JP2024023263A - Method for producing water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica - Google Patents

Method for producing water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica Download PDF

Info

Publication number
JP2024023263A
JP2024023263A JP2023191562A JP2023191562A JP2024023263A JP 2024023263 A JP2024023263 A JP 2024023263A JP 2023191562 A JP2023191562 A JP 2023191562A JP 2023191562 A JP2023191562 A JP 2023191562A JP 2024023263 A JP2024023263 A JP 2024023263A
Authority
JP
Japan
Prior art keywords
water
soluble
silica
nanocolloidal
nanocolloidal silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023191562A
Other languages
Japanese (ja)
Inventor
義博 唐津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINAMI NIHON WELLNESS LIMITED COMPANY
Original Assignee
MINAMI NIHON WELLNESS LIMITED COMPANY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINAMI NIHON WELLNESS LIMITED COMPANY filed Critical MINAMI NIHON WELLNESS LIMITED COMPANY
Publication of JP2024023263A publication Critical patent/JP2024023263A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】健康維持の必須成分であるシリカを飲料の形態で摂取するに際し、ナトリウムを同時に摂取することがない水溶性ナノコロイドシリカを提供する。【解決手段】ナトリウムイオンを含有するアルカリ以外のアルカリの水溶液と、前記水溶液中に、Si(OH)4の形で存在するナノコロイドシリカ粒子とで構成される動植物摂取用水溶性ナノコロイドシリカであって、前記水溶性ナノコロイドシリカは、ゼータ電位が負であり、EDX(エネルギー分散型X線分光法)を用いて、前記水溶性ナノコロイドシリカを乾燥させて得られたシリカ粉末の含有元素分析を行ったとき、前記シリカ粉末は、ナトリウムを含有しないか、またはナトリウムを含有したとしても、検出限界値レベルの微量であることを特徴とする、動植物摂取用水溶性ナノコロイドシリカである。【選択図】なし[Problem] To provide water-soluble nanocolloidal silica that does not ingest sodium at the same time when silica, which is an essential component for maintaining health, is ingested in the form of a drink. [Solution] A water-soluble nanocolloidal silica for ingestion by animals and plants is composed of an aqueous solution of an alkali other than an alkali containing sodium ions, and nanocolloidal silica particles present in the form of Si(OH)4 in the aqueous solution. The water-soluble nanocolloidal silica has a negative zeta potential, and elemental analysis of the silica powder obtained by drying the water-soluble nanocolloidal silica using EDX (energy dispersive X-ray spectroscopy) When carried out, the silica powder is water-soluble nanocolloidal silica for ingestion by animals and plants, characterized in that it does not contain sodium, or even if it does contain sodium, it is in a trace amount below the detection limit level. [Selection diagram] None

Description

本発明は、水溶性ナノコロイドシリカの製造方法、及び水溶性ナノコロイドシリカに関する。 The present invention relates to a method for producing water-soluble nanocolloidal silica, and a water-soluble nanocolloidal silica.

ケイ素Siは、地球上で酸素Oの次に多く存在する元素である。ケイ素は、酸素等の他の元素や分子と結合した状態でのみ存在し、例えば二酸化ケイ素SiOが結晶化した石英(水晶)等の状態で存在する。二酸化ケイ素等のケイ酸類は、慣用的に「シリカ」と呼ぶ場合がある。シリカは、人体を構成する骨、関節、血管、皮膚、毛髪、歯、爪等に多く含まれており、組織同士を繋いで柔軟性や弾力性を保持させることで老化を抑制する役割を担っている。また、シリカは、血管にコレステロールが沈着することを防ぐ役割や、美容に欠かせない潤い成分としてのコラーゲンとヒアルロン酸とを繋ぎ止める役割も担っている。このようにシリカは、健康を維持するために必須の微量成分とされているため、人体におけるシリカ不足は、低体温症や免疫力の低下を引き起こし、深刻なシリカ不足は生命を維持することを困難にすることもある。 Silicon Si is the second most abundant element on earth after oxygen O. Silicon exists only in a state bonded to other elements or molecules such as oxygen, and exists, for example, in a state such as quartz (crystal) in which silicon dioxide SiO 2 is crystallized. Silicic acids such as silicon dioxide are sometimes commonly referred to as "silica." Silica is contained in large amounts in the bones, joints, blood vessels, skin, hair, teeth, nails, etc. that make up the human body, and plays a role in suppressing aging by connecting tissues and maintaining flexibility and elasticity. ing. Silica also plays a role in preventing cholesterol from depositing in blood vessels and in binding collagen and hyaluronic acid, which are essential moisturizing ingredients for beauty. In this way, silica is considered to be an essential trace ingredient for maintaining health, so a lack of silica in the human body can cause hypothermia and a decline in immunity, and a severe lack of silica can make it difficult to maintain life. It can also be difficult.

以上のような理由から、シリカを多く含む食品を摂取することが推奨されている。シリカを多く含む食品としては、例えばカラス麦、きび、大麦、小麦、じゃがいも、赤カブ、とうもろこし、米ぬか、青のり等が挙げられる。このため、一般的な食事(特に和食)によってシリカを摂取することが可能ともいえるが、近年の食生活の変化(例えば和食離れ)等により、シリカを多く含む穀物を摂取する機会が減少傾向にある。また、上記の食品を摂取したとしても、消化によるシリカの吸収率が悪いため、人間の体内ではシリカが常に不足しがちである。 For the reasons mentioned above, it is recommended to consume foods rich in silica. Examples of foods containing a large amount of silica include oats, millet, barley, wheat, potatoes, red turnips, corn, rice bran, and green seaweed. For this reason, it can be said that it is possible to ingest silica through regular meals (particularly Japanese food), but due to recent changes in dietary habits (for example, a shift away from Japanese food), opportunities to consume grains containing high amounts of silica are decreasing. be. Furthermore, even if the above-mentioned foods are ingested, the absorption rate of silica through digestion is poor, so the human body always tends to be deficient in silica.

このため、シリカは、サプリメントや、ケイ素含有の健康食品の形態で効率良く体内に吸収することが好ましい。特に、飲料の形態であれば、摂取する時間帯や場所を問わずに効率良くシリカを摂取することができる。ただし、石英は、不溶性の鉱物であるため、シリカを微粉末の状態にして飲料に混ぜたとしても沈殿してしまうという課題があった。このようなことから、シリカが配合された飲料の研究開発が進められており(例えば特許文献1及び2)、種々のシリカ水が知られている(例えば非特許文献1)。 For this reason, it is preferable that silica be efficiently absorbed into the body in the form of supplements or silicon-containing health foods. In particular, if it is in the form of a drink, silica can be ingested efficiently regardless of the time of day or place of ingestion. However, since quartz is an insoluble mineral, there is a problem in that even if silica is mixed into a fine powder into a beverage, it will precipitate. For this reason, research and development of beverages containing silica is underway (for example, Patent Documents 1 and 2), and various silica waters are known (for example, Non-Patent Document 1).

特開2017-29046号公報JP 2017-29046 Publication 特開2012-44980号公報JP2012-44980A

株式会社珪素研究会 水晶から抽出された水溶性珪素(http://www.umo-keiso.com/)Silicon Research Group Co., Ltd. Water-soluble silicon extracted from crystal (http://www.umo-keiso.com/)

しかしながら、従来のシリカ水に用いられているシリカは、苛性ソーダ由来の水ガラス(ケイ酸ナトリウムNaSiO)から合成されたコロイドシリカであり、メタケイ酸HSiOの構造を有している。苛性ソーダ由来の水ガラスを原料としたシリカ水は、後記する含有元素分析結果(図4)に示すように、Na(ナトリウムイオン)を大量に含有している。シリカ水にNa(ナトリウムイオン)が大量に含有されている場合、健康飲料としての性能が低下するだけではなく、シリカ水を摂取した者の人体に悪影響を及ぼすおそれもある。このため、安全かつ健康飲料として高い効能を有するシリカ水の開発が望まれていた。 However, the silica used in conventional silica water is colloidal silica synthesized from caustic soda-derived water glass (sodium silicate Na 2 SiO 3 ) and has the structure of metasilicate H 2 SiO 3 . Silica water made from water glass derived from caustic soda contains a large amount of Na (sodium ions), as shown in the elemental analysis results (FIG. 4) described later. When silica water contains a large amount of Na (sodium ions), it not only reduces its performance as a health drink, but also may have an adverse effect on the human body of the person who ingests the silica water. For this reason, there has been a desire to develop silica water that is safe and highly effective as a health drink.

本発明は、このような状況に鑑みてなされたものであり、安全かつ健康飲料として高い効能を有するシリカ水を提供することを目的とする。 The present invention has been made in view of these circumstances, and an object of the present invention is to provide silica water that is safe and highly effective as a health drink.

