JP4643085B2 - Method for producing high-purity colloidal silica for abrasives - Google Patents
Method for producing high-purity colloidal silica for abrasives Download PDFInfo
- Publication number
- JP4643085B2 JP4643085B2 JP2001284336A JP2001284336A JP4643085B2 JP 4643085 B2 JP4643085 B2 JP 4643085B2 JP 2001284336 A JP2001284336 A JP 2001284336A JP 2001284336 A JP2001284336 A JP 2001284336A JP 4643085 B2 JP4643085 B2 JP 4643085B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- aqueous solution
- silicic acid
- added
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Silicon Compounds (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、シリコンウエハ、化合物半導体ウエハ、半導体デバイスウエハ、磁気ディスク基板、水晶基板等の電子材料の研磨加工に用いることのできる高純度のコロイダルシリカに関し、通常の珪酸アルカリ水溶液を原料とした低コストな製造方法に関する。
【0002】
【従来の技術】
従来より市販の珪酸アルカリを原料として製造されるコロイダルシリカは、シリコンウエハの研磨剤、ブラウン管製造における蛍光体の接着バインダー、電池中の電解液のゲル化剤および揺変や飛散防止剤など様々な用途に用いられてきた。しかし珪酸アルカリを原料としたコロイダルシリカは、原料の珪酸アルカリ水溶液に含まれるアルカリ金属、Fe、Cr、Ni、Cu等を含有し、シリコンウエハ、化合物半導体ウエハ、半導体デバイスウエハ、磁気ディスク基板、水晶基板等の電子材料の研磨剤としては不適な材料であった。特に半導体シリコンウエハの研磨加工時、研磨剤中に存在する金属、特にNaはウエハ内部に深く拡散し、Cuはウエハ表面に強く固着し、ウエハ品質を劣化させ、該ウエハによって形成された半導体デバイスの特性を著しく低下させるという事実が明らかとなった。また、例えばシリコンウエハの研磨加工時には加工しない部位にも研磨材が接触しており、そのような部位でも研磨剤のアルカリ成分によるシリコンの腐食は進行しており、特に研磨材の流動の少ない部分では研磨剤の濃縮や乾燥も進行している。研磨加工後洗浄乾燥するとこの部位が白色のシミとして現れてくる。このシミの発生はウエハの製品歩留まりを低下させ、その対策としての過度の洗浄はラインスピードの障害となる。このシミの発生にはアルカリ金属が原因と推定される。
そのため金属性不純物の混入を嫌う分野においては、これら金属性不純物を実質的に含まない高純度なシリカ原料から製造された高価なコロイダルシリカ製品を使用していた。
【0003】
高純度の珪酸アルカリ水溶液を製造する方法は既にいくつか提案されている。特公昭41-3369号公報には、アルカリ金属珪酸塩を純水で希釈した後、H型カチオン交換樹脂に接触させて脱カチオンし、さらに酸を加えて強酸性とした後、再度H型カチオン交換樹脂およびOH型アニオン交換樹脂に接触させて脱カチオン脱アニオンし、アルカリを加えて加熱してシリカをコロイド化し、濃縮した後KOHを加えて珪酸カリ水溶液を得る方法が記載されている。また、四塩化珪素から製造されたヒュームドシリカや、酸洗いされたシリカゲルなどの高純度のシリカ源をアルカリに溶かして高純度珪酸アルカリ水溶液を得る方法は公知の方法となっている。
また、通常の珪酸アルカリ水溶液を用いてコロイダルシリカやシリカゲルを製造する工程で不純物を除去する方法は数多く提案されている。例えば特開平5-97422号公報には、高純度コロイダルシリカの製造方法として、珪酸アルカリ水溶液を純水で希釈した後、H型強酸性カチオン交換樹脂に接触させて脱アルカリし活性珪酸の水溶液を得、さらに酸を加えて強酸性とした後H型強酸性カチオン交換樹脂、OH型強塩基性アニオン交換樹脂に接触させ高純度の活性珪酸とした後、粒子成長させて高純度コロイダルシリカを製造する方法が記載されている。特開平4-231319号公報には、上記方法の酸と同時にシュウ酸を加える方法の記載がある。特開昭61-158810号公報には、珪酸アルカリ水溶液を純水で希釈した後、H型強酸性カチオン交換樹脂に接触させて脱アルカリし(活性珪酸の作成)、さらに酸を加えて強酸性とした後、限外濾過膜を用いて不純物を除去して得られたオリゴ珪酸溶液(高純度の活性珪酸)の一部に、アンモニアまたはアミンを加え加熱を行いヒールゾルを調製し、これに残りのオリゴ珪酸溶液を徐々に滴下し高純度シリカゾルを得る方法が記載されている。特開平4-2606号公報には、上記同様に酸処理した珪酸アルカリ水溶液を、H型強酸性カチオン交換樹脂、OH型強塩基性アニオン交換樹脂に接触させ、これにアルカリ金属水酸化物水溶液を加え60〜150°Cに加熱することにより安定な水性ゾル生成させ、さらに限外濾過膜を介して水を除き、次いでH型強酸性カチオン交換樹脂、OH強塩基性アニオン交換樹脂と接触させ、最後にアンモニアを加えてシリカ以外の多価金属酸化物を実質的に含まない安定な水性シリカゾルを生成する方法が記載されている。
いずれの方法も酸性にした珪酸溶液をイオン交換樹脂に接触させて不純物イオンを除去する手段が基本になっている。
【0004】
【発明が解決しようとする課題】
しかしながら、特公昭41-3369号公報、特開平5-97422号公報、特開平4-231319号公報、特開昭61-158810号公報、特開平4-2606号に記載の方法では工程が煩雑に長いばかりでなく、希薄な珪酸液を強酸性にするために大量の酸を使用しなくてはならず、その酸を後工程で除去しなくてはならず、そのアニオン交換法による除去では樹脂の再生にまた数倍のアルカリを必要とし、コスト的に問題がある。また,特開平7-291614号公報には、含水珪酸塩を酸と接触させて、含水シリカを生成させ,生成した含水シリカを酸および/または水で洗浄した後アミン系アルカリに分散させた液に酸を添加しつつ、コロイダルシリカを生成させる方法が記載されている。しかしこの方法で得られるコロイダルシリカはアルカリ金属含有量は1ppm以下に抑えることできるが,Fe、Cr、Ni、Cuなどの遷移金属を除去することはできず,また,含水シリカを酸で洗浄する工程で前記同様大量の酸を使用する問題がある。
また、四塩化珪素から製造されたヒュームドシリカや珪酸エステルから得られたシリカ、酸洗いされたシリカゲルなどの高純度のシリカ源をアルカリに溶かして高純度珪酸アルカリ水溶液を得る公知の方法は、シリカ原料のコストが高すぎて、そのような珪酸アルカリ水溶液は限られた用途にしか使用できない。
このように,これまでNa,Kのようなアルカリ金属,Fe、Cr、Ni、Cuなどの遷移金属およびCa,Mgのようなアルカリ土類金属の含有量の少ない研磨剤用のコロイダルシリカは見出されていない。したがって本発明の目的は、シリコンウエハ、化合物半導体ウエハ、半導体デバイスウエハ、磁気ディスク基板、水晶基板等の電子材料の研磨加工に用いることのできる高純度のコロイダルシリカを提供することにある。またこのような高純度のコロイダルシリカを低コストで製造する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、珪酸アルカリ水溶液とカチオン交換樹脂とを接触させ、活性珪酸水溶液を調整し、次いでこの活性珪酸水溶液に酸化剤を添加溶解し、該酸化剤によって該水溶液中の金属を、金属錯体の生成定数の大きい価数に変換した後、キレート樹脂と接触させ、次いで有機アルカリを添加してコロイド粒子を成長させ、続いてシリカを濃縮することを特徴とするコロイダルシリカの製造方法を提供するものである。
また本発明は、珪酸アルカリ水溶液とカチオン交換樹脂とを接触させ、活性珪酸水溶液を調整し、次いでこの活性珪酸水溶液とキレート樹脂とを接触させた後、キレート化剤と酸化剤を添加溶解し、該酸化剤によって該水溶液中の金属を、金属錯体の生成定数の大きい価数に変換した後、有機アルカリを添加してコロイド粒子を成長させ、続いて限外濾過によりシリカを濃縮すると同時にキレート化された金属不純物を除去することを特徴とするコロイダルシリカの製造方法を提供するものである。
【0008】
【発明の実施の形態】
以下、本発明をさらに説明する。
まず、原料として用いる珪酸アルカリ水溶液としては、通常水ガラス(水ガラス1号〜4号等)と呼ばれる珪酸ナトリウム水溶液が好適に用いられる。このものは比較的安価であり、容易に手に入れることができる。また、Naイオンを嫌う半導体用途の製品を考慮すると珪酸カリウム水溶液は高純度化の対象にふさわしい。
固体状のメタ珪酸アルカリを水に溶かして珪酸アルカリ水溶液を調製する方法もある。メタ珪酸アルカリは晶析工程を経て製造されるため、不純物の少ないものがある。
珪酸アルカリ水溶液は、必要に応じて水で希釈して使用する。
【0009】
本発明で使用するカチオン交換樹脂は、公知のものを適宜選択して使用することができ、とくに制限されない。
珪酸アルカリ水溶液とカチオン交換樹脂との接触工程は、例えば珪酸アルカリ水溶液をシリカ濃度3〜10重量%に水希釈し、次いでH型強酸性カチオン交換樹脂に接触させて脱アルカリし、必要に応じてOH型強塩基性アニオン交換樹脂に接触させて脱アニオンすることによって行うことができる。この工程により、活性珪酸水溶液が調製される。前記接触条件の詳細は、従来から既に様々な提案があり、本発明ではそれら公知のいかなる条件も採用することができる。
【0010】
次に、この酸性を呈する活性珪酸水溶液とキレート樹脂とを接触させる。珪酸アルカリ水溶液はH+型樹脂でカチオン交換を行うと、珪酸アニオンと微量の不純物アニオン成分のため活性珪酸水溶液は酸性を呈する。活性珪酸水溶液がpH2〜6の酸性であることは重要な条件で、このpH範囲でキレート樹脂の性能が好適になる。
