JPH0516372B2 - - Google Patents

Info

Publication number
JPH0516372B2
JPH0516372B2 JP63056868A JP5686888A JPH0516372B2 JP H0516372 B2 JPH0516372 B2 JP H0516372B2 JP 63056868 A JP63056868 A JP 63056868A JP 5686888 A JP5686888 A JP 5686888A JP H0516372 B2 JPH0516372 B2 JP H0516372B2
Authority
JP
Japan
Prior art keywords
silica
acid
purity
purity silica
chelating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63056868A
Other languages
Japanese (ja)
Other versions
JPH01230422A (en
Inventor
Hiroyuki Kashiwase
Yutaka Konose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP5686888A priority Critical patent/JPH01230422A/en
Publication of JPH01230422A publication Critical patent/JPH01230422A/en
Publication of JPH0516372B2 publication Critical patent/JPH0516372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、珪酸アルカリから造られる高純度シ
リカ及びその製造方法に関する。 更に詳しくは、IC封止剤用樹脂の充填剤、基
板、電子材料や半導体製造装置用高純度シリカガ
ラス及び石英ガラス、光学ガラスの原料等の用途
に適する低放射性で極めて高純度のシリカとその
製造方法に関する。 〔従来の技術〕 近年、電子産業の急速な発展につれて電子材料
用は半導体製造用などに高純度のシリカが使用さ
れるようになつたが、製品の高度化につれてシリ
カに対する高純度化への要望は一層強まつてい
る。例えば、LSIあるいは超LSIの封止剤として
用いるエポキシ樹脂の充填剤として純度のよいシ
リカ粉末が使用されているが、ICの高性能化す
なわち集積度の増大に伴つて封止剤中のU(ウラ
ン)やTh(トリウム)から放射されるα−線に起
因すICの誤動作すなわちソフトエラーの問題が
重要視されるようになつた。このトラブルを回避
するためには、エポキシ樹脂組成物中に50〜90%
もの比率で配合される充填剤シリカ中のα−放射
線元素、特にU及びThの低減が不可欠の要件と
なる。 従来、この種のエポキシ樹脂用充填剤のシリカ
としてはU、Th等の放射性元素の含有率が低い
良質の天然珪砂を化学的に処理したものや良質の
天然水晶を溶融粉砕したものが主として作用され
ていたが、天然の珪砂や水晶中には酸処理や精製
処理を施した後でもUやThがそれぞれ1〜
100ppb程度含まれており、このようなシリカは
ソフトエラーのために256キロビツト以上の高集
積度を対象とするIC封止剤用の充填剤には全く
不適となる。 天然の水晶の中にはU、Thの含有量の特に少
ないものも稀には産出するが、その入手は年々困
難になりつつある。 一方、UやThが1ppb以下の極めて高純度のシ
リカの製法としては、特に精製した四塩化珪素や
テトラエチルシリケート等のシリカ源を加水分解
として焼成する方法や気相分解する方法がある
が、いずれも原料自体が高価であるとともに腐食
性や可燃性を有するため取り扱いには特別な配慮
を要し、極めて高価となる。 〔発明が解決しようとする課題〕 しかしながら、このような高純度シリカは珪酸
アルカリと酸との反応による従来法では得られて
いない。 従来、珪酸アルカリをシリカ源として高純度の
シリカを製造する方法としては、珪酸アルカリ
水溶液をイオン交換して酸性シリカゲルとし、こ
れに塩類や界面活性剤を加えてシリカを沈澱状に
析出させて回収する方法(特公昭36−18315号公
報、特公昭37−4304号公報)、珪酸アルカリ水
溶液をイオン交換してシリカゾルとし、これにア
ンモニアを加えてPHを調整した後、冷却凍結し、
さらに加温溶解してシリカを析出させて回収する
方法(特公昭36−415号公報)等が知られている
が、何れも析出するシリカ沈澱の含水率が80%以
上にも達するため、過、洗浄等が困難となる。
そのうえ、SiO2純度が99.3〜99.9%程度で不純物
含有量はNa150〜300ppmとされているが、本発
明者等の検討結果ではFe50〜150ppm、Th100〜
250ppb程度であり、酸による精製処理を加えて
もFe5ppm以下、Th10ppb以下のシリカを得るこ
とは困難であつた。また、近時、水素イオン濃度
1.5以下の条件でアルカリ金属ないしアルカリ土
類金属の珪酸塩と鉱酸からU1ppb以下の石英ガラ
スを製造する方法が提案されている(特開昭59−
54632号公報)。しかしながら、この発明では最も
除去が困難となつているThの除去手段について
は全く配慮がなされていない。 ところで、本発明者等は、すでに珪酸アルカリ
と鉱酸との湿式反応により、不純物金属元素が全
て1ppm以下の高純度シリカの開発に成功した
(特開昭62−12608号公報)。しかしながら、この
湿式法では、U、Thなどのα−放射性元素をそ
れぞれ0.02ppb以下に低減できる程の高純度には
至つていない。 本発明は、前記特開昭62−12608号による先行
技術をより改良して高純度シリカを提供すること
を目的とするものである。 〔課題を解決するための手段、作用〕 すなわち、本発明により提供される高純度シリ
カは、珪酸アルカリの酸分解(湿式法)により得
られるシリカゲルまたはこれを起源とする溶融状
の合成シリカであつて、α−放射性を示すU及び
Thの含有量がそれぞれ0.02ppb以下であることを
特徴とする。 珪酸アルカリの酸分解(湿式法)とは、珪酸ア
ルカリと鉱酸との湿式反応を指すが、本発明の高
純度シリカは鉱酸として硫酸を用い後記の条件下
で選択的に得られるものである。この高純度シリ
カは、湿式反応において従来最も困難とされてい
るたThの除去が著しく達成されたものであつて、
特にα−放射性元素であるU及びThがそれぞれ
0.02ppbという驚く程の高純度であり他の金属元
素も実質的に1ppm以下にある純度水準を有して
