JPS61158810A - Production of high-purity silica sol - Google Patents

Production of high-purity silica sol

Info

Publication number
JPS61158810A
JPS61158810A JP27810684A JP27810684A JPS61158810A JP S61158810 A JPS61158810 A JP S61158810A JP 27810684 A JP27810684 A JP 27810684A JP 27810684 A JP27810684 A JP 27810684A JP S61158810 A JPS61158810 A JP S61158810A
Authority
JP
Japan
Prior art keywords
acid
solution
silica
liquid
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27810684A
Other languages
Japanese (ja)
Other versions
JPH0454617B2 (en
Inventor
Goro Sato
護郎 佐藤
Michio Komatsu
通郎 小松
Sumio Saito
純夫 斉藤
Ikutoshi Nozue
野末 育利
Morio Fukuda
盛男 福田
Yoshitsune Tanaka
喜凡 田中
Toshiharu Hirai
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUBAI KASEI KOGYO KK
JGC Catalysts and Chemicals Ltd
Original Assignee
SHOKUBAI KASEI KOGYO KK
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUBAI KASEI KOGYO KK, Catalysts and Chemicals Industries Co Ltd filed Critical SHOKUBAI KASEI KOGYO KK
Priority to JP27810684A priority Critical patent/JPS61158810A/en
Publication of JPS61158810A publication Critical patent/JPS61158810A/en
Publication of JPH0454617B2 publication Critical patent/JPH0454617B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-purity silica sol, by dealkalinizing a dilute aqueous solution of an alkali metal silicate with an ion exchange resin, removing impurities from the resultant silica liquid by ultrafiltration after acid treatment, and carrying out the growth of silica colloid particles. CONSTITUTION:A 0.5-7wt% aqueous solution of an alkali metal silicate is dealkalinized by contacting with a strongly acidic cation exchange resin to obtain a silica liquid.l An acid is added to the liquid and the silica liquid is subjected to the acid-treatment at <= 2.5pH and 0-98 deg.C. The impurities in the obtained acidic silica colloid liquid are removed with an ultra-filtration membrane having a critical molecular weight of 500-10,000 to obtain a solution of an oligosilicic acid. A part of the solution is added with ammonia or an amine and heated at 7-10pH and 60-98 deg.C to produce a heal sol, and the remaining part of the oligosilicate solution is added slowly and dropwise to the sol to effect the growth of the colloid particles. A silica colloid having a purity of higher than four-nines can be produced from an alkali metal silicate by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はアルカリ珪酸塩を原料としながらも、アルカ
リ及びその他の不純寄金実質的に含まない高純度シリカ
ゾルの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a high-purity silica sol that is substantially free of alkali and other impurities, even though it uses an alkali silicate as a raw material.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来、高純度シリカと呼ばれるものには、水晶や珪石t
−m処理して得られるものと、これらを一旦金属珪素と
した後、塩化*1経由して得られるものが知られている
。前者は安価であるが、純度がせいぜい99.9%(ス
リーナイン)であり、後者は純度が7オ一ナイン以上と
高純度であるものの、精製プロ七スが複雑で歩留りも悪
いため、非常にコスト高である。そしてこれらからシリ
カゾルを製造する場合には、アルカリ溶融によってアル
カリ珪酸塩としなければならないが、上記の高純度シリ
カはアルカリ浴解性に乏しいばかりでなく、アルカリ溶
融に際して不純物が混入するため、この方法では高純度
のシリカゾルを得ることが殆ど不可能である。
Conventionally, what is called high-purity silica contains crystals and silica.
-m treatment, and those obtained by converting these into metal silicon and then chlorinating*1 are known. The former is inexpensive, but has a purity of 99.9% (three nines) at most, while the latter has a high purity of 7 o's and nines or more, but the purification process is complicated and the yield is very low. The cost is high. In order to produce silica sol from these, it is necessary to convert them into alkali silicates by alkali melting. However, the above-mentioned high-purity silica not only has poor alkali bath solubility, but also contains impurities during alkali melting, so this method is not suitable. It is almost impossible to obtain a high purity silica sol.

一方、ホワイトカーゼンやエアロジルハ、良好なアルカ
リ浴解性を備えているが、そのシリカ純度が99%程度
であるため、これらを原料に用いても高純度のシリカゾ
ルを得ることができない。
On the other hand, although white casen and aerosilha have good alkaline bath decomposition properties, their silica purity is about 99%, so even if they are used as raw materials, high purity silica sol cannot be obtained.

また、現在市販されているシリカゾルの如くアルカリ珪
蛋塩から通常の方法によって製造石れるシリカゾルを、
酸処理によって精製し、そのシリカ純度を成る程度向上
させることは可能である。しかし、この種のシリカゾル
は分散コロイド粒子の粒径が20〜100X程度である
ため、コロイド粒子が抱き込んでいる不純物を高度に除
去することができない。従って、この方法でもシリカ純
度をスリーナイン以上に向上式せることが不可能である
In addition, silica sol, which is produced from alkali silica salt by the usual method, such as the silica sol currently on the market,
It is possible to refine the silica by acid treatment and to improve its silica purity to some extent. However, in this type of silica sol, the particle size of the dispersed colloidal particles is about 20 to 100X, and therefore impurities contained in the colloidal particles cannot be removed to a high degree. Therefore, even with this method, it is impossible to improve the silica purity beyond three nines.