本発明で使用されるキレート樹脂としては、スチレン系、アクリル系またはピリジン系の樹脂母体に、N−メチルグルカミン基、アミノリン酸基、ジチオカルバミン酸基、イミノジ酢酸基、またはピリジン基等の交換基を付加したものがあるが、イミノジ酢酸基を有するスチレン系樹脂が好ましい。
本発明で使用されるキレート樹脂の量は、カチオン交換樹脂の交換容量の1/10から1/30の交換容量となるように決めるのがよい。このようにするとカチオン交換樹脂とキレート樹脂を直列に連結して活性珪酸水溶液の製造と樹脂の再生を行うことが出来る。このような工業的生産性を無視すれば、シリカ1kgに対して100mg当量以上であればよい。
また、本発明では活性珪酸水溶液に酸化剤を添加溶解した後、キレート樹脂と接触させる製造方法も適用できる。例えば3価のFeと2価のFeのように金属錯体の生成定数に違いがある場合、価数の変換で除去効率が改善できる場合がある。本発明で使用される酸化剤としては、過酸化水素が最終製品に不純イオンを残さないので好ましいが、その他の過酸化物や、ぺルオキソ酸塩、過塩素酸塩などの一般の酸化剤も使用できる。酸化剤の使用量は、おおむねシリカ1kgに対して0.5mg当量〜10mg当量である。
【0011】
また、本発明は、前記のキレート樹脂と接触させる工程の後に、活性珪酸水溶液にキレート化剤を添加溶解した後、コロイド粒子を成長させ、続いて限外濾過によりシリカを濃縮すると同時にキレート化された金属不純物を除去する工程を行い、キレート樹脂で捕捉されなかった金属種を更に除去する事が出来る。
【0012】
本発明で使用されるキレート化剤としては、金属の多座配位子として結合するものであれば、本発明の効果を損なわない限り、任意のものを用いることができるが、(1)エチレンジアミン四酢酸およびその塩、(2)ヒドロキシェチルエチレンジアミン三酢酸およびその塩、(3)ジヒドロキシエチルエチレンジアミンおよびその二酢酸塩、(4)ジエチレントリアミン五酢酸およびその塩、(5)トリエチレンテトラミン六酢酸およびその塩、(6)ヒドロキシエチルイミノ二酢酸およびその塩、および(7)グルコン酸およびその塩、から選ばれることが好ましい。具体的には、(1)エチレンジアミン四酢酸二ナトリウム、エチレンジアミン四酢酸三ナトリウム、エチレンジアミン四酢酸四ナトリウム、エチレンジアミン四酢酸二アンモニウム、エチレンジアミン四酢酸三アンモニウム、エチレンジアミン四酢酸四アンモニウム、(2)ヒドロキシエチルエチレンジアミン三酢酸三ナトリウム、ヒドロキシエチルエチレンジアミン三酢酸三アンモニウム、(3)ジヒドロキシエチルエチレンジアミン二酢酸二ナトリウム、ジヒドロキシエチルエチレンジアミン二酢酸二アンモニウム、(4)ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸五ナトリウム、ジエチレントリアミン五酢酸五アンモニウム、ジエチレントリアミン五酢酸二ナトリウム鉄、ジエチレントリアミン五酢酸二アンモニウム鉄、(5)トリエチレンテトラミン六酢酸六ナトリウム、トリエチレンテトラミン六酢酸六アンモニウム、(6)ヒドロキシエチルイミノ二酢酸二ナトリウム、ヒドロキシエチルイミノ二酢酸二アンモニウム、(7)グルコン酸ナトリウム、グルコン酸カリウム、グルコン酸カルシウム、およびグルコン酸−6−リン酸三ナトリウム、等が挙げられる。また、ニトリロ三酢酸塩やグリシン、サリチル酸も好適である。
これらのキレート化剤のなかではアルカリ金属を含まない「酸」型のものや「アンモニウム塩」型のものが好ましく使用できる。
これらのキレート化剤は、結晶水を含むものであっても、無水物であってもよい。また、これらのキレート化剤は、2種類以上を併用することができ、その場合、任意の割合で併用することができる。キレート化剤の添加と同時に、上述の酸化剤を添加する方法も採用でき、Cr等の除去に効果がある。
【0013】
本発明で使用されるキレート化剤の量は、原料の珪酸アルカリ水溶液に含まれる金属不純物の量をもとにして決めることができる。キレート化剤の種類や珪酸アルカリの品質によっても使用量は異なるが、珪酸アルカリ水溶液に含まれる金属不純物のうちAlは格段と量が多いのでこれを除去するかどうかでも、使用量は大変異なる。Alを対象にしない場合にはシリカ1kgに対して5mg当量、Alも対象にする場合にはシリカ1kgに対して20mg当量が最小量である。効果を高める場合には金属不純物の量の5倍当量まで添加するのが良く、従って目安となる使用量の範囲は、シリカ1kgに対して5mg当量〜100mg当量である。
【0014】
次いで、コロイド粒子の成長工程を行う。この成長工程では、常法の水酸化アルカリ金属は使用せず、有機アルカリを使用する。有機アルカリとしては、アミン、第4級アンモニウム水酸化物などの有機塩基を使用することができる。また、それらの珪酸アルカリ水溶液も使用することができる。特に第4級アンモニウム水酸化物はアミンより腐敗臭や毒性が低く、塩基度が強く好ましい。第4級アンモニウム水酸化物の中では、水酸化テトラメチルアンモニウムや水酸化トリメチル−2−ヒドロキシエチルアンモニウム(別名、水酸化コリン)は重金属類に関して比較的高純度の製品が市販されているため、好ましく使用できる。
この成長工程では、常法の操作が行われ、例えばコロイド粒子の成長のため、pHが8以上となるようアルカリ剤を添加し、60〜240℃に加熱することができる。また、ビルドアップの方法をとり、pHが8以上の60〜240℃の種ゾルに、活性珪酸を添加していく方法もある。また、希釈した珪酸アルカリ水溶液に活性珪酸を添加していくビルドアップの方法も可能である。いずれの方法を行ったとしても、シリカの粒子径が5〜150nmになるように粒子成長を行う。粒子の分散状態は単分散でもよいし、2次凝集があってもよく、用途に応じて使い分けることができる。粒子の形状は真球状であっても、非球形状であってもよく用途に応じて使い分けることができる。
【0015】
次に、シリカの濃縮を行うが、キレート化剤を添加する上記の方法の時には、限外濾過による濃縮を行う。それ以外の場合には、水分の蒸発濃縮でもよいが、エネルギー的には限外濾過の方が有利であり、残存するアルカリ金属を除去する効果もある。
【0016】
限外濾過によりシリカを濃縮するときに使用される限外濾過膜について説明する。限外濾過膜が適用される分離は対象粒子が1nmから数ミクロンであるが、溶解した高分子物質をも対象とするため、ナノメータ域では濾過精度を分画分子量で表現している。本発明では、分画分子量15000以下の限外濾過膜を好適に使用することができる。この範囲の膜を使用すると1nm以上の粒子は分離することが出来る。更に好ましくは分画分子量3000〜15000の限外濾過膜を使用する。3000未満の膜では濾過抵抗が大きすぎて処理時間が長くなり不経済であり、15000を超えると、精製度が低くなる。膜の材質はポリスルホン、ポリアクリルニトリル、焼結金属、セラミック、カーボンなどあり、いずれも使用できるが、耐熱性や濾過速度などからポリスルホン製が使用しやすい。膜の形状はスパイラル型、チューブラー型、中空糸型などあり、どれでも使用できるが、中空糸型がコンパクトで使用しやすい。また、限外濾過工程が、キレート化された金属不純物の洗い出し除去をかねている場合、必要に応じて、目標濃度に達した後も純水を加えるなどして、更に洗い出し除去を行って、除去率を高める作業を行うこともできる。この工程でシリカの濃度が10〜60重量%となるように濃縮するのがよい。
【0017】
また、限外濾過工程の前後いずれかに、必要に応じてイオン交換樹脂による精製工程を加えることができる。例えば、H型強酸性カチオン交換樹脂に接触させて粒子成長工程で使用したアルカリや残存するアルカリ金属を除去することができ、OH型強塩基性アニオン交換樹脂に接触させて脱アニオンして精製することで、一層の高純度化を計ることができる。
【0018】
以上のようにして,シリカの粒子径が5〜150nmであり、且つシリカの濃度が10〜60重量%である高純度の本発明の研磨剤用コロイダルシリカが得られる。これは金属不純物量が極めて少量であることから,半導体ウエハ等の電子材料の表面研磨加工時ウエハの品質を劣化させることがないという,研磨剤として優れた性質を有する。
【0019】
本発明はまた,このコロイダルシリカを含む電子材料用研磨剤組成物である。即ち,本発明の電子材料用の研磨剤組成物は,この研磨剤用コロイダルシリカを1〜15重量%,好ましくは1〜10重量%の割合で含むコロイダルシリカの水性分散液である。本発明の電子材料用研磨剤組成物には,更に研磨対象材料の種類や研磨条件に応じて,その他のコロイド,例えばアルミナゾル,酸化セリウムゾル,酸化ジルミニウムゾルなどを加えることもでき,それらの微粒子粉体を加えることもできる。また,研磨面やパッドの濡れ性改善には,界面活性剤や水溶性高分子を加えることができる。同様に,酸化剤,キレート剤,腐食防止剤,殺菌剤などを必要に応じ添加することができる。
本発明の電子材料用研磨剤組成物が使用できる研磨対象材料は種々の電子材料であるが,特にシリコンウエハ,化合物半導体ウエハ,半導体デバイスウエハ,磁気ディスク基板,又は水晶基板の研磨においてウエハの品質劣化を起こさない優れた特性を有する。
【0020】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。