いる。 この合成シリカは、シリカゲルまたはこれを起
源とする溶融シリカを意味するが、前者にあつて
は、BET比表面積が300m2/g以上の多孔質のも
のであることも特徴の1つとなつている。この理
由は、BET比表面積が約300m2/g未満のシリカ
ゲルにあつては、前記の如き高純度を具備するこ
とができず、この純度をもつためには、その製造
履歴上300m2/g以上のものでなければならない
相関性があるからである。 かかる高純度シリカは、従来電子材料用や高純
度シリカゲルガラス用の原料として使用されてい
た良質の天然珪砂や水晶の純度を上回るものであ
るため、それらに代わつて使用可能であるばかり
でなく、より高純度を必要とする高集積度ICの
樹脂封止用充填剤などの高性能電子材料用に、あ
るいは石英ガラス、光学ガラス用としても安定供
給が可能となる点で良質のシリカ資源に恵まれぬ
我国にとつて画期的な意義を有するものである。 本発明に係る合成シリカは、前記のシリカゲル
を溶融球状化するとIC樹脂封止用充填剤として
好適なものとなる。 特に好適な組織としてはBET比表面積が0.2〜
3m2/g、且つタツプ密度が1.36g/cm3以上の溶
融球状シリカがあげられる。 上記の本発明に係る高純度シリカは、キレート
剤及び過酸化水素が存在する酸濃度1規程以上の
鉱酸中で珪酸ナトリウムと鉱酸とを反応させてシ
リカ沈澱を生成させ、次いで分離回収したシリカ
をキレート剤及び過酸化水素を含有する鉱酸にて
洗浄することからなる高純度シリカの製法におい
て、シリカ沈澱生成反応を流酸を使用して40℃以
下の温度でおこなつたのち反応生成物を70℃以上
の温度で熟成するプロセスによつて製造される。 この製造方法は特開昭62−12608号による先願
技術の改良に係るもので、その選択的条件におい
て、予想外の顕著な高純度化と好適な特性を見い
だしたものである。 本発明の方法で使用する珪酸ナトリウムとして
は、モル比SIO2/Na2Oが1〜4の市販の珪酸ナ
トリウム溶液(水ガラス)を使用することができ
るが、モル比の値が比較的大きいものが反応に必
要とする鉱酸の量が少なくてすむので経済的であ
る。珪酸ナトリウム溶液は水または鉱酸のナトリ
ウム塩水溶液で適宜希釈して使用してもよい。使
用濃度は、SiO2として20重量%以上、好ましく
は25重量%以上が好適である。 一方、本発明の方法で使用する鉱酸としては硫
酸の適用が不可欠であり、必要に応じて塩酸、硝
酸等を併用することができる。 本発明の方法では、前記の原料を用いて高純度
シリカを製造するに当たり、キレート剤及び過酸
化水素を含有する酸濃度1規程以上の硫酸酸性領
域中で珪酸ナトリウム水溶液と鉱酸を反応させて
シリカの沈澱を生成させる。 キレート剤としてはシユウ酸、マロン酸、コハ
ク酸、グルタル酸、マレイン酸、フマル酸等のジ
カルボン酸;トリカルバリル酸、プロパン−1、
1,2,3−テトラカルボン酸、ブタン−1,
2,3,4−テトラカルボン酸等のポリカルボン
酸;グリコール酸、β−ヒドロキシプロピオン
酸、クエン酸、リンゴ酸、酒石酸、ピルビン酸、
ジグリコール酸等のオキサカルボン酸;ニトリル
トリ酢酸(NTA)、ニトリロリプロピオン酸、
エチレンジアミンテトラ酢酸等のアミノポリカル
ボン酸またはそれらの塩などがあげられる。これ
らのうちでは、特にシユウ酸、クエン酸、酒石酸
またはそれらの可溶性塩等が好適である。キレー
ト剤及び過酸化水素の添加量は、それぞれ反応系
内のシリカ(SiO2)に対して0.1〜5重量%、好
ましくは0.1〜2重量%とする。キレート剤の添
加量が0.1重量%未満では添加効果が充分でなく、
また逆に2重量%を超えると添加効果が飽和する
傾向になる。このキレート剤及び過酸化水素の存
在により、特に、Thと同じ4価の不純物である
ZrやTiといつた除去の困難な不純成分を選択的
にシリカから除去することができる。 かかる反応では珪酸ナトリウム水溶液を鉱酸中
に添加する方法、あるいは珪酸ナトリウム水溶液
及び鉱酸を同時に添加する方法が考えられるが、
いずれの場合でも、反応系内の酸濃度を常に1規
程以上に維持することが重要である。酸濃度1規
剃未満の領域では不純物を多量に且つ強固に包含
し、固液分離性の不良なシリカの沈澱が生成し、
引続く酸による洗浄操作をおこなつても不純物を
充分に除去することが困難となる。 本発明の製造方法において、特に重要な要件は
次の二点である。 反応用の鉱酸として硫酸を使用すること。 シリカ沈澱生成時の反応温度を40℃以下に保
ち、次いで得られた沈澱を70℃以上の温度で熟
成すること。 シリカ沈澱性反応を約40℃以上でおこなうと、
シリカ沈澱の脱水硬化が速やかにおこなわれて固
液分離し易い反応生成物のスラリーが得られる反
面、沈澱内部の不純物が液相中へ溶出し難くなる
ためか、U、Th等の不純物の除去に限度が生じ
る。 一方、シリカ沈澱生成反応を40℃以下でおこな
うと、含水率の多い軟かい沈澱が生成し、粘性を
帯びて固液分離の困難な反応生成物のスラリーが
生成する。常識的には、このような作業性を困難
にする反応条件は回避されるが、本発明の方法に
おいては硫酸を使用して敢えてこのような温度条
件下で反応をおこなつたのち、70℃以上に加熱し
て熟成をおこなうことにより不純物含有量が極端
に少なく含水率の低いシリカの沈澱が得られると
いう全く予想外の事実に依拠したのである。すな
わち、40℃以下で好ましくは室温近くで反応を終
了したのち、15〜60分保持し、次いで加熱昇温さ
せて70℃以上好ましくは75℃〜系の沸点近くで30
〜180分間熟成するが、保持時間や熟成時間等は
特に限定されるものではない。 このようにして得られる合成シリカは後述する
処理にも多少影響されるがBET比表面積が300
m2/g以上の多孔質となつている。シリカの沈澱
生成反応と熟成処理とは、シリカ粒子相互の構造
に係つて、不純金属成分の分離性に影響し、300
m2/g未満のものは、いずれも実質的に本発明で
目的とする純度まで達することができない。 次に、反応により生成するシリカの沈澱を常法
により分離し、分離したシリカを過酸化水素及び
キレート剤を含有する鉱酸で酸洗浄する。 この場合の酸の種類及びキレート剤の種類につ
いては、上記と同様であり、処理時の酸の濃度は
0.5〜4規定が望ましい。0.5規定未満ではシリカ
に付着する不純物の除去が不充分であり、4規定
を超える強酸を使用する場合では酸処理後の廃酸
の中和または有効利用に問題が生ずる。 なお、キレート剤及び過酸化水素の酸への添加
量は上記と同様SiO2に対してそれぞれ0.1〜5重
量%の割合となる範囲で含有させておくのがよ
い。 このように、本発明ではシリカの沈澱を生成さ
せる反応工程及び次の洗浄工程もいずれも酸で処