高純度シリカゾルが得られる可能性がめる唯一の方法と
しては、四塩化珪素からアルコキシド(例えばエチルシ
リケート)t−経由し、これをアンモニア水中で加水分
解する方法が考えられるが、原料調製に複雑な工程を必
要とすること及び多量のアルコール金使用しなければな
らないことから、非常tζコスト高になる不都合がある
。加えてこの方法ではコロイド粒子の粒径を希望通りに
調節する手段が、現在のところ見い出されていないため
、沈澱状のシリカしか得られないのが実情である。
The only possible method for obtaining high-purity silica sol is to convert silicon tetrachloride to an alkoxide (e.g., ethyl silicate) and then hydrolyze it in aqueous ammonia, but this method requires a complicated process for raw material preparation. Since this method requires a large amount of alcohol and a large amount of alcohol gold, there is a disadvantage that the cost is extremely high. In addition, in this method, no means has been found to date to adjust the particle size of the colloidal particles as desired, so the reality is that only precipitated silica can be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは従来の通常の方法によったのでは到底高純
度のシリカゾルを得ることができないアルカリ珪酸塩を
原料としながらも、その希薄水溶液をイオン交換樹脂で
脱アルカリして珪酸液とし、次いでこれを酸処理した後
、限外濾過で不純物を除去し、しかる後シリカコロイド
粒子を生長させればフォーナイン以上のシリカ純度を有
するシリカコロイドが得られること金兄い出した。
The present inventors used an alkali silicate as a raw material, for which it is impossible to obtain a silica sol of high purity by conventional conventional methods, and dealkalized the dilute aqueous solution with an ion exchange resin to obtain a silicic acid solution. It was then discovered that by treating this with an acid, removing impurities by ultrafiltration, and then growing the silica colloid particles, a silica colloid with a silica purity higher than that of four nines could be obtained.

すなわち、本発明に係る高純度シリカゾルの製造法は、
(1)濃度が0.5〜7重量%であるアルカリ珪酸塩の
水溶液を、強醒型陽イオン交換樹脂と接触させて脱アル
カリすることにより珪酸液を調製し、Φ)この珪酸液に
酸を加え、pH2,5以下温度θ〜98゛Cの条件で珪
酸液を酸処理し、(c)得られた酸性珪酸コロイド液中
の不純物を分画分子!500〜10000 (7)限外
濾過膜にて除去してオリゴ珪酸溶液を調製し、(d)こ
のオリゴ珪Hf8液の一部にアンモニア又はアミンを加
え、pH7〜10で60〜98℃の温度に加熱してヒー
ルゾルヲ調製し、(e)このヒールゾルにオリゴ珪酸溶
液の残部を、徐々に滴下してコロイド粒子を生長烙せる
ことを特徴とする。
That is, the method for producing high purity silica sol according to the present invention is as follows:
(1) A silicic acid solution is prepared by dealkalizing an aqueous solution of an alkali silicate with a concentration of 0.5 to 7% by weight by bringing it into contact with a strong cation exchange resin, and was added, and the silicic acid solution was acid-treated under conditions of pH 2.5 and temperature θ to 98°C, and (c) impurities in the obtained acidic silicic acid colloid solution were separated into molecules! 500 to 10,000 (7) Prepare an oligosilicic acid solution by removing it with an ultrafiltration membrane, (d) Add ammonia or amine to a part of this oligosilicic acid Hf8 solution, and heat at a temperature of 60 to 98°C at pH 7 to 10. (e) The remainder of the oligosilicate solution is gradually added dropwise to the heel sol to grow and heat the colloidal particles.

本発明の方法に於て、原料として使用式れるアルカリ珪
酸塩のアルカリは、特に限定されるものではないが、ア
ルカリ金属珪酸塩がコストその他で有利である。なかで
も水硝子は生産量も多く、その化学的及び物理的性質が
良く研究されているので、出発原料として最も好ましい
In the method of the present invention, the alkali silicate used as a raw material is not particularly limited, but alkali metal silicates are advantageous in terms of cost and other aspects. Among them, water glass is the most preferred as a starting material because it is produced in large quantities and its chemical and physical properties have been well studied.

アルカリ珪酸塩の810./ MtO(但し、Mはアル
カリ金属を示す)モル比は、上記の工程(a)で得られ
る珪酸液中の分散コロイドの粒径を決定する重要な因子
の一つである。前記のモル比が0.5未満であると、イ
オン性の珪酸になり易いため、工程(d)の限外濾過で
、珪酸と不純物との分離が困難となる。また、前記のモ
ル比が4.5を越えると、工程(厘)で得られる珪酸液
の安定性が悪化する(但し、珪酸リチウムは例示である
)。
810 of alkali silicates. /MtO (where M represents an alkali metal) molar ratio is one of the important factors that determines the particle size of the dispersed colloid in the silicic acid solution obtained in the above step (a). If the molar ratio is less than 0.5, it tends to become ionic silicic acid, making it difficult to separate silicic acid from impurities in the ultrafiltration step (d). Furthermore, if the molar ratio exceeds 4.5, the stability of the silicic acid solution obtained in the step will deteriorate (however, lithium silicate is an example).

従って、出発原料として使用するアルカリ珪酸塩のsi
o、、/M、0のモル比は0.5〜4.5、好ましくは
1〜3の範囲であることを可とする。
Therefore, the si of the alkali silicate used as the starting material
The molar ratio o, , /M, 0 may be in the range of 0.5 to 4.5, preferably 1 to 3.

