WO2020171132A1 - Production method of water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica - Google Patents

Production method of water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica Download PDF

Info

Publication number
WO2020171132A1
WO2020171132A1 PCT/JP2020/006600 JP2020006600W WO2020171132A1 WO 2020171132 A1 WO2020171132 A1 WO 2020171132A1 JP 2020006600 W JP2020006600 W JP 2020006600W WO 2020171132 A1 WO2020171132 A1 WO 2020171132A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soluble
silica
nanocolloidal
nanocolloidal silica
Prior art date
Application number
PCT/JP2020/006600
Other languages
French (fr)
Japanese (ja)
Inventor
義博 唐津
Original Assignee
有限会社南日本ウェルネス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社南日本ウェルネス filed Critical 有限会社南日本ウェルネス
Priority to JP2021502100A priority Critical patent/JP7388750B2/en
Publication of WO2020171132A1 publication Critical patent/WO2020171132A1/en
Priority to JP2023191562A priority patent/JP2024023263A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions

Definitions

  • the present invention relates to a method for producing water-soluble nanocolloidal silica and water-soluble nanocolloidal silica.
  • Silicon Si is an element that is most abundant next to oxygen O on the earth. Silicon exists only in a state of being bonded to other elements such as oxygen and molecules, and exists in a state of, for example, quartz (crystal) in which silicon dioxide SiO 2 is crystallized. Silicic acids such as silicon dioxide are commonly referred to as "silica". Silica is contained in large amounts in the bones, joints, blood vessels, skin, hair, teeth, nails, etc. that make up the human body, and plays a role in suppressing aging by connecting tissues to maintain flexibility and elasticity. ing. In addition, silica plays a role of preventing cholesterol from depositing in blood vessels and a role of holding collagen and hyaluronic acid, which are essential moisturizing ingredients for beauty, together. As described above, since silica is a trace component essential for maintaining good health, a lack of silica in the human body causes hypothermia and a decrease in immunity, and a serious lack of silica means that life is maintained. It can be difficult.
  • silica can be ingested by general diet (especially Japanese food), but due to recent changes in eating habits (for example, away from Japanese food), the chances of ingesting grains rich in silica tend to decrease. is there. Further, even if the above food is taken, the absorption rate of silica by digestion is poor, and therefore the human body tends to always lack silica.
  • silica is preferably absorbed efficiently into the body in the form of supplements and silicon-containing health foods.
  • silica can be efficiently ingested regardless of the time and place of ingestion.
  • quartz is an insoluble mineral, there is a problem that even if silica is mixed into a beverage in the form of fine powder, it precipitates.
  • Patent Documents 1 and 2 research and development of beverages containing silica have been promoted (for example, Patent Documents 1 and 2), and various types of silica water are known (for example, Non-Patent Document 1).
  • silica used in conventional silica water is a colloidal silica synthesized from water glass (sodium silicate Na 2 SiO 3 ) derived from caustic soda, and has a structure of metasilicic acid H 2 SiO 3 . ..
  • Silica water that uses water glass derived from caustic soda as a raw material contains a large amount of Na (sodium ion) as shown in the analysis result of contained elements (FIG. 4) described later.
  • FOG. 4 analysis result of contained elements
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide silica water which is safe and has high efficacy as a healthy beverage.
  • the present invention which achieves the above object is characterized by including a silicate ion generation step of generating a silicate ion while generating fine bubbles of hydrogen by subjecting a material to be reacted having a surface made of at least a silicon simple substance to an alkali reaction. And a method for producing water-soluble nanocolloidal silica.
  • water glass derived from caustic soda sodium silicate Na 2 SiO 3
  • the content of Na (sodium ion) is suppressed in the produced water-soluble nanocolloidal silica, and a large amount is obtained. It does not remain. Therefore, it is possible to prevent the performance as a healthy drink from being deteriorated, and to prevent the human body of the ingestor from being adversely affected.
  • a water-soluble nanocolloidal silica which is a silica water having a high effect as a safe and healthy beverage.
  • the method before the step of producing silicate ions, silicon dioxide and carbon are heated, and at least the surface of the silicon dioxide is reacted with carbon to remove generated carbon dioxide gas. At the same time, it is preferable that the method further includes a step of producing a reacted material by reducing the silicon to a simple substance to produce the reacted material.
  • the silicon dioxide has a porous structure.
  • the present invention is also a water-soluble nanocolloidal silica produced by the above production method, which is characterized by having a negative zeta potential.
  • the zeta potential of the water-soluble nanocolloidal silica according to the present invention is preferably ⁇ 10 mV to ⁇ 90 mV.
  • the water-soluble nanocolloidal silica according to the present invention also preferably has a particle size in the range of 5 nm to 300 nm.
  • the method for producing water-soluble nanocolloidal silica according to the present invention is a silicate ion producing step of producing a silicate ion while causing fine reaction of a material to be reacted having a surface composed of at least a silicon simple substance with an alkali to generate fine hydrogen bubbles. including.
  • the silica water (water-soluble nanocolloidal silica) produced by this production method does not use water glass (sodium silicate Na 2 SiO 3 ) derived from caustic soda, which has been conventionally used as a raw material for silica water.
  • the content of Na (sodium ion) is at the level of the detection limit value, and even if it is contained, it is extremely low. Therefore, since Na (sodium ion) is not contained in a large amount in silica water (water-soluble nanocolloidal silica), deterioration of performance as a health drink is prevented, and silica water (water-soluble nanocolloidal silica) is also prevented. It is possible to prevent the human body of the person who took the product from adversely affecting it. As a result, it is possible to provide silica water (water-soluble nanocolloidal silica) that has a high effect as a safe and healthy beverage.
  • the water-soluble nanocolloidal silica produced by the production method of the present invention preferably has a structure of Si(OH) 4 orthosilicate.
  • Such water-soluble nanocolloidal silica also has a predetermined zeta potential, particle size, total scattering intensity, and the like, and becomes silica water excellent in antioxidant property and penetrability.
  • the total scattering intensity in the present invention assuming that the shape of the measured particle is a true sphere, was recalculated from the scattering intensity standard to the volume standard, and further to the number standard, using all the scattered light amounts obtained during the measurement.
  • the zeta potential in the present invention means a potential difference between a sliding surface in the electric double layer formed around the fine particles in the solution and a portion sufficiently separated from the interface. When the zeta potential approaches zero, the mutual repulsion of the particles weakens and eventually agglomerates.
  • the silicate ion producing step which constitutes the production method of the present invention is a step of producing a silicate ion while causing a material to be reacted having at least a surface made of a simple substance of silicon to undergo an alkali reaction to generate fine bubbles of hydrogen.
  • the material to be reacted used here is not particularly limited, and various known materials can be used. For example, single crystal silicon produced by the Czochralski method or the like may be used, and diatomaceous earth, silica, quartz powder such as quartz, or a material obtained by reducing the surface of a bulk by a method described below can also be used. ..
  • the simple substance of silicon refers to a substance mainly composed of single substance silicon, for example, a substance consisting of 90% by mass or more of single substance silicon.
  • high-purity silicon or the like for manufacturing Si chips is not always necessary, but various known substances can be used as a simple substance of silicon.
  • the crystal structure and the like are not particularly limited, and single crystal, polycrystal, and amorphous silicon can be used.
  • the alkali used in the silicate ion generation step it is preferable to use an alkaline aqueous solution containing no sodium ion in order to minimize the sodium content in the water-soluble nanocolloidal silica produced.
  • concentration of the alkaline aqueous solution is not particularly limited, but for example, from the viewpoint of accelerating the alkaline reaction in the silicate ion producing step, it is preferable to use a strong alkaline aqueous solution having a pH of 13 or more at the start of the silicate ion producing step. preferable.
  • the pH tends to decrease with the passage of time, and the production state of the water-soluble nanocolloidal silica can be grasped by the pH value.
  • the temperature during the reaction is also not particularly limited, but it is preferably 0 to 90° C., particularly 5 to 50° C.
  • silicate ions particularly orthosilicate ions SiO 4 4 ⁇ having a tetrahedral structure can be generated.
  • the silicate ion generation reaction from the simple substance of silicon proceeds even under neutral conditions, but from the viewpoint of reaction rate, it is practical to carry out the reaction under alkaline conditions.
  • silicate ions are generated in the aqueous solution, and the generated silicate ions mainly have a tetrahedral structure.
  • orthosilicic acid: Si(OH) 4 can be used to produce a stable water-soluble nanocolloidal silica having a particle size of about 5 to 300 nm, particularly about 10 to 250 nm.
  • the present invention reacts with fine bubbles of hydrogen and dissolved oxygen to generate a chemical species such as diatomaceous earth.
  • a chemical species such as diatomaceous earth.
  • the nanobubbles are bubbles having a number average diameter of less than 1 ⁇ m (micrometer).
  • the period for performing the silicate ion generation step is not particularly limited, and orthosilicate Si(OH) 4 is generated as the main silicic acid compound, and the particle size is about 5 to 300 nm, preferably about 10 to 250 nm. It may be for a period in which the water-soluble nanocolloidal silica of the present invention can be produced.
  • the period for performing the silicate ion generation step may be, for example, about 6 months.
  • the material to be reacted Prior to the step of producing silicate ions in the present invention, the material to be reacted may be subjected to pretreatment, for example, physical treatment such as crushing and washing, and chemical treatment such as hydrophilization and reprecipitation by surface treatment.
  • pretreatment for example, physical treatment such as crushing and washing, and chemical treatment such as hydrophilization and reprecipitation by surface treatment.
  • the silicate ion generation step in the present invention since the material to be reacted having a surface composed of at least silicon simple substance is used, when silicon dioxide such as silica powder is used as a starting material, at least the surface layer portion is reduced to simple substance silicon. There is a need to.
  • the reaction target material production process is a process utilizing a so-called carbon reduction method, and there are no particular restrictions on the raw materials and reaction conditions used therein.
  • the raw material silicon dioxide preferably has a porous structure, but is not limited thereto, and various commercially available silica powder, silicon dioxide such as quartz, and carbon such as charcoal and carbon black can be used.
  • a crystal (silicon dioxide SiO 2 ) and a carbonaceous material for example, charcoal such as charcoal and coal, a material containing carbon C as a main component such as carbon black
  • a reduction refining method is used, in which single crystal silicon (Si) having a purity of 99.9% is produced by heating to 0° C.
  • the temperature for heating the silicon dioxide SiO 2 and the carbon C is not limited to the above, and may be any temperature at which oxygen can be separated and removed from the silicon dioxide SiO 2 as carbon dioxide gas CO 2 to generate silicon. Good.
  • the water-soluble nanocolloidal silica of the present invention produced in this manner has almost no residual sodium ions and the like, and has high efficacy as a safe health drink.
  • the present invention also includes the water-soluble nanocolloidal silica produced by the production method as described above.
  • the water-soluble nanocolloidal silica of the present invention exhibits a negative zeta potential, and the value thereof is preferably ⁇ 10 mV to ⁇ 90 mV, more preferably ⁇ 30 mV to ⁇ 80 mV, and particularly preferably ⁇ 40 mV to ⁇ 70 mV.
  • the nanocolloidal silica of the present invention has the above negative zeta potential, so that the stable state can be maintained for a period of, for example, one year or more without causing precipitation. it can.
  • the particle size of the colloid is about 5 to 300 nm as described above, but it may be preferably in the range of 10 nm to 250 nm.
  • the water-soluble nanocolloidal silica of the present invention also exhibits characteristic physical properties such as total scattering intensity and dissolved concentration, and the silicate ion concentration in silica water is higher than that of conventional silica water, for example, 5000 mg/L or more. It is also possible to do so.
  • the pH of the water-soluble nanocolloidal silica of the present invention after production is about 10 to 12, often about 10 to 11, and particularly about 11. Although it does not adversely affect the gastrointestinal tract even if it is drunk in such an alkaline state, the pH can be lowered to 9 or less, for example, around 8 if desired. As will be shown in Examples described later, depending on the blood lipid, it may be more effective to reduce the ingestion by neutralizing the lipid to a pH of about 8.
  • the acid used for neutralization is not particularly limited, and various acids such as acetic acid, hydrochloric acid and citric acid can be used, but acetic acid is particularly preferable. It is also possible to use general-purpose vinegar.
  • test example 1 In the most general mode of producing the water-soluble nanocolloidal silica according to the present invention, first, a silicon simple substance producing step (step S1) is performed. By the reduction refining method as described above, silicon dioxide powder (particle size: about 50 to 300 ⁇ m) is heated together with carbon to, for example, 500 to 2500° C., preferably 500 to 2400° C. to remove oxygen as carbon dioxide gas. To produce simple silicon. Next, a silicate ion production process (step S2) is performed in which the produced silicon simple substance is alkali-reacted to produce hydrogen fine bubbles.
  • step S2 When step S2 is started in an alkaline aqueous solution having a pH of about 13 and left for a long time, for example, 6 months, the pH finally drops to about 10 and the transparent liquid becomes a whitened colloidal solution.