理するものであるが、必ずキレート剤(必要に応
じてその塩でもよい)及び過酸化水素を含有させ
ておこなう必要があり、いずれかの工程でこれら
を含有させない場合には、所期の目的とする高純
度シリカは得られない。 また、言うまでもないが、その酸洗浄による酸
処理工程は1回に限らず、必要に応じてその性質
上、2回以上おこなつても差し支えなく、処理温
度も任意でおこなうことができる。 かくして、精製した高純度シリカは過、塩分
離またはその他の方法で充分に洗浄除去した後、
乾燥して回収する。さらに、必要に応じ焼成また
は溶融して高純度シリカの溶融球状化体として得
ることができる。 溶融球状シリカを得る方法としてはあ次の如き
条件にておこなうのが好ましい。 すなわち、300m2/g以上の比表面積を有する
多孔質合成シリカを50m2/g以下、好ましくは30
m2/g以下の比表面積となるまで焼成し、この焼
成粉砕粒子を火炎溶融して球状化することであ
る。 焼成物の粒子は、平均粒子径で2〜50μm好ま
しくは3〜35μmの範囲に粒度調整したものが適
当である。かくして、本発明に係る方法よれば、
タツプ密度(TD)が1.36g/cm3以上、好ましく
は、1.39〜1.46g/cm3、且つBET比表面積が0.2
〜3m2/gにある高純度、高密度の溶融球状シリ
カとして得られる。この溶融球状シリカは、IC
樹脂封止用充填剤として好適な特性が付与され
る。 〔実施例〕 以下、本発明を実施例及び比較例に基づいて説
明する。 実施例 1 攪拌機付き反応槽に、硫酸水溶液(H2SO4
23.7重量%)1200gをとり、これにシユウ酸(二
水塩:市販品)2g、35%過酸化水素水(市販
品)5gを添加溶解した。この硫酸水溶液に、
JIS3号珪酸ソーダ(Na2O=9.2重量%、SiO2
28.5重量%)600gを約20分間を要して1mmφの
ノズル先端より連続的に添加しシリカの沈澱を生
成させた。この間、反応槽を充分撹拌し、また液
温を25〜30℃に保持した。反応終了後スラリーを
30℃で30分間攪拌したのに80℃まで昇温し、80℃
で2時間攪拌して熟成をおこなつた。 この熟成終了スラリーからのシリカ沈澱を
過、洗浄をくり返した後、分離回収した。分離回
収したシリカを攪拌機付き酸処理槽にとり、これ
に水と硫酸を加えてスラリー全量1.7、液中の
硫酸濃度が16.6重量%となるように調整し、更に
シユウ酸2g、35%過酸化水素5gを添加して攪
拌しながら85℃で2時間加熱して酸処理した。こ
のスラリーからシリカを過分離し、以下常温で
水によるリパルプ洗浄、固液分離をおこない、
105℃、2時間乾燥した。更に、その一部につい
て1100℃で2時間焼成したのち、粉砕して、平均
粒子径22.3μmの焼成シリカ粉末を得た。 なお、焼成品の不純物含有量及び物性について
は表−1に示す。 実施例 2 実施例1の操作手順に従い、キレート剤として
シユウ酸2gの代わりにEDTA0.5gを使用し、
他の条件は全て実施例1と同様の条件で高純度シ
リカを製造した。得られたシリカ中の不順物含有
量を表−1に併せて示す。 比較例 1 実施例1の操作手順に従い、反応を80℃で20分
間おこない、次いでそのまま80℃で2時間熟成し
た。他の条件は全て実施例1と同様の条件で高純
度シリカを製造した。得られたシリカ中の不純物
含有量を表−1に併せて示す。表−1より明らか
なように、反応を40℃以上の高温でおこなつた場
合はU、Thの含有量が多く、目的とする高純度
シリカは得られない。 比較例 2 攪拌機付き反応槽に35重量%塩酸、250g、水
350g、EDTA0.25gをとり、溶解した。この塩
酸水溶液にJIS 3号珪酸ソーダ(Na2O92重量
%、SiO228.5重量%)350gを約12分間を要して
1mmφのノズル先端より連続的に滴下してシリカ
の沈澱を生成させた。この間反応槽を充分攪拌
し、また液温を45〜50℃に保持した。反応終了
後、スラリーを50℃で2時間熟成したのち、35%
過酸化水素水3mlを添加し10分間攪拌後、実施例
1と同様に固液分離した。分離回収したシリカを
攪拌機付き酸処理槽にとり、これに35重量%塩酸
100mlと水を加えて全量を900mlとし、更に
EDTA0.25gを加えて80℃で2時間加熱して酸処
理した。70℃まで冷却したのち35%過酸化水素化
3mlを添加し10分間攪拌後、以下実施例1と同様
に固液分離、乾燥、焼成して高純度シリカを得
た。得られたシリカ中の不純物量を表−1に併せ
て示す。表−1より明らかなように反応を40℃以
上でおこなつた場合はU、Thの含有量が多く目
的とする高純度シリカは得られない。
[Industrial Application Field] The present invention relates to high-purity silica made from alkali silicate and a method for producing the same. In more detail, we will introduce low-emissivity, extremely high-purity silica suitable for use as a filler for resins for IC encapsulants, substrates, high-purity silica glass and quartz glass for electronic materials and semiconductor manufacturing equipment, and raw materials for optical glass. Regarding the manufacturing method. [Prior art] In recent years, with the rapid development of the electronic industry, high-purity silica has come to be used for electronic materials such as semiconductor manufacturing, but as products become more sophisticated, there is a demand for higher purity silica. is becoming even stronger. For example, high-purity silica powder is used as a filler in epoxy resins used as encapsulants for LSIs or VLSIs, but as the performance of ICs increases, or the degree of integration increases, U( The issue of IC malfunctions, or soft errors, caused by α-rays emitted from uranium (Uranium) and Th (Thorium) has become important. To avoid this trouble, 50 to 90%