(実施例1)脱イオン水2810gにJIS3号珪酸ソーダ(SiO2:28.8重量%、Na2O:9.7重量%、H2O:61.5重量%)520gを加えて均一に混合しシリカ濃度4.5重量%の希釈珪酸ソーダを作成した。この希釈珪酸ソーダを予め塩酸によって再生したH型強酸性カチオン交換樹脂(オルガノ(株)製アンバーライトIR120B)1200mlのカラムに通して脱アルカリし、シリカ濃度3.7重量%でpH2.9の活性珪酸3800gを得た。この活性珪酸は、シリカ当たりのNaとKの含有率がそれぞれ80ppmと5ppmで、シリカ当たりのCu、Zn、Cr、Ca、Mg、Feの含有率がそれぞれ360ppb、2600ppb、1800ppb、11100ppb、18000ppb、28200ppbであった。次いで、3.5%希過酸化水素水1.1gを加えて加えて均一に混合した。添加量はシリカ1kgに対して10mg当量になる。次いで、この活性珪酸を予め塩酸によって再生したH型キレート樹脂(オルガノ(株)製アンバーライトIRC748)100mlのカラムに通し、シリカ濃度3.0重量%でpH3.2の活性珪酸4650gを得た。この活性珪酸は、シリカ当たりのCu、Zn、Cr、Ca、Mg、Feの含有率がそれぞれ90ppb、470ppb、280ppb、6900ppb、9800ppb、9700ppbであった。キレート樹脂と酸化剤により金属イオンの低減が出来ることが確認できた。次いで、ビルドアップの方法をとり、コロイド粒子を成長させた。すなわち、得られた活性珪酸の一部580gに攪拌下20%水酸化テトラメチルアンモニウム水溶液を加えてpHを8.7とし、95℃に1時間保ち、残部の活性珪酸4070gを6時間かけて添加した。添加中は20%水酸化テトラメチルアンモニウム水溶液を加えてpHを10に保ち、温度も95℃を保った。添加終了後、95℃で1時間塾成を行い、放冷した。続いて、分画分子量6000の中空糸型限外濾過膜(旭化成(株)製マイクローザUFモジュールSIP−1013)を用いてポンプ循環送液による加圧濾過を行い、シリカ濃度30重量%まで濃縮し、コロイダルシリカ約450gを回収した。このコロイダルシリカはシリカの粒子径が15nmで、シリカ当たりのNaとKの含有率がそれぞれ13ppmと1.2ppmで、シリカ当たりのCu、Zn、Cr、Ca、Mg、Feの含有率がそれぞれ90ppb、470ppb、280ppb、6900ppb、9800ppb、9700ppbであった。酸化剤を加えてキレート樹脂と接触させ、有機アルカリを使用することにより金属イオンの少ないコロイダルシリカが得られた。
(実施例2)8535gの脱イオン水に785gのエチレンジアミン四酢酸(EDTA)と680gの28%アンモニア水を加えて溶解し、EDTA−アンモニア水溶液を作成した。別途、脱イオン水216kgにJIS3号珪酸ソーダ(SiO2:28.8重量%、Na2O:9.7重量%、H2O:61.5重量%)40kgを加えて均一に混合しシリカ濃度4.5重量%の希釈珪酸ソーダを作成した。この希釈珪酸ソーダを予め塩酸によって再生したH型強酸性カチオン交換樹脂(オルガノ(株)製アンバーライトIR120B)120Lのカラムに通して脱アルカリし、シリカ濃度3.8重量%でpH2.9の活性珪酸300kgを得た。この活性珪酸は、シリカ当たりのNaとKの含有率がそれぞれ60ppmと3ppmで、シリカ当たりのCu、Zn、Cr、Ca、Mg、Feの含有率がそれぞれ360ppb、2600ppb、1800ppb、11100ppb、18000ppb、28200ppbであった。次いで、この活性珪酸を予め塩酸によって再生したH型キレート樹脂(オルガノ(株)製アンバーライトIRC748)12Lのカラムに通し、シリカ濃度3.5重量%でpH3.0の活性珪酸320kgを得た。この活性珪酸は、シリカ当たりのCu、Zn、Cr、Ca、Mg、Feの含有率がそれぞれ90ppb、780ppb、600ppb、6900ppb、9800ppb、12600ppbであった。キレート樹脂により金属イオンの低減が出来ることが確認できた。次いで、活性珪酸にキレート化剤として前記のEDTA−アンモニア水溶液770gを加えて均一に混合した.添加量はシリカ1kgに対して18mg当量になる。この活性珪酸の一部8kgに攪拌下脱イオン水22kgと50%水酸化コリン水溶液を加えてpHを9.0とし、98℃に1時間保ち、残部の活性珪酸312kgを12時間かけて添加した。添加中は50%水酸化コリン水溶液を加えてpHを10に保ち、温度も98℃を保った。添加終了後、98℃で1時間塾成を行い、50℃まで放冷して、分画分子量10000の中空糸型限外濾過膜(旭化成(株)製マイクローザUFモジュールSIP−3053)を用いてポンプ循環送液による加圧濾過を行い、シリカ濃度40%のコロイダルシリカ約28kgを回収した。このコロイダルシリカはシリカの粒子径が23nmで、シリカ当たりのNaとKの含有率がそれぞれ8ppmと0.6ppmで、シリカ当たりのCu、Zn、Cr、Ca、Mg、Feの含有率がそれぞれ40ppb、450ppb、300ppb、1000ppb、800ppb、8000ppbであった。キレート樹脂とキレート剤を併用し、有機アルカリを使用することにより金属イオンの少ないコロイダルシリカが得られた。
【0021】
(実施例3)実施例2で使用した強酸性カチオン交換樹脂とキレート樹脂を直列に配管で連結し、常法に従って塩酸によって再生した。次いで、実施例2と同量の希釈珪酸ソーダをカラムに通して、シリカ濃度3.7重量%でpH2.9の活性珪酸310kgを得た。この活性珪酸は、シリカ当たりのNaとKの含有率がそれぞれ60ppmと3ppmで、シリカ当たりのCu、Zn、Cr、Ca、Mg、Feの含有率がそれぞれ90ppb、780ppb、600ppb、6900ppb、9800ppb、12600ppbであった。実施例2で作成したEDTA−アンモニア水溶液770gを活性珪酸に加えて均一に混合した。添加量はシリカ1kgに対して18mg当量になる。ついで、3.5%希過酸化水素水22gを加えて均一に混合した。添加量はシリカ1kgに対して2mg当量になる。実施例2で製造したシリカの粒子径が23nmでシリカ濃度40%の金属イオンの少ないコロイダルシリカ3.2kgを脱イオン水約20kgで希釈し、攪拌下50%水酸化コリン水溶液を加えてpHを10とし、98℃に1時間保ち、前記のEDTA−アンモニア水溶液と希過酸化水素水を添加した活性珪酸311kgを12時間かけて添加した。添加中は50%水酸化コリン水溶液を加えてpHを10に保ち、温度も98℃を保った。添加終了後、98℃で1時間塾成を行い、50℃まで放冷して、分画分子量10000の中空糸型限外濾過膜(旭化成(株)製マイクローザUFモジュールSLP−3053)を用いてポンプ循環送液による加圧濾過を行い、シリカ濃度40%のコロイダルシリカ約32kgを回収した。このコロイダルシリカはシリカの粒子径が45nmで、シリカ当たりのNaとKの含有率がそれぞれ8ppmと0.6ppmで、シリカ当たりのCu、Zn、Cr、Ca、Mg、Feの含有率がそれぞれ40ppb、220ppb、80ppb、1000ppb、800ppb、4500ppbであった。キレート樹脂とキレート剤および酸化剤を併用し、有機アルカリを使用したことにより金属イオンの少ないコロイダルシリカが得られた。
【0022】
(実施例4、比較例1)実施例2で製造したシリカの粒子径が23nmでシリカ濃度40%の金属イオンの少ないコロイダルシリカ(実施例4)と、比較例として市販のコロイダルシリカ(日本化学工業(株)製「シリカドール40L」,粒子径21nm、シリカ濃度40%、Na含有量4000ppm)を使用して、シリコンウエハの研磨試験を行った。コロイダルシリカはシリカ濃度10%となるように脱イオン水で希釈し、20%水酸化テトラメチルアンモニウム水溶液を加えてpHを10.5に合わせて研磨組成液とした。被加工体として6インチサイズの半導体デバイスウエハ(酸化膜付きシリコンウエハ)を選定し、これの表面平坦化ポリッシング加工を以下の方法に従い実施し、すぐに洗浄を行い、乾燥後のシミ付着の判定を行った。シミ付着は集光灯の照射中に、ウエハ基板の研磨裏面を目視で観察して判定した。それぞれ20枚の研磨加工ウエハを作成し、その結果、実施例4ではシミ付着のウエハは1枚も無く、比較例1ではごく僅かなシミ付着が20枚にあった。
(加工方法)
研磨装置:スピードファム(株)製 SH−24型定盤回転数:60rpmウエハ把持方式:減圧吸引法キャリアチャック真空度:50mmHgウエハキャリア回転数:120rpm研磨パッド:ロデールニッタ社製SUBA600研磨組成液供給量:60ml/分研磨加工時間:5分被研磨物:6インチ酸化膜付きシリコンウエハ研磨後洗浄:脱イオン水30秒
【0023】
【発明の効果】
本発明によれば、シリコンウエハ、化合物半導体ウエハ、半導体デバイスウエハ、磁気ディスク基板、水晶基板等の電子材料の研磨加工に用いることのできる通常の珪酸アルカリ水溶液を原料とした低コストの高純度コロイダルシリカが提供される。本発明の製造方法により得られたコロイダルシリカは、極めて少量の金属不純物量であることから,半導体ウエハ等の電子材料の表面研磨加工時ウエハの品質を劣化させることがない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high-purity colloidal silica that can be used for polishing electronic materials such as silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates, and quartz substrates. The present invention relates to a costly manufacturing method.
[0002]
[Prior art]