  • the zeta potential of the colloidal solution is a negative numerical value, precipitates such as cages do not occur.
  • FIG. 1 is a diagram showing the results of particle size distribution measurement of the water-soluble nanocolloidal silica of the present invention, and is a graph showing the scattering intensity for each particle size. As shown in FIG. 1, the particle size distribution formed a single peak. As described above, the water-soluble nanocolloidal silica of the present invention can have a fine particle size distribution with a single peak in a suitable range of particle size d of about 10 to 250 nm. Since the particle size of the conventional product is usually around 800 nm, the particle size (250 nm or less) of the water-soluble nanocolloidal silica of the present invention is remarkably small, about 1/4 or less of the particle size of the conventional product. I understand.
  • the zeta potential of the water-soluble nanocolloidal silica of the present invention can have a negative value, for example, ⁇ 10 mV to ⁇ 90 mV, and particularly ⁇ 45 to 55 mV.
  • FIG. 2 is a chart showing the results of contained element analysis of silica powder obtained by drying the water-soluble nanocolloidal silica of the present invention using EDX (energy dispersive X-ray spectroscopy).
  • the O (oxygen) content is 58.70% and the Si (silicon) content is 39.61%.
  • a trace amount of Na (sodium ion) is contained in the trace amount of contained elements.
  • the water-soluble nanocolloidal silica of the present invention does not contain a large amount of Na (sodium ion), deterioration of performance as a health drink is prevented and the water-soluble nanocolloidal silica of the present invention is ingested. It is possible to prevent the human body of the victim from being adversely affected. As a result, it is possible to provide silica water (water-soluble nanocolloidal silica) that has a high effect as a safe and healthy beverage.
  • FIG. 3 is a chart showing the results of performing elemental analysis of ultrafine quartz using EDX (energy dispersive X-ray spectroscopy).
  • the content ratio of O (oxygen) is 56.26%
  • the content ratio of Si (silicon) is 41.05%
  • other minute amounts of other contained elements are included.
  • a small amount of impurity level Na (sodium ion) is contained therein. Therefore, as in the case of the water-soluble nanocolloidal silica of the present invention, a large amount of Na (sodium ion) is not contained.
  • the ultra-fine grained quartz is merely quartz that is crushed into fine particles, so that the structure remains quartz SiO 2 .
  • quartz (quartz) is an insoluble mineral, and even if mixed in a beverage in the form of fine powder, it will precipitate. For this reason, ultra-fine crystal is not suitable for beverages.
  • FIG. 4 shows a silica powder obtained by drying colloidal silica, which is used as a conventional silica water and is synthesized from water glass (sodium silicate Na 2 SiO 3 ) derived from caustic soda as EDX (energy dispersive X It is a chart which shows the result at the time of carrying out contained element analysis using the line spectroscopy.
  • the conventional colloidal silica contains Na at a high concentration of 10%. Therefore, not only the performance of silica water as a health drink is low, but also the human body of a person who ingests silica water may be adversely affected.
  • the water-soluble nanocolloidal silica of the present invention has special characteristics different from conventional silica water and ultrafine crystal.
  • the water-soluble nanocolloidal silica of the present invention is also present in a colloidal solution state, unlike the above-mentioned ultrafine-grained quartz, and therefore, the Tyndall phenomenon is observed. That is, when light is passed through the water-soluble nanocolloidal silica of the present invention, the light is scattered and the light paths appear to shine uniformly.
  • Test example 2 [Examples 1 to 4 and Comparative Example]
  • the effect of the water-soluble nanocolloidal silica of the present invention produced as described above will be described with respect to the results of testing using rats.
  • the test was requested to an overseas university, and the water-soluble nanocolloidal silica of the present invention (hereinafter sometimes abbreviated as “silica water” under the conditions of room temperature 24° C. and relative humidity 40 to 50%. Silicon concentration 5660 mg/L , PH 10.93).
  • a neutralized product of the water-soluble nanocolloidal silica (the water-soluble nanocolloidal silica of the present invention neutralized with white vinegar, hereinafter referred to as "neutralized product", pH 8.05), distilled A test using water and simvastatin (a general-purpose drug for treating dyslipidemia, 5% CMC-Na preparation) was also conducted separately.
  • Fifty-six male rats weighing 160 ⁇ 10 g were randomly divided into the following 7 groups, and each of the following types and amounts of the drugs were intragastrically administered with 20 g of the feed daily.
  • the following drug amount is the mass (mg) of the drug pure component (silicon component etc.) per 1 kg of rat.
  • ⁇ 1 set (reference example): general feed + distilled water ⁇ 2 sets (control example): high fat feed + distilled water ⁇ 3 sets (comparative example): high fat feed + simvastatin 1.54 mg/kg ⁇ 4 sets (Example 1): high-fat feed + silica water 10.94 mg/kg ⁇ 5 sets (Example 2): high-fat feed + silica water 5.47 mg/kg ⁇ 6 sets (Example 3): high-fat feed + silica water 2.83 mg/kg ⁇ 7 sets (Example 4): High-fat feed+neutralized product 10.94 mg/kg After administration of each of the above drugs for 15 days, water was given for 15 more days without feeding, and serum was collected, and TC (total cholesterol), TG (triglyceride), LDL-C was measured by a fully automated biochemical analyzer. (Bad cholesterol), HDL-C (good cholesterol), AST and ALT values were measured. Table 2 shows the average values of the measurement results for 8 animals in each group
  • Example 2 As shown in Table 2, in Examples 1 to 4 in which silica water was administered to rats, the total cholesterol level, TG, LDL-C, AST, and ALT were higher than those in the control example in which distilled water was administered to rats. It was found that the water-soluble nanocolloidal silica of the present invention has an effect of reducing blood fat. Particularly in regard to TG and ALT, all of Examples 1 to 4 showed excellent effects even compared with the comparative example in which the general drug for treating dyslipidemia was administered to rats, and the value of ALT was fed with the general diet. It was lower than the reference example. On the other hand, the HDL-C (good cholesterol) values of Examples 1 to 4 were equal to or higher than those of the control and comparative examples. In addition, among Examples 1 to 4, Example 4, which uses a neutralized product having a pH of about 8, has the highest effect of reducing the total cholesterol value and LDL-C value and the effect of improving the HDL-C value. It was
  • Example 5 To test the acute toxicity of the water-soluble nanocolloidal silica of the present invention, the same number of male and female mice weighing 20 ⁇ 1.5 g was orally administered with silica water. The test was conducted at a university overseas under conditions of a temperature of 20 to 23° C. and a relative humidity of 70%. 0.77 ml of the above silica water was administered to each of 20 mice 4 times during 24 hours (dose of silicon per mouse: 17.4 mg). None of the animals died and the half-lethal dose ID50 was not obtained. Next, the dose to mice was increased, but no death occurred even at the maximum dose of 870 mg/kg (363 times the human clinical dose).
  • the use of the water-soluble nanocolloidal silica of the present invention as a beverage has been described, but the water-soluble nanocolloidal silica of the present invention is not limited to use as a beverage.
  • the water-soluble nanocolloidal silica of the present invention has excellent ability in terms of bactericidal activity, detergency, penetration ability, anti-inflammatory ability, cell activation ability, antioxidant ability, degrading ability, etc. It can be used for various purposes.
  • the water-soluble nanocolloidal silica of the present invention has a bactericidal power to instantaneously sterilize Legionella bacteria and Escherichia coli, and a cleaning power to wash away environmental pollutants attached to the surface of food or permeated into the interior thereof, and 2.5 billion minutes. It has a penetrating power that can be subdivided into units of 1 m (meter). In addition, it has an anti-inflammatory ability to extinguish inflammation by strengthening immunity and a cell activation ability to directly enter energy into the cell nucleus to activate the cell. In addition, it dissolves stains and qualities in blood vessels, repairs blood vessels, and stops the progression of intestinal rot to kill bad bacteria and activate good bacteria to strengthen immunity. Has oxidative power.
  • the water-soluble nanocolloidal silica of the present invention has a good effect on human health, but also has the following effects. That is, since the water-soluble nanocolloidal silica of the present invention has an effect of eliminating waste products, constipation, swelling (water poisoning), and water accumulation in joints can be eliminated. It also has the effect of eliminating toxins in the heart, such as stress, depression and insomnia. It also has the effect of improving stiff shoulders, headache, backache, dizziness, numbness and the like.
  • the water-soluble nanocolloidal silica of the present invention has an effect of delaying oxidation, by using it for washing vegetables and fruits, it is possible to maintain the freshness of vegetables and fruits more than washing with tap water. Due to the excellent penetrating power of the water-soluble nanocolloidal silica of the present invention, it is possible to remove pesticides and the like that have penetrated inside vegetables. Specifically, for example, when a cherry tomato cultivated using a pesticide is immersed in water obtained by mixing the water-soluble nanocolloidal silica of the present invention and water, the pesticide exudes from the cherry tomato and the cherry tomato is soaked. The water turns yellow.
  • water-soluble nanocolloidal silica of the present invention when the water-soluble nanocolloidal silica of the present invention is attached to raw materials such as seafood, it becomes difficult for bacteria and the like to adhere to the portion to which the water-soluble nanocolloidal silica is attached. Can be maintained for a long time.
  • the water-soluble nanocolloidal silica of the present invention may be used for cooking rice, cooking dishes such as pots and stews.
  • the excellent permeation power of the water-soluble nanocolloidal silica removes the oxidizing substances inside the rice, so that the rice can be transformed into delicious rice.
  • the addition of the water-soluble nanocolloidal silica of the present invention to coffee has an effect of removing bitterness and mellow taste.
  • the water-soluble nanocolloidal silica of the present invention is used for brewing green tea, it also has the effect that the color of green tea becomes darker than when brewing with tap water.
  • the water-soluble nanocolloidal silica of the present invention brings out the effect of bringing out the taste of the material and making it delicious when added to the dish. Furthermore, since the water-soluble nanocolloidal silica of the present invention decomposes oil, it has an effect not only of taste but also of making a dish healthy.
  • the water-soluble nanocolloidal silica of the present invention is effective in addition to human diet. For example, by adding a few drops of water-soluble nanocolloidal silica to drinking water or food for pets such as dogs and cats, or spraying diluted water-soluble nanocolloidal silica on the pet's body, the effect of improving the coat of hair and odor Has the effect of suppressing.
  • the foliage plant can be kept fresh and its life can be extended. In the case of fresh flowers, the flowering period can be extended.
  • the water-soluble nanocolloidal silica of the present invention has excellent alcohol decomposing ability, it is also effective for a hangover.
  • the water-soluble nanocolloidal silica of the present invention has an effect of removing active oxygen and thus has a cosmetic effect.
  • the cosmetic component of water-soluble nanocolloidal silica can be effectively permeated into the skin. It is also possible to effectively remove spots, wrinkles, acne, and pimples by directly applying a stock solution of water-soluble nanocolloidal silica to the skin.
  • water-soluble nanocolloidal silica of the present invention when used for toothpaste, it is possible to remove tea astringency and tar adhering to teeth due to the adsorption effect of silicon, and to eliminate periodontal disease, gingivitis and hyperesthesia. Can also
  • water-soluble nanocolloidal silica of the present invention can be used in the fields of agriculture, fisheries, medical fields, etc.
  • water-soluble nanocolloidal silica can be used as fertilizer
  • water-soluble nanocolloidal silica can be used as feed.
  • the water-soluble nanocolloidal silica of the present invention In the medical field, by ingesting the water-soluble nanocolloidal silica of the present invention in patients, it has the effect of improving atopy, pollinosis, asthma, cerebral infarction, myocardial infarction, renal failure (uremia) and the like. Furthermore, the water-soluble nanocolloidal silica can be used for treating cancer such as prostate cancer, uterine cancer, and colon cancer. Specifically, for example, water-soluble nanocolloidal silica can be used for cancer immunotherapy with near infrared rays (developed by Senior Researcher Hisashi Takashi Kobayashi, National Cancer Institute).
  • phthalocyanine which is a dye that causes a chemical reaction by near-infrared rays, is attached to an antibody that specifically binds to cancer cells and then injected intravenously into the patient's body.
  • phthalocyanine since phthalocyanine is not water-soluble, it cannot be put into the patient's body, but it becomes water-soluble by adding the water-soluble nanocolloidal silica of the present invention to phthalocyanine. Since the antibody that has entered the body binds to cancer cells, when this binding area is irradiated with near infrared light, it causes a chemical reaction to destroy the cancer cells. Further, the water-soluble nanocolloidal silica of the present invention can be used alone for cancer treatment.
  • the water-soluble nanocolloidal silica of the present invention activates mitochondria in cancer cells and produces an enzyme (cytochrome C) in mitochondria.
  • the enzyme (cytochrome C) activates the action of a proteolytic enzyme (caspase) that causes apoptosis (suicide) in cancer cells.
  • caspase a proteolytic enzyme
  • the DNA (deoxyribonucleic acid) of the cancer cells undergoes degeneration of apoptosis and the disappearance of the cancer cells begins.
  • the water-soluble nanocolloidal silica of the present invention has a small particle size, it can be used in artificial dialysis and the like.
  • the water-soluble nanocolloidal silica of the present invention has advantages that it does not cause a large amount of sodium ions to remain and that it does not precipitate for a long period of time.
  • INDUSTRIAL APPLICABILITY The present invention has made it possible to provide silica water that has high efficacy as a safe and healthy beverage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