It is essential to reduce α-radiation elements, especially U and Th, in the filler silica, which is mixed in a proportion of 1. Conventionally, the main silica fillers for this type of epoxy resin have been chemically treated high-quality natural silica sand with a low content of radioactive elements such as U and Th, and high-quality natural quartz crystals that have been melted and crushed. However, in natural silica sand and quartz, even after acid treatment and refining treatment, U and Th each remain in the range of 1 to 1.
It contains about 100 ppb, and such silica is completely unsuitable as a filler for IC encapsulant intended for high integration density of 256 kilobits or more due to soft errors. Natural crystals with particularly low contents of U and Th are occasionally produced, but their acquisition is becoming more difficult year by year. On the other hand, methods for producing extremely high-purity silica with U and Th of 1 ppb or less include a method in which a silica source such as particularly purified silicon tetrachloride or tetraethyl silicate is hydrolyzed and calcined, and a method in which gas phase decomposition is performed. However, the raw materials themselves are expensive, corrosive and flammable, and require special care when handling, making them extremely expensive. [Problems to be Solved by the Invention] However, such high-purity silica has not been obtained by the conventional method of reacting an alkali silicate with an acid. Conventionally, the method for producing high-purity silica using alkali silicate as a silica source is to ion-exchange an aqueous solution of alkali silicate to form acidic silica gel, then add salts and surfactants to this to precipitate silica and collect it. (Japanese Patent Publication No. 36-18315, Japanese Patent Publication No. 37-4304), an aqueous alkali silicate solution is ion-exchanged to form a silica sol, ammonia is added to this to adjust the pH, and then cooled and frozen.
Furthermore, methods are known in which silica is precipitated and recovered by heating and dissolving it (Japanese Patent Publication No. 36-415). , cleaning etc. becomes difficult.
Moreover, the SiO 2 purity is said to be about 99.3-99.9% and the impurity content is Na150-300ppm, but the inventors' study results show that Fe50-150ppm and Th100-300ppm.
It was about 250 ppb, and it was difficult to obtain silica with Fe of less than 5 ppm and Th of less than 10 ppb even if purification treatment with acid was added. In addition, recently, hydrogen ion concentration
A method has been proposed for producing silica glass with U1 ppb or less from alkali metal or alkaline earth metal silicates and mineral acids under conditions of U1.