本発明の方法によれば、原料たるアルカリ珪酸塩は0.
5〜7重量−の濃度に水で希釈されて脱アルカリ処理を
受ける。アルカリ珪酸塩水溶液の濃度が0.5重量−未
満であると、脱アルカリ後の珪酸液が加水分解を受けて
ゲルを生成しやすくなるので好ましくなく、7重tチを
越えると、イオン交換樹脂層内でゲル化を起すことがあ
るので、安定した操作が困難になる。脱アルカリ処理は
強酸型陽イオン交換樹脂を使用して行なわれ、このイオ
ン交換樹脂には例えば三菱化成工業(株)製のダイヤイ
オン8に−113、PK208などが使用可能である。
According to the method of the present invention, the raw material alkali silicate is 0.
It is diluted with water to a concentration of 5-7% by weight and subjected to dealkalization. If the concentration of the alkali silicate aqueous solution is less than 0.5% by weight, the silicic acid solution after dealkalization tends to undergo hydrolysis and form a gel, which is undesirable.If it exceeds 7% by weight, the ion exchange resin Gelation may occur within the layer, making stable operation difficult. The dealkalization treatment is carried out using a strong acid type cation exchange resin, and examples of the ion exchange resin that can be used include Diaion 8-113 and PK208 manufactured by Mitsubishi Chemical Industries, Ltd.

弱酸型の陽イオン交換樹脂を使用した場合は、アルカリ
のリークが多く、アルカリ珪酸塩水溶液を充分に脱アル
カリすることができない。
When a weak acid type cation exchange resin is used, there is a large amount of alkali leakage and it is not possible to sufficiently dealkalize the aqueous alkali silicate solution.

雀酸型陽イオン交換樹脂は通常、交換容量の約1.5倍
に相当する再生剤で再生して使用されるが、本発明のイ
オン交換樹脂もこの程度の再生率で差支えない。再生y
sをさらに高めたイオン交換樹脂を使用しても、アルカ
リの除去率が若干向上する程度で、それ程効果的でない
。また脱アルカリで得られる珪酸液中の不純物は、珪酸
と強固に結合しているため、陽イオン交換樹脂層に多数
回通過せしめても、不純物量をそれ程減少嘔せることが
できず、むしろ樹脂から多価イオンが脱離するので、不
純物量が増加すること式えある。
Although a mason acid type cation exchange resin is normally used after being regenerated with a regenerating agent corresponding to about 1.5 times the exchange capacity, the ion exchange resin of the present invention can also be used at a regeneration rate of this level. playback
Even if an ion exchange resin with higher s is used, the alkali removal rate is only slightly improved and is not very effective. In addition, the impurities in the silicic acid solution obtained by dealkalization are strongly bound to the silicic acid, so even if it passes through the cation exchange resin layer many times, the amount of impurities cannot be reduced that much, and rather the resin Since multivalent ions are desorbed from the ion, the amount of impurities may increase.

強酸型陽イオン交換樹脂による脱アルカリ処理で得られ
る珪酸液は、次いで酸処理を受ける。
The silicic acid solution obtained by dealkalization using a strong acid type cation exchange resin is then subjected to acid treatment.

この酸処理は珪rR液に酸を添加し、pHO〜2.5、
温度O〜98℃の条件lζ保持することで行なわれ、こ
れによって珪酸液中のコロイド粒子は3mμ程度に生長
するものと推定され、またコロイド粒子に抱き込まれて
いる不純物に粒子外拡散する。酸処理には塩酸、硫酸、
硝酸などの鉱識及びpKa (5の有機醸がいずれも使
用可能であるが、なかでも塩酸が好ましい。本発明の酸
処理ではpHが低い程不純物の除去に有効である。しか
し、pH(Oでは容器からの不純物の混入が懸念式れ、
ゲル化を助長する心配がある。
In this acid treatment, acid is added to the SilicaR solution, and the pH is set to 2.5,
The colloidal particles in the silicic acid solution are estimated to grow to a size of about 3 mμ, and the impurities contained in the colloidal particles diffuse outside the particles. For acid treatment, hydrochloric acid, sulfuric acid,
Any organic acid such as nitric acid and pKa (5) can be used, but hydrochloric acid is particularly preferred. In the acid treatment of the present invention, the lower the pH, the more effective it is in removing impurities. There is a concern that impurities may come in from the container.
There is a concern that it may promote gelation.

また、I)H>2.5の酸処理では次工程の限外濾過で
不純物を充分に除去することができず、特に3価以上の
金属の除去率が低下する。従って、酸処理に際してのp
H条件は0〜2.5、好ましくは0.5〜1.5ヲ可と
する。温度条件について言えば、高温で処理する程、次
の限外濾過工程での不純物除去率が向上するが、コロイ
ド安定性が低下するので、0〜98℃の範囲とするのが
適当である。
In addition, in the case of acid treatment with I)H>2.5, impurities cannot be sufficiently removed in the next step of ultrafiltration, and the removal rate of trivalent or higher metals in particular decreases. Therefore, p during acid treatment
The H condition is 0 to 2.5, preferably 0.5 to 1.5. As for the temperature conditions, the higher the treatment temperature, the better the impurity removal rate in the next ultrafiltration step, but the lower the colloid stability, so it is appropriate to set it in the range of 0 to 98°C.