Colloidal silica produced using commercially available alkali silicate as a raw material has various types such as abrasives for silicon wafers, phosphor binders for cathode ray tube manufacturing, gelling agents for electrolytes in batteries and anti-swaying and scattering agents. It has been used for applications. However, colloidal silica using alkali silicate as a raw material contains alkali metals, Fe, Cr, Ni, Cu, etc. contained in the raw alkali silicate aqueous solution, and includes silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates, quartz crystals. It was an unsuitable material as an abrasive for electronic materials such as substrates. In particular, during polishing of a semiconductor silicon wafer, a metal present in the polishing agent, particularly Na, diffuses deeply into the wafer, Cu firmly adheres to the wafer surface, deteriorates the wafer quality, and a semiconductor device formed by the wafer. The fact that it significantly reduces the properties of was revealed. In addition, for example, the polishing material is in contact with a portion not processed at the time of polishing of the silicon wafer, and the corrosion of the silicon by the alkali component of the abrasive is progressing also in such a portion. Then, concentration and drying of abrasives are also progressing. This part appears as a white spot when washed and dried after polishing. The occurrence of this stain reduces the product yield of the wafer, and excessive cleaning as a countermeasure against it causes an obstacle to the line speed. The occurrence of this stain is presumed to be caused by alkali metal.
Therefore, in the field where mixing of metallic impurities is disliked, expensive colloidal silica products manufactured from high-purity silica raw materials substantially not containing these metallic impurities have been used.
[0003]
Several methods have already been proposed for producing high-purity alkali silicate aqueous solutions. In Japanese Patent Publication No. 41-3369, after diluting an alkali metal silicate with pure water, it is contacted with an H-type cation exchange resin, decationized, further acidified to be strongly acidic, and then again with an H-type cation. A method is described in which a decationized anion is brought into contact with an exchange resin and an OH-type anion exchange resin, an alkali is added and heated to colloidalize the silica, and after concentration, KOH is added to obtain a potassium silicate aqueous solution. Further, a method for obtaining a high-purity alkali silicate aqueous solution by dissolving a high-purity silica source such as fumed silica produced from silicon tetrachloride or pickled silica gel in an alkali is a known method.
In addition, many methods have been proposed for removing impurities in the process of producing colloidal silica or silica gel using a normal aqueous alkali silicate solution. For example, in JP-A-5-97422, as a method for producing high-purity colloidal silica, an aqueous solution of active silicic acid is prepared by diluting an alkali silicate aqueous solution with pure water and then contacting with an H-type strongly acidic cation exchange resin to remove the alkali. Then, acid is added to make it strongly acidic, and then contacted with an H-type strongly acidic cation exchange resin or OH-type strongly basic anion exchange resin to obtain high-purity activated silicic acid, followed by particle growth to produce high-purity colloidal silica. How to do is described. JP-A-4-313319 describes a method of adding oxalic acid simultaneously with the acid of the above method. In JP-A-61-158810, an alkali silicate aqueous solution is diluted with pure water, and then contacted with an H-type strongly acidic cation exchange resin for dealkalization (formation of active silicic acid). After that, a part of the oligosilicic acid solution (high-purity activated silicic acid) obtained by removing impurities using an ultrafiltration membrane was heated with ammonia or amine, and a heel sol was prepared. A method for obtaining a high purity silica sol by gradually dropping the oligosilicic acid solution is described. In Japanese Patent Application Laid-Open No. 4-2606, an alkali silicate aqueous solution treated in the same manner as described above is brought into contact with an H-type strongly acidic cation exchange resin and an OH-type strongly basic anion exchange resin, and an alkali metal hydroxide aqueous solution is added thereto. In addition, a stable aqueous sol is formed by heating to 60 to 150 ° C., water is further removed through an ultrafiltration membrane, and then contacted with an H-type strongly acidic cation exchange resin and OH strongly basic anion exchange resin, Finally, a method is described in which ammonia is added to produce a stable aqueous silica sol substantially free of polyvalent metal oxides other than silica.