Publication No. 54632). However, this invention does not give any consideration to the means for removing Th, which is the most difficult to remove. By the way, the present inventors have already succeeded in developing high-purity silica containing all impurity metal elements of 1 ppm or less through a wet reaction between an alkali silicate and a mineral acid (Japanese Patent Application Laid-open No. 12608/1983). However, this wet method does not achieve a high enough purity to reduce α-radioactive elements such as U and Th to 0.02 ppb or less. The object of the present invention is to provide high-purity silica by further improving the prior art disclosed in JP-A-62-12608. [Means and effects for solving the problem] That is, the high-purity silica provided by the present invention is a silica gel obtained by acid decomposition of an alkali silicate (wet method) or a molten synthetic silica originating from this. Therefore, U and α-radioactive
Each is characterized by a Th content of 0.02 ppb or less. Acid decomposition of an alkali silicate (wet method) refers to a wet reaction between an alkali silicate and a mineral acid, and the high-purity silica of the present invention can be obtained selectively using sulfuric acid as the mineral acid under the conditions described below. be. This high-purity silica has significantly achieved the removal of Th, which was traditionally considered the most difficult process in a wet reaction.
In particular, the α-radioactive elements U and Th are
It has a surprisingly high purity of 0.02 ppb, and the purity level of other metal elements is substantially below 1 ppm. This synthetic silica means silica gel or fused silica derived from silica gel, and one of the characteristics of the former is that it is porous with a BET specific surface area of 300 m 2 /g or more. . The reason for this is that silica gel with a BET specific surface area of less than approximately 300 m 2 /g cannot have the above-mentioned high purity ; This is because there is a correlation that must be higher than that. Such high-purity silica has a purity higher than that of high-quality natural silica sand and crystal that have been conventionally used as raw materials for electronic materials and high-purity silica gel glass, so it can not only be used in place of them, but also We are blessed with high-quality silica resources in that we can stably supply it for use in high-performance electronic materials such as resin sealing fillers for highly integrated ICs that require higher purity, as well as for quartz glass and optical glass. This is of epoch-making significance for our country. The synthetic silica according to the present invention becomes suitable as a filler for IC resin sealing when the silica gel is melted and spheroidized. A particularly suitable structure has a BET specific surface area of 0.2~
Examples include fused spherical silica having a density of 3 m 2 /g and a tap density of 1.36 g/cm 3 or more. The above-mentioned high-purity silica according to the present invention is produced by reacting sodium silicate and mineral acid in a mineral acid containing a chelating agent and hydrogen peroxide at an acid concentration of 1N or higher to form a silica precipitate, and then separating and recovering the silica. In the manufacturing method of high-purity silica, which consists of washing silica with a chelating agent and a mineral acid containing hydrogen peroxide, the silica precipitation reaction is carried out at a temperature of 40°C or less using flowing acid, and then the reaction is formed. Manufactured by a process of ripening substances at temperatures above 70°C. This production method is an improvement on the prior art disclosed in Japanese Patent Application Laid-open No. 12608/1983, and under the selective conditions, an unexpectedly significant increase in purity and favorable properties were found. As the sodium silicate used in the method of the present invention, a commercially available sodium silicate solution (water glass) with a molar ratio SIO 2 /Na 2 O of 1 to 4 can be used, but the value of the molar ratio is relatively large. It is economical because the amount of mineral acid required for the reaction is small. The sodium silicate solution may be used after being appropriately diluted with water or an aqueous solution of a sodium salt of a mineral acid. The concentration used is preferably 20% by weight or more, preferably 25% by weight or more as SiO 2 . On the other hand, it is essential to use sulfuric acid as the mineral acid used in the method of the present invention, and hydrochloric acid, nitric acid, etc. can be used in combination as necessary. In the method of the present invention, when producing high-purity silica using the above-mentioned raw materials, a sodium silicate aqueous solution and a mineral acid are reacted in a sulfuric acid acidic region containing a chelating agent and hydrogen peroxide and having an acid concentration of 1 standard or more. Forms a silica precipitate. Chelating agents include dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, maleic acid, and fumaric acid; tricarballylic acid, propane-1,
1,2,3-tetracarboxylic acid, butane-1,
Polycarboxylic acids such as 2,3,4-tetracarboxylic acid; glycolic acid, β-hydroxypropionic acid, citric acid, malic acid, tartaric acid, pyruvic acid,
Oxacarboxylic acids such as diglycolic acid; nitrile triacetic acid (NTA), nitrilolipropionic acid,
Examples include aminopolycarboxylic acids such as ethylenediaminetetraacetic acid and salts thereof. Among these, oxalic acid, citric acid, tartaric acid, or their soluble salts are particularly preferred. The amount of the chelating agent and hydrogen peroxide added is 0.1 to 5% by weight, preferably 0.1 to 2% by weight, based on the silica (SiO 2 ) in the reaction system. If the amount of the chelating agent added is less than 0.1% by weight, the addition effect will not be sufficient;
Conversely, if it exceeds 2% by weight, the effect of addition tends to be saturated. Due to the presence of this chelating agent and hydrogen peroxide, in particular, it is a tetravalent impurity similar to Th.
Impurity components that are difficult to remove, such as Zr and Ti, can be selectively removed from silica. In such a reaction, a method of adding an aqueous sodium silicate solution to a mineral acid, or a method of adding an aqueous sodium silicate solution and a mineral acid simultaneously can be considered.
In either case, it is important to always maintain the acid concentration in the reaction system at 1N or higher. In the region where the acid concentration is less than 1 degree, a silica precipitate containing a large amount of impurities and having poor solid-liquid separation is formed.