This production method of water-soluble nanocolloidal silica is characterized by involving a silicate ion generation step in which a reaction material having a surface at least comprising elemental silicon is subjected to an alkaline reaction to generate silicate ions while generating hydrogen microbubbles; this water-soluble nanocolloidal silica, produced by the aforementioned production method, is characterized in that the zeta potential is negative. By means of this invention, it is possible to provide silica water which is safe and has high efficacy as a health beverage.

Description

水溶性ナノコロイドシリカの製造方法、及び水溶性ナノコロイドシリカMethod for producing water-soluble nanocolloidal silica and water-soluble nanocolloidal silica
 本発明は、水溶性ナノコロイドシリカの製造方法、及び水溶性ナノコロイドシリカに関する。 The present invention relates to a method for producing water-soluble nanocolloidal silica and water-soluble nanocolloidal silica.
 ケイ素Siは、地球上で酸素Oの次に多く存在する元素である。ケイ素は、酸素等の他の元素や分子と結合した状態でのみ存在し、例えば二酸化ケイ素SiOが結晶化した石英(水晶)等の状態で存在する。二酸化ケイ素等のケイ酸類は、慣用的に「シリカ」と呼ぶ場合がある。シリカは、人体を構成する骨、関節、血管、皮膚、毛髪、歯、爪等に多く含まれており、組織同士を繋いで柔軟性や弾力性を保持させることで老化を抑制する役割を担っている。また、シリカは、血管にコレステロールが沈着することを防ぐ役割や、美容に欠かせない潤い成分としてのコラーゲンとヒアルロン酸とを繋ぎ止める役割も担っている。このようにシリカは、健康を維持するために必須の微量成分とされているため、人体におけるシリカ不足は、低体温症や免疫力の低下を引き起こし、深刻なシリカ不足は生命を維持することを困難にすることもある。 Silicon Si is an element that is most abundant next to oxygen O on the earth. Silicon exists only in a state of being bonded to other elements such as oxygen and molecules, and exists in a state of, for example, quartz (crystal) in which silicon dioxide SiO 2 is crystallized. Silicic acids such as silicon dioxide are commonly referred to as "silica". Silica is contained in large amounts in the bones, joints, blood vessels, skin, hair, teeth, nails, etc. that make up the human body, and plays a role in suppressing aging by connecting tissues to maintain flexibility and elasticity. ing. In addition, silica plays a role of preventing cholesterol from depositing in blood vessels and a role of holding collagen and hyaluronic acid, which are essential moisturizing ingredients for beauty, together. As described above, since silica is a trace component essential for maintaining good health, a lack of silica in the human body causes hypothermia and a decrease in immunity, and a serious lack of silica means that life is maintained. It can be difficult.
 以上のような理由から、シリカを多く含む食品を摂取することが推奨されている。シリカを多く含む食品としては、例えばカラス麦、きび、大麦、小麦、じゃがいも、赤カブ、とうもろこし、米ぬか、青のり等が挙げられる。このため、一般的な食事(特に和食)によってシリカを摂取することが可能ともいえるが、近年の食生活の変化(例えば和食離れ)等により、シリカを多く含む穀物を摂取する機会が減少傾向にある。また、上記の食品を摂取したとしても、消化によるシリカの吸収率が悪いため、人間の体内ではシリカが常に不足しがちである。 For the above reasons, it is recommended to ingest foods containing a large amount of silica. Examples of foods containing a large amount of silica include oats, acne, barley, wheat, potatoes, red turnips, corn, rice bran, and blue seaweed. For this reason, it can be said that silica can be ingested by general diet (especially Japanese food), but due to recent changes in eating habits (for example, away from Japanese food), the chances of ingesting grains rich in silica tend to decrease. is there. Further, even if the above food is taken, the absorption rate of silica by digestion is poor, and therefore the human body tends to always lack silica.
 このため、シリカは、サプリメントや、ケイ素含有の健康食品の形態で効率良く体内に吸収することが好ましい。特に、飲料の形態であれば、摂取する時間帯や場所を問わずに効率良くシリカを摂取することができる。ただし、石英は、不溶性の鉱物であるため、シリカを微粉末の状態にして飲料に混ぜたとしても沈殿してしまうという課題があった。このようなことから、シリカが配合された飲料の研究開発が進められており(例えば特許文献1及び2)、種々のシリカ水が知られている(例えば非特許文献1)。 Therefore, silica is preferably absorbed efficiently into the body in the form of supplements and silicon-containing health foods. In particular, in the case of a drink, silica can be efficiently ingested regardless of the time and place of ingestion. However, since quartz is an insoluble mineral, there is a problem that even if silica is mixed into a beverage in the form of fine powder, it precipitates. For these reasons, research and development of beverages containing silica have been promoted (for example, Patent Documents 1 and 2), and various types of silica water are known (for example, Non-Patent Document 1).
特開2017-29046号公報JP, 2017-29046, A 特開2012-44980号公報JP, 2012-44980, A
 しかしながら、従来のシリカ水に用いられているシリカは、苛性ソーダ由来の水ガラス(ケイ酸ナトリウムNaSiO)から合成されたコロイドシリカであり、メタケイ酸HSiOの構造を有している。苛性ソーダ由来の水ガラスを原料としたシリカ水は、後記する含有元素分析結果(図4)に示すように、Na(ナトリウムイオン)を大量に含有している。シリカ水にNa(ナトリウムイオン)が大量に含有されている場合、健康飲料としての性能が低下するだけではなく、シリカ水を摂取した者の人体に悪影響を及ぼすおそれもある。このため、安全かつ健康飲料として高い効能を有するシリカ水の開発が望まれていた。 However, the silica used in conventional silica water is a colloidal silica synthesized from water glass (sodium silicate Na 2 SiO 3 ) derived from caustic soda, and has a structure of metasilicic acid H 2 SiO 3 . .. Silica water that uses water glass derived from caustic soda as a raw material contains a large amount of Na (sodium ion) as shown in the analysis result of contained elements (FIG. 4) described later. When a large amount of Na (sodium ion) is contained in silica water, not only the performance as a health drink is deteriorated, but also the human body of a person who ingests silica water may be adversely affected. For this reason, the development of silica water having high efficacy as a safe and healthy beverage has been desired.
 本発明は、このような状況に鑑みてなされたものであり、安全かつ健康飲料として高い効能を有するシリカ水を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide silica water which is safe and has high efficacy as a healthy beverage.
 上記目的を達成する本発明は、少なくともシリコン単体からなる表面をもつ被反応材料をアルカリ反応させて、水素の微細気泡を発生させながらケイ酸イオンを生成するケイ酸イオン生成工程を含むことを特徴とする水溶性ナノコロイドシリカの製造方法である。 The present invention which achieves the above object is characterized by including a silicate ion generation step of generating a silicate ion while generating fine bubbles of hydrogen by subjecting a material to be reacted having a surface made of at least a silicon simple substance to an alkali reaction. And a method for producing water-soluble nanocolloidal silica.
 この発明によれば、苛性ソーダ由来の水ガラス(ケイ酸ナトリウムNaSiO)を原料に用いないので、製造した水溶性ナノコロイドシリカ中で、Na(ナトリウムイオン)の含有が抑えられ、大量に残留することがない。このため、健康飲料としての性能が低下することを防ぎ、また、摂取した者の人体に悪影響を与えることを防ぐことができる。その結果、安全かつ健康飲料として高い効能を有するシリカ水である水溶性ナノコロイドシリカを提供することができる。 According to the present invention, since water glass derived from caustic soda (sodium silicate Na 2 SiO 3 ) is not used as a raw material, the content of Na (sodium ion) is suppressed in the produced water-soluble nanocolloidal silica, and a large amount is obtained. It does not remain. Therefore, it is possible to prevent the performance as a healthy drink from being deteriorated, and to prevent the human body of the ingestor from being adversely affected. As a result, it is possible to provide a water-soluble nanocolloidal silica which is a silica water having a high effect as a safe and healthy beverage.
 本発明に係る製造方法はまた、前記ケイ酸イオン生成工程の前に、二酸化ケイ素と炭素とを加熱して、前記二酸化ケイ素の少なくとも表面を、炭素と反応させて、発生した炭酸ガスを除去するとともに前記シリコン単体に還元して前記被反応材料を作製する被反応材料作製工程をさらに含むことが好ましい。 In the production method according to the present invention, before the step of producing silicate ions, silicon dioxide and carbon are heated, and at least the surface of the silicon dioxide is reacted with carbon to remove generated carbon dioxide gas. At the same time, it is preferable that the method further includes a step of producing a reacted material by reducing the silicon to a simple substance to produce the reacted material.
 本発明においてはさらに、前記二酸化ケイ素は、多孔質構造を有することが好ましい。 Further, in the present invention, it is preferable that the silicon dioxide has a porous structure.
 本発明はまた、上記の製造方法により製造された水溶性ナノコロイドシリカであって、ゼータ電位が負であることを特徴とする水溶性ナノコロイドシリカである。 The present invention is also a water-soluble nanocolloidal silica produced by the above production method, which is characterized by having a negative zeta potential.
 本発明に係る水溶性ナノコロイドシリカは、ゼータ電位が-10mV~-90mVであることが好ましい。 The zeta potential of the water-soluble nanocolloidal silica according to the present invention is preferably −10 mV to −90 mV.
 本発明に係る水溶性ナノコロイドシリカはまた、粒径が5nm~300nmの範囲であることが好ましい。 The water-soluble nanocolloidal silica according to the present invention also preferably has a particle size in the range of 5 nm to 300 nm.
 本発明の水溶性ナノコロイドシリカの製造方法によれば、安全かつ健康飲料として高い効能を有するシリカ水を提供することができる。 According to the method for producing water-soluble nanocolloidal silica of the present invention, it is possible to provide silica water having a high efficacy as a safe and healthy beverage.
本発明に係る水溶性ナノコロイドシリカの粒度分布測定の結果を示す図である。It is a figure which shows the result of particle size distribution measurement of the water-soluble nano colloidal silica which concerns on this invention. 本発明に係る水溶性ナノコロイドシリカの含有元素分析の結果を示すグラフである。It is a graph which shows the result of contained element analysis of the water-soluble nano colloidal silica which concerns on this invention. 超微細化水晶の含有元素分析の結果を示すグラフである。It is a graph which shows the result of contained element analysis of ultra-fine crystal. 従来の苛性ソーダ由来の水ガラスを原料としたシリカ水の含有元素分析の結果を示すグラフである。It is a graph which shows the result of the elemental analysis of the silica water which used the water glass derived from the conventional caustic soda as a raw material.
 本発明に係る水溶性ナノコロイドシリカの製造方法について、図面を参照しつつ説明する。なお、本発明は下記の実施形態に限定されるものではない。 A method for producing the water-soluble nanocolloidal silica according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below.
<水溶性ナノコロイドシリカの製造方法>
 本発明に係る水溶性ナノコロイドシリカの製造方法は、少なくともシリコン単体からなる表面をもつ被反応材料をアルカリ反応させて、水素の微細気泡を発生させながらケイ酸イオンを生成するケイ酸イオン生成工程を含む。
<Method for producing water-soluble nanocolloidal silica>
The method for producing water-soluble nanocolloidal silica according to the present invention is a silicate ion producing step of producing a silicate ion while causing fine reaction of a material to be reacted having a surface composed of at least a silicon simple substance with an alkali to generate fine hydrogen bubbles. including.
 この製造方法により製造されたシリカ水(水溶性ナノコロイドシリカ)は、従来からシリカ水の原料として用いられている苛性ソーダ由来の水ガラス(ケイ酸ナトリウムNaSiO)を用いていないため、後記する測定結果(図2)に示すように、Na(ナトリウムイオン)の含有量が検出限界値程度のレベルであり、含有していたとしても極めて低い。このため、Na(ナトリウムイオン)がシリカ水(水溶性ナノコロイドシリカ)に大量に含有されることがないので、健康飲料としての性能の低下を防ぎ、また、シリカ水(水溶性ナノコロイドシリカ)を摂取した者の人体に悪影響を与えることを防ぐことができる。その結果、安全かつ健康飲料として高い効能を有するシリカ水(水溶性ナノコロイドシリカ)を提供することができる。 The silica water (water-soluble nanocolloidal silica) produced by this production method does not use water glass (sodium silicate Na 2 SiO 3 ) derived from caustic soda, which has been conventionally used as a raw material for silica water. As shown in the measurement result (FIG. 2), the content of Na (sodium ion) is at the level of the detection limit value, and even if it is contained, it is extremely low. Therefore, since Na (sodium ion) is not contained in a large amount in silica water (water-soluble nanocolloidal silica), deterioration of performance as a health drink is prevented, and silica water (water-soluble nanocolloidal silica) is also prevented. It is possible to prevent the human body of the person who took the product from adversely affecting it. As a result, it is possible to provide silica water (water-soluble nanocolloidal silica) that has a high effect as a safe and healthy beverage.
 本発明の製造方法により製造された水溶性ナノコロイドシリカは、オルトケイ酸Si(OH)構造を有することが好ましい。こうした水溶性ナノコロイドシリカはまた、所定のゼータ電位、粒径、及びトータル散乱強度等を有し、抗酸化性及び浸透性に優れたシリカ水となる。 The water-soluble nanocolloidal silica produced by the production method of the present invention preferably has a structure of Si(OH) 4 orthosilicate. Such water-soluble nanocolloidal silica also has a predetermined zeta potential, particle size, total scattering intensity, and the like, and becomes silica water excellent in antioxidant property and penetrability.
 本発明におけるトータル散乱強度とは、測定した粒子の形状を真球と仮定し、測定中に得られた全ての散乱光量を用いて散乱強度基準から体積基準、さらに個数基準へと再計算したもののことをいう。
 また、本発明におけるゼータ電位とは、溶液中の微粒子の周りに形成される電気二重層中の滑り面と、界面から充分に離れた部分との間の電位差のことをいう。ゼータ電位がゼロに近づくと、微粒子の相互の反発力が弱まり、やがて凝集する。
The total scattering intensity in the present invention, assuming that the shape of the measured particle is a true sphere, was recalculated from the scattering intensity standard to the volume standard, and further to the number standard, using all the scattered light amounts obtained during the measurement. Say that.
Further, the zeta potential in the present invention means a potential difference between a sliding surface in the electric double layer formed around the fine particles in the solution and a portion sufficiently separated from the interface. When the zeta potential approaches zero, the mutual repulsion of the particles weakens and eventually agglomerates.
 以下、本発明に従う水溶性ナノコロイドシリカの製造方法の各構成要素について、詳しく説明する。 Each component of the method for producing water-soluble nanocolloidal silica according to the present invention will be described in detail below.
[ケイ酸イオン生成工程]