Each method is basically a means for removing impurity ions by bringing an acidified silicic acid solution into contact with an ion exchange resin.
[0004]
[Problems to be solved by the invention]
However, the method described in JP-B-41-3369, JP-A-5-97422, JP-A-4-213319, JP-A-61-158810 and JP-A-4-606 has complicated steps. In addition to being long, a large amount of acid must be used to make the dilute silicic acid solution strongly acidic, and the acid must be removed in a post-process, and the removal by the anion exchange method is a resin. The regeneration requires several times more alkali, which is a problem in terms of cost. JP-A-7-291614 discloses a solution in which a hydrous silicate is brought into contact with an acid to produce hydrous silica, and the produced hydrous silica is washed with an acid and / or water and then dispersed in an amine-based alkali. Describes a method for producing colloidal silica while adding an acid to the mixture. However, although the colloidal silica obtained by this method can suppress the alkali metal content to 1 ppm or less, it cannot remove transition metals such as Fe, Cr, Ni, and Cu, and the hydrous silica is washed with an acid. There is a problem that a large amount of acid is used in the process as described above.
Further, a known method for obtaining a high-purity alkali silicate aqueous solution by dissolving a high-purity silica source such as fumed silica produced from silicon tetrachloride or silica obtained from a silicate ester or silica-washed silica gel in an alkali, Due to the high cost of silica raw materials, such alkali silicate aqueous solutions can only be used for limited applications.
Thus, colloidal silica for abrasives with a low content of alkali metals such as Na and K, transition metals such as Fe, Cr, Ni and Cu and alkaline earth metals such as Ca and Mg has been found so far. It has not been issued. Accordingly, an object of the present invention is to provide high-purity colloidal silica that can be used for polishing electronic materials such as silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates, and quartz substrates. Another object of the present invention is to provide a method for producing such high-purity colloidal silica at a low cost.
[0006]
[Means for Solving the Problems]
In the present invention, an alkali silicate aqueous solution and a cation exchange resin are brought into contact to prepare an active silicic acid aqueous solution, and then an oxidizing agent is added to and dissolved in the active silicic acid aqueous solution. Provided is a method for producing colloidal silica, which is converted to a valence having a large formation constant, brought into contact with a chelate resin, then added with an organic alkali to grow colloidal particles, and then concentrated in silica. It is.
In addition, the present invention is to contact the alkali silicate aqueous solution and the cation exchange resin, adjust the active silicic acid aqueous solution, and then contact the active silicic acid aqueous solution and the chelate resin, and then add and dissolve the chelating agent and the oxidizing agent, After the metal in the aqueous solution is converted to a valence with a large formation constant of a metal complex by the oxidizing agent, organic alkali is added to grow colloidal particles, followed by concentration of silica by ultrafiltration and chelation at the same time The present invention provides a method for producing colloidal silica, characterized by removing the formed metal impurities.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be further described below.
First, as the alkali silicate aqueous solution used as a raw material, a sodium silicate aqueous solution usually called water glass (water glass No. 1 to No. 4 etc.) is preferably used. This is relatively inexpensive and can be easily obtained. In addition, considering a product for semiconductor use that dislikes Na ions, an aqueous potassium silicate solution is suitable for purification.
There is also a method of preparing an alkali silicate aqueous solution by dissolving solid alkali metal silicate in water. Alkali metasilicates are produced through a crystallization process, and therefore some of them have few impurities.
The aqueous alkali silicate solution is diluted with water as necessary.
[0009]
The cation exchange resin used in the present invention can be appropriately selected from known ones and is not particularly limited.
The contact step between the aqueous alkali silicate solution and the cation exchange resin is, for example, diluted with an aqueous alkali silicate aqueous solution to a silica concentration of 3 to 10% by weight, and then contacted with an H-type strongly acidic cation exchange resin for dealkalization. It can carry out by making it contact with OH type strong basic anion exchange resin, and carrying out a deanion. By this step, an active silicic acid aqueous solution is prepared. There have been various proposals for details of the contact conditions, and any known conditions can be adopted in the present invention.
[0010]
Next, the activated silicic acid aqueous solution exhibiting acidity is brought into contact with the chelate resin. When the alkali silicate aqueous solution is cation exchanged with an H + type resin, the active silicic acid aqueous solution exhibits acidity due to the silicate anion and a small amount of impurity anion components. It is an important condition that the active silicic acid aqueous solution is acidic at pH 2 to 6, and the performance of the chelate resin is suitable in this pH range.
As the chelate resin used in the present invention, a styrene-based, acrylic-based or pyridine-based resin matrix and an exchange group such as an N-methylglucamine group, an aminophosphate group, a dithiocarbamate group, an iminodiacetic acid group, or a pyridine group However, a styrene resin having an iminodiacetic acid group is preferable.
The amount of the chelate resin used in the present invention is preferably determined so that the exchange capacity is 1/10 to 1/30 of the exchange capacity of the cation exchange resin. In this way, the cation exchange resin and the chelate resin can be connected in series to produce an active silicic acid aqueous solution and regenerate the resin. If such industrial productivity is ignored, it may be 100 mg equivalent or more with respect to 1 kg of silica.
Moreover, in this invention, after adding and dissolving an oxidizing agent in active silicic acid aqueous solution, the manufacturing method made to contact with chelate resin is also applicable. For example, when there is a difference in the formation constant of the metal complex, such as trivalent Fe and divalent Fe, removal efficiency may be improved by valence conversion. As the oxidizing agent used in the present invention, hydrogen peroxide is preferable because it does not leave impure ions in the final product, but other peroxides and general oxidizing agents such as peroxoacid salts and perchlorates are also usable. Can be used. The amount of the oxidizing agent used is approximately 0.5 mg equivalent to 10 mg equivalent per 1 kg of silica.
[0011]
Further, the present invention is the step of contacting with the chelating resin, adding a chelating agent to the activated silicic acid aqueous solution, dissolving the colloidal particles, and subsequently concentrating the silica by ultrafiltration and simultaneously chelating. In this way, the metal species that have not been captured by the chelate resin can be further removed.
[0012]
As the chelating agent used in the present invention, any one can be used as long as it binds as a metal multidentate ligand, as long as the effects of the present invention are not impaired. (1) Ethylenediamine Tetraacetic acid and its salt, (2) hydroxyethylethylenediamine triacetic acid and its salt, (3) dihydroxyethylethylenediamine and its diacetate, (4) diethylenetriaminepentaacetic acid and its salt, (5) triethylenetetraminehexaacetic acid and It is preferably selected from the salt thereof, (6) hydroxyethyliminodiacetic acid and its salt, and (7) gluconic acid and its salt. Specifically, (1) ethylenediaminetetraacetic acid disodium, ethylenediaminetetraacetic acid trisodium, ethylenediaminetetraacetic acid tetrasodium, ethylenediaminetetraacetic acid diammonium, ethylenediaminetetraacetic acid triammonium, ethylenediaminetetraacetic acid tetraammonium, (2) hydroxyethylethylenediamine Trisodium triacetate, triethylammonium hydroxyethylethylenediamine triacetate, (3) disodium dihydroxyethylethylenediaminediacetic acid, diammonium dihydroxyethylethylenediaminediacetic acid, (4) diethylenetriaminepentaacetic acid, pentasodium diethylenetriaminepentaacetic acid, pentaammonium diethylenetriaminepentaacetic acid , Diethylenetriaminepentaacetic acid disodium iron, diethylenetriaminepentaacetic acid diammonium salt (5) triethylenetetramine hexaacetate hexasodium, triethylenetetramine hexaacetate hexaammonium, (6) hydroxyethyliminodiacetic acid disodium, hydroxyethyliminodiacetic acid diammonium, (7) sodium gluconate, potassium gluconate, Calcium gluconate, trisodium gluconate-6-phosphate, and the like. Nitrilotriacetate, glycine, and salicylic acid are also suitable.