上記目的を達成する本発明は、少なくともシリコン単体からなる表面をもつ被反応材料をアルカリ反応させて、水素の微細気泡を発生させながらケイ酸イオンを生成するケイ酸イオン生成工程を含むことを特徴とする水溶性ナノコロイドシリカの製造方法である。 The present invention that achieves the above object is characterized by including a silicate ion generation step in which a reactant material having a surface made of at least silicon is subjected to an alkaline reaction to generate silicate ions while generating fine hydrogen bubbles. This is a method for producing water-soluble nanocolloidal silica.

この発明によれば、苛性ソーダ由来の水ガラス(ケイ酸ナトリウムNaSiO)を原料に用いないので、製造した水溶性ナノコロイドシリカ中で、Na(ナトリウムイオン)の含有が抑えられ、大量に残留することがない。このため、健康飲料としての性能が低下することを防ぎ、また、摂取した者の人体に悪影響を与えることを防ぐことができる。その結果、安全かつ健康飲料として高い効能を有するシリカ水である水溶性ナノコロイドシリカを提供することができる。 According to this invention, since water glass derived from caustic soda (sodium silicate Na 2 SiO 3 ) is not used as a raw material, the content of Na (sodium ions) in the produced water-soluble nanocolloidal silica is suppressed and a large amount No residue remains. Therefore, it is possible to prevent the performance as a health drink from deteriorating, and also to prevent an adverse effect on the human body of the person who ingests the drink. As a result, water-soluble nanocolloidal silica, which is silica water that is safe and highly effective as a health drink, can be provided.

本発明に係る製造方法はまた、前記ケイ酸イオン生成工程の前に、二酸化ケイ素と炭素とを加熱して、前記二酸化ケイ素の少なくとも表面を、炭素と反応させて、発生した炭酸ガスを除去するとともに前記シリコン単体に還元して前記被反応材料を作製する被反応材料作製工程をさらに含むことが好ましい。 In the manufacturing method according to the present invention, before the silicate ion generation step, silicon dioxide and carbon are heated to react at least the surface of the silicon dioxide with carbon, and the generated carbon dioxide gas is removed. It is preferable that the method further includes a step of producing a reactant material by reducing the silicon element to the reactant material.

本発明においてはさらに、前記二酸化ケイ素は、多孔質構造を有することが好ましい。 In the present invention, it is further preferable that the silicon dioxide has a porous structure.

本発明はまた、上記の製造方法により製造された水溶性ナノコロイドシリカであって、ゼータ電位が負であることを特徴とする水溶性ナノコロイドシリカである。 The present invention also provides a water-soluble nanocolloidal silica produced by the above production method, which is characterized by having a negative zeta potential.

本発明に係る水溶性ナノコロイドシリカは、ゼータ電位が-10mV~-90mVであることが好ましい。 The water-soluble nanocolloidal silica according to the present invention preferably has a zeta potential of -10 mV to -90 mV.

本発明に係る水溶性ナノコロイドシリカはまた、粒径が5nm~300nmの範囲であることが好ましい。 The water-soluble nanocolloidal silica according to the present invention also preferably has a particle size in the range of 5 nm to 300 nm.

本発明の水溶性ナノコロイドシリカの製造方法によれば、安全かつ健康飲料として高い効能を有するシリカ水を提供することができる。 According to the method for producing water-soluble nanocolloidal silica of the present invention, it is possible to provide silica water that is safe and highly effective as a health drink.

本発明に係る水溶性ナノコロイドシリカの粒度分布測定の結果を示す図である。FIG. 3 is a diagram showing the results of particle size distribution measurement of water-soluble nanocolloidal silica according to the present invention. 本発明に係る水溶性ナノコロイドシリカの含有元素分析の結果を示すグラフである。1 is a graph showing the results of elemental analysis of water-soluble nanocolloidal silica according to the present invention. 超微細化水晶の含有元素分析の結果を示すグラフである。2 is a graph showing the results of analysis of elements contained in ultra-fine quartz crystals. 従来の苛性ソーダ由来の水ガラスを原料としたシリカ水の含有元素分析の結果を示すグラフである。It is a graph showing the results of elemental analysis of silica water using conventional water glass derived from caustic soda as a raw material.

本発明に係る水溶性ナノコロイドシリカの製造方法について、図面を参照しつつ説明する。なお、本発明は下記の実施形態に限定されるものではない。 The method for producing water-soluble nanocolloidal silica according to the present invention will be explained with reference to the drawings. Note that the present invention is not limited to the embodiments described below.

<水溶性ナノコロイドシリカの製造方法>
本発明に係る水溶性ナノコロイドシリカの製造方法は、少なくともシリコン単体からなる表面をもつ被反応材料をアルカリ反応させて、水素の微細気泡を発生させながらケイ酸イオンを生成するケイ酸イオン生成工程を含む。
<Production method of water-soluble nanocolloidal silica>
The method for producing water-soluble nanocolloidal silica according to the present invention includes a silicate ion generation step in which a reactant material having a surface made of at least silicon is reacted with an alkali to generate silicate ions while generating fine hydrogen bubbles. including.

この製造方法により製造されたシリカ水(水溶性ナノコロイドシリカ)は、従来からシリカ水の原料として用いられている苛性ソーダ由来の水ガラス(ケイ酸ナトリウムNaSiO)を用いていないため、後記する測定結果(図2)に示すように、Na(ナトリウムイオン)の含有量が検出限界値程度のレベルであり、含有していたとしても極めて低い。このため、Na(ナトリウムイオン)がシリカ水(水溶性ナノコロイドシリカ)に大量に含有されることがないので、健康飲料としての性能の低下を防ぎ、また、シリカ水(水溶性ナノコロイドシリカ)を摂取した者の人体に悪影響を与えることを防ぐことができる。その結果、安全かつ健康飲料として高い効能を有するシリカ水(水溶性ナノコロイドシリカ)を提供することができる。 The silica water (water-soluble nanocolloidal silica) produced by this production method does not use caustic soda-derived water glass (sodium silicate Na 2 SiO 3 ), which has traditionally been used as a raw material for silica water, so it will be described later. As shown in the measurement results (FIG. 2), the content of Na (sodium ions) is at a level around the detection limit value, and even if it is contained, it is extremely low. Therefore, Na (sodium ions) is not contained in large amounts in silica water (water-soluble nanocolloidal silica), which prevents deterioration of its performance as a health drink. can prevent adverse effects on the human body of those who ingest it. As a result, it is possible to provide silica water (water-soluble nanocolloidal silica) that is safe and highly effective as a health drink.

本発明の製造方法により製造された水溶性ナノコロイドシリカは、オルトケイ酸Si(OH)構造を有することが好ましい。こうした水溶性ナノコロイドシリカはまた、所定のゼータ電位、粒径、及びトータル散乱強度等を有し、抗酸化性及び浸透性に優れたシリカ水となる。 The water-soluble nanocolloidal silica produced by the production method of the present invention preferably has an orthosilicate Si(OH) 4 structure. Such water-soluble nanocolloidal silica also has a predetermined zeta potential, particle size, total scattering strength, etc., and becomes silica water with excellent antioxidant properties and permeability.

本発明におけるトータル散乱強度とは、測定した粒子の形状を真球と仮定し、測定中に得られた全ての散乱光量を用いて散乱強度基準から体積基準、さらに個数基準へと再計算したもののことをいう。
また、本発明におけるゼータ電位とは、溶液中の微粒子の周りに形成される電気二重層中の滑り面と、界面から充分に離れた部分との間の電位差のことをいう。ゼータ電位がゼロに近づくと、微粒子の相互の反発力が弱まり、やがて凝集する。
In the present invention, the total scattering intensity is calculated based on the assumption that the shape of the measured particles is a perfect sphere, and using all the amounts of scattered light obtained during the measurement, from the scattering intensity basis to the volume basis and then to the number basis. Say something.
Furthermore, the zeta potential in the present invention refers to the potential difference between a sliding surface in an electric double layer formed around fine particles in a solution and a portion sufficiently distant from the interface. When the zeta potential approaches zero, the mutual repulsion of the particles weakens and they eventually aggregate.

以下、本発明に従う水溶性ナノコロイドシリカの製造方法の各構成要素について、詳しく説明する。 Hereinafter, each component of the method for producing water-soluble nanocolloidal silica according to the present invention will be explained in detail.

