、プラスチッ タス、金属表面処理等のマイクロフイラ一として、シリコンウェハー化合物半導体、ガラ ス、ハードデスク等の基板の研磨剤として、或いは、触媒や触媒担体、土壌硬化剤等 として好適に用いられる。 [0048] The colloidal silica obtained in the step (4) is used as a binder for precision fabrication, refractory, ceramic fiber, etc., as an anti-slip agent for textiles, plastics, etc. As an irritant, it is suitably used as a polishing agent for substrates such as silicon wafer compound semiconductors, glass, and hard disks, or as a catalyst, catalyst carrier, soil hardening agent, or the like.
実施例  Example
[0049] 以下、本発明を、実施例を用いてより詳細に説明する。  Hereinafter, the present invention will be described in more detail using examples.
<工程(3)の手順 Aを含むコロイダルシリカの製造方法〉  <Method of producing colloidal silica including step A of step (3)>
[実施例 1]  [Example 1]
平均粒度 40 11 m金属珪素粉を粉砕し、平均粒度 5 11 mの金属珪素を作製した。こ の金属珪素を、大気中雰囲気の乾燥機で酸化させ、不活性処理を施した。  Metal silicon powder having an average particle size of 40 11 m was pulverized to produce metal silicon having an average particle size of 5 11 m. This metal silicon was oxidized by a drier in the atmosphere and subjected to an inert treatment.
1L容量の攪拌機と還流装置を備えたテフロンライニング反応フラスコに、水道水 16 5. lg、アルカリ性触媒として水酸化ナトリウム(特級 97%含有) 1. 33g、分散剤とし て硝酸アンモニゥム 1. 06gを添加し、攪拌中、液温を 80°Cに昇温し、そこに不活性 処理を施した金属珪素 98. 8gを水道水 334. 8gに分散させてスラリー状にしたもの を、定量ポンプにより 4時間かけて一定速度で添加した。これと平行して、 10重量% の水酸化ナトリウム水溶液 22. 9gを、定量ポンプにより 4時間かけて、一定速度で添 加した。  To a Teflon-lined reaction flask equipped with a 1 L capacity stirrer and reflux apparatus, 16 5 liters of tap water, 1.33 g of sodium hydroxide (containing 97% special grade) as an alkaline catalyst, and 1.06 g of ammonium nitrate as a dispersing agent are added. While stirring, the temperature of the liquid was raised to 80 ° C, and 98.8 g of metallic silicon that had been subjected to inert treatment was dispersed in 334.8 g of tap water to form a slurry, which was then mixed with a metering pump. It was added at a constant rate over time. In parallel with this, 29.9 g of a 10% by weight aqueous sodium hydroxide solution was added at a constant rate over 4 hours using a metering pump.
更に 2時間溶解反応を続け、冷却後、 1 、 90diammのメンブランフィルターで 0. 075mPaの減圧濾過で、未反応残渣と濾別した。生成したコロイダルシリカは、濃度 34. 7重量%、一次粒子径 22nm、二次粒子径 33nmの単分散状の粒子であり、動 粘度は 2. 73mm2/sであった。尚、減圧濾過で 10分の濾過量は、 214. 6g、収率 は 81 %であった。 [0050] [実施例 2] The dissolution reaction was further continued for 2 hours. After cooling, the reaction mixture was filtered off from the unreacted residue by vacuum filtration at 0.075 mPa with a 1,90 diamm membrane filter. The produced colloidal silica was monodispersed particles having a concentration of 34.7% by weight, a primary particle diameter of 22 nm, and a secondary particle diameter of 33 nm, and had a kinematic viscosity of 2.73 mm 2 / s. The filtration amount for 10 minutes by vacuum filtration was 214.6 g, and the yield was 81%. [0050] [Example 2]
分散剤として硝酸アンモニゥムを添加する代わりに塩化ナトリウムを添加(硝酸アン モニゥムと同化学当量)し、それ以外は実施例 1と同様に行った。生成したコロイダル シリカは、濃度 34. 34重量%、一次粒子径 23. 46nm、二次粒子径 47. 4nmの単 分散状の粒子であった。動粘度は 2. 49mm2/sであった。また、減圧濾過で 10分 の濾過量は、 228. 8g、収率は 80%であった。 Instead of adding ammonium nitrate as a dispersing agent, sodium chloride was added (same chemical equivalent as ammonium nitrate), and the procedure was the same as in Example 1 except that. The produced colloidal silica was monodispersed particles having a concentration of 34.34% by weight, a primary particle size of 23.46 nm, and a secondary particle size of 47.4 nm. The kinematic viscosity was 2.49 mm 2 / s. In addition, the filtration amount in 10 minutes by vacuum filtration was 228.8 g, and the yield was 80%.
[0051] [実施例 3] [0051] [Example 3]
分散剤として硝酸アンモニゥムを添加する代わりにクェン酸三アンモニゥムを添加 ( 硝酸アンモニゥムと同化学当量)し、それ以外は実施例 1と同様に行った。生成したコ ロイダルシリカは、濃度 31. 26重量%、一次粒子径 19nm、二次粒子径 27. 8nmの 単分散状の粒子であった。動粘度は 3. 54mm2/sであった。また、減圧濾過で 10 分の濾過量は、 220. 4g、収率は 81 %であった。 Instead of adding ammonium nitrate as a dispersing agent, triammonium citrate was added (same chemical equivalent as ammonium nitrate), and the procedure was the same as in Example 1. The produced colloidal silica was monodispersed particles having a concentration of 31.26% by weight, a primary particle diameter of 19 nm, and a secondary particle diameter of 27.8 nm. The kinematic viscosity was 3.54 mm 2 / s. Further, the filtration amount for 10 minutes by vacuum filtration was 220.4 g, and the yield was 81%.
[0052] [実施例 4] [0052] [Example 4]