 本発明の製造方法を構成するケイ酸イオン生成工程は、少なくともシリコン単体からなる表面をもつ被反応材料をアルカリ反応させて、水素の微細気泡を発生させながらケイ酸イオンを生成する工程である。ここで使用する被反応材料に特に制限はなく、種々の公知のものを使用することができる。例えば、チョクラルスキー法等で製造した単結晶シリコンを用いてもよく、また、珪藻土やシリカ、水晶等の石英の粉末やバルクの表面を後記するような方法で還元したものを用いることもできる。ここで、シリコン単体とは、単体のケイ素から主としてなる物質、例えば90質量%以上が単体のケイ素からなる物質を指す。本発明においては、Siチップ製造用の高純度シリコン等は必ずしも必要ではないが、シリコン単体として種々の公知の物質を使用することができる。その結晶構造等にも特に制限はなく、単結晶、多結晶、非晶質のケイ素を使用することができる。
[Silicate ion production process]
The silicate ion producing step which constitutes the production method of the present invention is a step of producing a silicate ion while causing a material to be reacted having at least a surface made of a simple substance of silicon to undergo an alkali reaction to generate fine bubbles of hydrogen. The material to be reacted used here is not particularly limited, and various known materials can be used. For example, single crystal silicon produced by the Czochralski method or the like may be used, and diatomaceous earth, silica, quartz powder such as quartz, or a material obtained by reducing the surface of a bulk by a method described below can also be used. .. Here, the simple substance of silicon refers to a substance mainly composed of single substance silicon, for example, a substance consisting of 90% by mass or more of single substance silicon. In the present invention, high-purity silicon or the like for manufacturing Si chips is not always necessary, but various known substances can be used as a simple substance of silicon. The crystal structure and the like are not particularly limited, and single crystal, polycrystal, and amorphous silicon can be used.
 ケイ酸イオン生成工程で使用するアルカリは、ナトリウムイオンを含有しないアルカリ水溶液を使用することが、製造される水溶性ナノコロイドシリカ中にナトリウム含有量を極力少なくする点で好ましい。アルカリ水溶液の濃度に特に制限はないが、例えばケイ酸イオン生成工程でのアルカリ反応を促進する観点から、ケイ酸イオン生成工程の開始した時点で、pHが13以上の強アルカリ水溶液を用いることが好ましい。ケイ酸イオン生成工程では、時間の経過とともにpHが低下する傾向が認められ、かかるpHの数値によって水溶性ナノコロイドシリカの製造状態を把握することができる。また、反応時の温度にも特に制限はないが、0~90℃、特に5~50℃程度で行うのが好ましい。こうしたアルカリとの反応によって、ケイ酸イオン、特に四面体構造のオルトケイ酸イオンSiO 4-を生成することができる。なお、シリコン単体からのケイ酸イオンの生成反応は、中性条件下でも進行するが、反応速度の観点から、アルカリ性条件で行うのが実用的である。 As the alkali used in the silicate ion generation step, it is preferable to use an alkaline aqueous solution containing no sodium ion in order to minimize the sodium content in the water-soluble nanocolloidal silica produced. The concentration of the alkaline aqueous solution is not particularly limited, but for example, from the viewpoint of accelerating the alkaline reaction in the silicate ion producing step, it is preferable to use a strong alkaline aqueous solution having a pH of 13 or more at the start of the silicate ion producing step. preferable. In the silicate ion generation step, the pH tends to decrease with the passage of time, and the production state of the water-soluble nanocolloidal silica can be grasped by the pH value. The temperature during the reaction is also not particularly limited, but it is preferably 0 to 90° C., particularly 5 to 50° C. By such a reaction with alkali, silicate ions, particularly orthosilicate ions SiO 4 4− having a tetrahedral structure can be generated. The silicate ion generation reaction from the simple substance of silicon proceeds even under neutral conditions, but from the viewpoint of reaction rate, it is practical to carry out the reaction under alkaline conditions.
 また、ケイ酸イオン生成工程においては、アルカリ反応によってシリコン単体の表面から水素Hの微細気泡が発生し続ける。このため、シリコン単体の表面で、水素のナノバブル(微細気泡)と溶存酸素の存在下で反応することによって、水溶液中にケイ酸イオンが生成し、生成したケイ酸イオンが主に四面体構造のオルトケイ酸:Si(OH)となって、粒径が5~300nm程度、特に10~250nm程の安定な水溶性ナノコロイドシリカを製造することができると考えられる。この処理における反応の詳細な機構は明らかではなく、本発明は特定の理論により限定されるものでもないが、水素の微細気泡と溶存酸素等と反応し、珪藻土のような化学種が生じている可能性もある。なお、ナノバブル(微細気泡)とは、個数平均直径が1μm(マイクロメートル)未満の気泡のこという。また、ケイ酸イオン生成工程を行う期間は、特に限定はせず、主たるケイ酸化合物として、オルトケイ酸Si(OH)が生成し、粒径が5~300nm程度、好ましくは10~250nm程度の本発明の水溶性ナノコロイドシリカを製造することができる期間であればよい。ケイ酸イオン生成工程を行う期間は、例えば6ヶ月程度行う場合が挙げられる。 Further, in the silicate ion production step, fine bubbles of hydrogen H 2 continue to be generated from the surface of the silicon simple substance due to the alkali reaction. Therefore, by reacting with hydrogen nanobubbles (fine bubbles) in the presence of dissolved oxygen on the surface of a simple substance of silicon, silicate ions are generated in the aqueous solution, and the generated silicate ions mainly have a tetrahedral structure. It is believed that orthosilicic acid: Si(OH) 4 can be used to produce a stable water-soluble nanocolloidal silica having a particle size of about 5 to 300 nm, particularly about 10 to 250 nm. Although the detailed mechanism of the reaction in this treatment is not clear and the present invention is not limited by a particular theory, it reacts with fine bubbles of hydrogen and dissolved oxygen to generate a chemical species such as diatomaceous earth. There is a possibility. Note that the nanobubbles (fine bubbles) are bubbles having a number average diameter of less than 1 μm (micrometer). The period for performing the silicate ion generation step is not particularly limited, and orthosilicate Si(OH) 4 is generated as the main silicic acid compound, and the particle size is about 5 to 300 nm, preferably about 10 to 250 nm. It may be for a period in which the water-soluble nanocolloidal silica of the present invention can be produced. The period for performing the silicate ion generation step may be, for example, about 6 months.
[前処理]
 本発明におけるケイ酸イオン生成工程に先立ち、被反応材料に前処理、例えば粉砕や洗浄等の物理的処理、表面処理による親水化や再沈殿等の化学的処理を施してもよい。本発明におけるケイ酸イオン生成工程では、少なくともシリコン単体からなる表面をもつ被反応材料を使用するので、出発原料としてシリカ粉末等の二酸化ケイ素を使用する場合には、少なくとも表層部をシリコン単体に還元する必要がある。
[Preprocessing]
Prior to the step of producing silicate ions in the present invention, the material to be reacted may be subjected to pretreatment, for example, physical treatment such as crushing and washing, and chemical treatment such as hydrophilization and reprecipitation by surface treatment. In the silicate ion generation step in the present invention, since the material to be reacted having a surface composed of at least silicon simple substance is used, when silicon dioxide such as silica powder is used as a starting material, at least the surface layer portion is reduced to simple substance silicon. There is a need to.
[被反応材料作製工程]
 上記の理由から、本発明の水溶性ナノコロイドシリカの製造方法において、前記ケイ酸イオン生成工程の前に、二酸化ケイ素と炭素とを加熱して、前記二酸化ケイ素の少なくとも表面を、炭素と反応させて、発生した炭酸ガスを除去するとともに前記シリコン単体に還元して前記被反応材料を作製する被反応材料作製工程を行うこともできる。なお、高純度のシリコン原材料を使用する場合には、この被反応材料作製工程を経ず、直接前記のケイ酸イオン生成工程を開始してもよい。
[Reacted material manufacturing process]
For the above reason, in the method for producing a water-soluble nanocolloidal silica of the present invention, before the silicate ion generation step, silicon dioxide and carbon are heated to cause at least the surface of the silicon dioxide to react with carbon. Then, the generated carbon dioxide gas may be removed, and at the same time, the reacted material production step of producing the reacted material by reducing it to the silicon simple substance may be performed. When a high-purity silicon raw material is used, the silicate ion production step may be directly started without passing through the reaction material production step.
 被反応材料作製工程は、いわゆる炭素還元法を利用した工程であり、そこで使用する原材料や反応条件に特に制限はない。原料の二酸化ケイ素は、多孔質構造を有することが好ましいが、これに限定されず、種々の市販のシリカ粉末や水晶等の二酸化ケイ素、炭やカーボンブラック等の炭素を用いることができる。例えば、水晶(二酸化ケイ素SiO)と炭材(例えば木炭や石炭等の炭、カーボンブラック等の、炭素Cを主成分とする材料)とを一緒にして600~2400℃、好ましくは800~2000℃に加熱し、二酸化ケイ素中の酸素を炭酸ガスCOとして分離・除去することで、純度が99.9%である単結晶シリコン(Si)を生成する還元精錬法が用いられる。なお、二酸化ケイ素SiOと炭素Cとを加熱する際の温度は上記に限定されず、二酸化ケイ素SiOから酸素を炭酸ガスCOとして分離・除去してシリコンを生成することができる温度であればよい。 The reaction target material production process is a process utilizing a so-called carbon reduction method, and there are no particular restrictions on the raw materials and reaction conditions used therein. The raw material silicon dioxide preferably has a porous structure, but is not limited thereto, and various commercially available silica powder, silicon dioxide such as quartz, and carbon such as charcoal and carbon black can be used. For example, a crystal (silicon dioxide SiO 2 ) and a carbonaceous material (for example, charcoal such as charcoal and coal, a material containing carbon C as a main component such as carbon black) are combined at 600 to 2400° C., preferably 800 to 2000. A reduction refining method is used, in which single crystal silicon (Si) having a purity of 99.9% is produced by heating to 0° C. and separating and removing oxygen in carbon dioxide as carbon dioxide CO 2 . The temperature for heating the silicon dioxide SiO 2 and the carbon C is not limited to the above, and may be any temperature at which oxygen can be separated and removed from the silicon dioxide SiO 2 as carbon dioxide gas CO 2 to generate silicon. Good.
<水溶性ナノコロイドシリカ>
 このようにして製造される本発明の水溶性ナノコロイドシリカは、ナトリウムイオン等の残留がほとんどなく、安全な健康飲料として高い効能を有する。本発明はまた、上記のような製造方法で製造された水溶性ナノコロイドシリカを包含する。本発明の水溶性ナノコロイドシリカは負のゼータ電位を示し、その値は好ましくは-10mV~-90mV、より好ましくは-30mV~-80mV、特に好ましくは-40mV~-70mVの範囲内となる。本発明の水溶性ナノコロイドシリカは、上記の負のゼータ電位を有することによってナノコロイドシリカ同士が反発しあうので、沈殿を生じることなく、例えば1年以上の期間にわたって安定した状態を保つことができる。コロイドの粒径は、上記のように5~300nm程度であるが、好ましくは10nm~250nmの範囲とすることができる。本発明の水溶性ナノコロイドシリカはまた、トータル散乱強度や溶解濃度等についても特徴的な物性を示し、シリカ水中のケイ酸イオン濃度を従来のシリカ水と比べて高く、例えば5000mg/L以上とすることも可能である。
<Water-soluble nanocolloidal silica>
The water-soluble nanocolloidal silica of the present invention produced in this manner has almost no residual sodium ions and the like, and has high efficacy as a safe health drink. The present invention also includes the water-soluble nanocolloidal silica produced by the production method as described above. The water-soluble nanocolloidal silica of the present invention exhibits a negative zeta potential, and the value thereof is preferably −10 mV to −90 mV, more preferably −30 mV to −80 mV, and particularly preferably −40 mV to −70 mV. Since the water-soluble nanocolloidal silica of the present invention has the above negative zeta potential, the nanocolloidal silicas repel each other, so that the stable state can be maintained for a period of, for example, one year or more without causing precipitation. it can. The particle size of the colloid is about 5 to 300 nm as described above, but it may be preferably in the range of 10 nm to 250 nm. The water-soluble nanocolloidal silica of the present invention also exhibits characteristic physical properties such as total scattering intensity and dissolved concentration, and the silicate ion concentration in silica water is higher than that of conventional silica water, for example, 5000 mg/L or more. It is also possible to do so.
 本発明の水溶性ナノコロイドシリカはまた、製造後のpHが10~12程度、多くの場合10~11程度、特に11弱程度となっている。こうしたアルカリ性のままで飲用しても胃腸に悪影響を及ぼすことはないが、所望によりpHを9以下、例えば8前後に下げて摂取することも可能である。後記する実施例でも示すように、血中脂質によっては、pHが8程度となるように中和して摂取した方が、低減効果が大となる場合がある。中和に使用する酸に特に制限はなく、酢酸、塩酸、クエン酸等の種々の酸を使用することができるが、特に酢酸が好ましい。汎用の食用酢を使用することもできる。 The pH of the water-soluble nanocolloidal silica of the present invention after production is about 10 to 12, often about 10 to 11, and particularly about 11. Although it does not adversely affect the gastrointestinal tract even if it is drunk in such an alkaline state, the pH can be lowered to 9 or less, for example, around 8 if desired. As will be shown in Examples described later, depending on the blood lipid, it may be more effective to reduce the ingestion by neutralizing the lipid to a pH of about 8. The acid used for neutralization is not particularly limited, and various acids such as acetic acid, hydrochloric acid and citric acid can be used, but acetic acid is particularly preferable. It is also possible to use general-purpose vinegar.
 以下、本発明の水溶性ナノコロイドシリカ製造が通常どのように進められるかについて、典型的な事例を実施例として挙げながら説明するが、本発明は下記の実施例に限定されるものではない。 The following will describe how the production of the water-soluble nanocolloidal silica of the present invention normally proceeds, by citing typical examples as examples, but the present invention is not limited to the following examples.
(1)試験例1
 本発明に従う水溶性ナノコロイドシリカの製造の最も一般的な態様においては、初めにシリコン単体生成工程(ステップS1)を行う。上記のような還元精錬法により、二酸化ケイ素粉末(粒径:約50~300μm)を炭素と一緒にして例えば500~2500℃、好ましくは500~2400℃に加熱し、酸素を炭酸ガスとして除去してシリコン単体を生成する。次に、生成したシリコン単体をアルカリ反応させて水素の微細気泡を生成するケイ酸イオン生成工程(ステップS2)を行う。ステップS2をpH13程度のアルカリ水溶液中で開始し、長時間、例えば6ヶ月間放置すると、pHが最終的に10程度まで低下し、透明だった液体が白化したコロイド溶液となる。ここで、コロイド溶液のゼータ電位は負の数値であるため、おり等の沈殿物は生じない。
(1) Test example 1
In the most general mode of producing the water-soluble nanocolloidal silica according to the present invention, first, a silicon simple substance producing step (step S1) is performed. By the reduction refining method as described above, silicon dioxide powder (particle size: about 50 to 300 μm) is heated together with carbon to, for example, 500 to 2500° C., preferably 500 to 2400° C. to remove oxygen as carbon dioxide gas. To produce simple silicon. Next, a silicate ion production process (step S2) is performed in which the produced silicon simple substance is alkali-reacted to produce hydrogen fine bubbles. When step S2 is started in an alkaline aqueous solution having a pH of about 13 and left for a long time, for example, 6 months, the pH finally drops to about 10 and the transparent liquid becomes a whitened colloidal solution. Here, since the zeta potential of the colloidal solution is a negative numerical value, precipitates such as cages do not occur.