[ケイ酸イオン生成工程]
本発明の製造方法を構成するケイ酸イオン生成工程は、少なくともシリコン単体からなる表面をもつ被反応材料をアルカリ反応させて、水素の微細気泡を発生させながらケイ酸イオンを生成する工程である。ここで使用する被反応材料に特に制限はなく、種々の公知のものを使用することができる。例えば、チョクラルスキー法等で製造した単結晶シリコンを用いてもよく、また、珪藻土やシリカ、水晶等の石英の粉末やバルクの表面を後記するような方法で還元したものを用いることもできる。ここで、シリコン単体とは、単体のケイ素から主としてなる物質、例えば90質量%以上が単体のケイ素からなる物質を指す。本発明においては、Siチップ製造用の高純度シリコン等は必ずしも必要ではないが、シリコン単体として種々の公知の物質を使用することができる。その結晶構造等にも特に制限はなく、単結晶、多結晶、非晶質のケイ素を使用することができる。
[Silicate ion generation process]
The silicate ion generation step constituting the manufacturing method of the present invention is a step in which a reactant material having a surface made of at least silicon is reacted with an alkali to generate silicate ions while generating fine hydrogen bubbles. There is no particular restriction on the reactant material used here, and various known materials can be used. For example, single-crystal silicon produced by the Czochralski method or the like may be used, or quartz powder such as diatomaceous earth, silica, or crystal, or one whose bulk surface has been reduced by the method described later may also be used. . Here, elemental silicon refers to a substance mainly consisting of elemental silicon, for example, a substance in which 90% by mass or more consists of elemental silicon. In the present invention, high-purity silicon for Si chip manufacturing is not necessarily required, but various known substances can be used as simple silicon. There are no particular limitations on its crystal structure, and single crystal, polycrystalline, or amorphous silicon can be used.

ケイ酸イオン生成工程で使用するアルカリは、ナトリウムイオンを含有しないアルカリ水溶液を使用することが、製造される水溶性ナノコロイドシリカ中にナトリウム含有量を極力少なくする点で好ましい。アルカリ水溶液の濃度に特に制限はないが、例えばケイ酸イオン生成工程でのアルカリ反応を促進する観点から、ケイ酸イオン生成工程の開始した時点で、pHが13以上の強アルカリ水溶液を用いることが好ましい。ケイ酸イオン生成工程では、時間の経過とともにpHが低下する傾向が認められ、かかるpHの数値によって水溶性ナノコロイドシリカの製造状態を把握することができる。また、反応時の温度にも特に制限はないが、0~90℃、特に5~50℃程度で行うのが好ましい。こうしたアルカリとの反応によって、ケイ酸イオン、特に四面体構造のオルトケイ酸イオンSiO 4-を生成することができる。なお、シリコン単体からのケイ酸イオンの生成反応は、中性条件下でも進行するが、反応速度の観点から、アルカリ性条件で行うのが実用的である。 As the alkali used in the silicate ion generation step, it is preferable to use an aqueous alkali solution that does not contain sodium ions in order to minimize the sodium content in the water-soluble nanocolloidal silica produced. There is no particular restriction on the concentration of the alkaline aqueous solution, but for example, from the viewpoint of promoting the alkaline reaction in the silicate ion generation step, it is preferable to use a strong alkaline aqueous solution with a pH of 13 or more at the start of the silicate ion generation step. preferable. In the silicate ion generation process, it is observed that the pH tends to decrease over time, and the production status of water-soluble nanocolloidal silica can be understood from this pH value. Further, there is no particular restriction on the temperature during the reaction, but it is preferably carried out at a temperature of about 0 to 90°C, particularly about 5 to 50°C. Such a reaction with an alkali can produce silicate ions, particularly orthosilicate ions SiO 4 4- with a tetrahedral structure. Note that although the reaction for producing silicate ions from simple silicon proceeds even under neutral conditions, from the viewpoint of reaction rate, it is practical to carry out under alkaline conditions.

また、ケイ酸イオン生成工程においては、アルカリ反応によってシリコン単体の表面から水素Hの微細気泡が発生し続ける。このため、シリコン単体の表面で、水素のナノバブル(微細気泡)と溶存酸素の存在下で反応することによって、水溶液中にケイ酸イオンが生成し、生成したケイ酸イオンが主に四面体構造のオルトケイ酸:Si(OH)となって、粒径が5~300nm程度、特に10~250nm程の安定な水溶性ナノコロイドシリカを製造することができると考えられる。この処理における反応の詳細な機構は明らかではなく、本発明は特定の理論により限定されるものでもないが、水素の微細気泡と溶存酸素等と反応し、珪藻土のような化学種が生じている可能性もある。なお、ナノバブル(微細気泡)とは、個数平均直径が1μm(マイクロメートル)未満の気泡のこという。また、ケイ酸イオン生成工程を行う期間は、特に限定はせず、主たるケイ酸化合物として、オルトケイ酸Si(OH)が生成し、粒径が5~300nm程度、好ましくは10~250nm程度の本発明の水溶性ナノコロイドシリカを製造することができる期間であればよい。ケイ酸イオン生成工程を行う期間は、例えば6ヶ月程度行う場合が挙げられる。 In addition, in the silicate ion generation step, fine bubbles of hydrogen H 2 continue to be generated from the surface of the silicon element due to the alkaline reaction. For this reason, silicate ions are generated in an aqueous solution by reacting with hydrogen nanobubbles (microbubbles) on the surface of a single silicon in the presence of dissolved oxygen, and the generated silicate ions mainly have a tetrahedral structure. It is believed that stable water-soluble nanocolloidal silica with a particle size of about 5 to 300 nm, particularly about 10 to 250 nm, can be produced by forming orthosilicic acid: Si(OH) 4 . The detailed mechanism of the reaction in this process is not clear, and the present invention is not limited by any particular theory, but it is believed that microbubbles of hydrogen react with dissolved oxygen, etc., producing chemical species like diatomaceous earth. There is a possibility. Note that nanobubbles (fine bubbles) refer to bubbles having a number average diameter of less than 1 μm (micrometer). The period for performing the silicate ion generation step is not particularly limited, and orthosilicate Si(OH) 4 is produced as the main silicate compound, and the particle size is about 5 to 300 nm, preferably about 10 to 250 nm. Any period of time is sufficient as long as it is possible to produce the water-soluble nanocolloidal silica of the present invention. The silicate ion generation step may be carried out for about 6 months, for example.

[前処理]
本発明におけるケイ酸イオン生成工程に先立ち、被反応材料に前処理、例えば粉砕や洗浄等の物理的処理、表面処理による親水化や再沈殿等の化学的処理を施してもよい。本発明におけるケイ酸イオン生成工程では、少なくともシリコン単体からなる表面をもつ被反応材料を使用するので、出発原料としてシリカ粉末等の二酸化ケイ素を使用する場合には、少なくとも表層部をシリコン単体に還元する必要がある。
[Preprocessing]
Prior to the silicate ion generation step in the present invention, the material to be reacted may be subjected to pretreatment, for example, physical treatment such as pulverization or washing, or chemical treatment such as surface treatment to make it hydrophilic or reprecipitation. In the silicate ion generation step of the present invention, a reacted material with a surface consisting of at least simple silicon is used, so when using silicon dioxide such as silica powder as a starting material, at least the surface layer is reduced to simple silicon. There is a need to.

[被反応材料作製工程]
上記の理由から、本発明の水溶性ナノコロイドシリカの製造方法において、前記ケイ酸イオン生成工程の前に、二酸化ケイ素と炭素とを加熱して、前記二酸化ケイ素の少なくとも表面を、炭素と反応させて、発生した炭酸ガスを除去するとともに前記シリコン単体に還元して前記被反応材料を作製する被反応材料作製工程を行うこともできる。なお、高純度のシリコン原材料を使用する場合には、この被反応材料作製工程を経ず、直接前記のケイ酸イオン生成工程を開始してもよい。
[Reacted material production process]
For the above reasons, in the method for producing water-soluble nanocolloidal silica of the present invention, silicon dioxide and carbon are heated before the silicate ion generation step to cause at least the surface of the silicon dioxide to react with the carbon. It is also possible to perform a reactant material production step in which the generated carbon dioxide gas is removed and reduced to the silicon element to produce the reactant material. In addition, when using a high-purity silicon raw material, the above-mentioned silicate ion generation step may be directly started without going through this reaction material preparation step.

被反応材料作製工程は、いわゆる炭素還元法を利用した工程であり、そこで使用する原材料や反応条件に特に制限はない。原料の二酸化ケイ素は、多孔質構造を有することが好ましいが、これに限定されず、種々の市販のシリカ粉末や水晶等の二酸化ケイ素、炭やカーボンブラック等の炭素を用いることができる。例えば、水晶(二酸化ケイ素SiO)と炭材(例えば木炭や石炭等の炭、カーボンブラック等の、炭素Cを主成分とする材料)とを一緒にして600~2400℃、好ましくは800~2000℃に加熱し、二酸化ケイ素中の酸素を炭酸ガスCOとして分離・除去することで、純度が99.9%である単結晶シリコン(Si)を生成する還元精錬法が用いられる。なお、二酸化ケイ素SiOと炭素Cとを加熱する際の温度は上記に限定されず、二酸化ケイ素SiOから酸素を炭酸ガスCOとして分離・除去してシリコンを生成することができる温度であればよい。 The reaction material production process is a process using a so-called carbon reduction method, and there are no particular restrictions on the raw materials or reaction conditions used therein. The raw material silicon dioxide preferably has a porous structure, but is not limited thereto, and silicon dioxide such as various commercially available silica powders and crystals, and carbon such as charcoal and carbon black can be used. For example, crystal (silicon dioxide SiO 2 ) and carbon material (for example, charcoal such as charcoal or coal, material whose main component is carbon C such as carbon black) are heated together at 600 to 2400°C, preferably 800 to 2000°C. A reduction refining method is used in which single crystal silicon (Si) with a purity of 99.9% is produced by heating the silicon dioxide to a temperature of 0.degree. C. and separating and removing oxygen in the silicon dioxide as carbon dioxide gas CO2 . Note that the temperature at which silicon dioxide SiO 2 and carbon C are heated is not limited to the above, and may be any temperature that can separate and remove oxygen from silicon dioxide SiO 2 as carbon dioxide gas CO 2 to generate silicon. Bye.