分散剤として硝酸アンモニゥムを添加する代わりに硫酸ナトリウムを添加(硝酸アン モニゥムと同化学当量)し、それ以外は実施例 1と同様に行った。生成したコロイダル シリカは、濃度 32. 08重量%、一次粒子径 19. 45nm、二次粒子径 30. 7nmの粒 子であった。動粘度は 2. 44mm2/sであった。また、減圧濾過で 10分の濾過量は、 208. 8g、収率は 80%であった。 Instead of adding ammonium nitrate as a dispersing agent, sodium sulfate was added (same chemical equivalent as ammonium nitrate), and the other procedures were carried out in the same manner as in Example 1. The produced colloidal silica was a particle having a concentration of 32.08% by weight, a primary particle size of 19.45 nm, and a secondary particle size of 30.7 nm. The kinematic viscosity was 2.44 mm 2 / s. Further, the filtration amount for 10 minutes by vacuum filtration was 208.8 g, and the yield was 80%.
[0053] [実施例 5] [0053] [Example 5]
1L容量の攪拌機と還流装置を備えたテフロンライニング反応フラスコに、水道水 19 8. lg、アルカリ性触媒として、水酸化ナトリウム(特級 97%含有) 0· 89gを添加し、 攪拌中、液温を 80°Cに昇温し、そこに実施例 1の不活性処理を施した金属珪素 66. 2gを水道水 427. 6gに分散させてスラリー状にしたものを、定量ポンプにより 4時間 かけて一定速度で添加した。これと平行して、 10重量%の水酸化ナトリウム水溶液 1 5. 3gを、定量ポンプにより 3時間かけて均等に添加した。その後 10重量%硝酸カリ ゥム水溶液 6. Ogを添加混合し、更に 2時間溶解反応を続け、冷却後、 1 、 90diam mのメンブランフィルターで 0. 075mPaの減圧濾過で、未反応残渣と濾別した。生 成したコロイダルシリカは、濃度 23. 2重量%、一次粒子径 18nm、二次粒子径 26η mの単分散状の粒子であり、動粘度は 2. 15mm2/sであった。尚、減圧濾過で 10 分の濾過量は、 145. 8g、収率は 83%であった。このコロイダルシリカは 3ヶ月室温 保存した後も、粘度は 2. 28mm2/sとほとんど変わらず低粘度で安定なゾルであつ た。 To a Teflon-lined reaction flask equipped with a 1 L stirrer and reflux apparatus, 19 8. lg of tap water and 0 · 89 g of sodium hydroxide (containing 97% special grade) as an alkaline catalyst were added. The temperature was raised to ° C, and 66.2 g of the metallic silicon subjected to the inert treatment of Example 1 was dispersed in a slurry of 427.6 g of tap water, and the slurry was put into a slurry at a constant rate over 4 hours. Added at. In parallel with this, 15.3 g of a 10% by weight aqueous sodium hydroxide solution was added uniformly over 3 hours using a metering pump. Then, 10% by weight aqueous potassium nitrate solution 6. Og was added and mixed, and the dissolution reaction was continued for another 2 hours. After cooling, the mixture was cooled and filtered with 0.090mPa vacuum filter using a 90diam membrane filter. did. The resulting colloidal silica has a concentration of 23.2% by weight, a primary particle size of 18 nm, and a secondary particle size of 26η. m monodisperse particles with a kinematic viscosity of 2.15 mm 2 / s. The filtration amount for 10 minutes by vacuum filtration was 145.8 g, and the yield was 83%. This colloidal silica was a stable low-viscosity sol with a viscosity of 2.28 mm 2 / s, almost unchanged after storage at room temperature for 3 months.
[0054] [比較例 1]  [0054] [Comparative Example 1]
分散剤を添加しないことを除けば、実施例 1と同様に行った。生成したコロイダルシ リカは、濃度 29重量%、一次粒子径 21nm、二次粒子径 22nmの単分散状の粒子 であった。動粘度は 4. 95mPaと高く、また、減圧濾過で 10分の濾過量は 6. 5gであ り、収率は 58%であった。  The procedure was the same as Example 1 except that no dispersant was added. The produced colloidal silica was monodispersed particles having a concentration of 29% by weight, a primary particle diameter of 21 nm, and a secondary particle diameter of 22 nm. The kinematic viscosity was as high as 4.95 mPa, and the filtration amount for 10 minutes by vacuum filtration was 6.5 g, and the yield was 58%.
[0055] [比較例 2] [0055] [Comparative Example 2]
分散剤を添加しないことを除けば、実施例 5と同様に行った。生成したコロイダルシ リカは、濃度 19. 6重量%、一次粒子径 18nm、二次粒子径 28nmの単分散状の粒 子であった。動粘度は 2. 60mPaとわず力、に高力、つた。また、減圧濾過で 10分の濾 過量は 131. Ogであり、収率は 74· 6%であった。このコロイダルシリカは 3ヶ月室温 保存後に粘度が増し、 6. 34mm2/s増粘したゾルであった。 The same procedure as in Example 5 was performed except that no dispersant was added. The produced colloidal silica was a monodispersed particle having a concentration of 19.6% by weight, a primary particle diameter of 18 nm, and a secondary particle diameter of 28 nm. The kinematic viscosity was 2.60 mPa, which was very strong. In addition, the filtration amount for 10 minutes by vacuum filtration was 131. Og, and the yield was 74.6%. This colloidal silica was a sol that increased in viscosity after storage at room temperature for 3 months and increased in viscosity to 6.34 mm 2 / s.
[0056] <試験例 1:分散剤添加量の濾過性への影響〉 [0056] <Test Example 1: Effect of dispersant addition amount on filterability>
平均粒度 40 ΐη金属珪素粉を粉砕し、平均粒度 5 ΐηの金属珪素を作製した。こ の金属珪素を、大気中雰囲気の乾燥機で酸化させ、不活性処理を施した。それ以外 は、実施例 1に記載した方法と同様に行った。前記実施例 1に記載した方法に基づ いて、分散剤の添加量の変化に伴う濾過性の変化を確認した。結果を表 1に示す。 表 1中、硝酸アンモニゥム添加量(重量%)は、金属珪素の添加量に対するものであ  Metal silicon powder with an average particle size of 40 ΐη was pulverized to produce metal silicon with an average particle size of 5 ΐη. This metal silicon was oxidized by a drier in the atmosphere and subjected to an inert treatment. Otherwise, the procedure was as described in Example 1. Based on the method described in Example 1, changes in filterability with changes in the amount of dispersant added were confirmed. The results are shown in Table 1. In Table 1, the amount of ammonium nitrate added (% by weight) is relative to the amount of metallic silicon added.
[0057] [表 1] [0057] [Table 1]