酸処理を受けた珪酸液(rR性珪酸コロイド液)は次い
で限界濾過に付され、これによって珪酸液中のイオン不
純物が除去される。限外濾過膜には耐酸性で膜から不純
物が溶出しないものが使用式れ、例えば旭化成工業(株
)製のポリスルフォン膜が使用可能である。分画分子量
は500〜10000が好ましく、10000以上であ
ると、珪酸コロイドの膜によく捕捉が悪く、歩留りが低
下する。810,7M、0モル比の小さいアルカリ珪酸
塩を原料とした場合は、酸性珪酸コロイド液に含まれる
コロイド粒子も小さいので限外濾過膜には分画分子量が
小石い例えば500しRルのものを用いることを可とす
る。しかし一般的に言えば、分画分子量が太きいものほ
ど透過水量が多いので、濾過効率が高いことは勿論であ
る。酸性珪酸コロイド液を例えばホロ7アイノ々−型限
外濾過装置に循環させ、膜を通して系外に排出される#
1液と同量の純粋な酸性液(pH0,5〜1.5)を補
いながら、純粋な酸性液の補給量が当初の酸性珪酸コロ
イド液の20〜10000倍に到達するまでこの操作を
続行して酸性珪酸コロイド液の分散媒を純粋な酸性液で
置換する。しかる後、今度は比電導度0.4μs / 
cm以下の純水を使用して上と同様な限外濾過操作を行
ない、純水の補給量が当初のコロイド液の20〜100
0倍に到達するまでこの操作を続行することによって、
高純度のオリゴ珪酸浴液を得る。
The acid-treated silicic acid solution (rR silicic acid colloidal solution) is then subjected to ultrafiltration, whereby ionic impurities in the silicic acid solution are removed. The ultrafiltration membrane used is one that is acid-resistant and does not allow impurities to be eluted from the membrane; for example, a polysulfone membrane manufactured by Asahi Kasei Industries, Ltd. can be used. The molecular weight cutoff is preferably 500 to 10,000, and if it is 10,000 or more, the silicic acid colloid will not be captured well in the membrane and the yield will decrease. When an alkali silicate with a small molar ratio of 810.7M and 0 is used as a raw material, the colloidal particles contained in the acidic silicic acid colloidal solution are also small, so the ultrafiltration membrane has a molecular weight cut-off of pebbles, for example, one with a molecular weight cut off of 500. It is possible to use However, generally speaking, the larger the molecular weight cutoff, the larger the amount of permeated water, and therefore the higher the filtration efficiency. The acidic silicic acid colloid liquid is circulated through, for example, a Holo 7 AINO-type ultrafiltration device, and is discharged from the system through a membrane.
While supplementing with the same amount of pure acidic liquid (pH 0.5 to 1.5) as liquid 1, continue this operation until the amount of pure acidic liquid supplied reaches 20 to 10,000 times the initial acidic silicate colloid liquid. Then, the dispersion medium of the acidic silicic acid colloid liquid is replaced with a pure acidic liquid. After that, the specific conductivity is 0.4μs/
Perform the same ultrafiltration operation as above using pure water of less than cm, and the amount of pure water replenished should be 20 to 100% of the original colloidal solution.
By continuing this operation until reaching 0x,
A highly pure oligosilicate bath solution is obtained.

本発明の方法では酸性珪酸コロイド液に分散するコロイ
ド粒子が微細であるため(大きくても3 m、g程度で
あると推定される)、限外濾過によって液中の不純物を
殆ど除去することができ、シリカ純度を少なくともフォ
ーナインに高めることができる。そして、ざらに高純度
金所望する場合には、再生倍率5以上の陰陽イオン交換
樹脂の温床に、前記のオリゴ珪酸浴液を8V=5で通過
嘔せることにより、シリカ純度をファイブナイン以上に
向上させることができる。勿論、Fe、AI、Tiは旧
との反応性が高く、固体強酸を作り易いので除去が困難
である。
In the method of the present invention, since the colloid particles dispersed in the acidic silicate colloid liquid are fine (estimated to be about 3 m or 3 g at the most), most of the impurities in the liquid can be removed by ultrafiltration. silica purity can be increased to at least four nines. If a very high purity gold is desired, the silica purity can be increased to five nines or higher by passing the oligosilicate bath solution at 8 V = 5 through a hot bed of anion exchange resin with a regeneration rate of 5 or higher. can be improved. Of course, Fe, AI, and Ti are difficult to remove because they are highly reactive with old metals and easily form solid strong acids.

しかし、このようなイオンもキレート樹脂層を通過させ
ることで除去することができる。
However, such ions can also be removed by passing through the chelate resin layer.

上記の限外濾過操作で得られた高純度のオリゴ珪酸溶液
は、これに高純度のアンモニア又はアミンを加えてpH
f 7〜10に調節し、60〜98”Cに加熱すること
で、コロイド粒子径が5〜7mμに生長したヒールゾル
が得られ、このヒールゾルにpHt−一定に保持しなが
ら高純度のオリゴ珪酸f8液を添加することにより、コ
ロイド粒子を所望の粒径に生長式せることができる。従
って、限外濾過操作で得られた高純度オリゴ珪酸溶液の
一部を採取してシールゾルを調製し、これに残部の高純
度オリゴ珪酸溶Xt−添加することにより、シリカ純度
がフォーナイン以上の高純度シリカゾルが得られるので
ある。
The high purity oligosilicic acid solution obtained by the above ultrafiltration operation is adjusted to pH by adding high purity ammonia or amine to it.
By adjusting f to 7 to 10 and heating to 60 to 98"C, a heel sol with a colloidal particle size of 5 to 7 mμ is obtained. Highly purified oligosilicate f8 is added to this heel sol while keeping the pH constant. By adding a liquid, colloidal particles can be grown to a desired particle size. Therefore, a part of the high purity oligosilicate solution obtained by ultrafiltration is collected to prepare a seal sol. By adding the remaining high-purity oligosilicic acid solution Xt- to the silica, a high-purity silica sol having a silica purity of four nines or more can be obtained.