<水溶性ナノコロイドシリカ>
このようにして製造される本発明の水溶性ナノコロイドシリカは、ナトリウムイオン等の残留がほとんどなく、安全な健康飲料として高い効能を有する。本発明はまた、上記のような製造方法で製造された水溶性ナノコロイドシリカを包含する。本発明の水溶性ナノコロイドシリカは負のゼータ電位を示し、その値は好ましくは-10mV~-90mV、より好ましくは-30mV~-80mV、特に好ましくは-40mV~-70mVの範囲内となる。本発明の水溶性ナノコロイドシリカは、上記の負のゼータ電位を有することによってナノコロイドシリカ同士が反発しあうので、沈殿を生じることなく、例えば1年以上の期間にわたって安定した状態を保つことができる。コロイドの粒径は、上記のように5~300nm程度であるが、好ましくは10nm~250nmの範囲とすることができる。本発明の水溶性ナノコロイドシリカはまた、トータル散乱強度や溶解濃度等についても特徴的な物性を示し、シリカ水中のケイ酸イオン濃度を従来のシリカ水と比べて高く、例えば5000mg/L以上とすることも可能である。
<Water-soluble nanocolloidal silica>
The water-soluble nanocolloidal silica of the present invention produced in this way has almost no residual sodium ions, etc., and has high efficacy as a safe health drink. The present invention also includes water-soluble nanocolloidal silica produced by the production method described above. The water-soluble nanocolloidal silica of the present invention exhibits a negative zeta potential, and its value is preferably in the range of -10 mV to -90 mV, more preferably -30 mV to -80 mV, particularly preferably -40 mV to -70 mV. The water-soluble nanocolloidal silica of the present invention has the above-mentioned negative zeta potential, so that nanocolloidal silica particles repel each other, so that it can remain stable for a period of one year or more without precipitation. can. The particle size of the colloid is about 5 to 300 nm as described above, but preferably can be in the range of 10 to 250 nm. The water-soluble nanocolloidal silica of the present invention also exhibits characteristic physical properties such as total scattering intensity and dissolved concentration, and the silicate ion concentration in silica water is higher than that of conventional silica water, for example, 5000 mg/L or more. It is also possible to do so.

本発明の水溶性ナノコロイドシリカはまた、製造後のpHが10~12程度、多くの場合10~11程度、特に11弱程度となっている。こうしたアルカリ性のままで飲用しても胃腸に悪影響を及ぼすことはないが、所望によりpHを9以下、例えば8前後に下げて摂取することも可能である。後記する実施例でも示すように、血中脂質によっては、pHが8程度となるように中和して摂取した方が、低減効果が大となる場合がある。中和に使用する酸に特に制限はなく、酢酸、塩酸、クエン酸等の種々の酸を使用することができるが、特に酢酸が好ましい。汎用の食用酢を使用することもできる。 The water-soluble nanocolloidal silica of the present invention also has a pH of about 10 to 12 after production, in most cases about 10 to 11, particularly about slightly less than 11. Although it does not adversely affect the gastrointestinal tract when drunk in its alkaline state, it is also possible to lower the pH to below 9, for example around 8, and ingest it if desired. As shown in the Examples described below, depending on blood lipids, the reduction effect may be greater if the blood lipids are neutralized to a pH of about 8 and ingested. The acid used for neutralization is not particularly limited, and various acids such as acetic acid, hydrochloric acid, and citric acid can be used, but acetic acid is particularly preferred. You can also use general-purpose edible vinegar.

以下、本発明の水溶性ナノコロイドシリカ製造が通常どのように進められるかについて、典型的な事例を実施例として挙げながら説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, how the production of water-soluble nanocolloidal silica according to the present invention is normally proceeded will be explained using typical examples as examples, but the present invention is not limited to the following examples.

(1)試験例1
本発明に従う水溶性ナノコロイドシリカの製造の最も一般的な態様においては、初めにシリコン単体生成工程(ステップS1)を行う。上記のような還元精錬法により、二酸化ケイ素粉末(粒径:約50~300μm)を炭素と一緒にして例えば500~2500℃、好ましくは500~2400℃に加熱し、酸素を炭酸ガスとして除去してシリコン単体を生成する。次に、生成したシリコン単体をアルカリ反応させて水素の微細気泡を生成するケイ酸イオン生成工程(ステップS2)を行う。ステップS2をpH13程度のアルカリ水溶液中で開始し、長時間、例えば6ヶ月間放置すると、pHが最終的に10程度まで低下し、透明だった液体が白化したコロイド溶液となる。ここで、コロイド溶液のゼータ電位は負の数値であるため、おり等の沈殿物は生じない。
(1) Test example 1
In the most general embodiment of the production of water-soluble nanocolloidal silica according to the present invention, a simple silicon production step (step S1) is first performed. By the reduction refining method as described above, silicon dioxide powder (particle size: approximately 50 to 300 μm) is heated together with carbon to, for example, 500 to 2,500°C, preferably 500 to 2,400°C, and oxygen is removed as carbon dioxide gas. to produce simple silicon. Next, a silicate ion generation step (step S2) is performed in which the generated silicon element is subjected to an alkali reaction to generate fine hydrogen bubbles. Step S2 is started in an alkaline aqueous solution with a pH of about 13, and if left for a long time, for example, 6 months, the pH will eventually drop to about 10, and the transparent liquid will turn into a whitened colloidal solution. Here, since the zeta potential of the colloidal solution is a negative value, no precipitate such as scum is generated.

上記の実施例に従い製造された本発明の水溶性ナノコロイドシリカについて、粒径、ゼータ電位、トータル散乱強度、溶解濃度を分析した結果を以下に示す。 The results of analyzing the particle size, zeta potential, total scattering intensity, and dissolved concentration of the water-soluble nanocolloidal silica of the present invention produced according to the above examples are shown below.

[粒径]
(測定1)
本発明の水溶性ナノコロイドシリカの粒径dについて、動的光散乱法(JIS Z8828:2013)による粒度分布測定を行った。なお、測定1では、測定分析装置として、マルバーン社製ゼータサイザーナノZSと、粒子径測定用ディスポーザブルセルとを用いて測定を行った。また、測定環境については、温度を25.0℃、実測時間を60秒、カウントレートを262.7kcps(count per second)、測定位置を4.65mmとした。
[Particle size]
(Measurement 1)
The particle size d of the water-soluble nanocolloidal silica of the present invention was measured by a dynamic light scattering method (JIS Z8828:2013). In addition, in measurement 1, the measurement was performed using Zetasizer Nano ZS manufactured by Malvern Co., Ltd. and a disposable cell for particle size measurement as a measurement and analysis device. Regarding the measurement environment, the temperature was 25.0° C., the actual measurement time was 60 seconds, the count rate was 262.7 kcps (count per second), and the measurement position was 4.65 mm.

(結果1)
図1は、本発明の水溶性ナノコロイドシリカの粒度分布測定の結果を示す図であり、粒径毎の散乱強度をグラフにしてある。図1に示すように、粒度分布は単一なピークを形成した。このように、本発明の水溶性ナノコロイドシリカでは、粒径dを10~250nm程度の好適な範囲で、ピークが一つにまとまったきれいな粒度分布とすることができる。なお、従来品の粒径は、通常800nm前後であるので、本発明の水溶性ナノコロイドシリカの粒径(250nm以下)は、従来品の粒径の約4分の1以下と、格段に小さいことがわかる。
(Result 1)
FIG. 1 is a diagram showing the results of particle size distribution measurement of water-soluble nanocolloidal silica of the present invention, and is a graph of scattering intensity for each particle size. As shown in FIG. 1, the particle size distribution formed a single peak. As described above, the water-soluble nanocolloidal silica of the present invention can have a particle size d in a suitable range of about 10 to 250 nm, and can have a clean particle size distribution with a single peak. In addition, since the particle size of conventional products is usually around 800 nm, the particle size of the water-soluble nanocolloidal silica of the present invention (250 nm or less) is about one-fourth or less of the particle size of conventional products, which is significantly smaller. I understand that.