使用される金属珪素全鼂に対する硝 動粘度 iramV s ) 収率(%) 酸ァンモュゥム添加量 (重量%)  Glass viscosity with respect to the total amount of metallic silicon used iramV s) Yield (%) Amount of acid ammonium added (% by weight)
0 6. 3 4. 95 58 0 6. 3 4. 95 58
0. 54 63. 1 3. 592 730. 54 63. 1 3. 592 73
0. 86 77. 6 2. 784 760. 86 77. 6 2. 784 76
1. 07 q 4 7 S 11. 07 q 4 7 S 1
1. 28 1 07. 4 2. 386 801. 28 1 07. 4 2. 386 80
1. 71 1 12. 9 2. 297 80 [0058] 表 1が示すとおり、金属珪素を原料とするコロイダルシリカの製造方法において、ァ ルカリ性触媒の存在下で、金属珪素と水を反応させる反応工程で分散剤を添加する ことにより、低粘度のコロイダルシリカを生成することができる。そのため、本発明の製 造方法によると高い濾過性と収率でコロイダルシリカを得ることができる。 1. 71 1 12. 9 2. 297 80 [0058] As shown in Table 1, in the method for producing colloidal silica using metal silicon as a raw material, the addition of a dispersant in the reaction step of reacting metal silicon with water in the presence of an alkaline catalyst reduces the Viscosity colloidal silica can be produced. Therefore, according to the production method of the present invention, colloidal silica can be obtained with high filterability and yield.
[0059] 特に、分散剤の添加量が、使用される金属珪素全量に対して、 0. 54〜; 1. 71重量 %である場合には、 73%以上の収率、 3. 592mm2/s以下の動粘度、 63. lg以上 の濾過性が確認できた。 [0059] In particular, when the added amount of the dispersant is 0.54 to; 1.71% by weight based on the total amount of metal silicon used, a yield of 73% or more, 3.592 mm 2 / A kinematic viscosity of s or less and a filterability of 63. lg or more were confirmed.
[0060] <シリカ粒子径と金属珪素の添加速度の関係〉  [0060] <Relationship between silica particle size and addition rate of metallic silicon>
以下の如く実施例 6及び比較例 3を作製して、シリカ粒子径と金属珪素の添加速度 の関係を調べた。  Example 6 and Comparative Example 3 were prepared as follows, and the relationship between the silica particle diameter and the addition rate of metallic silicon was examined.
[実施例 6]  [Example 6]
平均粒度 40 金属珪素粉を粉砕し、平均粒度 5 ΐηの金属珪素を作製した。この 金属珪素を、大気中雰囲気の乾燥機で酸化させ、不活性処理を施した。得られた金 属珪素粉末 98. 8gを超純水 334. 8gに分散させてスラリー状溶液を調製した。  Metallic silicon powder with an average particle size of 40 was pulverized to produce metal silicon with an average particle size of 5 ΐη. This metal silicon was oxidized with an air atmosphere drier and subjected to an inert treatment. A slurry solution was prepared by dispersing 98.8 g of the obtained metal silicon powder in 334.8 g of ultrapure water.
1L攪拌機及び還流装置を備えたテフロンライニング反応フラスコに、 NaOHO. 8重 量%を含有した超純水溶液 166. 43gを液温 80°Cで仕込んだ。そこに、前記スラリー 状溶液全てを、 4時間かけて定量ポンプを用いて一定速度で添加した。これと平行し て、 NaOH10重量%の水溶液 22. 9gを 4時間かけて一定速度で定量ポンプを用い て添加した。  A Teflon-lined reaction flask equipped with a 1 L stirrer and a reflux apparatus was charged with 166.43 g of an ultrapure aqueous solution containing 8 wt% NaOHO at a liquid temperature of 80 ° C. Thereto, all of the slurry solution was added at a constant rate using a metering pump over 4 hours. In parallel with this, 29.9 g of 10% by weight NaOH in water was added at a constant rate over 4 hours using a metering pump.
更に 2時間、溶解反応を続け、冷却後、 1 11、 90diammのメンブランフィルターで 0 . 075mPaの減圧濾過で、未反応残渣と濾別した。生成したコロイダルシリカに含ま れるシリカの一次粒子径は 22nmであった。  The dissolution reaction was further continued for 2 hours. After cooling, the reaction mixture was separated from unreacted residue by filtration under reduced pressure of 0.075 mPa with a 111, 90 diamm membrane filter. The primary particle diameter of silica contained in the produced colloidal silica was 22 nm.
[0061] [比較例 3] [0061] [Comparative Example 3]
不活性化処理した金属珪素 98. 8gを超純水 334. 8gに分散させて調製したスラリ 一状溶液の全てを、 8時間かけて定量ポンプを用いて一定速度で添加し、これと平 行して、 NaOH10重量%の水溶液 22. 9gを 8時間かけて一定速度で定量ポンプを 用いて添加した以外は実施例 6と同様に行った。生成したコロイダルシリカに含まれ るシリカの粒子径は 35. 8nmであった。 [0062] 以上の通り、金属珪素の、アルカリ性水溶液への添加速度を制御することにより、 得られるコロイダルシリカに含まれるシリカの一次粒子径を調節できる。即ち、速度が 速!/、程小さな粒子が生成し、遅!/、ほど大きな粒子が生成して!/、る。 All of the slurry solution prepared by dispersing 98.8 g of deactivated metallic silicon in 334.8 g of ultrapure water was added at a constant rate using a metering pump over 8 hours. Then, the same operation as in Example 6 was carried out except that 29.9 g of NaOH 10% by weight aqueous solution was added using a metering pump at a constant rate over 8 hours. The particle size of silica contained in the produced colloidal silica was 35.8 nm. [0062] As described above, the primary particle diameter of silica contained in the resulting colloidal silica can be adjusted by controlling the rate of addition of metallic silicon to the alkaline aqueous solution. That is, the speed is faster! /, The smaller particles are produced, and the slower! /, The larger particles are produced! /.
[0063] <コロイダルシリカのシリカの粒子径制御方法〉  [0063] <Method for controlling particle size of silica of colloidal silica>
アルカリ性触媒を含む水溶液に、金属珪素のスラリー状液を添加する工程におい て、この添加速度の変化に伴うシリカ粒子径の変化を確認した。尚、以下の実施例に おいては、分散剤を使用していない。  In the step of adding the slurry of metallic silicon to the aqueous solution containing the alkaline catalyst, the change in the silica particle diameter accompanying the change in the addition rate was confirmed. In the following examples, no dispersant was used.
[実施例 7]  [Example 7]
平均粒度 40 m、 Si含有量 97%以上の金属珪素を粉砕し、平均粒度 5 μ mの金 属珪素を作製した。この金属珪素を、大気雰囲気中の乾燥機で酸化させ、不活性化 処理を施した。得られた金属珪素粉末 45. 2gを超純水 531. 69gに分散させてスラリ 一状溶液を調製した。  Metallic silicon with an average particle size of 40 μm and Si content of 97% or more was crushed to produce metallic silicon with an average particle size of 5 μm. This metallic silicon was oxidized by a drier in the air atmosphere and inactivated. A slurry-like solution was prepared by dispersing 45.2 g of the obtained metal silicon powder in 531.69 g of ultrapure water.
1L攪拌機及び還流装置を備えたテフロンライニング反応フラスコに、 NaOHO. 5重 量%を含有した超純水溶液 223gを液温 100°Cで仕込んだ。そこに、前記スラリー状 溶液の全てを、 1時間かけて定量ポンプを用いて一定速度で添加した。  A Teflon-lined reaction flask equipped with a 1 L stirrer and a reflux apparatus was charged with 223 g of an ultrapure aqueous solution containing 5 wt% NaOHO at a liquid temperature of 100 ° C. Thereto, all of the slurry solution was added at a constant rate using a metering pump over 1 hour.
更に 4時間溶解反応を続け、冷却後、 1 111、 90diammのメンブランフィルターを 用いて 0. 075mPaの減圧濾過を行い、未反応残渣を濾別して高純度コロイダルシリ 力を作製した。このコロイダルシリカの粒子径は、 21. 6nmであり、純度は 98%であ つた。  The dissolution reaction was further continued for 4 hours. After cooling, 0.075 mPa was filtered under reduced pressure using a 1111, 90diamm membrane filter, and unreacted residues were separated by filtration to produce a high purity colloidal silica force. The colloidal silica had a particle size of 21.6 nm and a purity of 98%.
[0064] [実施例 8] [0064] [Example 8]
不活性化処理した金属珪素粉末 45. 2gを超純水 531. 69gに分散させて調製した スラリー状溶液の全てを、 10分かけて添加した以外は実施例 7と同様に行った。生成 したコロイダルシリカに含まれるシリカの粒子径は 8. 5nmであった。  The same procedure as in Example 7 was performed except that all of the slurry solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 10 minutes. The particle size of silica contained in the produced colloidal silica was 8.5 nm.
[0065] [実施例 9] [0065] [Example 9]
不活性化処理した金属珪素粉末 45. 2gを超純水 531. 69gに分散させて調製した スラリー状溶液の全てを、 20分かけて添加した以外は実施例 7と同様に行った。生成 したコロイダルシリカに含まれるシリカの粒子径は 17. 7nmであった。  The same procedure as in Example 7 was performed except that all of the slurry-like solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 20 minutes. The particle size of silica contained in the produced colloidal silica was 17.7 nm.
[0066] [実施例 10] 不活性化処理した金属珪素粉末 45. 2gを超純水 531. 69gに分散させて調製した スラリー状溶液の全てを、 3時間かけて添加した以外は実施例 7と同様に行った。生 成したコロイダルシリカに含まれるシリカの粒子径は 24. 6nmであった。 [Example 10] The same procedure as in Example 7 was performed except that all of the slurry solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 3 hours. The particle diameter of silica contained in the produced colloidal silica was 24.6 nm.
[0067] [実施例 11 ] [0067] [Example 11]
不活性化処理した金属珪素粉末 45. 2gを超純水 531. 69gに分散させて調製した スラリー状溶液の全てを、 4時間かけて添加した以外は実施例 7と同様に行った。生 成したコロイダルシリカに含まれるシリカの粒子径は 28. 2nmであった。  The same procedure as in Example 7 was conducted, except that all of the slurry solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 4 hours. The particle diameter of silica contained in the produced colloidal silica was 28.2 nm.
[0068] [実施例 12] [0068] [Example 12]
不活性化処理した金属珪素粉末 45. 2gを超純水 531. 69gに分散させて調製した スラリー状溶液の全てを、 2時間かけて添加した以外は実施例 7と同様に行った。生 成したコロイダルシリカに含まれるシリカの粒子径は 22. 6nmであった。  The same procedure as in Example 7 was performed, except that all of the slurry solution prepared by dispersing 45.2 g of the deactivated metal silicon powder in 531.69 g of ultrapure water was added over 2 hours. The particle diameter of silica contained in the produced colloidal silica was 22.6 nm.
[0069] 実施例 7〜; 12の金属珪素スラリーの添加時間、一次粒子径及び収率を表 2に示す[0069] Table 7 shows the addition time, primary particle size and yield of the metal silicon slurries of Examples 7 to 12
Yes
[0070] [表 2]  [0070] [Table 2]
Figure imgf000022_0001
表 2に示されるとおり、金属珪素を含むスラリー状溶液の添加速度を制御することに より、得られるコロイダルシリカの一次粒子径を調節できる。即ち、速度が速い程小さ な粒子が生成し、遅!/、ほど大きな粒子が生成して!/、る。
Figure imgf000022_0001
As shown in Table 2, the primary particle size of the resulting colloidal silica can be adjusted by controlling the rate of addition of the slurry-like solution containing metallic silicon. That is, the faster the speed, the smaller the particles are produced, and the slower! /, The larger particles are produced! /.
以上の通り、金属珪素の、アルカリ性水溶液への添加速度を制御することにより、 得られるコロイダルシリカの一次粒子径を調節できる。  As described above, the primary particle size of the resulting colloidal silica can be adjusted by controlling the rate of addition of metallic silicon to the alkaline aqueous solution.