尚、本発明に於ける珪酸コロイドの粒径は、試料をサン
プル台に塗布して凍結乾燥し、透過型電子顕微鏡で観察
して粒径を測定した。
Incidentally, the particle size of the silicic acid colloid in the present invention was determined by applying a sample to a sample stand, freeze-drying it, observing it with a transmission electron microscope, and measuring the particle size.

実施例1 〔オリゴ珪酸溶’fiAの調製〕 3号珪酸ソーダ(珪曹比3.1 )853gを水409
7gで希釈し、この水溶液を予め塩酸で再生したスチレ
ン系強酸型陽イオン交換樹脂(三菱化成(株)製8に−
IB)117ツトルに常温で通液して5%珪酸液を得た
。この珪酸液に試薬特級35%塩112500g加えて
95°Cで1時間加熱し、酸性珪酸コロイド液を得た(
この操作f +フーチングと呼ぶ)。この時のpHは約
Oでめった。この液を流通式限外濾過膜(層化成製  
 8IP−1013、分画分子量6000)を組込んだ
装置に注入し、膜内の見掛は通過速度0.9m/”%平
均濾過圧2 kg/ cm”で運転したところ、濾過水
量は581/hrでめった。濾過水の排出速度と同一速
度で4規定の塩酸201t−装置に注入して溶媒置換を
行ない、さらに比電導度0.1μs / am以下の純
水501で塩酸を置換することにより、オリゴ珪駿溶液
人を得た。
Example 1 [Preparation of oligosilicic acid solution 'fiA] 853 g of No. 3 sodium silicate (silicate ratio 3.1) was mixed with 409 g of water.
This aqueous solution was diluted with 7 g of styrene-based strong acid type cation exchange resin (manufactured by Mitsubishi Kasei Co., Ltd.), which had been regenerated in advance with hydrochloric acid.
IB) A 5% silicic acid solution was obtained by passing the solution through a 117 tube at room temperature. 112,500 g of special reagent grade 35% salt was added to this silicic acid solution and heated at 95°C for 1 hour to obtain an acidic silicic acid colloid solution (
This operation is called f+footing). The pH at this time was approximately O. This liquid is filtered through a flow-type ultrafiltration membrane (made by Layakasei).
8IP-1013 (molecular weight cut off: 6000) was injected into a device incorporating the membrane, and the membrane was operated at an apparent passage speed of 0.9 m/% average filtration pressure of 2 kg/cm, and the amount of filtrated water was 581/cm. I missed it in hr. Oligosilicon Got a solution person.

〔オリゴ珪酸浴液Bの調製〕[Preparation of oligosilicate bath solution B]

リーチング時の液温を室温とした以外はオリゴ珪酸溶液
人と同様な方法でBt−得た。
Bt was obtained in the same manner as the oligosilicate solution except that the liquid temperature during leaching was set to room temperature.

〔オリゴ珪酸溶液Cの調製〕[Preparation of oligosilicic acid solution C]

リーチング時に加える35%塩酸の量を100gとした
以外はオリゴ珪酸溶液人と同様な方法でオリゴ珪酸溶液
c4−得た。
An oligosilicic acid solution C4- was obtained in the same manner as the oligosilicic acid solution except that the amount of 35% hydrochloric acid added at the time of leaching was changed to 100 g.

〔オリゴ珪酸浴液りの調製〕[Preparation of oligosilicate bath liquid]

リーチング時の液温を室温とし、加える酸を試薬特級9
8%硫酸150gとし、限外濾過操作で使用する酸を9
規定の硫酸とした以外はオリゴ珪酸溶iAと同様な方法
でオリゴ珪酸溶液りを調製した。
The liquid temperature during leaching is room temperature, and the acid added is reagent grade 9.
8% sulfuric acid is 150g, and the acid used in the ultrafiltration operation is 9
An oligosilicate solution was prepared in the same manner as the oligosilicate solution iA except that the specified sulfuric acid was used.

〔オリゴ珪酸溶液Eの調製〕[Preparation of oligosilicic acid solution E]

リーチング時に加える35%塩酸のtを10gとし、限
外濾過操作で使用する@酸の規定度t0.1とした以外
はオリゴ珪酸溶液Aと同様な方法でオリゴ珪酸溶液Et
−得た。
Oligo-silicic acid solution Et was prepared in the same manner as oligo-silicic acid solution A, except that the t of 35% hydrochloric acid added during leaching was 10 g, and the normality of @acid used in the ultrafiltration operation was 0.1.
-I got it.

〔高純度シリカゾルの調製〕[Preparation of high purity silica sol]

上記のオリゴ珪酸溶液A290−と、比電導度o、1t
is/cm以下の純水100+114と、試薬特級28
%アンモニア水2Ltt?混合し、85”Cに加熱して
ヒールゾルを調製した。またオリゴ珪酸溶液A3800
−に、アンモニアガスから得たアンモニア水101jf
:加えた液を、前記のヒールゾルに5 m / hrの
速度で添加し、添加後シリカ濃度を20%まで濃縮して
シリカゾルAt−得た。このゾルの粘度は1.7 Cp
、比重1.109、濁度o、o t cm−’、シリカ
の比表面積185 m”/ gであって、不純物量は2
5 ppm/ 8 io、であった。
The above oligosilicic acid solution A290- and specific conductivity o, 1t
Pure water below is/cm 100+114 and reagent special grade 28
%Ammonia water 2Ltt? A heel sol was prepared by mixing and heating to 85"C. Oligosilicate solution A3800
−, ammonia water obtained from ammonia gas 101jf
: The added liquid was added to the above-mentioned heel sol at a rate of 5 m/hr, and after the addition, the silica concentration was concentrated to 20% to obtain silica sol At-. The viscosity of this sol is 1.7 Cp
, specific gravity 1.109, turbidity o,ot cm-', specific surface area of silica 185 m"/g, and the amount of impurities is 2
It was 5 ppm/8 io.