[ゼータ電位]
(測定2)
本発明の水溶性ナノコロイドシリカのゼータ電位について、電気泳動法によるゼータ電位測定を行った。測定は複数回行った。
なお、測定2では、測定分析装置として、マルバーン社製ゼータサイザーナノZS(電気泳動法)と、キャピラリーセル(ディスポーザブルゼータ電位測定セル)とを用いて測定を行った。
また、測定環境については、試料を容器ごとよく振り混ぜた後、セルに採取し、n=2でゼータ電位測定を行った。溶媒の屈折率、粘度及び誘電率については、水の測定値に設定した。
[Zeta potential]
(Measurement 2)
The zeta potential of the water-soluble nanocolloidal silica of the present invention was measured by electrophoresis. Measurements were performed multiple times.
In addition, in measurement 2, the measurement was performed using Malvern's Zetasizer Nano ZS (electrophoresis method) and a capillary cell (disposable zeta potential measurement cell) as a measurement and analysis device.
Regarding the measurement environment, the sample was thoroughly shaken and mixed in the container, then collected in a cell, and zeta potential measurement was performed with n=2. The refractive index, viscosity, and dielectric constant of the solvent were set to the measured values for water.

(結果2)
ゼータ電位は、表1に示すように、1回目の測定結果では-52mVとなり、2回目の測定結果では-47mVとなった。このように、本発明の水溶性ナノコロイドシリカのゼータ電位は負の値、例えば-10mV~-90mV、特に-45~55mVを好適な範囲とすることができる。

Figure 2024023263000001
(Result 2)
As shown in Table 1, the zeta potential was -52 mV in the first measurement, and -47 mV in the second measurement. As described above, the zeta potential of the water-soluble nanocolloidal silica of the present invention can be suitably set to a negative value, for example, −10 mV to −90 mV, particularly −45 to 55 mV.
Figure 2024023263000001

[含有元素分析]
図2は、本発明の水溶性ナノコロイドシリカを乾燥させたシリカ粉末を、EDX(エネルギー分散型X線分光法)を用いて含有元素分析を行ったときの結果を示すチャートである。
本発明の水溶性ナノコロイドシリカにおいては、図2に示すように、O(酸素)の含有割合が58.70%、Si(ケイ素)の含有割合が39.61%となっており、その他の微量の含有元素の中に不純物レベルの微量Na(ナトリウムイオン)が含まれる。このように、本発明の水溶性ナノコロイドシリカではNa(ナトリウムイオン)が大量に含有されることがないので、健康飲料としての性能の低下を防ぐとともに、本発明の水溶性ナノコロイドシリカを摂取した者の人体に悪影響を与えることを防ぐことができる。その結果、安全かつ健康飲料として高い効能を有するシリカ水(水溶性ナノコロイドシリカ)を提供することができる。
[Contained elemental analysis]
FIG. 2 is a chart showing the results of elemental analysis of silica powder obtained by drying the water-soluble nanocolloidal silica of the present invention using EDX (energy dispersive X-ray spectroscopy).
In the water-soluble nanocolloidal silica of the present invention, as shown in Figure 2, the content ratio of O (oxygen) is 58.70%, the content ratio of Si (silicon) is 39.61%, and other A trace amount of Na (sodium ion) at an impurity level is included in the trace amount of contained elements. In this way, the water-soluble nanocolloidal silica of the present invention does not contain a large amount of Na (sodium ions), so it prevents the performance as a health drink from deteriorating and makes it easier to consume the water-soluble nanocolloidal silica of the present invention. This can prevent harmful effects on the human body of those who have done so. As a result, it is possible to provide silica water (water-soluble nanocolloidal silica) that is safe and highly effective as a health drink.

ここで、本発明の水溶性ナノコロイドシリカに組成がよく似たものとして、破砕により微粒子化させた水晶(以下「超微細化水晶」と呼ぶ)がある。図3は、超微細化水晶を、EDX(エネルギー分散型X線分光法)を用いて含有元素分析を行ったときの結果を示すチャートである。 Here, as a substance having a composition very similar to the water-soluble nanocolloidal silica of the present invention, there is quartz crystal made into fine particles by crushing (hereinafter referred to as "ultra-fine quartz crystal"). FIG. 3 is a chart showing the results of elemental analysis of ultrafine quartz using EDX (energy dispersive X-ray spectroscopy).

超微細化水晶では、図3に示すように、O(酸素)の含有割合が56.26%、Si(ケイ素)の含有割合が41.05%となっており、その他の微量の含有元素の中に不純物レベルの微量Na(ナトリウムイオン)が含まれる。このため、本発明の水溶性ナノコロイドシリカと同様に、Na(ナトリウムイオン)が大量に含有されることがない。 As shown in Figure 3, the ultra-fine quartz crystal contains 56.26% O (oxygen) and 41.05% Si (silicon), as well as trace amounts of other elements. It contains trace amounts of Na (sodium ions) at the level of impurities. Therefore, similarly to the water-soluble nanocolloidal silica of the present invention, a large amount of Na (sodium ions) is not contained.

しかしながら、超微細化水晶は、水晶を破砕により微粒子化させたものにすぎないため、構造が石英SiOのままとなっている。上述したように、石英(水晶)は不溶性の鉱物であり、微粉末の状態で飲料に混ぜたとしても沈殿してしまう。このため、超微細化水晶は飲料には適さない。 However, since the ultra-fine quartz crystal is simply a quartz crystal made into fine particles by crushing, the structure remains quartz SiO 2 . As mentioned above, quartz is an insoluble mineral, and even if it is mixed into a drink in the form of a fine powder, it will precipitate. For this reason, ultrafine crystals are not suitable for beverages.

図4は、従来のシリカ水に用いられている、苛性ソーダ由来の水ガラス(ケイ酸ナトリウムNaSiO)を原料として合成されたコロイドシリカを乾燥させたシリカ粉末を、EDX(エネルギー分散型X線分光法)を用いて含有元素分析を行ったときの結果を示すチャートである。 Figure 4 shows that silica powder, which is made by drying colloidal silica synthesized from caustic soda-derived water glass (sodium silicate Na 2 SiO 3 ) used in conventional silica water, is processed using EDX (Energy Dispersive X-ray). 3 is a chart showing the results of analysis of contained elements using line spectroscopy.

図4に示されるように、従来品のコロイドシリカでは、Naが10%と高濃度に含有されている。そのため、シリカ水の健康飲料としての性能が低いだけでなく、シリカ水を摂取した者の人体に悪影響を及ぼすおそれもある。 As shown in FIG. 4, the conventional colloidal silica contains Na at a high concentration of 10%. Therefore, not only is the performance of silica water as a health drink low, but there is also a risk that it may have an adverse effect on the human body of those who ingest the silica water.

以上のように、本発明の水溶性ナノコロイドシリカは、従来からあるシリカ水や超微細化水晶とは異なる特別な特徴を有する。本発明の水溶性ナノコロイドシリカはまた、上記の超微細化水晶とは異なり、コロイド溶液の状態で存在しているため、チンダル現象が見られる。つまり、本発明の水溶性ナノコロイドシリカに光を通すと、光が散乱して光の通路が一様に光って見える。 As described above, the water-soluble nanocolloidal silica of the present invention has special characteristics different from conventional silica water and ultrafine crystals. The water-soluble nanocolloidal silica of the present invention also exhibits the Tyndall phenomenon because it exists in the state of a colloidal solution, unlike the ultrafine crystals described above. In other words, when light passes through the water-soluble nanocolloidal silica of the present invention, the light is scattered and the path of the light appears to shine uniformly.

(2)試験例2
[実施例1~4、比較対照例]
以下では、上記のようにして製造された本発明の水溶性ナノコロイドシリカの効果を、ラットを用いて試験した結果について説明する。試験は海外の大学に依頼し、室温24℃、相対湿度40~50%の条件下、本発明の水溶性ナノコロイドシリカ(以下で「シリカ水」と略記する場合がある。ケイ素濃度5660mg/L、pH10.93)を用いて行った。検証・比較のため、該水溶性ナノコロイドシリカの中和品(本発明の水溶性ナノコロイドシリカを白酢で中和したもの、以下で「中和品」と呼ぶ。pH8.05)、蒸留水、シンバスタチン(汎用の脂質異常症治療薬、5%CMC-Na調剤品)を使用した試験も、別途実施した。
体重160±10gの雄ラット56匹を下記の7組にランダムに分け、それぞれに下記の種類及び量の薬剤を、飼料20gと共に毎日胃内投与した。尚、下記の薬剤量はラット1kg当たりの薬剤純分(ケイ素分等)の質量(mg)である。
・1組(参考例):一般飼料+蒸留水
・2組(対照例):高脂飼料+蒸留水
・3組(比較例):高脂飼料+シンバスタチン 1.54mg/kg
・4組(実施例1):高脂飼料+シリカ水 10.94mg/kg
・5組(実施例2):高脂飼料+シリカ水 5.47mg/kg
・6組(実施例3):高脂飼料+シリカ水 2.83mg/kg
・7組(実施例4):高脂飼料+中和品 10.94mg/kg
上記各薬剤を15日間投与した後、さらに15日間飼料なしで水だけ与えた後、血清を採取し、全自動生物化学分析器でTC(トータルコレステロール)、TG(中性脂肪)、LDL-C(悪玉コレステロール)、HDL-C(善玉コレステロール)、AST、及びALT値を測定した。各組の8匹についての測定結果の平均値を、表2に示す。
(2) Test example 2
[Examples 1 to 4, comparative examples]
Below, the results of testing the effects of the water-soluble nanocolloidal silica of the present invention produced as described above using rats will be explained. The test was commissioned to an overseas university, and the water-soluble nanocolloidal silica of the present invention (hereinafter sometimes abbreviated as "silica water") was tested at a room temperature of 24°C and a relative humidity of 40 to 50%. Silicon concentration was 5660 mg/L. , pH 10.93). For verification and comparison, a neutralized product of the water-soluble nanocolloidal silica (water-soluble nanocolloidal silica of the present invention neutralized with white vinegar, hereinafter referred to as "neutralized product", pH 8.05), distilled Separate tests were also conducted using water and simvastatin (general-purpose dyslipidemia treatment, 5% CMC-Na preparation).
Fifty-six male rats weighing 160±10 g were randomly divided into the following seven groups, and drugs of the following type and amount were administered intragastrically to each group daily along with 20 g of feed. Note that the amount of the drug below is the mass (mg) of the pure drug component (silicon component, etc.) per 1 kg of rat.
・1 set (reference example): general feed + distilled water ・2 sets (control example): high-fat feed + distilled water ・3 sets (comparative example): high-fat feed + simvastatin 1.54 mg/kg
・4 groups (Example 1): High fat feed + silica water 10.94mg/kg
・5 groups (Example 2): High fat feed + silica water 5.47mg/kg
・6 groups (Example 3): High fat feed + silica water 2.83mg/kg
・7 groups (Example 4): High-fat feed + neutralized product 10.94 mg/kg
After administering each of the above drugs for 15 days and giving only water without food for another 15 days, serum was collected and analyzed using a fully automatic biochemical analyzer to determine TC (total cholesterol), TG (neutral fat), LDL-C (bad cholesterol), HDL-C (good cholesterol), AST, and ALT values were measured. Table 2 shows the average value of the measurement results for each group of 8 animals.

Figure 2024023263000002
Figure 2024023263000002

表2に示されるように、ラットにシリカ水を投与した実施例1~4ではいずれも、ラットに蒸留水を投与した対照例に比べてトータルコレステロール値、TG、LDL-C、AST、及びALTの値が低くなっており、本発明の水溶性ナノコロイドシリカが血中脂肪低減効果を奏することが判明した。特にTG及びALTに関しては、実施例1~4はいずれも、ラットに汎用の脂質異常症治療薬を投与した比較例と比べても優れた効果が見られ、ALTの値は一般飼料を与えられた参考例と比べても低かった。一方、実施例1~4のHDL-C(善玉コレステロール)値は、対照例や比較例と同等程度以上であった。また、実施例1~4のうち、pHを8程度とした中和品を用いた実施例4では、トータルコレステロール値及びLDL-C値の低減効果、並びにHDL-C値の改善効果が最も高かった。 As shown in Table 2, in Examples 1 to 4 in which rats were administered silica water, the total cholesterol value, TG, LDL-C, AST, and ALT were significantly lower than in the control example in which rats were administered distilled water. It was found that the water-soluble nanocolloidal silica of the present invention has a blood fat reducing effect. In particular, regarding TG and ALT, all of Examples 1 to 4 showed superior effects compared to comparative examples in which rats were administered a general-purpose dyslipidemia drug, and the ALT values were lower than those given the general diet. It was also lower than the reference example. On the other hand, the HDL-C (good cholesterol) values of Examples 1 to 4 were equal to or higher than those of the control examples and comparative examples. Furthermore, among Examples 1 to 4, Example 4, which used a neutralized product with a pH of about 8, had the highest effect of reducing total cholesterol and LDL-C values, as well as improving the HDL-C value. Ta.

[実施例5]
本発明の水溶性ナノコロイドシリカの急性毒性を試験するため、体重20±1.5gの雌雄のマウスを同数用い、シリカ水を経口投与した。試験は海外の大学にて、温度20~23℃、相対湿度70%の条件で行った。
20匹のマウスそれぞれに、上記シリカ水0.77mlを、24時間の間に4回投与した(1匹当たりのケイ素投与量:17.4mg)。1匹も死亡せず、半分致死量ID50の数値は得られなかった。
次に、マウスへの投与量を増やしたが、最大投与量870mg/kg(人間の臨床用量の363倍)でも死亡例が出なかった。
[Example 5]
To test the acute toxicity of the water-soluble nanocolloidal silica of the present invention, silica water was orally administered to equal numbers of male and female mice weighing 20±1.5 g. The test was conducted at an overseas university at a temperature of 20-23°C and a relative humidity of 70%.
0.77 ml of the above silica water was administered to each of the 20 mice four times during 24 hours (silicon dose per mouse: 17.4 mg). Not a single animal died, and a value for the half-lethal dose ID50 could not be obtained.
Next, the dose to mice was increased, but no deaths occurred even at the maximum dose of 870 mg/kg (363 times the human clinical dose).

上記実施例により、本発明に係る水溶性ナノコロイドシリカは、安全でかつ健康飲料として高い効能を有することが示された。 The above examples showed that the water-soluble nanocolloidal silica according to the present invention is safe and highly effective as a health drink.

<水溶性ナノコロイドシリカの用途>
次に、水溶性ナノコロイドシリカを用いるのに好適な種々の用途について以下で説明する。
<Applications of water-soluble nanocolloidal silica>
Various applications suitable for using water-soluble nanocolloidal silica are then described below.

例えば、上述の実施形態では、本発明の水溶性ナノコロイドシリカを飲料として利用することについて説明しているが、本発明の水溶性ナノコロイドシリカは飲料として利用することに限定されない。本発明の水溶性ナノコロイドシリカは、殺菌力、洗浄力、浸透力、消炎力、細胞活性力、抗酸化力、分解力の点等で優れた能力を有するので、これらの能力を生かした様々な用途に用いることができる。 For example, in the above-described embodiments, the use of the water-soluble nanocolloidal silica of the present invention as a beverage is described, but the use of the water-soluble nanocolloidal silica of the present invention is not limited to use as a beverage. The water-soluble nanocolloidal silica of the present invention has excellent abilities in terms of sterilizing power, cleaning power, penetrating power, anti-inflammatory power, cell activation power, antioxidant power, decomposition power, etc., so it can be used in various ways that take advantage of these abilities. It can be used for various purposes.

すなわち、本発明の水溶性ナノコロイドシリカは、レジオネラ菌や大腸菌類を瞬間的に殺菌する殺菌力と、食物の表面に付着し又は内部に浸透した環境汚染物質を洗い流す洗浄力と、25億分の1m(メートル)の単位に細分化可能な浸透力を有する。また、免疫力を強化することで消炎化させる消炎力と、細胞核に直接エネルギーを入核させて細胞を活性化させる細胞活性力とを有する。さらに、血管内の汚れや資質を溶かし去り、血管を修復させる分解力と、腸内の腐敗の進行を止めることで悪玉菌を静菌させ、善玉菌を活性化させて免疫力を強化する抗酸化力とを有する。 In other words, the water-soluble nanocolloidal silica of the present invention has a sterilizing power that instantly sterilizes Legionella bacteria and coliform bacteria, a detergent power that washes away environmental pollutants that have adhered to the surface of food or penetrated into the inside, and has a cleaning power of 2.5 billion minutes. It has a penetrating power that can be subdivided into units of 1 m (meter). It also has an anti-inflammatory power that extinguishes inflammation by strengthening immunity, and a cell activation power that activates cells by directly inputting energy into the cell nucleus. In addition, it has decomposition power that dissolves dirt and substances in blood vessels and repairs blood vessels, and anti-inflammatory properties that stop the progression of putrefaction in the intestines, making bad bacteria bacteriostatic, activating good bacteria, and strengthening immunity. It has oxidizing power.

このように、本発明の水溶性ナノコロイドシリカは、人体の健康に良い効果をもたらすが、さらに以下のような効果をもたらす。すなわち、本発明の水溶性ナノコロイドシリカには、老廃物を排除する効果があるので、便秘、むくみ(水毒)、関節に水が溜まることを解消させることができる。また、ストレス、うつ病、不眠症など、いわば心の毒素を排除する効果も有する。また、肩こり、頭痛、腰痛、めまい、しびれ等を改善させる効果も有する。 As described above, the water-soluble nanocolloidal silica of the present invention not only brings about good effects on human health, but also brings about the following effects. That is, since the water-soluble nanocolloidal silica of the present invention has the effect of eliminating waste products, it can eliminate constipation, swelling (water intoxication), and water accumulation in joints. It also has the effect of eliminating toxins from the mind, such as stress, depression, and insomnia. It also has the effect of improving stiff shoulders, headaches, lower back pain, dizziness, numbness, etc.

また、本発明の水溶性ナノコロイドシリカは、酸化を遅らせる効果を有するので、野菜や果物の洗浄に用いることで、水道水による洗浄よりも野菜や果物の鮮度を維持させることができる。本発明の水溶性ナノコロイドシリカの優れた浸透力により、野菜の内部に浸透した農薬等を除去することもできる。具体的には例えば、本発明の水溶性ナノコロイドシリカと水とを混ぜ合わせた水に、農薬を使用して栽培したミニトマトを浸すと、ミニトマトから農薬が滲み出し、ミニトマトを浸した水が黄色く変色する。 Furthermore, since the water-soluble nanocolloidal silica of the present invention has the effect of delaying oxidation, by using it for washing vegetables and fruits, the freshness of the vegetables and fruits can be maintained better than when washing with tap water. Due to the excellent penetration power of the water-soluble nanocolloidal silica of the present invention, it is also possible to remove agricultural chemicals that have penetrated into the inside of vegetables. Specifically, for example, when cherry tomatoes grown using pesticides are soaked in a mixture of the water-soluble nanocolloidal silica of the present invention and water, the pesticides ooze out from the cherry tomatoes, and the cherry tomatoes are soaked. The water turns yellow.

さらに、魚介類等の生ものに本発明の水溶性ナノコロイドシリカを付着させると、水溶性ナノコロイドシリカを付着させた部分に細菌等が付着しにくくなるので、魚介類等の生ものの鮮度を長い時間維持させることができる。 Furthermore, when the water-soluble nano-colloidal silica of the present invention is attached to perishables such as seafood, bacteria etc. become difficult to adhere to the parts to which the water-soluble nano-colloidal silica is attached, so the freshness of perishables such as seafood is improved. It can be maintained for a long time.

また、本発明の水溶性ナノコロイドシリカは、炊飯や、鍋物や煮物などの料理に用いてもよい。例えば本発明の水溶性ナノコロイドシリカを炊飯に用いた場合、水溶性ナノコロイドシリカの優れた浸透力により、米の内部の酸化物質を除去するので、美味しい米に変化させることができる。また、本発明の水溶性ナノコロイドシリカをコーヒーに加えることにより、苦みがとれて味がまろやかになるという効果も有する。さらに、緑茶を淹れる際に本発明の水溶性ナノコロイドシリカを用いた場合には、水道水で淹れた場合より緑茶の色が濃く出るという効果も有する。このように、本発明の水溶性ナノコロイドシリカは、料理に加えることにより、素材の味が引き出されて美味しくなるという効果を奏する。さらに、本発明の水溶性ナノコロイドシリカは、油分を分解してくれるので、味だけではなく料理をヘルシーに仕上げる効果を奏する。 Furthermore, the water-soluble nanocolloidal silica of the present invention may be used for cooking rice, hot pot dishes, simmered dishes, and other dishes. For example, when the water-soluble nanocolloidal silica of the present invention is used for cooking rice, the excellent penetrating power of the water-soluble nanocolloidal silica removes oxidized substances from inside the rice, resulting in delicious rice. Furthermore, by adding the water-soluble nanocolloidal silica of the present invention to coffee, it has the effect of removing bitterness and making the taste mellow. Furthermore, when the water-soluble nanocolloidal silica of the present invention is used when brewing green tea, there is also the effect that the color of the green tea appears darker than when brewing with tap water. In this way, the water-soluble nanocolloidal silica of the present invention has the effect of bringing out the flavor of the ingredients and making them more delicious when added to dishes. Furthermore, since the water-soluble nanocolloidal silica of the present invention decomposes oil, it not only improves the taste but also has the effect of making dishes healthier.

本発明の水溶性ナノコロイドシリカは、人間の食事以外にも効果がある。例えば犬や猫等のペット用の飲料水や食べ物に水溶性ナノコロイドシリカを数滴加えたり、薄めた水溶性ナノコロイドシリカをペットの身体にスプレーすることにより、毛並が良くなる効果や、体臭を抑える効果を奏する。 The water-soluble nano-colloidal silica of the present invention has benefits beyond human diet. For example, by adding a few drops of water-soluble nanocolloidal silica to the drinking water or food of pets such as dogs and cats, or spraying diluted water-soluble nanocolloidal silica on the pet's body, you can improve the coat's coat and improve body odor. It has the effect of suppressing

また、人間やペット等の動物に限らず、植物にも効果がある。例えば、観葉植物の注水の際に本発明の水溶性ナノコロイドシリカを使用することにより、観葉植物の新鮮さを維持させ、寿命を延ばすことができる。また、生花の場合には、開花期間を長くすることができる。 Moreover, it is effective not only for humans and animals such as pets, but also for plants. For example, by using the water-soluble nanocolloidal silica of the present invention when watering houseplants, it is possible to maintain the freshness of the houseplants and extend their lifespan. Moreover, in the case of fresh flowers, the flowering period can be extended.

さらに、本発明の水溶性ナノコロイドシリカは、アルコール分解能力に優れているので、二日酔いにも効果がある。また、本発明の水溶性ナノコロイドシリカは、活性酸素を除去する効果を有するので美容効果もある。例えばスプレーによるスキンケアを行うことで水溶性ナノコロイドシリカの美容成分を効果的に肌に浸透させることができる。なお、水溶性ナノコロイドシリカの原液を皮膚へ直接塗り込むことで、しみ、しわ、ニキビ、吹き出物を効果的に除去することもできる。 Furthermore, the water-soluble nanocolloidal silica of the present invention has an excellent ability to decompose alcohol, and is therefore effective against hangovers. Furthermore, the water-soluble nanocolloidal silica of the present invention has the effect of removing active oxygen, and therefore has a cosmetic effect. For example, by performing skin care with a spray, the beauty ingredient of water-soluble nanocolloidal silica can be effectively penetrated into the skin. Furthermore, stains, wrinkles, acne, and pimples can be effectively removed by applying the undiluted solution of water-soluble nanocolloidal silica directly to the skin.

また、本発明の水溶性ナノコロイドシリカを歯磨きに使用すると、ケイ素の吸着効果により、歯に付着した茶渋やヤニを除去することができるとともに、歯周病、歯肉炎、知覚過敏を解消することもできる。 In addition, when the water-soluble nanocolloidal silica of the present invention is used for tooth brushing, it can remove tea stains and tar adhering to the teeth due to its silicon adsorption effect, and also eliminate periodontal disease, gingivitis, and hypersensitivity. You can also do it.

さらに、本発明の水溶性ナノコロイドシリカは、農業分野、漁業分野、医療分野等で利用することもできる。農業分野では肥料として水溶性ナノコロイドシリカを利用することができ、漁業分野では飼料として水溶性ナノコロイドシリカを利用することができる。 Furthermore, the water-soluble nanocolloidal silica of the present invention can also be used in the agricultural field, fishery field, medical field, etc. Water-soluble nano-colloidal silica can be used as fertilizer in the agricultural field, and water-soluble nano-colloidal silica can be used as feed in the fishing field.

医療分野では、患者に本発明の水溶性ナノコロイドシリカを摂取させることにより、アトピー、花粉症、喘息、脳梗塞、心筋梗塞、腎不全(尿毒症)等を改善させる効果を有する。さらに、水溶性ナノコロイドシリカを前立腺がん、子宮がん、大腸がん等のがんの治療に利用することもできる。具体的には例えば、近赤外線によるがん免疫治療(米国立がん研究所 小林久隆 主任研究員が開発)に水溶性ナノコロイドシリカを利用することができる。この治療では、がん細胞にのみ特異的に結合する抗体に、近赤外線により化学反応を起こす色素であるフタロシアニンを付着させ、患者の体内に静脈注射する。本来、フタロシアニンは水溶性でないため、患者の体内に入れることができないが、フタロシアニンに本発明の水溶性ナノコロイドシリカを入れることにより水溶性に変化する。体内に入った抗体はがん細胞と結合するので、この結合部分に近赤外線の光が照射されると、化学反応を起こしてがん細胞を破壊する。また、本発明の水溶性ナノコロイドシリカを単独でがん治療に利用することもできる。具体的には、本発明の水溶性ナノコロイドシリカによりがん細胞内のミトコンドリアが活性化され、ミトコンドリア内に酵素(チトクロムC)が生成される。酵素(チトクロムC)は、がん細胞内でアポトーシス(自殺)を引き起こすたんぱく質分解酵素(カスパーゼ)の働きを活発化させる。これにより、がん細胞のDNA(デオキシリボ核酸)にアポトーシスの変性が生じ、がん細胞の消滅が始まる。本発明の水溶性ナノコロイドシリカはまた、粒径が小さいので、人工透析等においても使用することができる。 In the medical field, by having patients ingest the water-soluble nanocolloidal silica of the present invention, it has the effect of improving atopy, hay fever, asthma, cerebral infarction, myocardial infarction, renal failure (uremia), etc. Furthermore, water-soluble nanocolloidal silica can also be used to treat cancers such as prostate cancer, uterine cancer, and colon cancer. Specifically, for example, water-soluble nanocolloidal silica can be used in near-infrared ray-based cancer immunotherapy (developed by Hisataka Kobayashi, Principal Researcher at the National Cancer Institute). In this treatment, phthalocyanine, a dye that causes a chemical reaction when exposed to near-infrared rays, is attached to antibodies that specifically bind to cancer cells, and then injected intravenously into the patient's body. Originally, phthalocyanine cannot be introduced into a patient's body because it is not water-soluble, but by adding the water-soluble nanocolloidal silica of the present invention to phthalocyanine, it becomes water-soluble. Antibodies that enter the body bind to cancer cells, and when this bond is irradiated with near-infrared light, a chemical reaction occurs and destroys the cancer cells. Moreover, the water-soluble nanocolloidal silica of the present invention can also be used alone for cancer treatment. Specifically, the water-soluble nanocolloidal silica of the present invention activates mitochondria within cancer cells, and enzymes (cytochrome C) are produced within the mitochondria. The enzyme (cytochrome C) activates the function of proteolytic enzymes (caspases) that cause apoptosis (suicide) within cancer cells. As a result, apoptotic degeneration occurs in the DNA (deoxyribonucleic acid) of cancer cells, and the cancer cells begin to disappear. Since the water-soluble nanocolloidal silica of the present invention has a small particle size, it can also be used in artificial dialysis and the like.

以上のように、本発明の水溶性ナノコロイドシリカはナトリウムイオンの大量残留を伴わず、また、長期間沈殿しない利点がある。本発明によって、安全かつ健康飲料として高い効能を有するシリカ水を提供することが可能となった。
As described above, the water-soluble nanocolloidal silica of the present invention has the advantage of not leaving a large amount of sodium ions and not precipitating for a long period of time. The present invention has made it possible to provide silica water that is safe and highly effective as a healthy drink.

Claims (6)

少なくともシリコン単体からなる表面をもつ被反応材料をアルカリ反応させて、水素の微細気泡を発生させながらケイ酸イオンを生成するケイ酸イオン生成工程を含むことを特徴とする水溶性ナノコロイドシリカの製造方法。 Production of water-soluble nanocolloidal silica characterized by including a silicate ion generation step of causing a reactant material having a surface made of at least silicon to undergo an alkali reaction to generate silicate ions while generating microscopic hydrogen bubbles. Method. 前記ケイ酸イオン生成工程の前に、二酸化ケイ素と炭素とを加熱して、前記二酸化ケイ素の少なくとも表面を、炭素と反応させて、発生した炭酸ガスを除去するとともに前記シリコン単体に還元して前記被反応材料を作製する被反応材料作製工程をさらに含む、請求項1に記載の水溶性ナノコロイドシリカの製造方法。 Before the silicate ion generation step, silicon dioxide and carbon are heated to cause at least the surface of the silicon dioxide to react with the carbon, and the generated carbon dioxide gas is removed and the silicon dioxide is reduced to the simple substance. The method for producing water-soluble nanocolloidal silica according to claim 1, further comprising a step of producing a reactant material. 前記二酸化ケイ素は、多孔質構造を有する請求項2に記載の水溶性ナノコロイドシリカの製造方法。 The method for producing water-soluble nanocolloidal silica according to claim 2, wherein the silicon dioxide has a porous structure. 請求項1から3までのいずれか1項に記載の製造方法により製造された水溶性ナノコロイドシリカであって、
ゼータ電位が負であることを特徴とする水溶性ナノコロイドシリカ。
Water-soluble nanocolloidal silica produced by the production method according to any one of claims 1 to 3,
A water-soluble nanocolloidal silica characterized by a negative zeta potential.
ゼータ電位が-10mV~-90mVである請求項4に記載の水溶性ナノコロイドシリカ。 The water-soluble nanocolloidal silica according to claim 4, which has a zeta potential of -10 mV to -90 mV. 粒径が5nm~300nmの範囲である請求項4または5に記載の水溶性ナノコロイドシリカ。 The water-soluble nanocolloidal silica according to claim 4 or 5, having a particle size in the range of 5 nm to 300 nm.
JP2023191562A 2019-02-19 2023-11-09 Method for producing water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica Pending JP2024023263A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019027411 2019-02-19
JP2019027411 2019-02-19
PCT/JP2020/006600 WO2020171132A1 (en) 2019-02-19 2020-02-19 Production method of water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica
JP2021502100A JP7388750B2 (en) 2019-02-19 2020-02-19 Method for producing water-soluble nanocolloidal silica for ingestion by animals and plants, and water-soluble nanocolloidal silica for ingestion by animals and plants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021502100A Division JP7388750B2 (en) 2019-02-19 2020-02-19 Method for producing water-soluble nanocolloidal silica for ingestion by animals and plants, and water-soluble nanocolloidal silica for ingestion by animals and plants

Publications (1)

Publication Number Publication Date
JP2024023263A true JP2024023263A (en) 2024-02-21

Family

ID=72143687

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021502100A Active JP7388750B2 (en) 2019-02-19 2020-02-19 Method for producing water-soluble nanocolloidal silica for ingestion by animals and plants, and water-soluble nanocolloidal silica for ingestion by animals and plants
JP2023191562A Pending JP2024023263A (en) 2019-02-19 2023-11-09 Method for producing water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021502100A Active JP7388750B2 (en) 2019-02-19 2020-02-19 Method for producing water-soluble nanocolloidal silica for ingestion by animals and plants, and water-soluble nanocolloidal silica for ingestion by animals and plants

Country Status (2)

Country Link
JP (2) JP7388750B2 (en)
WO (1) WO2020171132A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348681B1 (en) 2022-04-04 2023-09-21 株式会社 life park. biz Method for producing water-soluble silicon solution

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614995A (en) * 1951-06-13 1952-10-21 Du Pont Silica sols and preparation thereof from metallic silicon
US4309216A (en) * 1980-03-26 1982-01-05 Union Carbide Corporation Low density compacts of prepared mix for use in the production of silicon and ferrosilicon
JPS61117110A (en) * 1984-11-07 1986-06-04 Kawasaki Steel Corp Process and apparatus for preparing metallic silicon
DE102006049526A1 (en) 2006-10-20 2008-04-24 Evonik Degussa Gmbh Stable aqueous dispersions of silica
WO2008072637A1 (en) 2006-12-12 2008-06-19 Fuso Chemical Co. Ltd. Method for producing colloidal silica
JP2010052951A (en) 2008-08-26 2010-03-11 Central Glass Co Ltd Method for producing silicon
JP5479986B2 (en) 2010-04-15 2014-04-23 古河電気工業株式会社 Surface-controlled laminated silica nanoparticles and method for producing the same
JP6203672B2 (en) 2013-03-29 2017-09-27 株式会社アドマテックス Three-dimensional mounting type semiconductor device, resin composition and manufacturing method thereof

Also Published As

Publication number Publication date
JP7388750B2 (en) 2023-11-29
WO2020171132A1 (en) 2020-08-27
JPWO2020171132A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP7462868B2 (en) Composition containing lactic acid bacteria production substance, method for producing equol, and method for producing composition containing lactic acid bacteria production substance
ES2217790T3 (en) LIQUID COMPOSITIONS CONTAINING QUITOSAN AND METHODS FOR PREPARATION AND USE.
JP2024023263A (en) Method for producing water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica
KR20150065452A (en) Manufacturing Method of Antibiosis Soap Containing Xinc Oxide of Nano Size and Antibiosis Soap Thereof
KR101331501B1 (en) Preparation of seaweed noodle
JP6112308B2 (en) Bitter taste masking ingredients and bitter taste masking method
KR100378831B1 (en) Method of making foods with salicornia herbacea l.
CN113272255B (en) Silicon ion complex organized with carboxylic acid, method for preparing the same, and product using the same
CN103141603B (en) Brown rice tea and preparation method thereof
CN1916064B (en) Dry powder of gelatinous polysaccharide of aloe, producing method and preparation
KR100993571B1 (en) Process for preparation of mineral-containing water and mineral-containing water prepared by the same
KR101917180B1 (en) Method of manufacturing silica based food additive
JP2006271235A (en) Beauty and health beverage, and method for producing the same
KR20170060196A (en) Meat sauce using fermented rice bran products and manufacturing method thereby
CN100515233C (en) Sea cucumber milk product and its preparation method
JP2013013390A (en) Bitterness-masking ingredient and bitterness-masking method
JP2021185855A (en) Functional edible charcoal and method for producing hydrogen powder
KR101285973B1 (en) Method of green-lipped mussel Denjang
CN109288041A (en) A kind of Moringa composite fluid preparation and preparation method
JP7463687B2 (en) Charcoal-containing composition
Asouzu et al. Rheology and acceptance of pap (Zea mays) enriched with Jatropha carcus Leaves to improve iron status in children
JP2012528586A (en) Zeolite-containing food
CN109198339A (en) A kind of krill fat beverage
JP2006169184A (en) Method for producing black silica microparticle colloid water emitting far-infrared ray
RU2482698C1 (en) Composition for preparation of alcohol-free jelly beverage

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240325