Among these chelating agents, those of “acid” type and “ammonium salt” type which do not contain an alkali metal can be preferably used.
These chelating agents may contain crystal water or may be anhydrides. Moreover, these chelating agents can use 2 or more types together, In that case, they can be used together in arbitrary ratios. A method of adding the above-mentioned oxidizing agent simultaneously with the addition of the chelating agent can also be adopted, which is effective in removing Cr and the like.
[0013]
The amount of the chelating agent used in the present invention can be determined based on the amount of metal impurities contained in the raw alkali silicate aqueous solution. Although the amount used varies depending on the type of chelating agent and the quality of the alkali silicate, Al is a remarkably large amount of the metal impurities contained in the alkali silicate aqueous solution, so the amount used varies greatly even if it is removed. When Al is not targeted, the minimum amount is 5 mg equivalent to 1 kg of silica, and when Al is also targeted, the minimum amount is 20 mg equivalent to 1 kg of silica. In order to enhance the effect, it is preferable to add up to 5 times equivalent of the amount of metal impurities, and therefore the standard range of use amount is 5 mg equivalent to 100 mg equivalent to 1 kg of silica.
[0014]
Next, a colloidal particle growth step is performed. In this growth process, an organic alkali is used instead of a conventional alkali metal hydroxide. Organic bases such as amines and quaternary ammonium hydroxides can be used as the organic alkali. Moreover, those alkali silicate aqueous solutions can also be used. In particular, quaternary ammonium hydroxides are preferred because they have a lower odor and toxicity than amines and have a strong basicity. Among the quaternary ammonium hydroxides, tetramethylammonium hydroxide and trimethyl-2-hydroxyethylammonium hydroxide (also known as choline hydroxide) are commercially available in relatively high purity with respect to heavy metals. It can be preferably used.
In this growth step, a conventional operation is performed. For example, for the growth of colloidal particles, an alkali agent can be added so that the pH is 8 or more, and the mixture can be heated to 60 to 240 ° C. In addition, there is a method in which activated silica is added to a seed sol having a pH of 8 or higher and a temperature of 60 to 240 ° C. by using a build-up method. In addition, a build-up method in which active silicic acid is added to a diluted alkaline silicate aqueous solution is also possible. Regardless of which method is used, particle growth is performed so that the silica particle diameter is 5 to 150 nm. The dispersed state of the particles may be monodispersed or secondary agglomerated, and can be properly used depending on the application. The shape of the particles may be true spherical or non-spherical, and can be properly used depending on the application.
[0015]
Next, the silica is concentrated. At the time of the above method in which the chelating agent is added, the concentration is performed by ultrafiltration. In other cases, evaporative concentration of water may be used, but in terms of energy, ultrafiltration is more advantageous, and there is an effect of removing remaining alkali metals.
[0016]
The ultrafiltration membrane used when concentrating silica by ultrafiltration will be described. Separation to which an ultrafiltration membrane is applied has target particles of 1 nm to several microns, but since dissolved polymer substances are also targeted, filtration accuracy is expressed in the nanometer range as a fractional molecular weight. In the present invention, an ultrafiltration membrane having a molecular weight cut-off of 15000 or less can be preferably used. When a film in this range is used, particles of 1 nm or more can be separated. More preferably, an ultrafiltration membrane having a molecular weight cutoff of 3000 to 15000 is used. If the membrane is less than 3000, the filtration resistance is too large and the treatment time is long, which is uneconomical. The material of the membrane includes polysulfone, polyacrylonitrile, sintered metal, ceramic, carbon and the like. Any of them can be used, but polysulfone is easy to use because of its heat resistance and filtration speed. There are spiral, tubular, and hollow fiber types that can be used, but the hollow fiber type is compact and easy to use. Also, if the ultrafiltration process is also used to wash out and remove the chelated metal impurities, if necessary, add pure water even after reaching the target concentration, and perform further washing and removal. You can also work to increase the rate. In this step, it is preferable to concentrate so that the silica concentration is 10 to 60% by weight.
[0017]
Further, a purification step using an ion exchange resin can be added as needed before or after the ultrafiltration step. For example, the alkali used in the particle growth step and the remaining alkali metal can be removed by contacting with an H-type strongly acidic cation exchange resin, and purified by contacting with an OH-type strongly basic anion exchange resin. Thus, further high purity can be achieved.
[0018]
As described above, the high-purity colloidal silica for abrasives of the present invention having a silica particle diameter of 5 to 150 nm and a silica concentration of 10 to 60% by weight is obtained. Since this has a very small amount of metal impurities, it has an excellent property as an abrasive that does not deteriorate the quality of the wafer during surface polishing of an electronic material such as a semiconductor wafer.
[0019]
The present invention is also an abrasive composition for electronic materials containing the colloidal silica. That is, the abrasive composition for electronic materials of the present invention is an aqueous dispersion of colloidal silica containing 1 to 15% by weight, preferably 1 to 10% by weight, of this abrasive colloidal silica. According to the polishing composition for electronic materials of the present invention, other colloids such as alumina sol, cerium oxide sol, zirconium oxide sol and the like can be added according to the type of polishing target material and polishing conditions. Powder can also be added. In addition, surfactants and water-soluble polymers can be added to improve the wettability of the polished surface and pad. Similarly, oxidizing agents, chelating agents, corrosion inhibitors, bactericides, etc. can be added as needed.
The materials to be polished that can be used for the polishing composition for electronic materials of the present invention are various electronic materials, but the quality of the wafer is particularly great when polishing silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates, or quartz substrates. It has excellent characteristics that do not cause deterioration.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
(Example 1)520 g of JIS No. 3 sodium silicate (SiO2: 28.8 wt%, Na2O: 9.7 wt%, H2O: 61.5 wt%) was added to 2810 g of deionized water and mixed uniformly to obtain a silica concentration of 4.5 wt%. Diluted sodium silicate was prepared. This diluted sodium silicate was passed through a 1200 ml column of H-type strongly acidic cation exchange resin (Amberlite IR120B manufactured by Organo Corp.) previously regenerated with hydrochloric acid to remove alkali, and an activity of pH 2.9 at a silica concentration of 3.7% by weight. 3800 g of silicic acid was obtained. This active silicic acid has Na and K contents of 80 ppm and 5 ppm per silica, respectively, and Cu, Zn, Cr, Ca, Mg, and Fe contents per silica of 360 ppb, 2600 ppb, 1800 ppb, 11100 ppb, 18000 ppb, It was 28200ppb. Next, 1.1 g of 3.5% dilute hydrogen peroxide was added and mixed uniformly. The amount added is 10 mg equivalent to 1 kg of silica. Next, this active silicic acid was passed through a column of 100 ml of an H-type chelate resin (Amberlite IRC748 manufactured by Organo Corp.) previously regenerated with hydrochloric acid to obtain 4650 g of active silicic acid having a silica concentration of 3.0% by weight and pH 3.2. This active silicic acid had Cu, Zn, Cr, Ca, Mg, and Fe contents per silica of 90 ppb, 470 ppb, 280 ppb, 6900 ppb, 9800 ppb, and 9700 ppb, respectively. It was confirmed that metal ions can be reduced by the chelating resin and the oxidizing agent. Next, the build-up method was taken to grow colloidal particles. That is, a 20% tetramethylammonium hydroxide aqueous solution was added to 580 g of the obtained active silicic acid with stirring to adjust the pH to 8.7 and maintained at 95 ° C. for 1 hour, and the remaining 4070 g of active silicic acid was added over 6 hours. did. During the addition, a 20% tetramethylammonium hydroxide aqueous solution was added to maintain the pH at 10, and the temperature was also maintained at 95 ° C. After completion of the addition, the school was formed at 95 ° C. for 1 hour and allowed to cool. Subsequently, pressure filtration was performed by pump circulation using a hollow fiber type ultrafiltration membrane having a molecular weight cut off of 6000 (Microsa UF module SIP-1013 manufactured by Asahi Kasei Co., Ltd.) and concentrated to a silica concentration of 30% by weight. About 450 g of colloidal silica was recovered. This colloidal silica has a silica particle size of 15 nm, Na and K contents per silica of 13 ppm and 1.2 ppm, respectively, and Cu, Zn, Cr, Ca, Mg and Fe contents per silica of 90 ppb, They were 470 ppb, 280 ppb, 6900 ppb, 9800 ppb, 9700 ppb. Colloidal silica with few metal ions was obtained by adding an oxidizing agent to contact with the chelate resin and using an organic alkali.