また、オリゴ珪酸溶液人に代えてオリゴ珪酸溶液B、B
をそれぞれ使用し、上と同様にして4種のシリカゾルB
−Bt−%製した。使用したオリゴ珪酸溶液の調製条件
と共に各シリカゾルの不純物量を次表に示す。
Also, instead of oligo silicic acid solution B,
4 types of silica sol B in the same manner as above.
-Bt-%. The following table shows the conditions for preparing the oligosilicic acid solution used and the amount of impurities in each silica sol.

(以下余白) 表−1 申参考例 実施例2 予め再生倍率5に再生した陽イオン交換樹脂(8に−x
B)tA!と、陰イオン交換樹脂(8人−10)1.5
1をよく混合した混床に、実施例1で得たオリゴ珪酸溶
液Atl−8v−5f通過させてオリゴ珪酸m液中の不
純物−il k 6 ppm/8i0.に低下させた。
(Left below) Table 1 Reference Example Example 2 Cation exchange resin regenerated in advance to a regeneration ratio of 5 (8 to -x
B)tA! and anion exchange resin (8 people - 10) 1.5
The oligosilicic acid solution Atl-8v-5f obtained in Example 1 was passed through the mixed bed in which the oligosilicic acid solution Atl-8v-5f was thoroughly mixed. It was lowered to .

このオリゴ珪酸溶液を用いて実施例1と同様にしてシリ
カゾルt′調製したところ、その不純物量はs ppm
/5iftであり、コロイドの平均粒子径は13.6m
μであった。
When silica sol t' was prepared using this oligosilicic acid solution in the same manner as in Example 1, the amount of impurities was s ppm.
/5ift, and the average particle size of the colloid is 13.6m.
It was μ.

実施例3 メタ珪酸ソーダ(珪W比Q、5)853g?:、水40
97gで希釈し、この水fB液全金子塩酸で再生したス
チレン系強酸型陽イオン交換樹脂51に常温で通液して
0.7%珪酸液を得た。この珪酸液に試薬特級35%塩
酸200gを加え(この時のpHは約0でめった)、9
5℃で1時間加熱して酸性珪酸コロイド液を得た。この
液を流通式限外濾過膜(旭化成1sIP−1013、分
画分子量500)1&:組込んだ装置に供給し、膜内の
見掛は通過速度0.9 m/s 、平均濾過圧2 ’に
47 cmで運転したところ、濾過水量は601/ h
rであつ免。濾過水の排出速度と同一速度で4規定の塩
酸201t−装置に注入して溶媒置換を行ない、さらに
比電導度0.1μs / cm以下の純水501で塩M
を置換することにより、オリゴ珪酸浴液Fi得た。この
溶液に含まれるコロイドの平均粒径は2mμであり、不
純物量は5 ppm/8i0.であった。
Example 3 Sodium metasilicate (silicon W ratio Q, 5) 853g? :, water 40
This water fB solution was diluted with 97 g and passed through a styrene-based strong acid type cation exchange resin 51 regenerated with all metallurgical hydrochloric acid at room temperature to obtain a 0.7% silicic acid solution. Add 200 g of reagent grade 35% hydrochloric acid to this silicic acid solution (pH at this time was about 0),
The mixture was heated at 5° C. for 1 hour to obtain an acidic silicate colloid solution. This liquid was supplied to a device equipped with a flow-through ultrafiltration membrane (Asahi Kasei 1sIP-1013, molecular weight cut off 500) 1&:, and the apparent passage speed inside the membrane was 0.9 m/s, and the average filtration pressure was 2'. When operated at 47 cm, the amount of filtrated water was 601/h.
Atatsumen with r. Solvent replacement was carried out by injecting 4N hydrochloric acid into a 201T apparatus at the same rate as the discharge rate of the filtrate, and then salt M was added with 501T of pure water with a specific conductivity of 0.1 μs/cm or less.
By substituting , oligosilicate bath liquid Fi was obtained. The average particle size of the colloid contained in this solution is 2 mμ, and the amount of impurities is 5 ppm/8i0. Met.

次にこのオリゴ珪1w8液を用いて実施例1と同様にし
てシリカゾルを得たところ、その不純物tは7 ppm
/8i0.であり、コロイドの平均粒子径は14.7m
μであった。
Next, using this oligosilicone 1w8 liquid, a silica sol was obtained in the same manner as in Example 1, and the impurity t was 7 ppm.
/8i0. The average particle size of the colloid is 14.7 m.
It was μ.

〔効果〕〔effect〕

セラミックファイノζ−使用の断熱材あるいはロストワ
ックス用に使用される従来のシリカゾルバインダーは、
高温での軟化もしくはクリストノ々ライト化による強度
低下に問題がめったが、本発明で得られるシリカゾルは
、実施例にも示される通り、シリカ純度がフォーナイン
以上であるので、これをl々イ/ダーとして用いても上
記のような問題がない。これに加えて本発明で得られる
シリカゾルは高純度であるが故に、合成水晶用の原料と
して、さらには超LSI用ウェハーの研摩材や石英ファ
イ・々−1石英ルッゼなどの原料としても使用すること
ができる。本発明のシリカゾルは、これを乾燥焼成すれ
ば、勿論高純度シリカを得ることができる。
Conventional silica sol binders used for ceramic phyno ζ-use insulation materials or lost wax are
There were many problems with strength reduction due to softening or cristonolite formation at high temperatures, but as shown in the examples, the silica sol obtained by the present invention has a silica purity of four nines or higher, so it can be used as Even when used as a reader, there is no problem as mentioned above. In addition, since the silica sol obtained in the present invention is of high purity, it can be used as a raw material for synthetic crystals, as an abrasive material for VLSI wafers, and as a raw material for quartz phi-1-1 quartz luze. be able to. Of course, high purity silica can be obtained from the silica sol of the present invention by drying and firing it.

Claims (1)

【特許請求の範囲】 1、(a)濃度が0.5〜7重量%であるアルカリ珪酸
塩の水溶液を、強酸型陽イオン交換樹脂と接触させて脱
アルカリすることにより珪酸液を調製し、 (b)この珪酸液に酸を加え、pH2.5以下温度0〜
98℃の条件で珪酸液を酸処理し、(c)得られた酸性
珪酸コロイド液中の不純物を分画分子量500〜100
00の限外濾過膜にて除去してオリゴ珪酸溶液を調製し
、 (d)このオリゴ珪酸溶液の一部にアンモニア又はアミ
ンを加え、pH7〜10で60〜98℃の温度に加熱し
てヒールゾルを調製し、(e)このヒールゾルにオリゴ
珪酸溶液の残部を、徐々に滴下してコロイド粒子を生長
させる ことを特徴とする高純度シリカゾルの製造法。 2、工程(a)で使用するアルカリ珪酸塩のSiO_2
/M_2Oモル比(但し、Mはアルカリ金属を示す)が
0.5〜4.5の範囲にある特許請求の範囲第1項記載
の方法。 3、工程(b)で使用する酸が塩酸、硫酸、硝酸及びp
Ka<5の有機酸から選ばれる特許請求の範囲第1項記
載の方法。
[Claims] 1. (a) A silicic acid solution is prepared by dealkalizing an aqueous solution of an alkali silicate having a concentration of 0.5 to 7% by weight by contacting it with a strong acid type cation exchange resin, (b) Add acid to this silicic acid solution, pH 2.5 or lower, temperature 0~
A silicic acid solution is acid-treated at 98°C, and (c) impurities in the obtained acidic silicic acid colloid solution are removed with a molecular weight cut-off of 500 to 100.
00 ultrafiltration membrane to prepare an oligosilicic acid solution, (d) Add ammonia or amine to a part of this oligosilicic acid solution, and heat to a temperature of 60 to 98°C at pH 7 to 10 to form a heel sol. (e) Gradually dripping the remainder of the oligosilicate solution into this heel sol to grow colloidal particles. 2. Alkaline silicate SiO_2 used in step (a)
2. The method according to claim 1, wherein the molar ratio /M_2O (where M represents an alkali metal) is in the range of 0.5 to 4.5. 3. The acids used in step (b) are hydrochloric acid, sulfuric acid, nitric acid and p
The method according to claim 1, wherein the organic acid is selected from organic acids having a Ka<5.
JP27810684A 1984-12-28 1984-12-28 Production of high-purity silica sol Granted JPS61158810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27810684A JPS61158810A (en) 1984-12-28 1984-12-28 Production of high-purity silica sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27810684A JPS61158810A (en) 1984-12-28 1984-12-28 Production of high-purity silica sol

Publications (2)

Publication Number Publication Date
JPS61158810A true JPS61158810A (en) 1986-07-18
JPH0454617B2 JPH0454617B2 (en) 1992-08-31

Family

ID=17592710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27810684A Granted JPS61158810A (en) 1984-12-28 1984-12-28 Production of high-purity silica sol

Country Status (1)

Country Link
JP (1) JPS61158810A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0464289A2 (en) * 1990-07-02 1992-01-08 Nalco Chemical Company Preparation of silica sols
EP0557740A2 (en) * 1992-02-27 1993-09-01 Nissan Chemical Industries Ltd. Method of preparing high-purity aqueous silica sol
JPH05310258A (en) * 1992-04-27 1993-11-22 Yamato Esuron Kk Squeezable container
US5780664A (en) * 1993-08-17 1998-07-14 Asahi Kasei Kogyo Kabushi Kaisha Ammoxidation catalyst composition
WO1999036358A1 (en) * 1998-01-15 1999-07-22 Cabot Corporation Continuous production of silica via ion exchange
JP2003089786A (en) * 2001-09-19 2003-03-28 Nippon Chem Ind Co Ltd High-purity colloidal silica for polishing agent
JP2006213541A (en) * 2005-02-02 2006-08-17 Catalysts & Chem Ind Co Ltd Method for producing high purity aqueous silica sol
JP2012501958A (en) * 2008-09-12 2012-01-26 ナルコ カンパニー Silica-containing material having adjustable porosity and surface morphology and method for synthesizing the same
WO2013039212A1 (en) * 2011-09-16 2013-03-21 日産化学工業株式会社 Methods for producing purified active silicic acid solution and silica sol
JP2014094845A (en) * 2012-11-08 2014-05-22 Agc Si-Tech Co Ltd Method for manufacturing scaly silica particles
JP2015516940A (en) * 2012-04-26 2015-06-18 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method for producing SiO2 granules
US9550683B2 (en) 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
KR20180034424A (en) 2015-07-31 2018-04-04 가부시키가이샤 후지미인코퍼레이티드 Manufacturing method of silica sol
WO2018163929A1 (en) 2017-03-08 2018-09-13 三菱マテリアル株式会社 Low-refractive-index film-forming liquid composition and method of forming low-refractive-index film using same
KR20190132640A (en) 2017-03-30 2019-11-28 가부시키가이샤 후지미인코퍼레이티드 Method for producing silica sol
US11518682B2 (en) 2019-03-28 2022-12-06 Fujimi Incorporated Method for producing silica sol