 上記の実施例に従い製造された本発明の水溶性ナノコロイドシリカについて、粒径、ゼータ電位、トータル散乱強度、溶解濃度を分析した結果を以下に示す。 The results of analyzing the particle size, zeta potential, total scattering intensity, and dissolved concentration of the water-soluble nanocolloidal silica of the present invention produced according to the above-mentioned examples are shown below.
[粒径]
(測定1)
 本発明の水溶性ナノコロイドシリカの粒径dについて、動的光散乱法(JIS Z8828:2013)による粒度分布測定を行った。なお、測定1では、測定分析装置として、マルバーン社製ゼータサイザーナノZSと、粒子径測定用ディスポーザブルセルとを用いて測定を行った。また、測定環境については、温度を25.0℃、実測時間を60秒、カウントレートを262.7kcps(count per second)、測定位置を4.65mmとした。
[Particle size]
(Measurement 1)
The particle size distribution of the water-soluble nanocolloidal silica of the present invention was measured by the dynamic light scattering method (JIS Z8828:2013). In the measurement 1, measurement was performed using a Zetasizer Nano ZS manufactured by Malvern Instruments Ltd. and a disposable cell for particle size measurement as a measurement analyzer. Regarding the measurement environment, the temperature was 25.0° C., the actual measurement time was 60 seconds, the count rate was 262.7 kcps (count per second), and the measurement position was 4.65 mm.
(結果1)
 図1は、本発明の水溶性ナノコロイドシリカの粒度分布測定の結果を示す図であり、粒径毎の散乱強度をグラフにしてある。図1に示すように、粒度分布は単一なピークを形成した。このように、本発明の水溶性ナノコロイドシリカでは、粒径dを10~250nm程度の好適な範囲で、ピークが一つにまとまったきれいな粒度分布とすることができる。なお、従来品の粒径は、通常800nm前後であるので、本発明の水溶性ナノコロイドシリカの粒径(250nm以下)は、従来品の粒径の約4分の1以下と、格段に小さいことがわかる。
(Result 1)
FIG. 1 is a diagram showing the results of particle size distribution measurement of the water-soluble nanocolloidal silica of the present invention, and is a graph showing the scattering intensity for each particle size. As shown in FIG. 1, the particle size distribution formed a single peak. As described above, the water-soluble nanocolloidal silica of the present invention can have a fine particle size distribution with a single peak in a suitable range of particle size d of about 10 to 250 nm. Since the particle size of the conventional product is usually around 800 nm, the particle size (250 nm or less) of the water-soluble nanocolloidal silica of the present invention is remarkably small, about 1/4 or less of the particle size of the conventional product. I understand.
[ゼータ電位]
(測定2)
 本発明の水溶性ナノコロイドシリカのゼータ電位について、電気泳動法によるゼータ電位測定を行った。測定は複数回行った。
 なお、測定2では、測定分析装置として、マルバーン社製ゼータサイザーナノZS(電気泳動法)と、キャピラリーセル(ディスポーザブルゼータ電位測定セル)とを用いて測定を行った。
 また、測定環境については、試料を容器ごとよく振り混ぜた後、セルに採取し、n=2でゼータ電位測定を行った。溶媒の屈折率、粘度及び誘電率については、水の測定値に設定した。
[Zeta potential]
(Measurement 2)
The zeta potential of the water-soluble nanocolloidal silica of the present invention was measured by an electrophoretic method. The measurement was performed multiple times.
In addition, in the measurement 2, the measurement was performed using a Zetasizer Nano ZS (electrophoresis method) manufactured by Malvern Instruments Ltd. and a capillary cell (disposable zeta potential measurement cell) as a measurement analysis device.
Regarding the measurement environment, the sample was shaken well together with the container, sampled in a cell, and the zeta potential was measured at n=2. The refractive index, viscosity and dielectric constant of the solvent were set to the measured values of water.
(結果2)
 ゼータ電位は、表1に示すように、1回目の測定結果では-52mVとなり、2回目の測定結果では-47mVとなった。このように、本発明の水溶性ナノコロイドシリカのゼータ電位は負の値、例えば-10mV~-90mV、特に-45~55mVを好適な範囲とすることができる。
Figure JPOXMLDOC01-appb-T000001
(Result 2)
As shown in Table 1, the zeta potential was −52 mV in the first measurement result and −47 mV in the second measurement result. Thus, the zeta potential of the water-soluble nanocolloidal silica of the present invention can have a negative value, for example, −10 mV to −90 mV, and particularly −45 to 55 mV.
Figure JPOXMLDOC01-appb-T000001
[含有元素分析]
 図2は、本発明の水溶性ナノコロイドシリカを乾燥させたシリカ粉末を、EDX(エネルギー分散型X線分光法)を用いて含有元素分析を行ったときの結果を示すチャートである。
 本発明の水溶性ナノコロイドシリカにおいては、図2に示すように、O(酸素)の含有割合が58.70%、Si(ケイ素)の含有割合が39.61%となっており、その他の微量の含有元素の中に不純物レベルの微量Na(ナトリウムイオン)が含まれる。このように、本発明の水溶性ナノコロイドシリカではNa(ナトリウムイオン)が大量に含有されることがないので、健康飲料としての性能の低下を防ぐとともに、本発明の水溶性ナノコロイドシリカを摂取した者の人体に悪影響を与えることを防ぐことができる。その結果、安全かつ健康飲料として高い効能を有するシリカ水(水溶性ナノコロイドシリカ)を提供することができる。
[Content element analysis]
FIG. 2 is a chart showing the results of contained element analysis of silica powder obtained by drying the water-soluble nanocolloidal silica of the present invention using EDX (energy dispersive X-ray spectroscopy).
In the water-soluble nanocolloidal silica of the present invention, as shown in FIG. 2, the O (oxygen) content is 58.70% and the Si (silicon) content is 39.61%. A trace amount of Na (sodium ion) is contained in the trace amount of contained elements. As described above, since the water-soluble nanocolloidal silica of the present invention does not contain a large amount of Na (sodium ion), deterioration of performance as a health drink is prevented and the water-soluble nanocolloidal silica of the present invention is ingested. It is possible to prevent the human body of the victim from being adversely affected. As a result, it is possible to provide silica water (water-soluble nanocolloidal silica) that has a high effect as a safe and healthy beverage.
 ここで、本発明の水溶性ナノコロイドシリカに組成がよく似たものとして、破砕により微粒子化させた水晶(以下「超微細化水晶」と呼ぶ)がある。図3は、超微細化水晶を、EDX(エネルギー分散型X線分光法)を用いて含有元素分析を行ったときの結果を示すチャートである。 Here, a crystal that has a composition very similar to that of the water-soluble nanocolloidal silica of the present invention is a crystal that has been made into fine particles by crushing (hereinafter referred to as "ultrafine crystal"). FIG. 3 is a chart showing the results of performing elemental analysis of ultrafine quartz using EDX (energy dispersive X-ray spectroscopy).
 超微細化水晶では、図3に示すように、O(酸素)の含有割合が56.26%、Si(ケイ素)の含有割合が41.05%となっており、その他の微量の含有元素の中に不純物レベルの微量Na(ナトリウムイオン)が含まれる。このため、本発明の水溶性ナノコロイドシリカと同様に、Na(ナトリウムイオン)が大量に含有されることがない。 In the ultra-fine grained crystal, as shown in FIG. 3, the content ratio of O (oxygen) is 56.26%, the content ratio of Si (silicon) is 41.05%, and other minute amounts of other contained elements are included. A small amount of impurity level Na (sodium ion) is contained therein. Therefore, as in the case of the water-soluble nanocolloidal silica of the present invention, a large amount of Na (sodium ion) is not contained.
 しかしながら、超微細化水晶は、水晶を破砕により微粒子化させたものにすぎないため、構造が石英SiOのままとなっている。上述したように、石英(水晶)は不溶性の鉱物であり、微粉末の状態で飲料に混ぜたとしても沈殿してしまう。このため、超微細化水晶は飲料には適さない。 However, the ultra-fine grained quartz is merely quartz that is crushed into fine particles, so that the structure remains quartz SiO 2 . As described above, quartz (quartz) is an insoluble mineral, and even if mixed in a beverage in the form of fine powder, it will precipitate. For this reason, ultra-fine crystal is not suitable for beverages.
 図4は、従来のシリカ水に用いられている、苛性ソーダ由来の水ガラス(ケイ酸ナトリウムNaSiO)を原料として合成されたコロイドシリカを乾燥させたシリカ粉末を、EDX(エネルギー分散型X線分光法)を用いて含有元素分析を行ったときの結果を示すチャートである。 FIG. 4 shows a silica powder obtained by drying colloidal silica, which is used as a conventional silica water and is synthesized from water glass (sodium silicate Na 2 SiO 3 ) derived from caustic soda as EDX (energy dispersive X It is a chart which shows the result at the time of carrying out contained element analysis using the line spectroscopy.
 図4に示されるように、従来品のコロイドシリカでは、Naが10%と高濃度に含有されている。そのため、シリカ水の健康飲料としての性能が低いだけでなく、シリカ水を摂取した者の人体に悪影響を及ぼすおそれもある。 As shown in FIG. 4, the conventional colloidal silica contains Na at a high concentration of 10%. Therefore, not only the performance of silica water as a health drink is low, but also the human body of a person who ingests silica water may be adversely affected.
 以上のように、本発明の水溶性ナノコロイドシリカは、従来からあるシリカ水や超微細化水晶とは異なる特別な特徴を有する。本発明の水溶性ナノコロイドシリカはまた、上記の超微細化水晶とは異なり、コロイド溶液の状態で存在しているため、チンダル現象が見られる。つまり、本発明の水溶性ナノコロイドシリカに光を通すと、光が散乱して光の通路が一様に光って見える。 As described above, the water-soluble nanocolloidal silica of the present invention has special characteristics different from conventional silica water and ultrafine crystal. The water-soluble nanocolloidal silica of the present invention is also present in a colloidal solution state, unlike the above-mentioned ultrafine-grained quartz, and therefore, the Tyndall phenomenon is observed. That is, when light is passed through the water-soluble nanocolloidal silica of the present invention, the light is scattered and the light paths appear to shine uniformly.
(2)試験例2
[実施例1~4、比較対照例]
 以下では、上記のようにして製造された本発明の水溶性ナノコロイドシリカの効果を、ラットを用いて試験した結果について説明する。試験は海外の大学に依頼し、室温24℃、相対湿度40~50%の条件下、本発明の水溶性ナノコロイドシリカ(以下で「シリカ水」と略記する場合がある。ケイ素濃度5660mg/L、pH10.93)を用いて行った。検証・比較のため、該水溶性ナノコロイドシリカの中和品(本発明の水溶性ナノコロイドシリカを白酢で中和したもの、以下で「中和品」と呼ぶ。pH8.05)、蒸留水、シンバスタチン(汎用の脂質異常症治療薬、5%CMC-Na調剤品)を使用した試験も、別途実施した。
 体重160±10gの雄ラット56匹を下記の7組にランダムに分け、それぞれに下記の種類及び量の薬剤を、飼料20gと共に毎日胃内投与した。尚、下記の薬剤量はラット1kg当たりの薬剤純分(ケイ素分等)の質量(mg)である。
・1組(参考例):一般飼料+蒸留水
・2組(対照例):高脂飼料+蒸留水
・3組(比較例):高脂飼料+シンバスタチン 1.54mg/kg
・4組(実施例1):高脂飼料+シリカ水 10.94mg/kg
・5組(実施例2):高脂飼料+シリカ水 5.47mg/kg
・6組(実施例3):高脂飼料+シリカ水 2.83mg/kg
・7組(実施例4):高脂飼料+中和品 10.94mg/kg
 上記各薬剤を15日間投与した後、さらに15日間飼料なしで水だけ与えた後、血清を採取し、全自動生物化学分析器でTC(トータルコレステロール)、TG(中性脂肪)、LDL-C(悪玉コレステロール)、HDL-C(善玉コレステロール)、AST、及びALT値を測定した。各組の8匹についての測定結果の平均値を、表2に示す。
(2) Test example 2
[Examples 1 to 4 and Comparative Example]
Hereinafter, the effect of the water-soluble nanocolloidal silica of the present invention produced as described above will be described with respect to the results of testing using rats. The test was requested to an overseas university, and the water-soluble nanocolloidal silica of the present invention (hereinafter sometimes abbreviated as “silica water” under the conditions of room temperature 24° C. and relative humidity 40 to 50%. Silicon concentration 5660 mg/L , PH 10.93). For verification and comparison, a neutralized product of the water-soluble nanocolloidal silica (the water-soluble nanocolloidal silica of the present invention neutralized with white vinegar, hereinafter referred to as "neutralized product", pH 8.05), distilled A test using water and simvastatin (a general-purpose drug for treating dyslipidemia, 5% CMC-Na preparation) was also conducted separately.
Fifty-six male rats weighing 160±10 g were randomly divided into the following 7 groups, and each of the following types and amounts of the drugs were intragastrically administered with 20 g of the feed daily. In addition, the following drug amount is the mass (mg) of the drug pure component (silicon component etc.) per 1 kg of rat.
・1 set (reference example): general feed + distilled water ・2 sets (control example): high fat feed + distilled water ・3 sets (comparative example): high fat feed + simvastatin 1.54 mg/kg
・4 sets (Example 1): high-fat feed + silica water 10.94 mg/kg
・5 sets (Example 2): high-fat feed + silica water 5.47 mg/kg
・6 sets (Example 3): high-fat feed + silica water 2.83 mg/kg
・7 sets (Example 4): High-fat feed+neutralized product 10.94 mg/kg
After administration of each of the above drugs for 15 days, water was given for 15 more days without feeding, and serum was collected, and TC (total cholesterol), TG (triglyceride), LDL-C was measured by a fully automated biochemical analyzer. (Bad cholesterol), HDL-C (good cholesterol), AST and ALT values were measured. Table 2 shows the average values of the measurement results for 8 animals in each group.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2に示されるように、ラットにシリカ水を投与した実施例1~4ではいずれも、ラットに蒸留水を投与した対照例に比べてトータルコレステロール値、TG、LDL-C、AST、及びALTの値が低くなっており、本発明の水溶性ナノコロイドシリカが血中脂肪低減効果を奏することが判明した。特にTG及びALTに関しては、実施例1~4はいずれも、ラットに汎用の脂質異常症治療薬を投与した比較例と比べても優れた効果が見られ、ALTの値は一般飼料を与えられた参考例と比べても低かった。一方、実施例1~4のHDL-C(善玉コレステロール)値は、対照例や比較例と同等程度以上であった。また、実施例1~4のうち、pHを8程度とした中和品を用いた実施例4では、トータルコレステロール値及びLDL-C値の低減効果、並びにHDL-C値の改善効果が最も高かった。 As shown in Table 2, in Examples 1 to 4 in which silica water was administered to rats, the total cholesterol level, TG, LDL-C, AST, and ALT were higher than those in the control example in which distilled water was administered to rats. It was found that the water-soluble nanocolloidal silica of the present invention has an effect of reducing blood fat. Particularly in regard to TG and ALT, all of Examples 1 to 4 showed excellent effects even compared with the comparative example in which the general drug for treating dyslipidemia was administered to rats, and the value of ALT was fed with the general diet. It was lower than the reference example. On the other hand, the HDL-C (good cholesterol) values of Examples 1 to 4 were equal to or higher than those of the control and comparative examples. In addition, among Examples 1 to 4, Example 4, which uses a neutralized product having a pH of about 8, has the highest effect of reducing the total cholesterol value and LDL-C value and the effect of improving the HDL-C value. It was
[実施例5]
 本発明の水溶性ナノコロイドシリカの急性毒性を試験するため、体重20±1.5gの雌雄のマウスを同数用い、シリカ水を経口投与した。試験は海外の大学にて、温度20~23℃、相対湿度70%の条件で行った。
 20匹のマウスそれぞれに、上記シリカ水0.77mlを、24時間の間に4回投与した(1匹当たりのケイ素投与量:17.4mg)。1匹も死亡せず、半分致死量ID50の数値は得られなかった。
 次に、マウスへの投与量を増やしたが、最大投与量870mg/kg(人間の臨床用量の363倍)でも死亡例が出なかった。
[Example 5]
To test the acute toxicity of the water-soluble nanocolloidal silica of the present invention, the same number of male and female mice weighing 20±1.5 g was orally administered with silica water. The test was conducted at a university overseas under conditions of a temperature of 20 to 23° C. and a relative humidity of 70%.
0.77 ml of the above silica water was administered to each of 20 mice 4 times during 24 hours (dose of silicon per mouse: 17.4 mg). None of the animals died and the half-lethal dose ID50 was not obtained.
Next, the dose to mice was increased, but no death occurred even at the maximum dose of 870 mg/kg (363 times the human clinical dose).
 上記実施例により、本発明に係る水溶性ナノコロイドシリカは、安全でかつ健康飲料として高い効能を有することが示された。 The above examples showed that the water-soluble nanocolloidal silica according to the present invention is safe and has high efficacy as a health drink.
<水溶性ナノコロイドシリカの用途>
 次に、水溶性ナノコロイドシリカを用いるのに好適な種々の用途について以下で説明する。
<Use of water-soluble nanocolloidal silica>
Next, various applications suitable for using the water-soluble nanocolloidal silica will be described below.
 例えば、上述の実施形態では、本発明の水溶性ナノコロイドシリカを飲料として利用することについて説明しているが、本発明の水溶性ナノコロイドシリカは飲料として利用することに限定されない。本発明の水溶性ナノコロイドシリカは、殺菌力、洗浄力、浸透力、消炎力、細胞活性力、抗酸化力、分解力の点等で優れた能力を有するので、これらの能力を生かした様々な用途に用いることができる。 For example, in the above-described embodiment, the use of the water-soluble nanocolloidal silica of the present invention as a beverage has been described, but the water-soluble nanocolloidal silica of the present invention is not limited to use as a beverage. The water-soluble nanocolloidal silica of the present invention has excellent ability in terms of bactericidal activity, detergency, penetration ability, anti-inflammatory ability, cell activation ability, antioxidant ability, degrading ability, etc. It can be used for various purposes.
 すなわち、本発明の水溶性ナノコロイドシリカは、レジオネラ菌や大腸菌類を瞬間的に殺菌する殺菌力と、食物の表面に付着し又は内部に浸透した環境汚染物質を洗い流す洗浄力と、25億分の1m(メートル)の単位に細分化可能な浸透力を有する。また、免疫力を強化することで消炎化させる消炎力と、細胞核に直接エネルギーを入核させて細胞を活性化させる細胞活性力とを有する。さらに、血管内の汚れや資質を溶かし去り、血管を修復させる分解力と、腸内の腐敗の進行を止めることで悪玉菌を静菌させ、善玉菌を活性化させて免疫力を強化する抗酸化力とを有する。 That is, the water-soluble nanocolloidal silica of the present invention has a bactericidal power to instantaneously sterilize Legionella bacteria and Escherichia coli, and a cleaning power to wash away environmental pollutants attached to the surface of food or permeated into the interior thereof, and 2.5 billion minutes. It has a penetrating power that can be subdivided into units of 1 m (meter). In addition, it has an anti-inflammatory ability to extinguish inflammation by strengthening immunity and a cell activation ability to directly enter energy into the cell nucleus to activate the cell. In addition, it dissolves stains and qualities in blood vessels, repairs blood vessels, and stops the progression of intestinal rot to kill bad bacteria and activate good bacteria to strengthen immunity. Has oxidative power.
 このように、本発明の水溶性ナノコロイドシリカは、人体の健康に良い効果をもたらすが、さらに以下のような効果をもたらす。すなわち、本発明の水溶性ナノコロイドシリカには、老廃物を排除する効果があるので、便秘、むくみ(水毒)、関節に水が溜まることを解消させることができる。また、ストレス、うつ病、不眠症など、いわば心の毒素を排除する効果も有する。また、肩こり、頭痛、腰痛、めまい、しびれ等を改善させる効果も有する。 As described above, the water-soluble nanocolloidal silica of the present invention has a good effect on human health, but also has the following effects. That is, since the water-soluble nanocolloidal silica of the present invention has an effect of eliminating waste products, constipation, swelling (water poisoning), and water accumulation in joints can be eliminated. It also has the effect of eliminating toxins in the heart, such as stress, depression and insomnia. It also has the effect of improving stiff shoulders, headache, backache, dizziness, numbness and the like.
 また、本発明の水溶性ナノコロイドシリカは、酸化を遅らせる効果を有するので、野菜や果物の洗浄に用いることで、水道水による洗浄よりも野菜や果物の鮮度を維持させることができる。本発明の水溶性ナノコロイドシリカの優れた浸透力により、野菜の内部に浸透した農薬等を除去することもできる。具体的には例えば、本発明の水溶性ナノコロイドシリカと水とを混ぜ合わせた水に、農薬を使用して栽培したミニトマトを浸すと、ミニトマトから農薬が滲み出し、ミニトマトを浸した水が黄色く変色する。 Further, since the water-soluble nanocolloidal silica of the present invention has an effect of delaying oxidation, by using it for washing vegetables and fruits, it is possible to maintain the freshness of vegetables and fruits more than washing with tap water. Due to the excellent penetrating power of the water-soluble nanocolloidal silica of the present invention, it is possible to remove pesticides and the like that have penetrated inside vegetables. Specifically, for example, when a cherry tomato cultivated using a pesticide is immersed in water obtained by mixing the water-soluble nanocolloidal silica of the present invention and water, the pesticide exudes from the cherry tomato and the cherry tomato is soaked. The water turns yellow.
 さらに、魚介類等の生ものに本発明の水溶性ナノコロイドシリカを付着させると、水溶性ナノコロイドシリカを付着させた部分に細菌等が付着しにくくなるので、魚介類等の生ものの鮮度を長い時間維持させることができる。 Furthermore, when the water-soluble nanocolloidal silica of the present invention is attached to raw materials such as seafood, it becomes difficult for bacteria and the like to adhere to the portion to which the water-soluble nanocolloidal silica is attached. Can be maintained for a long time.
 また、本発明の水溶性ナノコロイドシリカは、炊飯や、鍋物や煮物などの料理に用いてもよい。例えば本発明の水溶性ナノコロイドシリカを炊飯に用いた場合、水溶性ナノコロイドシリカの優れた浸透力により、米の内部の酸化物質を除去するので、美味しい米に変化させることができる。また、本発明の水溶性ナノコロイドシリカをコーヒーに加えることにより、苦みがとれて味がまろやかになるという効果も有する。さらに、緑茶を淹れる際に本発明の水溶性ナノコロイドシリカを用いた場合には、水道水で淹れた場合より緑茶の色が濃く出るという効果も有する。このように、本発明の水溶性ナノコロイドシリカは、料理に加えることにより、素材の味が引き出されて美味しくなるという効果を奏する。さらに、本発明の水溶性ナノコロイドシリカは、油分を分解してくれるので、味だけではなく料理をヘルシーに仕上げる効果を奏する。 Moreover, the water-soluble nanocolloidal silica of the present invention may be used for cooking rice, cooking dishes such as pots and stews. For example, when the water-soluble nanocolloidal silica of the present invention is used for cooking rice, the excellent permeation power of the water-soluble nanocolloidal silica removes the oxidizing substances inside the rice, so that the rice can be transformed into delicious rice. In addition, the addition of the water-soluble nanocolloidal silica of the present invention to coffee has an effect of removing bitterness and mellow taste. Furthermore, when the water-soluble nanocolloidal silica of the present invention is used for brewing green tea, it also has the effect that the color of green tea becomes darker than when brewing with tap water. As described above, the water-soluble nanocolloidal silica of the present invention brings out the effect of bringing out the taste of the material and making it delicious when added to the dish. Furthermore, since the water-soluble nanocolloidal silica of the present invention decomposes oil, it has an effect not only of taste but also of making a dish healthy.
 本発明の水溶性ナノコロイドシリカは、人間の食事以外にも効果がある。例えば犬や猫等のペット用の飲料水や食べ物に水溶性ナノコロイドシリカを数滴加えたり、薄めた水溶性ナノコロイドシリカをペットの身体にスプレーすることにより、毛並が良くなる効果や、体臭を抑える効果を奏する。 The water-soluble nanocolloidal silica of the present invention is effective in addition to human diet. For example, by adding a few drops of water-soluble nanocolloidal silica to drinking water or food for pets such as dogs and cats, or spraying diluted water-soluble nanocolloidal silica on the pet's body, the effect of improving the coat of hair and odor Has the effect of suppressing.
 また、人間やペット等の動物に限らず、植物にも効果がある。例えば、観葉植物の注水の際に本発明の水溶性ナノコロイドシリカを使用することにより、観葉植物の新鮮さを維持させ、寿命を延ばすことができる。また、生花の場合には、開花期間を長くすることができる。 Also, it is effective not only for humans and animals such as pets, but also for plants. For example, by using the water-soluble nanocolloidal silica of the present invention when watering a foliage plant, the foliage plant can be kept fresh and its life can be extended. In the case of fresh flowers, the flowering period can be extended.
 さらに、本発明の水溶性ナノコロイドシリカは、アルコール分解能力に優れているので、二日酔いにも効果がある。また、本発明の水溶性ナノコロイドシリカは、活性酸素を除去する効果を有するので美容効果もある。例えばスプレーによるスキンケアを行うことで水溶性ナノコロイドシリカの美容成分を効果的に肌に浸透させることができる。なお、水溶性ナノコロイドシリカの原液を皮膚へ直接塗り込むことで、しみ、しわ、ニキビ、吹き出物を効果的に除去することもできる。 Furthermore, since the water-soluble nanocolloidal silica of the present invention has excellent alcohol decomposing ability, it is also effective for a hangover. In addition, the water-soluble nanocolloidal silica of the present invention has an effect of removing active oxygen and thus has a cosmetic effect. For example, by performing skin care by spraying, the cosmetic component of water-soluble nanocolloidal silica can be effectively permeated into the skin. It is also possible to effectively remove spots, wrinkles, acne, and pimples by directly applying a stock solution of water-soluble nanocolloidal silica to the skin.
 また、本発明の水溶性ナノコロイドシリカを歯磨きに使用すると、ケイ素の吸着効果により、歯に付着した茶渋やヤニを除去することができるとともに、歯周病、歯肉炎、知覚過敏を解消することもできる。 Further, when the water-soluble nanocolloidal silica of the present invention is used for toothpaste, it is possible to remove tea astringency and tar adhering to teeth due to the adsorption effect of silicon, and to eliminate periodontal disease, gingivitis and hyperesthesia. Can also
 さらに、本発明の水溶性ナノコロイドシリカは、農業分野、漁業分野、医療分野等で利用することもできる。農業分野では肥料として水溶性ナノコロイドシリカを利用することができ、漁業分野では飼料として水溶性ナノコロイドシリカを利用することができる。 Furthermore, the water-soluble nanocolloidal silica of the present invention can be used in the fields of agriculture, fisheries, medical fields, etc. In the agricultural field, water-soluble nanocolloidal silica can be used as fertilizer, and in the fishery field, water-soluble nanocolloidal silica can be used as feed.
 医療分野では、患者に本発明の水溶性ナノコロイドシリカを摂取させることにより、アトピー、花粉症、喘息、脳梗塞、心筋梗塞、腎不全(尿毒症)等を改善させる効果を有する。さらに、水溶性ナノコロイドシリカを前立腺がん、子宮がん、大腸がん等のがんの治療に利用することもできる。具体的には例えば、近赤外線によるがん免疫治療(米国立がん研究所 小林久隆 主任研究員が開発)に水溶性ナノコロイドシリカを利用することができる。この治療では、がん細胞にのみ特異的に結合する抗体に、近赤外線により化学反応を起こす色素であるフタロシアニンを付着させ、患者の体内に静脈注射する。本来、フタロシアニンは水溶性でないため、患者の体内に入れることができないが、フタロシアニンに本発明の水溶性ナノコロイドシリカを入れることにより水溶性に変化する。体内に入った抗体はがん細胞と結合するので、この結合部分に近赤外線の光が照射されると、化学反応を起こしてがん細胞を破壊する。また、本発明の水溶性ナノコロイドシリカを単独でがん治療に利用することもできる。具体的には、本発明の水溶性ナノコロイドシリカによりがん細胞内のミトコンドリアが活性化され、ミトコンドリア内に酵素(チトクロムC)が生成される。酵素(チトクロムC)は、がん細胞内でアポトーシス(自殺)を引き起こすたんぱく質分解酵素(カスパーゼ)の働きを活発化させる。これにより、がん細胞のDNA(デオキシリボ核酸)にアポトーシスの変性が生じ、がん細胞の消滅が始まる。本発明の水溶性ナノコロイドシリカはまた、粒径が小さいので、人工透析等においても使用することができる。 In the medical field, by ingesting the water-soluble nanocolloidal silica of the present invention in patients, it has the effect of improving atopy, pollinosis, asthma, cerebral infarction, myocardial infarction, renal failure (uremia) and the like. Furthermore, the water-soluble nanocolloidal silica can be used for treating cancer such as prostate cancer, uterine cancer, and colon cancer. Specifically, for example, water-soluble nanocolloidal silica can be used for cancer immunotherapy with near infrared rays (developed by Senior Researcher Hisashi Takashi Kobayashi, National Cancer Institute). In this treatment, phthalocyanine, which is a dye that causes a chemical reaction by near-infrared rays, is attached to an antibody that specifically binds to cancer cells and then injected intravenously into the patient's body. Originally, since phthalocyanine is not water-soluble, it cannot be put into the patient's body, but it becomes water-soluble by adding the water-soluble nanocolloidal silica of the present invention to phthalocyanine. Since the antibody that has entered the body binds to cancer cells, when this binding area is irradiated with near infrared light, it causes a chemical reaction to destroy the cancer cells. Further, the water-soluble nanocolloidal silica of the present invention can be used alone for cancer treatment. Specifically, the water-soluble nanocolloidal silica of the present invention activates mitochondria in cancer cells and produces an enzyme (cytochrome C) in mitochondria. The enzyme (cytochrome C) activates the action of a proteolytic enzyme (caspase) that causes apoptosis (suicide) in cancer cells. As a result, the DNA (deoxyribonucleic acid) of the cancer cells undergoes degeneration of apoptosis and the disappearance of the cancer cells begins. Since the water-soluble nanocolloidal silica of the present invention has a small particle size, it can be used in artificial dialysis and the like.
 以上のように、本発明の水溶性ナノコロイドシリカはナトリウムイオンの大量残留を伴わず、また、長期間沈殿しない利点がある。本発明によって、安全かつ健康飲料として高い効能を有するシリカ水を提供することが可能となった。 As described above, the water-soluble nanocolloidal silica of the present invention has advantages that it does not cause a large amount of sodium ions to remain and that it does not precipitate for a long period of time. INDUSTRIAL APPLICABILITY The present invention has made it possible to provide silica water that has high efficacy as a safe and healthy beverage.