(Example 2)In 8535 g of deionized water, 785 g of ethylenediaminetetraacetic acid (EDTA) and 680 g of 28% ammonia water were added and dissolved to prepare an EDTA-ammonia aqueous solution. Separately, 40 kg of JIS No. 3 sodium silicate (SiO2: 28.8 wt%, Na2O: 9.7 wt%, H2O: 61.5 wt%) was added to 216 kg of deionized water and mixed uniformly to obtain a silica concentration of 4.5 wt% % Diluted sodium silicate was prepared. This diluted sodium silicate was passed through a 120 L column of H-type strongly acidic cation exchange resin (Amberlite IR120B manufactured by Organo Co., Ltd.) regenerated with hydrochloric acid in advance to remove the alkali, and the activity of pH 2.9 at a silica concentration of 3.8% by weight 300 kg of silicic acid was obtained. This active silicic acid has Na and K contents of 60 ppm and 3 ppm per silica, respectively, and Cu, Zn, Cr, Ca, Mg, and Fe contents per silica of 360 ppb, 2600 ppb, 1800 ppb, 11100 ppb, 18000 ppb, It was 28200ppb. Next, the activated silicic acid was passed through a 12 L column of H-type chelate resin (Amberlite IRC748, manufactured by Organo Corporation) previously regenerated with hydrochloric acid to obtain 320 kg of activated silicic acid having a silica concentration of 3.5% by weight and a pH of 3.0. This activated silicic acid had Cu, Zn, Cr, Ca, Mg, and Fe contents per silica of 90 ppb, 780 ppb, 600 ppb, 6900 ppb, 9800 ppb, and 12600 ppb, respectively. It was confirmed that metal ions can be reduced by the chelate resin. Next, 770 g of the above-mentioned EDTA-ammonia aqueous solution as a chelating agent was added to the active silicic acid and mixed uniformly. The amount added is 18 mg equivalent to 1 kg of silica. A portion of 8 kg of this active silicic acid was stirred with 22 kg of deionized water and 50% aqueous choline hydroxide solution to adjust the pH to 9.0, maintained at 98 ° C. for 1 hour, and the remaining 312 kg of active silicic acid was added over 12 hours. . During the addition, a 50% aqueous choline hydroxide solution was added to maintain the pH at 10, and the temperature was maintained at 98 ° C. After completion of the addition, the school was formed at 98 ° C. for 1 hour, allowed to cool to 50 ° C., and a hollow fiber type ultrafiltration membrane (Microsa UF module SIP-3053 manufactured by Asahi Kasei Co., Ltd.) having a molecular weight cut off of 10,000 was used. Then, pressure filtration was performed by pump circulation, and about 28 kg of colloidal silica having a silica concentration of 40% was recovered. The colloidal silica has a silica particle size of 23 nm, Na and K contents per silica of 8 ppm and 0.6 ppm, respectively, and Cu, Zn, Cr, Ca, Mg and Fe contents per silica of 40 ppb, They were 450ppb, 300ppb, 1000ppb, 800ppb, and 8000ppb. Colloidal silica with few metal ions was obtained by using a chelating resin and a chelating agent in combination and using an organic alkali.
[0021]
(Example 3)Example 2The strongly acidic cation exchange resin and chelate resin used in the above were connected in series with a pipe and regenerated with hydrochloric acid according to a conventional method. ThenExample 2The same amount of diluted sodium silicate was passed through the column to obtain 310 kg of active silica having a silica concentration of 3.7% by weight and a pH of 2.9. This active silicic acid has Na and K contents of 60 ppm and 3 ppm per silica, respectively, and Cu, Zn, Cr, Ca, Mg, and Fe contents per silica of 90 ppb, 780 ppb, 600 ppb, 6900 ppb, 9800 ppb, It was 12600ppb.Example 2770 g of the EDTA-ammonia aqueous solution prepared in the above was added to the active silicic acid and mixed uniformly. The amount added is 18 mg equivalent to 1 kg of silica. Next, 22 g of 3.5% dilute hydrogen peroxide was added and mixed uniformly. The amount added is 2 mg equivalent to 1 kg of silica.Example 2The colloidal silica (3.2 kg) having a silica particle size of 23 nm and a silica concentration of 40% and containing less metal ions was diluted with about 20 kg of deionized water, and the pH was adjusted to 10 by adding 50% aqueous choline hydroxide solution with stirring. The mixture was kept at 1 ° C. for 1 hour, and 311 kg of active silicic acid to which the EDTA-ammonia aqueous solution and diluted hydrogen peroxide solution were added was added over 12 hours. During the addition, a 50% aqueous choline hydroxide solution was added to maintain the pH at 10, and the temperature was maintained at 98 ° C. After completion of the addition, the school was formed at 98 ° C. for 1 hour, allowed to cool to 50 ° C., and a hollow fiber type ultrafiltration membrane (Microsa UF module SLP-3053 manufactured by Asahi Kasei Co., Ltd.) having a molecular weight cut off of 10,000 was used. Then, pressure filtration was performed by pump circulation, and about 32 kg of colloidal silica having a silica concentration of 40% was recovered. This colloidal silica has a silica particle size of 45 nm, Na and K contents per silica of 8 ppm and 0.6 ppm, respectively, and Cu, Zn, Cr, Ca, Mg and Fe contents per silica of 40 ppb, They were 220 ppb, 80 ppb, 1000 ppb, 800 ppb, and 4500 ppb. Colloidal silica with few metal ions was obtained by using a chelating resin, a chelating agent and an oxidizing agent in combination and using an organic alkali.
[0022]
(Example 4Comparative Example 1)Example 2Colloidal silica with a small particle size of 23nm and silica concentration of 40%Example 4) And, as a comparative example, a commercially available colloidal silica (“Silica Doll 40L” manufactured by Nippon Kagaku Kogyo Co., Ltd., particle diameter 21 nm, silica concentration 40%, Na content 4000 ppm) was used to perform a silicon wafer polishing test. It was. Colloidal silica was diluted with deionized water so that the silica concentration was 10%, and 20% tetramethylammonium hydroxide aqueous solution was added to adjust the pH to 10.5 to obtain a polishing composition liquid. A 6-inch semiconductor device wafer (silicon wafer with an oxide film) is selected as the workpiece, and the surface flattening polishing process is performed according to the following method. Went. Spot adhesion was determined by visually observing the polished back surface of the wafer substrate during irradiation with a condenser lamp. Each made 20 polished wafers, and as a result,Example 4Then, there was no one spot-attached wafer, and Comparative Example 1 had very few spots attached to 20 sheets.