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0464289A2 (en) * 1990-07-02 1992-01-08 Nalco Chemical Company Preparation of silica sols
EP0557740A2 (en) * 1992-02-27 1993-09-01 Nissan Chemical Industries Ltd. Method of preparing high-purity aqueous silica sol
JPH05310258A (en) * 1992-04-27 1993-11-22 Yamato Esuron Kk Squeezable container
US5780664A (en) * 1993-08-17 1998-07-14 Asahi Kasei Kogyo Kabushi Kaisha Ammoxidation catalyst composition
WO1999036358A1 (en) * 1998-01-15 1999-07-22 Cabot Corporation Continuous production of silica via ion exchange
JP2003089786A (en) * 2001-09-19 2003-03-28 Nippon Chem Ind Co Ltd High-purity colloidal silica for polishing agent
JP4643085B2 (en) * 2001-09-19 2011-03-02 日本化学工業株式会社 Method for producing high-purity colloidal silica for abrasives
JP2006213541A (en) * 2005-02-02 2006-08-17 Catalysts & Chem Ind Co Ltd Method for producing high purity aqueous silica sol
US9550683B2 (en) 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JP2012501958A (en) * 2008-09-12 2012-01-26 ナルコ カンパニー Silica-containing material having adjustable porosity and surface morphology and method for synthesizing the same
JPWO2013039212A1 (en) * 2011-09-16 2015-03-26 日産化学工業株式会社 Process for producing purified active silicic acid solution and silica sol
US10400147B2 (en) 2011-09-16 2019-09-03 Nissan Chemical Industries, Ltd. Method for producing purified active silicic acid solution and silica sol
CN103748037A (en) * 2011-09-16 2014-04-23 日产化学工业株式会社 Methods for producing purified active silicic acid solution and silica sol
US10550300B2 (en) 2011-09-16 2020-02-04 Nissan Chemical Industries, Ltd. Method for producing purified active silicic acid solution and silica sol
JP2016216344A (en) * 2011-09-16 2016-12-22 日産化学工業株式会社 Manufacturing method of purified active silica liquid and silica sol
WO2013039212A1 (en) * 2011-09-16 2013-03-21 日産化学工業株式会社 Methods for producing purified active silicic acid solution and silica sol
TWI576146B (en) * 2011-09-16 2017-04-01 日產化學工業股份有限公司 Purified active silicic acid solution and production method of silica sol
JP2015516940A (en) * 2012-04-26 2015-06-18 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method for producing SiO2 granules
JP2014094845A (en) * 2012-11-08 2014-05-22 Agc Si-Tech Co Ltd Method for manufacturing scaly silica particles
KR20180034424A (en) 2015-07-31 2018-04-04 가부시키가이샤 후지미인코퍼레이티드 Manufacturing method of silica sol
US10604411B2 (en) 2015-07-31 2020-03-31 Fujimi Incorporated Method for producing silica sol
US11001501B2 (en) 2015-07-31 2021-05-11 Fujimi Incorporated Method for producing silica sol
KR20230162140A (en) 2015-07-31 2023-11-28 가부시키가이샤 후지미인코퍼레이티드 Method for producing silica sol
WO2018163929A1 (en) 2017-03-08 2018-09-13 三菱マテリアル株式会社 Low-refractive-index film-forming liquid composition and method of forming low-refractive-index film using same
KR20190132640A (en) 2017-03-30 2019-11-28 가부시키가이샤 후지미인코퍼레이티드 Method for producing silica sol
US11518682B2 (en) 2019-03-28 2022-12-06 Fujimi Incorporated Method for producing silica sol
US11767224B2 (en) 2019-03-28 2023-09-26 Fujimi Incorporated Method for producing silica sol

Also Published As

Publication number Publication date
JPH0454617B2 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
JPS61158810A (en) Production of high-purity silica sol
JPH042606A (en) Production of highly pure aqueous silica sol
JPS6283313A (en) Method for highly purifying silica
JPH0796447B2 (en) Method for producing high-purity silica
JP5398963B2 (en) Low sodium non-spherical colloidal silica
TWI221149B (en) Method for producing synthetic quartz glass
JP2001294417A (en) Method of producing colloidal silica
JPS6212608A (en) Silica of high purity and production thereof
JP3225553B2 (en) Method for producing high-purity aqueous silica sol
JP6783289B2 (en) Manufacturing method of synthetic quartz powder
JP3362793B2 (en) Method for producing silica sol
JPH0455126B2 (en)
KR100349632B1 (en) The manufacturing method of silica sol
JPH0457604B2 (en)
JPH01278413A (en) Production of silica sol
JP4507141B2 (en) Polishing composition, production method thereof and polishing method using the same
JP3465299B2 (en) Method for producing sol or gel containing fine particles
JP2843655B2 (en) Method for producing colloidal silica
JP3338720B2 (en) Method for producing composite oxide sol
RU2433953C1 (en) Method of producing silicon oxide sol modified with sodium aluminate
JP2535972B2 (en) Method for producing silica sol
JP3478395B2 (en) Silica sol and silica powder
JP3478394B2 (en) Silica sol and silica powder
JPH0516372B2 (en)
JPH07291614A (en) Production of high-purity colloidal silica

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term