Claims

請求の範囲 The scope of the claims
[1] アルカリ性触媒及び分散剤を含む水溶液中で、金属珪素(Si)と水を反応させてコ ロイダルシリカを得る工程を含み、前記分散剤は、無機酸、有機酸又はそれらの塩か ら選ばれる一種以上のイオン性物質であることを特徴とするコロイダルシリカの製造 方法。  [1] A step of obtaining colloidal silica by reacting metal silicon (Si) with water in an aqueous solution containing an alkaline catalyst and a dispersant, wherein the dispersant is selected from inorganic acids, organic acids, or salts thereof. A method for producing colloidal silica, which is one or more ionic substances.
[2] 前記分散剤が、塩酸、硝酸又は硫酸から選ばれる一種以上の無機酸及び/又は その塩であることを特徴とする請求項 1に記載のコロイダルシリカの製造方法。  2. The method for producing colloidal silica according to claim 1, wherein the dispersant is one or more inorganic acids selected from hydrochloric acid, nitric acid or sulfuric acid and / or a salt thereof.
[3] 前記分散剤が無機酸塩であって、該塩が、 Na、 K、 Li、 NH、ァミン又は第四級ァ [3] The dispersant is an inorganic acid salt, and the salt is Na, K, Li, NH, ammine or quaternary salt.
4  Four
ンモニゥム水酸化物との塩から選ばれる一種以上であることを特徴とする請求項 2に 記載のコロイダルシリカの製造方法。  3. The method for producing colloidal silica according to claim 2, wherein the colloidal silica is one or more selected from a salt with ammonium hydroxide.
[4] 前記分散剤が、シユウ酸、クェン酸、リンゴ酸、マレイン酸、酒石酸、ダルタル酸、ァ ジピン酸、ピメリン酸、コハク酸、マロン酸、フマル酸、フタル酸、ギ酸、酢酸、プロピオ ン酸、酪酸、吉草酸、 2—メチル酪酸、 n—へキサン酸、 3, 3—ジメチル酪酸、 2—ェ チル酪酸、 4ーメチルペンタン酸、 n—ぺプタン酸、 2—メチルへキサン酸、 n—ォクタ ン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸又は乳酸から選ばれる一種 以上の有機酸及び/又はその塩であることを特徴とする請求項 1に記載のコロイダ ルシリカの製造方法。  [4] The dispersant is oxalic acid, citrate, malic acid, maleic acid, tartaric acid, tartaric acid, adipic acid, pimelic acid, succinic acid, malonic acid, fumaric acid, phthalic acid, formic acid, acetic acid, propionate. Acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-peptanoic acid, 2-methylhexanoic acid, n- 2. The method for producing colloidal silica according to claim 1, which is at least one organic acid selected from octanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid or lactic acid and / or a salt thereof.
[5] 前記分散剤が有機酸塩であって、該塩が Na、 K、 Li、 NH、ァミン又は第四級アン  [5] The dispersant is an organic acid salt, and the salt is Na, K, Li, NH, ammine or quaternary amine.
4  Four
モニゥム水酸化物との塩から選ばれる一種以上であることを特徴とする請求項 4に記 載のコロイダルシリカの製造方法。  5. The method for producing colloidal silica according to claim 4, wherein the colloidal silica is one or more selected from salts with monium hydroxide.
[6] 前記アルカリ性触媒力 ナトリウム(Na)、カリウム (K)又はリチウム(Li)を含む金属 一価水酸化物の 1種または複数の混合物であることを特徴とする請求項 1乃至 5いず れかに記載のコロイダルシリカの製造方法。  [6] The alkaline catalytic power is one or a mixture of metal monohydric hydroxides containing sodium (Na), potassium (K) or lithium (Li). A method for producing colloidal silica as described above.
[7] 前記コロイダルシリカを孔径 1 μ mのメンブランフィルターで濾過精製した後の動粘 度が 4mm2/以下であることを特徴とする請求項 1乃至 6いずれかに記載のコロイダ ルシリカの製造方法。 [7] The method for producing colloidal silica according to any one of claims 1 to 6, wherein the kinematic viscosity after the colloidal silica is filtered and purified by a membrane filter having a pore diameter of 1 μm is 4 mm 2 / or less. .
[8] 前記コロイダルシリカのシリカ濃度が 20重量%以上であることを特徴とする請求項 1 乃至 7いずれかに記載のコロイダルシリカの製造方法。 8. The method for producing colloidal silica according to any one of claims 1 to 7, wherein the colloidal silica has a silica concentration of 20% by weight or more.
[9] 少なくとも下記の段階を備える請求項 1に記載のコロイダルシリカの製造方法。 [9] The method for producing colloidal silica according to claim 1, comprising at least the following steps.
[段階 1] 水、アルカリ性触媒及び分散剤を含む水溶液を作製する  [Step 1] Prepare an aqueous solution containing water, alkaline catalyst and dispersant
[段階 2] 金属珪素を水に分散させたスラリー状液又は金属珪素を準備する  [Step 2] Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water
[段解 3] 段階 1で得られた水溶液に、段階 2で準備したスラリー状液又は金属珪素 を略一定速度で添加する、又は段階 1で得られた水溶液に、段階 2で準備したスラリ 一状液又は金属珪素を略一定速度で添加することと並行してアルカリ性触媒を略一 定速度で添加する  [Step 3] Add the slurry-like liquid or metallic silicon prepared in Step 2 to the aqueous solution obtained in Step 1 at a substantially constant rate, or add the slurry prepared in Step 2 to the aqueous solution obtained in Step 1. The alkaline catalyst is added at a substantially constant rate in parallel with the addition of the liquid or metal silicon at a substantially constant rate.
[10] 前記段階 3において、前記スラリー状液又は金属珪素の添加速度を制御することに より所望の粒子径のシリカを含むコロイダルシリカを得ることを特徴とする請求項 9に 記載のコロイダルシリカの製造方法。  [10] The colloidal silica according to claim 9, wherein in the step 3, colloidal silica containing silica having a desired particle diameter is obtained by controlling an addition rate of the slurry-like liquid or metal silicon. Production method.
[11] 前記添加速度として、 1時間あたりの金属珪素の添加量力 1時間あたりの反応液 量の;!〜 9. 5重量%の重量であることを特徴とする請求項 9又は 10に記載のコロイダ ルシリカの製造方法。  [11] The addition rate of metallic silicon per hour as the addition rate;! To 9.5% by weight of the reaction liquid amount per hour; A method for producing colloidal silica.
[12] 前記段階 3で得られるコロイダルシリカに含まれるシリカの粒子径力 その一次粒子 径として 6〜80nmであることを特徴とする請求項 9乃至 11いずれかに記載のコロイ ダルシリカの製造方法。  12. The method for producing colloidal silica according to any one of claims 9 to 11, wherein the particle diameter force of silica contained in the colloidal silica obtained in the step 3 is 6 to 80 nm as a primary particle diameter.
[13] 少なくとも下記の段階を備えるコロイダルシリカの製造方法。  [13] A method for producing colloidal silica comprising at least the following steps.
[段階 I] 水及びアルカリ性触媒を含む水溶液を作製する  [Step I] Prepare an aqueous solution containing water and alkaline catalyst
[段階 II] 金属珪素を水に分散させたスラリー状液又は金属珪素を準備する  [Step II] Prepare a slurry liquid or metallic silicon in which metallic silicon is dispersed in water
[段階 III] 段階 Iで得られた水溶液に、段階 IIで準備したスラリー状液又は金属珪素 を略一定速度で添加する、又は段階 Iで得られた水溶液に、段階 IIで準備したスラリ 一状液又は金属珪素を略一定速度で添加することと並行してアルカリ性触媒を略一 定速度で添加する  [Step III] Add the slurry liquid or metal silicon prepared in Step II to the aqueous solution obtained in Step I at a substantially constant rate, or add the slurry prepared in Step II to the aqueous solution obtained in Step I. In parallel with adding liquid or metallic silicon at a substantially constant rate, an alkaline catalyst is added at a substantially constant rate.
[14] 前記段階 IIIにおいて、金属珪素を水に分散させたスラリー状液又は金属珪素の添 加速度を制御することにより所望の粒子径のシリカを含むコロイダルシリカを得ること を特徴とする請求項 13に記載のコロイダルシリカの製造方法。  [14] In the step III, colloidal silica containing silica having a desired particle diameter is obtained by controlling the addition speed of the slurry-like liquid in which metallic silicon is dispersed in water or metallic silicon. The manufacturing method of colloidal silica as described in any one of.
PCT/JP2007/073884 2006-12-12 2007-12-11 Method for producing colloidal silica WO2008072637A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200780044771.9A CN101547860B (en) 2006-12-12 2007-12-11 Method for producing colloidal silica
JP2008549324A JP5155185B2 (en) 2006-12-12 2007-12-11 Method for producing colloidal silica

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006335151 2006-12-12
JP2006-335151 2006-12-12
JP2006335150 2006-12-12
JP2006-335150 2006-12-12

Publications (1)

Publication Number Publication Date
WO2008072637A1 true WO2008072637A1 (en) 2008-06-19

Family

ID=39511658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073884 WO2008072637A1 (en) 2006-12-12 2007-12-11 Method for producing colloidal silica

Country Status (4)

Country Link
JP (1) JP5155185B2 (en)
CN (1) CN101547860B (en)
TW (1) TW200831408A (en)
WO (1) WO2008072637A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307485A (en) * 2007-06-15 2008-12-25 Hiroshi Kokuta Method of controlling colloid particle diameter in water based film forming inorganic colloid solution
CN101973557A (en) * 2010-11-05 2011-02-16 北京化工大学 Method for preparing high-purity mono-disperse silicon dioxide hydrosol
US8197782B2 (en) 2010-02-08 2012-06-12 Momentive Performance Materials Method for making high purity metal oxide particles and materials made thereof
JP2013227182A (en) * 2012-03-28 2013-11-07 Admatechs Co Ltd Method for producing colloidal silica and method for producing slurry for cmp
JP2015117137A (en) * 2013-12-16 2015-06-25 株式会社アドマテックス Method for producing silica particle
JP2015117138A (en) * 2013-12-16 2015-06-25 株式会社アドマテックス Method for producing silica particle
US9249028B2 (en) 2010-02-08 2016-02-02 Momentive Performance Materials Inc. Method for making high purity metal oxide particles and materials made thereof
KR20160039148A (en) * 2013-04-17 2016-04-08 실본드 코포레이션 Colloidal sol and method of making same
WO2020171132A1 (en) * 2019-02-19 2020-08-27 有限会社南日本ウェルネス Production method of water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica
JP2021072140A (en) * 2019-10-30 2021-05-06 山口精研工業株式会社 Polishing agent composition for magnetic disk substrate and polishing method for magnetic disk substrate
JP2021072141A (en) * 2019-10-30 2021-05-06 山口精研工業株式会社 Polishing agent composition for magnetic disk substrate and polishing method for magnetic disk substrate
CN117430117A (en) * 2023-10-25 2024-01-23 阳江市惠尔特新材料科技有限公司 Silica sol and manufacturing method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757070B1 (en) * 2011-09-16 2018-07-04 Nissan Chemical Industries, Ltd. Methods for producing purified active silicic acid solution and silica sol
CN105036140B (en) * 2015-06-29 2017-05-24 安徽确成硅化学有限公司 Method for reducing viscosity of silicon dioxide slurry

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591518A (en) * 1968-12-31 1971-07-06 Du Pont Silica aquasols and powders
JPS4964595A (en) * 1972-10-25 1974-06-22
JPS62288125A (en) * 1986-06-05 1987-12-15 Seiko Epson Corp Production of glass body by sol-gel method
JPH0524824A (en) * 1991-07-24 1993-02-02 Nissan Chem Ind Ltd Alumina sol and production thereof
JP2002338232A (en) * 2001-05-18 2002-11-27 Nippon Chem Ind Co Ltd Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
JP2004315300A (en) * 2003-04-17 2004-11-11 Nippon Steel Chem Co Ltd Silica fine particle, silica colloid in which silica fine particles are dispersed and method of manufacturing the same
JP2005296940A (en) * 2004-03-16 2005-10-27 Nissan Chem Ind Ltd Modified stannic oxide-zirconium oxide composite sol, and method for preparing it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86104144A (en) * 1986-12-29 1988-07-20 张扬正 The manufacture method of big particle diameter, low viscosity silicon sol
US5407600A (en) * 1991-07-23 1995-04-18 Nissan Chemical Industries, Ltd. Stable aqueous alumina sol and method for preparing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591518A (en) * 1968-12-31 1971-07-06 Du Pont Silica aquasols and powders
JPS4964595A (en) * 1972-10-25 1974-06-22
JPS62288125A (en) * 1986-06-05 1987-12-15 Seiko Epson Corp Production of glass body by sol-gel method
JPH0524824A (en) * 1991-07-24 1993-02-02 Nissan Chem Ind Ltd Alumina sol and production thereof
JP2002338232A (en) * 2001-05-18 2002-11-27 Nippon Chem Ind Co Ltd Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
JP2004315300A (en) * 2003-04-17 2004-11-11 Nippon Steel Chem Co Ltd Silica fine particle, silica colloid in which silica fine particles are dispersed and method of manufacturing the same
JP2005296940A (en) * 2004-03-16 2005-10-27 Nissan Chem Ind Ltd Modified stannic oxide-zirconium oxide composite sol, and method for preparing it