(Processing method)
Polishing apparatus: SH-24 type platen rotational speed: 60 rpm Wafer gripping method: vacuum suction method Carrier chuck vacuum: 50 mmHg Wafer carrier rotational speed: 120 rpm Polishing pad: SUBA600 polishing composition liquid supply by Rodel Nitta : 60 ml / min Polishing processing time: 5 minutes Object to be polished: 6-inch oxide-coated silicon wafer Cleaning after polishing: Deionized water 30 seconds
[0023]
【The invention's effect】
According to the present invention, a low-cost, high-purity colloidal material using a normal alkali silicate aqueous solution that can be used for polishing of electronic materials such as silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates, and quartz substrates. Silica is provided. Since the colloidal silica obtained by the production method of the present invention has a very small amount of metal impurities, the quality of the wafer is not deteriorated during surface polishing processing of an electronic material such as a semiconductor wafer.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001284336A JP4643085B2 (en) | 2001-09-19 | 2001-09-19 | Method for producing high-purity colloidal silica for abrasives |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001284336A JP4643085B2 (en) | 2001-09-19 | 2001-09-19 | Method for producing high-purity colloidal silica for abrasives |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003089786A JP2003089786A (en) | 2003-03-28 |
JP4643085B2 true JP4643085B2 (en) | 2011-03-02 |
Family
ID=19107673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001284336A Expired - Fee Related JP4643085B2 (en) | 2001-09-19 | 2001-09-19 | Method for producing high-purity colloidal silica for abrasives |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4643085B2 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2395486B (en) * | 2002-10-30 | 2006-08-16 | Kao Corp | Polishing composition |
JP3659965B1 (en) * | 2004-08-06 | 2005-06-15 | 日本化学工業株式会社 | Method for producing high purity colloidal silica |
JP4551167B2 (en) * | 2004-09-14 | 2010-09-22 | 日本化学工業株式会社 | Semiconductor wafer polishing apparatus and polishing method using the same |
JP4852302B2 (en) | 2004-12-01 | 2012-01-11 | 信越半導体株式会社 | Method for producing abrasive, abrasive produced thereby and method for producing silicon wafer |
JP4549878B2 (en) * | 2005-02-02 | 2010-09-22 | 日揮触媒化成株式会社 | Method for producing high-purity aqueous silica sol |
US20100146864A1 (en) * | 2005-08-10 | 2010-06-17 | Catalysts & Chemicals Industries Co., Ltd | Nodular Silica Sol and Method of Producing the Same |
JP5373250B2 (en) * | 2006-02-07 | 2013-12-18 | 日本化学工業株式会社 | Method for producing semiconductor wafer polishing composition |
JP2007326916A (en) * | 2006-06-06 | 2007-12-20 | Nitta Haas Inc | Abrasive composition and method for producing abrasive composition |
JP2008072094A (en) * | 2006-08-14 | 2008-03-27 | Nippon Chem Ind Co Ltd | Polishing composition for semiconductor wafer, production method thereof, and polishing method |
CN101547741B (en) * | 2006-12-04 | 2012-02-01 | 野村微科学股份有限公司 | Method for purifying chemical added with chelating agent |
JP2008270584A (en) | 2007-04-23 | 2008-11-06 | Nippon Chem Ind Co Ltd | Polishing composition for semiconductor wafer and polishing processing method |
JP5086828B2 (en) * | 2008-02-04 | 2012-11-28 | 日本化学工業株式会社 | Colloidal silica consisting of silica particles with immobilized piperidine |
JP5081653B2 (en) * | 2008-02-04 | 2012-11-28 | 日本化学工業株式会社 | Colloidal silica comprising silica particles with ε-caprolactam immobilized |
JP5404568B2 (en) * | 2010-09-21 | 2014-02-05 | 日揮触媒化成株式会社 | Silica-based fine particles, coating material for coating formation and substrate with coating |
US10065865B2 (en) * | 2011-02-22 | 2018-09-04 | Evonik Degussa Gmbh | Process for preparing aqueous colloidal silica sols of high purity from alkali metal silicate solutions |
DE102011017783A1 (en) | 2011-04-29 | 2012-10-31 | Evonik Degussa Gmbh | Preparing an aqueous colloidal silica sol, useful to e.g. prepare silica, comprises mixing a water-soluble alkali metal silicate with an acidifying agent, followed by contacting with e.g. a basic anion exchange resin of hydroxyl type |
DE102011004534A1 (en) | 2011-02-22 | 2012-08-23 | Evonik Degussa Gmbh | Preparing an aqueous colloidal silica sol, useful to prepare silica, comprises mixing a water-soluble alkali metal silicate with an acidifying agent, followed by contacting with a basic anion exchange resin of hydroxyl type, |
TWI549911B (en) * | 2011-12-28 | 2016-09-21 | 日揮觸媒化成股份有限公司 | High purity silica sol and its production method |
US8859428B2 (en) * | 2012-10-19 | 2014-10-14 | Air Products And Chemicals, Inc. | Chemical mechanical polishing (CMP) composition for shallow trench isolation (STI) applications and methods of making thereof |
JP6047395B2 (en) * | 2012-12-20 | 2016-12-21 | 日揮触媒化成株式会社 | High purity silica sol and method for producing the same |
JP6134599B2 (en) * | 2013-07-17 | 2017-05-24 | 日揮触媒化成株式会社 | High purity silica sol and method for producing the same |
EP3161859B1 (en) * | 2014-06-25 | 2023-03-08 | CMC Materials, Inc. | Methods for fabricating a chemical-mechanical polishing composition |
WO2017069065A1 (en) * | 2015-10-20 | 2017-04-27 | 日産化学工業株式会社 | Method for producing purified aqueous solution of silicic acid |
JP7066480B2 (en) * | 2018-03-29 | 2022-05-13 | 株式会社フジミインコーポレーテッド | Abrasive grain dispersion liquid, polishing composition kit, and polishing method for magnetic disk substrates |
JP2020205320A (en) * | 2019-06-17 | 2020-12-24 | 株式会社トクヤマ | Additive agent for silicon nitride etching liquid |
CN111747419B (en) * | 2020-07-08 | 2023-08-22 | 青岛美高集团有限公司 | Method for reducing heavy metal content in silica gel |
TW202306896A (en) * | 2021-03-31 | 2023-02-16 | 日商日產化學股份有限公司 | Stabilized aqueous active silica solution, silica sol using same, and method for producing same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61158810A (en) * | 1984-12-28 | 1986-07-18 | Shokubai Kasei Kogyo Kk | Production of high-purity silica sol |
JPH0474707A (en) * | 1990-07-09 | 1992-03-10 | Nippon Monsant Kk | Production of colloidal silica |
JPH11302633A (en) * | 1998-04-20 | 1999-11-02 | Toshiba Corp | Polisher and method for polishing semiconductor substrate |
JP2000247625A (en) * | 1999-03-04 | 2000-09-12 | Nippon Chem Ind Co Ltd | High purity silica sol and its production |
-
2001
- 2001-09-19 JP JP2001284336A patent/JP4643085B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61158810A (en) * | 1984-12-28 | 1986-07-18 | Shokubai Kasei Kogyo Kk | Production of high-purity silica sol |
JPH0474707A (en) * | 1990-07-09 | 1992-03-10 | Nippon Monsant Kk | Production of colloidal silica |
JPH11302633A (en) * | 1998-04-20 | 1999-11-02 | Toshiba Corp | Polisher and method for polishing semiconductor substrate |
JP2000247625A (en) * | 1999-03-04 | 2000-09-12 | Nippon Chem Ind Co Ltd | High purity silica sol and its production |
Also Published As
Publication number | Publication date |
---|---|
JP2003089786A (en) | 2003-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4643085B2 (en) | Method for producing high-purity colloidal silica for abrasives | |
JP5127452B2 (en) | Method for producing deformed silica sol | |
JP5398963B2 (en) | Low sodium non-spherical colloidal silica | |
JP5155185B2 (en) | Method for producing colloidal silica | |
JP2001294417A (en) | Method of producing colloidal silica | |
JP2009510224A5 (en) | ||
JP5221517B2 (en) | Aluminum modified colloidal silica and method for producing the same | |
JP2002338232A (en) | Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same | |
JP4094291B2 (en) | Method for producing silica sol | |
JP4549878B2 (en) | Method for producing high-purity aqueous silica sol | |
KR20060048902A (en) | A method of manufacturing a low metal colloidal silica | |
KR101185696B1 (en) | A Method of Manufacturing a Low Metal Active Silica | |
WO2006057479A1 (en) | Slurry for use in metal-chemical mechanical polishing and preparation method thereof | |
JP2002338951A (en) | Hydrothermally treated colloidal silica for polishing agent | |
JPH0454617B2 (en) | ||
TWI402333B (en) | Polishing agent | |
JP2006202932A (en) | Polishing composition, its manufacturing method, and polishing method using the same | |
JP2006036605A (en) | Method for producing high purity aqueous silica sol | |
JP2006104354A (en) | Polishing composition, method for producing the same and polishing method using the polishing composition | |
JP4507141B2 (en) | Polishing composition, production method thereof and polishing method using the same | |
JP3659965B1 (en) | Method for producing high purity colloidal silica | |
JP2001294420A (en) | Purification method of alkali silicate solution | |
JPH11279534A (en) | Surface polishing liquid composition for semiconductor product | |
KR100477676B1 (en) | A method for manufacturing of silica sols | |
JP2010241642A (en) | Colloidal silica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20011010 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080911 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4643085 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |