JP2010052951A - Method for producing silicon - Google Patents

Method for producing silicon Download PDF

Info

Publication number
JP2010052951A
JP2010052951A JP2008216224A JP2008216224A JP2010052951A JP 2010052951 A JP2010052951 A JP 2010052951A JP 2008216224 A JP2008216224 A JP 2008216224A JP 2008216224 A JP2008216224 A JP 2008216224A JP 2010052951 A JP2010052951 A JP 2010052951A
Authority
JP
Japan
Prior art keywords
sio
particles
silicon
substance containing
combustion flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008216224A
Other languages
Japanese (ja)
Inventor
Naoki Mitamura
直樹 三田村
Tatsuya Tsuzuki
都築  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2008216224A priority Critical patent/JP2010052951A/en
Publication of JP2010052951A publication Critical patent/JP2010052951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for producing high purity silicon that can be industrially and inexpensively produced. <P>SOLUTION: The production method of silicon is characterized by supplying mixture particles consisting of particles of a substance containing SiO<SB>2</SB>or SiO and particles of a substance containing C into the center part of a combustion flame nozzle forming oxygen combustion flame so as to reduce the SiO<SB>2</SB>or SiO. The method is also characterized by that the fine mixture particles have diameters of from 50 to 500 μm and the particles are instantaneously burned by oxygen to vaporize impurities. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、SiOを原料として、高純度の金属シリコンを製造する方法に関するものである。 The present invention relates to a method for producing high-purity metallic silicon using SiO 2 as a raw material.

近年、半導体や太陽電池などの普及により、その主要な材料であるシリコンの需要は拡大している。シリコンは、珪石とコークスを混合し、カーボン電極のアークにより溶解還元して製造される。この製造法は電力消費量が大きいこと、ある程度純度の高いシリコンを得るためには純度の高い珪石が必要なことから、産地が限定される。この製造法は以下のような反応による。   In recent years, with the spread of semiconductors and solar cells, the demand for silicon, which is the main material, has been increasing. Silicon is produced by mixing silica and coke, and dissolving and reducing the carbon electrode arc. This manufacturing method has a large power consumption, and high purity silica is necessary to obtain silicon with a certain degree of purity, so the production area is limited. This production method is based on the following reaction.

SiO + 2C → Si + 2CO または、
2SiO + 2C → 2Si + 2CO
この製造法の電力消費量が大きいのは、以下の理由による。すなわち、珪石自身は溶融状態でも導電性が殆どないため、アークによる溶解が効率良く進行せず、実際は珪石と混合したコークスが電極と放電し、コークスの温度上昇で間接的に珪石が加熱されるため、珪石を溶解するのに非常に高いエネルギーを投入する必要がある。さらに導電性は、原料珪石の純度が高いほど低くなるので、最近の高純度化の需要により、ますます電力消費量が大きくなるという問題がある。
SiO 2 + 2C → Si + 2CO or
2SiO 2 + 2C → 2Si + 2CO 2
The reason for the large power consumption of this manufacturing method is as follows. In other words, since the silica itself has almost no electrical conductivity even in the molten state, melting by the arc does not proceed efficiently, and actually, the coke mixed with the silica discharges with the electrode, and the silica is indirectly heated by the temperature increase of the coke. Therefore, it is necessary to input very high energy to dissolve the silica. Furthermore, since the conductivity becomes lower as the purity of the raw material silica is higher, there is a problem that the power consumption is increased more and more due to the recent demand for high purity.

この問題を解決するために、最近ではハロゲン化シランを金属によって還元する方法(特許文献1参照)、SiOを電解還元する方法(特許文献2参照)、あるいは酸素濃度や温度の反応条件を最適化する方法(特許文献3参照)等が提案されている。
特開2008−156208号公報 特開2006−321688号公報 特開2008−69064号公報
In order to solve this problem, recently, a method of reducing a halogenated silane with a metal (see Patent Document 1), a method of electrolytic reduction of SiO 2 (see Patent Document 2), or a reaction condition of oxygen concentration and temperature is optimized. And the like (see Patent Document 3) and the like have been proposed.
JP 2008-156208 A JP 2006-321688 A JP 2008-69064 A

例えば上記の特開2008−156208号公報に記載されているような、ハロゲン化シランを原料とするものは、ハロゲン化シランの原料に、既存の溶解還元によるシリコンを使用するものである。従ってこれらの方法は、シリコンの高純度化というべきであり、問題の解決にはなっていない。   For example, as described in the above-mentioned Japanese Patent Application Laid-Open No. 2008-156208, a material using a halogenated silane as a raw material uses silicon existing by dissolution and reduction as a raw material for the halogenated silane. Therefore, these methods should be high purity of silicon and do not solve the problem.

また、上記特開2006−321688号公報に記載のものは、陰極に粗シリコンを用いて、陽極に高純度シリコンを析出するものであり、上記特開2008−156208号公報記載のものと同じ問題があるばかりか、バッチ式となり大量生産には向かない。   Further, the one described in JP-A-2006-321688 uses crude silicon for the cathode and deposits high-purity silicon on the anode, which is the same problem as that described in JP-A-2008-156208. In addition, there is a batch type that is not suitable for mass production.

さらに、特開2008−69064号公報に記載されているものは、極端に低い酸素分圧下で微粒子化したシリカを還元するものであり、簡易な方法とは言い難い。   Furthermore, what is described in Japanese Patent Application Laid-Open No. 2008-69064 is to reduce the finely divided silica under an extremely low oxygen partial pressure, and is not a simple method.

このように、シリコンの需要が高まっているのにもかかわらず、簡易で純度の高いシリコンを生産する方法は未だに得られていないのが現状である。   Thus, in spite of the increasing demand for silicon, a simple method for producing high-purity silicon has not yet been obtained.

本発明は、SiOまたはSiOを含有する物質の粒子と、Cを含有する物質の粒子からなる混合粒子を、酸素燃焼炎を形成する燃焼炎ノズル中央部に供給することで、SiOまたはSiOを還元することを特徴とするシリコンの製造方法である。 The present invention supplies mixed particles composed of particles of a substance containing SiO 2 or SiO and particles of a substance containing C to the center of a combustion flame nozzle that forms an oxyfuel flame, so that SiO 2 or SiO This is a method for producing silicon, characterized in that the above is reduced.

また、上記微細混合粒子の径が50〜500μmであることを特徴とする上記のシリコンの製造方法である。   Further, in the above silicon production method, the fine mixed particles have a diameter of 50 to 500 μm.

さらに、SiOまたはSiOを含有する物質の粒子を瞬間的に酸素燃焼することで、不純物を蒸発させることを特徴とする、上記のシリコンの製造方法である。 Furthermore, the silicon manufacturing method is characterized in that the impurities are evaporated by instantaneously oxygen burning the particles of the substance containing SiO 2 or SiO 2 .

本発明によれば、大量の電力を消費せずに、SiOから純度の高いシリコンを連続でかつ効率的に製造することが可能となる。 According to the present invention, it is possible to continuously and efficiently manufacture high-purity silicon from SiO 2 without consuming a large amount of power.

図1は、本発明を実施するのに用いる装置の基本的な構成の一例であり、SiOまたはSiOを含有する物質の粒子と、Cを含有する物質の粒子からなる混合粒子を燃焼炎ノズル2の中央部の原料供給口3から連続的に供給し、1500〜3000℃の酸素燃焼炎4を通過させる。この酸素燃焼炎を通過する間にSiOは瞬時にC分と反応・還元されるためシリコンが生成し、そしてその生成シリコン6を排出口5より連続的に取り出すことができる。 FIG. 1 is an example of a basic configuration of an apparatus used for carrying out the present invention, and a combustion flame nozzle is formed by mixing mixed particles composed of particles of a substance containing SiO 2 or SiO and particles of a substance containing C. 2 is continuously supplied from the raw material supply port 3 at the center of 2 and the oxyfuel flame 4 at 1500 to 3000 ° C. is passed through. While passing through the oxygen combustion flame, SiO 2 is instantaneously reacted / reduced with the C component, so that silicon is generated, and the generated silicon 6 can be continuously taken out from the discharge port 5.