Claims (6)

  1.  少なくともシリコン単体からなる表面をもつ被反応材料をアルカリ反応させて、水素の微細気泡を発生させながらケイ酸イオンを生成するケイ酸イオン生成工程を含むことを特徴とする水溶性ナノコロイドシリカの製造方法。 Production of water-soluble nanocolloidal silica characterized by including a silicate ion generation step of generating silicate ions while generating fine bubbles of hydrogen by subjecting a material to be reacted having a surface composed of at least a silicon simple substance to alkali Method.
  2.  前記ケイ酸イオン生成工程の前に、二酸化ケイ素と炭素とを加熱して、前記二酸化ケイ素の少なくとも表面を、炭素と反応させて、発生した炭酸ガスを除去するとともに前記シリコン単体に還元して前記被反応材料を作製する被反応材料作製工程をさらに含む、請求項1に記載の水溶性ナノコロイドシリカの製造方法。 Prior to the silicate ion generation step, silicon dioxide and carbon are heated to cause at least the surface of the silicon dioxide to react with carbon to remove generated carbon dioxide gas and reduce it to the silicon simple substance. The method for producing water-soluble nanocolloidal silica according to claim 1, further comprising a step of producing a reacted material to produce a reacted material.
  3.  前記二酸化ケイ素は、多孔質構造を有する請求項2に記載の水溶性ナノコロイドシリカの製造方法。 The method for producing water-soluble nanocolloidal silica according to claim 2, wherein the silicon dioxide has a porous structure.
  4.  請求項1から3までのいずれか1項に記載の製造方法により製造された水溶性ナノコロイドシリカであって、
     ゼータ電位が負であることを特徴とする水溶性ナノコロイドシリカ。
    A water-soluble nanocolloidal silica produced by the production method according to any one of claims 1 to 3,
    A water-soluble nanocolloidal silica characterized by having a negative zeta potential.
  5.  ゼータ電位が-10mV~-90mVである請求項4に記載の水溶性ナノコロイドシリカ。 The water-soluble nanocolloidal silica according to claim 4, which has a zeta potential of −10 mV to −90 mV.
  6.  粒径が5nm~300nmの範囲である請求項4または5に記載の水溶性ナノコロイドシリカ。 The water-soluble nanocolloidal silica according to claim 4 or 5, having a particle size in the range of 5 nm to 300 nm.
PCT/JP2020/006600 2019-02-19 2020-02-19 Production method of water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica WO2020171132A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021502100A JP7388750B2 (en) 2019-02-19 2020-02-19 Method for producing water-soluble nanocolloidal silica for ingestion by animals and plants, and water-soluble nanocolloidal silica for ingestion by animals and plants
JP2023191562A JP2024023263A (en) 2019-02-19 2023-11-09 Method for producing water-soluble nano-colloidal silica and water-soluble nano-colloidal silica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019027411 2019-02-19
JP2019-027411 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020171132A1 true WO2020171132A1 (en) 2020-08-27