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307485A (en) * 2007-06-15 2008-12-25 Hiroshi Kokuta Method of controlling colloid particle diameter in water based film forming inorganic colloid solution
US9249028B2 (en) 2010-02-08 2016-02-02 Momentive Performance Materials Inc. Method for making high purity metal oxide particles and materials made thereof
US8197782B2 (en) 2010-02-08 2012-06-12 Momentive Performance Materials Method for making high purity metal oxide particles and materials made thereof
US8568898B2 (en) 2010-02-08 2013-10-29 Momentive Performance Materials Inc. Method for making high purity metal oxide particles and materials made thereof
CN101973557A (en) * 2010-11-05 2011-02-16 北京化工大学 Method for preparing high-purity mono-disperse silicon dioxide hydrosol
CN101973557B (en) * 2010-11-05 2012-05-23 北京化工大学 Method for preparing high-purity mono-disperse silicon dioxide hydrosol
JP2013227182A (en) * 2012-03-28 2013-11-07 Admatechs Co Ltd Method for producing colloidal silica and method for producing slurry for cmp
JP2016521242A (en) * 2013-04-17 2016-07-21 シルボンド・コーポレイションSilbond Corporation Colloidal sol and method for producing the same
KR20160039148A (en) * 2013-04-17 2016-04-08 실본드 코포레이션 Colloidal sol and method of making same
KR102242683B1 (en) 2013-04-17 2021-04-23 실본드 코포레이션 Colloidal sol and method of making same
JP2015117138A (en) * 2013-12-16 2015-06-25 株式会社アドマテックス Method for producing silica particle
JP2015117137A (en) * 2013-12-16 2015-06-25 株式会社アドマテックス Method for producing silica particle
WO2020171132A1 (en) * 2019-02-19 2020-08-27 有限会社南日本ウェルネス Production method of water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica
JPWO2020171132A1 (en) * 2019-02-19 2020-08-27
JP7388750B2 (en) 2019-02-19 2023-11-29 有限会社南日本ウェルネス Method for producing water-soluble nanocolloidal silica for ingestion by animals and plants, and water-soluble nanocolloidal silica for ingestion by animals and plants
JP2021072140A (en) * 2019-10-30 2021-05-06 山口精研工業株式会社 Polishing agent composition for magnetic disk substrate and polishing method for magnetic disk substrate
JP2021072141A (en) * 2019-10-30 2021-05-06 山口精研工業株式会社 Polishing agent composition for magnetic disk substrate and polishing method for magnetic disk substrate
JP7356864B2 (en) 2019-10-30 2023-10-05 山口精研工業株式会社 Abrasive composition for magnetic disk substrate and method for polishing magnetic disk substrate
JP7356865B2 (en) 2019-10-30 2023-10-05 山口精研工業株式会社 Abrasive composition for magnetic disk substrate and method for polishing magnetic disk substrate
CN117430117A (en) * 2023-10-25 2024-01-23 阳江市惠尔特新材料科技有限公司 Silica sol and manufacturing method and application thereof

Also Published As

Publication number Publication date
CN101547860B (en) 2014-05-28
TW200831408A (en) 2008-08-01
JPWO2008072637A1 (en) 2010-04-02
JP5155185B2 (en) 2013-02-27
CN101547860A (en) 2009-09-30

Similar Documents

Publication Publication Date Title
WO2008072637A1 (en) Method for producing colloidal silica
JP5808106B2 (en) Colloidal silica containing silica secondary particles having bent structure and / or branched structure and method for producing the same
JP5892882B2 (en) Method for producing colloidal silica
JP5270344B2 (en) Silica sol and method for producing the same
JP5127452B2 (en) Method for producing deformed silica sol
JP5787705B2 (en) High purity monodispersed silica particles and method for producing the same
JP4643085B2 (en) Method for producing high-purity colloidal silica for abrasives
JP5836472B2 (en) Crystalline cerium oxide and method for producing the same
JP4028983B2 (en) Cerium phosphate and / or lanthanum sol, its production method and its application to polishing
JPWO2019189610A1 (en) Method for producing silica particle dispersion, polishing composition and silica particle dispersion
JP4549878B2 (en) Method for producing high-purity aqueous silica sol
US6906109B2 (en) Method for controling uniformity of colloidal silica particle size
TW201922617A (en) Dispersion of silica particles and method for producing said dispersion
JP2011201719A (en) Method for adjusting secondary particle size of colloidal silica
JP2000247625A (en) High purity silica sol and its production
JP3225553B2 (en) Method for producing high-purity aqueous silica sol
JP3691048B1 (en) Method for producing high purity colloidal silica
JP2006104354A (en) Polishing composition, method for producing the same and polishing method using the polishing composition
JP2001253709A (en) Manufacturing method of crystalline cerium (iv) oxide particle
JP2022152370A (en) Method of producing colloidal silica, and colloidal silica
JPH07291614A (en) Production of high-purity colloidal silica
TW202317718A (en) Method for producing silica particles, silica particles produced by such method, compositions and uses of such silica particles
TWI260338B (en) A method for preparing a silicon wafer polishing slurry

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044771.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850440

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008549324

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850440

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)