ここで、原料となる微細混合粒子の径は50〜500μmとし、形成される混合粒子毎で変動が少なく、均一な粒子構成になることが望ましい。混合粒子が50μm未満ではSiOまたはSiOを含有する物質の粒子と、Cを含有する物質の粒子の粉砕に多大な時間やコストがかかるため望ましくない。また500μmを超えると、混合粒子の原料供給時の空気搬送が困難となり、また酸素燃焼炎中での還元効率が悪くなるため好ましくない。より好ましくは100〜300μmである。 Here, it is desirable that the fine mixed particles used as a raw material have a diameter of 50 to 500 μm and have a uniform particle structure with little variation for each mixed particle to be formed. If the mixed particles are less than 50 μm, it is not desirable because it takes a lot of time and cost to grind the particles of the substance containing SiO 2 or SiO and the particles of the substance containing C. On the other hand, if it exceeds 500 μm, it is difficult to carry the air when the mixed particles are supplied, and the reduction efficiency in the oxyfuel flame is deteriorated. More preferably, it is 100-300 micrometers.

SiOまたはSiOを含有する物質としては、天然原料である珪石や珪砂、あるいは合成シリカ、ケイ酸塩などSiOまたはSiO分を含有していれば問題ない。またこの粒子の径は1〜400μmとする。1μm未満では粒子の粉砕に多大な時間やコストがかかるため望ましくない。また400μmを超えると酸素燃焼炎中での還元が難しくなるため好ましくない。より好ましくは、5〜250μmである。 As a substance containing SiO 2 or SiO, there is no problem as long as it contains SiO 2 or SiO content such as silica or silica sand, which is a natural raw material, or synthetic silica or silicate. The diameter of the particles is 1 to 400 μm. If it is less than 1 μm, it is not desirable because it takes much time and cost to pulverize the particles. Moreover, since it will become difficult to reduce | restore in an oxygen combustion flame when it exceeds 400 micrometers, it is unpreferable. More preferably, it is 5-250 micrometers.

Cを含有する物質の粒子としては、カーボン、セルロースパウダーなど他の物質を還元する物質であれば良く、また高温でSiOまたはSiOを還元するようなSiCでも問題無い。またこの粒子の径は50〜400μmとする。50μm未満では粒子の粉砕に多大な時間やコストがかかる上に、酸素燃焼炎中でSiOまたはSiOを還元できずにすぐに燃焼してしまうため望ましくない。また400μmを超えると酸素燃焼炎中での効率良い還元が難しくなるため好ましくない。より好ましくは、50〜250μmである。 As the particles of the substance containing C, any substance that reduces other substances such as carbon and cellulose powder may be used, and there is no problem with SiC that reduces SiO 2 or SiO at a high temperature. The diameter of the particles is 50 to 400 μm. If it is less than 50 μm, it takes a lot of time and cost to pulverize the particles, and SiO 2 or SiO cannot be reduced in the oxyfuel combustion flame and burns immediately, which is not desirable. Moreover, since it will become difficult to perform efficient reduction | restoration in an oxyfuel flame when it exceeds 400 micrometers, it is unpreferable. More preferably, it is 50-250 micrometers.

さらに、前記粒子を粒状に成形して微細混合粒子を調製する方法としては、スプレードライ法などの方法が使用でき、各粒子を分散溶解させた水溶液を高温奮起中に噴霧させて瞬間的に乾燥固化させる方法が好ましい。   Furthermore, as a method for preparing finely mixed particles by forming the particles into granules, a method such as a spray drying method can be used, and an aqueous solution in which each particle is dispersed and dissolved is sprayed during high-temperature stimulation and dried instantaneously. A solidification method is preferred.

酸素燃焼においては、火炎温度が好ましくはSiOまたはSiOが還元されやすくなる1800℃以上で、かつ生成したシリコンが出来る限り揮発しないようにシリコンの沸点2300℃以下になるように燃焼量などを調整する必要があり、また燃焼における酸素比は0.80〜1.20、SiOまたはSiOの還元効率や生成したシリコンの酸化を考慮して好ましくは0.90〜1.10程度にする。 In oxyfuel combustion, the amount of combustion is adjusted so that the flame temperature is preferably 1800 ° C. or higher at which SiO 2 or SiO is easily reduced, and the boiling point of silicon is 2300 ° C. or lower so that the generated silicon is not volatilized as much as possible. Further, the oxygen ratio in combustion is preferably 0.80 to 1.20, and preferably about 0.90 to 1.10 in consideration of the reduction efficiency of SiO 2 or SiO and the oxidation of the generated silicon.

還元され生成したシリコンは、融点以上である火炎内で液体状態となり、このときB、C、P等の不純物は、酸化生成物の蒸気圧が高く蒸発する。これにより、純度の高いシリコンを得ることが出来る。   The silicon produced by reduction is in a liquid state in a flame having a melting point or higher. At this time, impurities such as B, C, and P evaporate because the vapor pressure of the oxidation product is high. Thereby, high purity silicon can be obtained.

燃焼に使用する燃料はLNG、LPGや灯油などいずれでも良い。しかし、先に述べたように多くの不純物が蒸発されて除かれるとはいえ、生成したシリコンに出来る限り不純物が移行しないように、燃料中にはB、C、Pなどの不純物が少ない方が望ましい。   The fuel used for combustion may be LNG, LPG, kerosene, or the like. However, as described above, although many impurities are evaporated and removed, it is preferable that the fuel has less impurities such as B, C, and P so that the impurities are not transferred to the generated silicon as much as possible. desirable.

本発明の実施形態に係るシリコンの製造装置の模式縦断面図である。It is a model longitudinal cross-sectional view of the manufacturing apparatus of the silicon | silicone which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 炉体
2 燃焼炎ノズル
3 原料供給口
4 酸素燃焼炎
5 生成シリコン排出口
6 生成シリコン
1 Furnace
2 Combustion flame nozzle
3 Raw material supply port
4 Oxyfuel flame
5 Generated silicon outlet
6 Generated silicon

Claims (3)

SiOまたはSiOを含有する物質の粒子と、Cを含有する物質の粒子からなる混合粒子を、酸素燃焼炎を形成する燃焼炎ノズル中央部に供給することで、SiOまたはSiOを還元することを特徴とするシリコンの製造方法。 And particles of material containing SiO 2 or SiO, mixed particles consisting of particles of materials containing C, by supplying to the combustion flame nozzle central portion forming the oxygen combustion flame, reducing the SiO 2 or SiO A method for producing silicon, characterized by: 前記混合粒子の径が50〜500μmであることを特徴とする請求項1に記載のシリコンの製造方法。 The method for producing silicon according to claim 1, wherein the mixed particles have a diameter of 50 to 500 μm. SiOまたはSiOを含有する物質の粒子を瞬間的に酸素燃焼することで、不純物を蒸発させることを特徴とする、請求項1または2に記載のシリコンの製造方法。
3. The method for producing silicon according to claim 1, wherein impurities are evaporated by instantaneously oxygen-combusting particles of a substance containing SiO 2 or SiO 2. 4 .
JP2008216224A 2008-08-26 2008-08-26 Method for producing silicon Pending JP2010052951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216224A JP2010052951A (en) 2008-08-26 2008-08-26 Method for producing silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216224A JP2010052951A (en) 2008-08-26 2008-08-26 Method for producing silicon

Publications (1)

Publication Number Publication Date
JP2010052951A true JP2010052951A (en) 2010-03-11

Family

ID=42069267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216224A Pending JP2010052951A (en) 2008-08-26 2008-08-26 Method for producing silicon

Country Status (1)

Country Link
JP (1) JP2010052951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422856A (en) * 2020-04-03 2020-07-17 常州富烯科技股份有限公司 Method for flame reduction of graphene oxide film and preparation method of graphene film
WO2020171132A1 (en) * 2019-02-19 2020-08-27 有限会社南日本ウェルネス Production method of water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921516A (en) * 1982-07-24 1984-02-03 Nippon Steel Corp Manufacture of silicon
JPS60251113A (en) * 1984-05-23 1985-12-11 Daido Steel Co Ltd Process and device for preparing silicon
JPS616114A (en) * 1984-06-20 1986-01-11 Kawasaki Steel Corp Process and apparatus for preparing metallic silicon
JPS63129009A (en) * 1986-11-17 1988-06-01 Nippon Sheet Glass Co Ltd Production of metallic silicon
JP2001089130A (en) * 1999-09-14 2001-04-03 Denki Kagaku Kogyo Kk Production of fine spherical silica powder
JP2009078937A (en) * 2007-09-26 2009-04-16 Daido Steel Co Ltd Apparatus for manufacturing metallic silicon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921516A (en) * 1982-07-24 1984-02-03 Nippon Steel Corp Manufacture of silicon
JPS60251113A (en) * 1984-05-23 1985-12-11 Daido Steel Co Ltd Process and device for preparing silicon
JPS616114A (en) * 1984-06-20 1986-01-11 Kawasaki Steel Corp Process and apparatus for preparing metallic silicon
JPS63129009A (en) * 1986-11-17 1988-06-01 Nippon Sheet Glass Co Ltd Production of metallic silicon
JP2001089130A (en) * 1999-09-14 2001-04-03 Denki Kagaku Kogyo Kk Production of fine spherical silica powder
JP2009078937A (en) * 2007-09-26 2009-04-16 Daido Steel Co Ltd Apparatus for manufacturing metallic silicon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171132A1 (en) * 2019-02-19 2020-08-27 有限会社南日本ウェルネス Production method of water-soluble nanocolloidal silica, and water-soluble nanocolloidal silica
JPWO2020171132A1 (en) * 2019-02-19 2020-08-27
JP7388750B2 (en) 2019-02-19 2023-11-29 有限会社南日本ウェルネス Method for producing water-soluble nanocolloidal silica for ingestion by animals and plants, and water-soluble nanocolloidal silica for ingestion by animals and plants
CN111422856A (en) * 2020-04-03 2020-07-17 常州富烯科技股份有限公司 Method for flame reduction of graphene oxide film and preparation method of graphene film

Similar Documents

Publication Publication Date Title
CN103833035B (en) Preparation method of silicon carbide
JP2018510231A (en) Carbon black generation system
RU2195427C1 (en) Method and device for production of amorphous silica from silicon and silicon-containing materials
JP5363397B2 (en) Method for producing silicon / silicon carbide composite fine particles
JP6559118B2 (en) Nickel powder
NO157553B (en) PROCEDURE AND DEVICE FOR HEATING A FLUIDIZED LAYER BY INFLATION OF PLASMA, FOR USE BY SYNTHESIS OF NITROGEN OXIDES, GASATING A CARBON-CONTAINING MATERIAL AND REDUCTION OF ORE.
TW201118204A (en) Purification method of metallurgical grade silicon
CN105883812A (en) Process for producing silicon carbide through microwave sintering
CN102917980A (en) Method for recovering silicon and method for producing silicon
JP2010052951A (en) Method for producing silicon
JP2011006316A (en) Method of manufacturing metal silicon
EP1340714A2 (en) Method for manufacturing carbon nanotubes
JP2012246203A (en) Method for manufacturing spherical titanium oxide particle
JP3961007B2 (en) Method and apparatus for producing silica fine powder
RU2327639C2 (en) Method of producing high purity silicon
TWI471266B (en) Method for manufacturing carbide fine particles
CN101673781A (en) Method for preparing solar cell polysilicon raw material from rice hulls
JP5134474B2 (en) Method for producing spherical particles
JPS63147812A (en) Production of silicon carbide powder
TWI766802B (en) Method for manufacturing metal silicon from amorphous silica
CN205527775U (en) System for preparation carbide
JPH10168337A (en) Production of carbon black
JP5811002B2 (en) Method and apparatus for producing SiO using hollow carbon electrode
JPH1112486A (en) Production of carbon black
JP2010208929A (en) Method for producing high-purity silicon

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100325

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Effective date: 20120912

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120918

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Effective date: 20130326

Free format text: JAPANESE INTERMEDIATE CODE: A02