Family

ID=72143687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006600 WO2020171132A1 (en) 2019-02-19 2020-02-19 Production method of water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica

Country Status (2)

Country Link
JP (2) JP7388750B2 (en)
WO (1) WO2020171132A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348681B1 (en) 2022-04-04 2023-09-21 株式会社 life park. biz Method for producing water-soluble silicon solution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614995A (en) * 1951-06-13 1952-10-21 Du Pont Silica sols and preparation thereof from metallic silicon
JPS56140022A (en) * 1980-03-26 1981-11-02 Union Carbide Corp Low density body of prepared mixture for use in manufacture of silicon and ferrosilicon
JPS61117110A (en) * 1984-11-07 1986-06-04 Kawasaki Steel Corp Process and apparatus for preparing metallic silicon
WO2008072637A1 (en) * 2006-12-12 2008-06-19 Fuso Chemical Co. Ltd. Method for producing colloidal silica
JP2010506814A (en) * 2006-10-20 2010-03-04 エボニック デグサ ゲーエムベーハー Aqueous silica dispersion with stability
JP2010052951A (en) * 2008-08-26 2010-03-11 Central Glass Co Ltd Method for producing silicon
JP2014208585A (en) * 2013-03-29 2014-11-06 株式会社アドマテックス Silica particles, method for manufacturing silica particles, and method for manufacturing surface-modified silica particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479986B2 (en) * 2010-04-15 2014-04-23 古河電気工業株式会社 Surface-controlled laminated silica nanoparticles and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614995A (en) * 1951-06-13 1952-10-21 Du Pont Silica sols and preparation thereof from metallic silicon
JPS56140022A (en) * 1980-03-26 1981-11-02 Union Carbide Corp Low density body of prepared mixture for use in manufacture of silicon and ferrosilicon
JPS61117110A (en) * 1984-11-07 1986-06-04 Kawasaki Steel Corp Process and apparatus for preparing metallic silicon
JP2010506814A (en) * 2006-10-20 2010-03-04 エボニック デグサ ゲーエムベーハー Aqueous silica dispersion with stability
WO2008072637A1 (en) * 2006-12-12 2008-06-19 Fuso Chemical Co. Ltd. Method for producing colloidal silica
JP2010052951A (en) * 2008-08-26 2010-03-11 Central Glass Co Ltd Method for producing silicon
JP2014208585A (en) * 2013-03-29 2014-11-06 株式会社アドマテックス Silica particles, method for manufacturing silica particles, and method for manufacturing surface-modified silica particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348681B1 (en) 2022-04-04 2023-09-21 株式会社 life park. biz Method for producing water-soluble silicon solution

Also Published As

Publication number Publication date
JP2024023263A (en) 2024-02-21
JP7388750B2 (en) 2023-11-29
JPWO2020171132A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
CN103404921B (en) Fruit/vegetable ferment composition and preparation method thereof
EP1676908B1 (en) Fermentation and culture method, fermented plant extract, fermented plant extract powder and composition containing the fermented plant extract
JP7462868B2 (en) Composition containing lactic acid bacteria production substance, method for producing equol, and method for producing composition containing lactic acid bacteria production substance
Manu Kumar et al. Study of Physicochemical parameters and Antioxidant in Honey collected from different locations of India.
JP2024023263A (en) Method for producing water-soluble nano-colloidal silica and water-soluble nano-colloidal silica
CN103880511A (en) Green agricultural element compound fertilizer
JP6112308B2 (en) Bitter taste masking ingredients and bitter taste masking method
CN113717297B (en) Rose polysaccharide and preparation method and application thereof
JP6528187B2 (en) Bee pollen composition
JP2004510402A (en) Acidic solution of poorly soluble group IIA complex
CN102802641B (en) Compositions comprising water with deuterium for the prevention or treatment of allergic diseases and a process for the preparation thereof
CN105110990A (en) Nutritional base fertilizer for producing selenium-germanium-enriched anticancer garlic oil
KR102207608B1 (en) Process for producing silicon ion complexes and complexes organicized with carboxylic acid and products using the same
JP2006087393A (en) Health food and medicine
JPH01215278A (en) Production of algae enhanced in biological effect
CN103702785A (en) Novel nano gold and process for preparation
KR100993571B1 (en) Process for preparation of mineral-containing water and mineral-containing water prepared by the same
JP2021185855A (en) Functional edible charcoal and method for producing hydrogen powder
WO2012036080A1 (en) Bitterness-masking ingredient and bitterness-masking method
CN106942433A (en) A kind of preparation method of blackberry, blueberry tea
WO2021211004A1 (en) Method for processing grain to produce food products
CN109288041A (en) A kind of Moringa composite fluid preparation and preparation method
JP2008156256A (en) Oral administration composition
JP3779740B2 (en) Agents for preventing and treating obesity from rice
JP2006169184A (en) Method for producing black silica microparticle colloid water emitting far-infrared ray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759025

Country of ref document: EP

Kind code of ref document: A1