Even if a subsequent acid washing operation is performed, it is difficult to sufficiently remove impurities. In the manufacturing method of the present invention, the following two points are particularly important. Using sulfuric acid as the mineral acid for the reaction. Keep the reaction temperature during silica precipitate formation below 40°C, and then ripen the resulting precipitate at a temperature of 70°C or above. When the silica precipitation reaction is carried out at about 40°C or higher,
Although dehydration and hardening of the silica precipitate occurs quickly and a slurry of the reaction product is obtained that is easy to separate into solid and liquid, impurities such as U and Th are removed, probably because the impurities inside the precipitate are difficult to elute into the liquid phase. There are limits to this. On the other hand, if the silica precipitation reaction is carried out at a temperature below 40°C, a soft precipitate with a high water content is produced, and a slurry of the reaction product becomes viscous and difficult to separate into solid and liquid. In common sense, such reaction conditions that make workability difficult should be avoided, but in the method of the present invention, sulfuric acid is used to carry out the reaction under such temperature conditions, and then the temperature is increased to 70°C. This was based on the completely unexpected fact that by heating and aging to the above-mentioned extent, a silica precipitate with extremely low impurity content and low water content could be obtained. That is, after completing the reaction at 40°C or lower, preferably near room temperature, the reaction is maintained for 15 to 60 minutes, and then the temperature is raised to 70°C or higher, preferably 75°C to 30°C near the boiling point of the system.
It is aged for ~180 minutes, but the holding time, aging time, etc. are not particularly limited. The synthetic silica obtained in this way has a BET specific surface area of 300
It is porous with a density of m 2 /g or more. The silica precipitation reaction and aging treatment affect the separation of impure metal components with respect to the mutual structure of silica particles.
Anything less than m 2 /g cannot substantially reach the purity targeted by the present invention. Next, the silica precipitate produced by the reaction is separated by a conventional method, and the separated silica is acid-washed with hydrogen peroxide and a mineral acid containing a chelating agent. In this case, the type of acid and type of chelating agent are the same as above, and the concentration of acid during treatment is
A regulation of 0.5 to 4 is desirable. If it is less than 0.5N, the removal of impurities attached to the silica will be insufficient, and if a strong acid exceeding 4N is used, problems will arise in neutralizing or effectively utilizing the waste acid after acid treatment. Note that the amounts of the chelating agent and hydrogen peroxide added to the acid are preferably in the range of 0.1 to 5% by weight relative to SiO2 , as described above. As described above, in the present invention, both the reaction step to form silica precipitate and the subsequent washing step are treated with acid, but the chelating agent (or its salt may be used as necessary) and hydrogen peroxide are always used. It is necessary to carry out the process by including them, and if they are not included in any of the steps, the desired high-purity silica cannot be obtained. Further, it goes without saying that the acid treatment step by acid washing is not limited to one time, but may be performed two or more times depending on the nature of the process, and the treatment temperature can be set arbitrarily. After the purified high-purity silica is thoroughly washed and removed by filtration, salt separation, or other methods,
Dry and collect. Furthermore, if necessary, it can be fired or melted to obtain a molten spheroidized body of high-purity silica. The method for obtaining fused spherical silica is preferably carried out under the following conditions. That is, porous synthetic silica having a specific surface area of 300 m 2 /g or more is used in an amount of 50 m 2 /g or less, preferably 30 m 2 /g or less.
The method is to sinter the particles until they have a specific surface area of m 2 /g or less, and then spheroidize the sintered and pulverized particles by flame melting. The particles of the fired product are suitably adjusted to have an average particle diameter of 2 to 50 μm, preferably 3 to 35 μm. Thus, according to the method according to the invention:
The tap density (TD) is 1.36 g/cm 3 or more, preferably 1.39 to 1.46 g/cm 3 , and the BET specific surface area is 0.2.
Obtained as high-purity, high-density fused spherical silica of ~3 m 2 /g. This fused spherical silica is
It has properties suitable as a filler for resin sealing. [Examples] The present invention will be described below based on Examples and Comparative Examples. Example 1 A sulfuric acid aqueous solution (H 2 SO 4
23.7% by weight) was taken, and 2 g of oxalic acid (dihydrate: commercially available) and 5 g of 35% hydrogen peroxide (commercially available) were added and dissolved therein. In this sulfuric acid aqueous solution,
JIS No. 3 Sodium silicate (Na 2 O = 9.2% by weight, SiO 2
28.5% by weight) was continuously added over a period of about 20 minutes from the tip of a 1 mm diameter nozzle to form a silica precipitate. During this time, the reaction tank was sufficiently stirred and the liquid temperature was maintained at 25 to 30°C. After the reaction is completed, the slurry is
After stirring at 30°C for 30 minutes, the temperature rose to 80°C, and the temperature rose to 80°C.
The mixture was aged by stirring for 2 hours. The silica precipitate from this matured slurry was filtered and washed repeatedly, and then separated and recovered. The separated and recovered silica was placed in an acid treatment tank equipped with a stirrer, and water and sulfuric acid were added thereto to adjust the slurry total volume to 1.7% and the sulfuric acid concentration in the liquid to be 16.6% by weight.Additionally, 2g of oxalic acid and 35% hydrogen peroxide were added. 5 g was added and heated at 85° C. for 2 hours with stirring for acid treatment. Silica was over-separated from this slurry, followed by repulping washing with water at room temperature and solid-liquid separation.
It was dried at 105°C for 2 hours. Further, a portion of the powder was calcined at 1100°C for 2 hours, and then pulverized to obtain calcined silica powder with an average particle size of 22.3 μm. The impurity content and physical properties of the fired product are shown in Table 1. Example 2 Following the operating procedure of Example 1, using 0.5 g of EDTA instead of 2 g of oxalic acid as the chelating agent,
High purity silica was produced under all other conditions similar to those in Example 1. The content of impurities in the obtained silica is also shown in Table-1. Comparative Example 1 According to the operating procedure of Example 1, the reaction was carried out at 80°C for 20 minutes, and then aged at 80°C for 2 hours. High purity silica was produced under all other conditions similar to those in Example 1. The impurity content in the obtained silica is also shown in Table-1. As is clear from Table 1, when the reaction is carried out at a high temperature of 40° C. or higher, the contents of U and Th are large, and the desired high-purity silica cannot be obtained. Comparative example 2 35% by weight hydrochloric acid, 250g, water in a reaction tank with a stirrer
350 g and 0.25 g of EDTA were taken and dissolved. To this hydrochloric acid aqueous solution, 350 g of JIS No. 3 sodium silicate (92% by weight of Na 2 O, 28.5% by weight of SiO 2 ) was continuously dropped from a 1 mm diameter nozzle tip over a period of about 12 minutes to form a silica precipitate. During this time, the reaction tank was sufficiently stirred and the liquid temperature was maintained at 45-50°C. After the reaction was completed, the slurry was aged at 50°C for 2 hours, and then 35%
After adding 3 ml of hydrogen peroxide and stirring for 10 minutes, solid-liquid separation was performed in the same manner as in Example 1. The separated and recovered silica is placed in an acid treatment tank equipped with a stirrer, and 35% by weight hydrochloric acid is added to it.
Add 100ml and water to make a total volume of 900ml, and
0.25 g of EDTA was added and the mixture was heated at 80° C. for 2 hours for acid treatment. After cooling to 70° C., 3 ml of 35% hydrogen peroxide was added and stirred for 10 minutes, followed by solid-liquid separation, drying, and calcination in the same manner as in Example 1 to obtain high-purity silica. The amount of impurities in the obtained silica is also shown in Table 1. As is clear from Table 1, when the reaction is carried out at 40°C or higher, the desired high purity silica cannot be obtained due to the high content of U and Th.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の記載から明らかなように、本発明の高純
度シリカの製造方法によれば、珪酸アルアリ及び
酸との湿式反応により不純物含有量がU(ウラン)
及びTh(トリウム)それぞれ0.02ppb以下の高純
度シリカが比較的安価な原料から比較的単純な工
程によつて確実に製造することが可能となる。本
発明の高純度シリカはIC封止剤用樹脂の充填剤、
基板、電子材料や半導体製造装置用高純度シリカ
ガラスの原料の用途に好適であり、枯渇しつゝあ
る良質の天然珪砂や水晶等の資源に代つて安定供
給を可能とする点で特に有意義なものである。
As is clear from the above description, according to the method for producing high-purity silica of the present invention, the impurity content is reduced by U (uranium) through the wet reaction with alium silicate and acid.
It becomes possible to reliably produce high-purity silica containing 0.02 ppb or less of thorium and Th (thorium) from relatively inexpensive raw materials through a relatively simple process. The high-purity silica of the present invention can be used as a filler for resins for IC sealants,
It is suitable for use as a raw material for high-purity silica glass for substrates, electronic materials, and semiconductor manufacturing equipment, and is particularly meaningful in that it can provide a stable supply in place of depleting resources such as high-quality natural silica sand and crystal. It is something.

Claims (1)

【特許請求の範囲】 1 珪酸アルカリの酸分解(湿式法)により得れ
るシリカゲルまたはこれを起源とする溶融状の合
成シリカであつて、α−放射性を示すU(ウラン)
及びTh(トリウム)の含有量がそれぞれ0.02ppb
以下であることを特徴とする高純度シリカ。 2 BET比表面積が300m2/g以上の未焼成含水
シリカである請求項1記載の高純度シリカ。 3 BET比表面積が0.2〜3m2/g、且つタツプ
密度が1.36g/cm3以上の溶融球状シリカである請
求項1記載の高純度シリカ。 4 キレート剤及び過酸化水素が存在する酸濃度
1規定以上の鉱酸中で珪酸ナトリウムと鉱酸とを
反応させてシリカ沈澱を生成させ、次いで分離回
収したシリカをキレート剤及び過酸化水素を含有
する鉱酸にて洗浄することからなる高純度シリカ
の製法において、シリカ沈澱生成反応を硫酸を使
用して40℃以下の温度でおこなつたのち、反応生
成物を70℃以上の温度で熟成することを特徴とす
る高純度シリカの製造方法。 5 キレート剤がジカルボン酸、ポリカルボン
酸、オキシカルボン酸、アミノポリカルボン酸ま
たはそれらの塩である請求項4記載の高純度シリ
カの製造方法。 6 キレート剤及び過酸化水素を、それそれ反応
系内のSiO2に対して0.1〜5重量%添加する請求
項4記載の高純度シリカの製造方法。 7 請求項4記載の製造方法により得られた合成
シリカを、BET比表面積が50m2/g以下となる
ような焼成工程を経て火炎溶融することを特徴と
する高純度シリカの製造方法。
[Scope of Claims] 1. Silica gel obtained by acid decomposition of alkali silicate (wet method) or molten synthetic silica derived from this, U (uranium) exhibiting α-radiation.
and Th (thorium) content is 0.02ppb each
High purity silica characterized by: 2. The high-purity silica according to claim 1, which is uncalcined hydrated silica having a BET specific surface area of 300 m 2 /g or more. 3. The high-purity silica according to claim 1, which is fused spherical silica having a BET specific surface area of 0.2 to 3 m 2 /g and a tap density of 1.36 g/cm 3 or more. 4 Sodium silicate and mineral acid are reacted in a mineral acid with an acid concentration of 1N or more in which a chelating agent and hydrogen peroxide are present to form a silica precipitate, and then the separated and recovered silica is mixed with a chelating agent and hydrogen peroxide. In the manufacturing method of high-purity silica, which consists of washing with mineral acid, the silica precipitation reaction is carried out using sulfuric acid at a temperature of 40°C or lower, and then the reaction product is aged at a temperature of 70°C or higher. A method for producing high-purity silica, characterized by: 5. The method for producing high-purity silica according to claim 4, wherein the chelating agent is dicarboxylic acid, polycarboxylic acid, oxycarboxylic acid, aminopolycarboxylic acid, or a salt thereof. 6. The method for producing high-purity silica according to claim 4, wherein the chelating agent and hydrogen peroxide are each added in an amount of 0.1 to 5% by weight based on SiO 2 in the reaction system. 7. A method for producing high-purity silica, which comprises flame-melting the synthetic silica obtained by the production method according to claim 4 through a firing step such that the BET specific surface area becomes 50 m 2 /g or less.
JP5686888A 1988-03-10 1988-03-10 High-purity silica and production thereof Granted JPH01230422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5686888A JPH01230422A (en) 1988-03-10 1988-03-10 High-purity silica and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5686888A JPH01230422A (en) 1988-03-10 1988-03-10 High-purity silica and production thereof

Publications (2)

Publication Number Publication Date
JPH01230422A JPH01230422A (en) 1989-09-13
JPH0516372B2 true JPH0516372B2 (en) 1993-03-04

Family

ID=13039402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5686888A Granted JPH01230422A (en) 1988-03-10 1988-03-10 High-purity silica and production thereof

Country Status (1)

Country Link
JP (1) JPH01230422A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3400548B2 (en) * 1993-06-29 2003-04-28 三菱レイヨン株式会社 Method for producing high-purity spherical silica
EP3000784B1 (en) * 2013-05-20 2020-07-15 Nissan Chemical Corporation Silica sol and silica-containing epoxy resin composition
CN112678831B (en) * 2021-02-02 2022-06-07 福建省三明正元化工有限公司 Method for preparing silicon dioxide by using graphene oxide waste liquid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115641A (en) * 1983-11-25 1985-06-22 Denki Kagaku Kogyo Kk Filler for sealing resin and its composition
JPS6140811A (en) * 1984-07-31 1986-02-27 Nippon Chem Ind Co Ltd:The Hydrated silica for melting and manufacture of melted silica by using it
JPS61186216A (en) * 1985-02-12 1986-08-19 Denki Kagaku Kogyo Kk Production of spherical silica
JPS6212609A (en) * 1985-07-11 1987-01-21 Nippon Chem Ind Co Ltd:The Modified fused spherical silica and production thereof
JPS6212608A (en) * 1985-07-11 1987-01-21 Nippon Chem Ind Co Ltd:The Silica of high purity and production thereof
JPS6296311A (en) * 1985-10-24 1987-05-02 Denki Kagaku Kogyo Kk Production of high-purity spherical silica filler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115641A (en) * 1983-11-25 1985-06-22 Denki Kagaku Kogyo Kk Filler for sealing resin and its composition
JPS6140811A (en) * 1984-07-31 1986-02-27 Nippon Chem Ind Co Ltd:The Hydrated silica for melting and manufacture of melted silica by using it
JPS61186216A (en) * 1985-02-12 1986-08-19 Denki Kagaku Kogyo Kk Production of spherical silica
JPS6212609A (en) * 1985-07-11 1987-01-21 Nippon Chem Ind Co Ltd:The Modified fused spherical silica and production thereof
JPS6212608A (en) * 1985-07-11 1987-01-21 Nippon Chem Ind Co Ltd:The Silica of high purity and production thereof
JPS6296311A (en) * 1985-10-24 1987-05-02 Denki Kagaku Kogyo Kk Production of high-purity spherical silica filler

Also Published As

Publication number Publication date
JPH01230422A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
JPH05503066A (en) Method for producing alkali metal silicate
JP5424562B2 (en) Method for producing cesium hydroxide solution
JP2514761B2 (en) Method for producing high-purity fused silica
JPS6212608A (en) Silica of high purity and production thereof
JPS60204613A (en) Production of high purity silica gel
JPH072512A (en) Preparation of pure amorphous silica from rock
JPH0796447B2 (en) Method for producing high-purity silica
JP2542797B2 (en) Method for producing high-purity silica
JPS61158810A (en) Production of high-purity silica sol
JPH0516372B2 (en)
US4693878A (en) Process for the production of soluble alkali silicates
JPH0124728B2 (en)
JPH055766B2 (en)
JP4022640B2 (en) Bulky high-purity silica and method for producing the same
JPS6321212A (en) Production of high purity silica
JPS6117416A (en) High-purity silica and its preparation
JPH075289B2 (en) Method for producing low-thorium high-purity silica
JPS60191016A (en) High-purity silica and its manufacture
JPH0118006B2 (en)
JP2769113B2 (en) Method for producing high-purity silica
JPH0121092B2 (en)
JPS6090812A (en) Manufacture of high purity silica
JPH0124729B2 (en)
JPH0121091B2 (en)
JPS6321213A (en) Production of high purity silica

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 16