JPH01230422A - High-purity silica and production thereof - Google Patents

High-purity silica and production thereof

Info

Publication number
JPH01230422A
JPH01230422A JP5686888A JP5686888A JPH01230422A JP H01230422 A JPH01230422 A JP H01230422A JP 5686888 A JP5686888 A JP 5686888A JP 5686888 A JP5686888 A JP 5686888A JP H01230422 A JPH01230422 A JP H01230422A
Authority
JP
Japan
Prior art keywords
silica
acid
purity
purity silica
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5686888A
Other languages
Japanese (ja)
Other versions
JPH0516372B2 (en
Inventor
Hiroyuki Kashiwase
弘之 柏瀬
Yutaka Konose
豊 木ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP5686888A priority Critical patent/JPH01230422A/en
Publication of JPH01230422A publication Critical patent/JPH01230422A/en
Publication of JPH0516372B2 publication Critical patent/JPH0516372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To readily obtain high-purity silica with specified physical characteristics, little in impurities such as U or Th, by reaction between sodium silicate and a specified aqueous sulfuric acid containing a chelating agent and hydrogen peroxide to precipitate silica. CONSTITUTION:Firstly, a reaction is carried out at <=40 deg.C between (A) sodium silicate and (B) >=1N aqueous sulfuric acid containing a chelating agent and hydrogen peroxide to precipitate silica. Thence, the reaction product is aged at >=70 deg.C, thus obtaining the objective high-purity silica having the following characteristics: 1. content of U, Th...<=0.02ppb 2. BET specific surface area of uncalcined hydrous silica...>=30m<2>/g 3. BET specific surface area of calcined silica...<=50m<2>/g 4. BET specific surface area of fused spherical silica...0.2-3m<2>/g 5. tap density...>=1.36g/cm<3>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、珪酸アルカリから造られる高純度シリカ及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to high-purity silica made from alkali silicate and a method for producing the same.

更に詳しくは、IC封止剤用樹脂の充填剤、基板、電子
材料や半導体製造装置用高純度シリカガラス及び石英ガ
ラス、光学ガラスの原料等の用途に適する低放射性で極
めて高純度のシリカとその製造方法に関する。
More specifically, we will introduce low-emissivity, extremely high-purity silica suitable for use as a filler for resins for IC encapsulants, substrates, high-purity silica glass and quartz glass for electronic materials and semiconductor manufacturing equipment, raw materials for optical glass, etc. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

近年、電子産業の急速な発展につれて電子材料用や半導
体製造用などに高純度のシリカが使用されるようになっ
たが、製品の高度化につれてシリカに対する高純度化へ
の要望は一層強まっている。
In recent years, with the rapid development of the electronics industry, high-purity silica has come to be used for electronic materials and semiconductor manufacturing, but as products become more sophisticated, the demand for higher purity silica has become even stronger. .

例えば、LSIあるいは超LSIの封止剤として用いる
エポキシ樹脂の充填剤として純度のよいシリカ粉末が使
用されているが、ICの高性能化すなわち集積度の増大
に伴って封止剤中のU(ウラン)やTh (トリウム)
から放射されるα−線に起因するICの誤動作すなわち
ソフトエラーの問題が重要視されるようになった。この
トラブルを回避するためには、エポキシ樹脂組成物中に
50〜90%もの比率で配合される充填剤シリカ中のα
−放射線元素、特にU及びThの低減が不可欠の要件と
なる。
For example, high-purity silica powder is used as a filler in epoxy resins used as encapsulants for LSIs or VLSIs. uranium) and Th (thorium)
The problem of IC malfunctions, that is, soft errors, caused by α-rays emitted from the IC has become important. In order to avoid this trouble, α
- Reduction of radioactive elements, especially U and Th, is an essential requirement.

従来、この種のエポキシ樹脂用充填剤のシリカとしては
U、Th等の放射性元素の含有率が低い良質の天然珪砂
を化学的に処理したものや良質の天然水晶を溶融粉砕し
たものか主として使用されていたが、天然の珪砂や水晶
中には酸処理や精製処理を施した後でもU’PThがそ
れぞれ1〜100ppb程度含まれており、このような
シリカはソフトエラーのために256キロビツト以上の
高集積度を対象とするIC封止剤用の充填剤には全く不
適となる。
Conventionally, the silica used as filler for this type of epoxy resin has mainly been made by chemically treating high-quality natural silica sand with a low content of radioactive elements such as U and Th, or by melting and pulverizing high-quality natural quartz. However, natural silica sand and crystal each contain about 1 to 100 ppb of U'PTh even after acid treatment and purification, and such silica contains more than 256 kb due to soft errors. It is completely unsuitable as a filler for an IC encapsulant intended for high integration.

天然の水晶の中にはU、Thの含有量の特に少ないもの
も稀には産出するが、その入手は年々困難になりつつあ
る。
Natural crystals with particularly low contents of U and Th are occasionally produced, but their acquisition is becoming more difficult year by year.

一方、UやThか1 pl)b以下の極めて高純度のシ
リカの製法としては、特に精製した四塩化珪素やテトラ
エチルシリケート等のシリカ源を加水分解して焼成する
方法や気相分解する方法があるが、いずれも原料自体が
高価であるとともに腐食性や可燃性を有するため取り扱
いには特別な配慮を要し、極めて高価となる。
On the other hand, methods for producing extremely high-purity silica with U, Th, or less than 1 pl)b include a method in which a silica source such as particularly purified silicon tetrachloride or tetraethyl silicate is hydrolyzed and calcined, and a method in which gas phase decomposition is performed. However, the raw materials themselves are expensive, corrosive and flammable, and require special consideration when handling, making them extremely expensive.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような高純度シリカは珪酸アルカリ
と酸との反応による従来法では得られていない。
However, such high-purity silica has not been obtained by the conventional method of reacting an alkali silicate with an acid.

従来、珪酸アルカリをシリカ源として高純度のシリカを
製造する方法としては、■珪酸アルカリ水溶液をイオン
交換して酸性シリカゾルとし、これに塩類や界面活性剤
を加えてシリカを沈澱状に析出させて回収する方法(特
公昭3G −18315号公報、特公昭37−4304
号公報)、■珪酸アルカリ水溶液をイオン交換してシリ
カゾルとし、これにアンモニアを加えてpHを調整した
後、冷却凍結し、さらに加温融解してシリカを析出させ
て回収する方法(特公昭3B −9415号公報)等が
知られているが、何れも析出するシリカ沈澱の含水率か
80%以上にも達するため、ン濾過、洗浄等が困難とな
る。
Conventionally, the method for producing high-purity silica using alkali silicate as a silica source is: 1) ion-exchange an aqueous alkali silicate solution to form acidic silica sol, and add salts and surfactants to this to precipitate silica. Method of recovery (Special Publication No. 3G-18315, Publication No. 37-4304)
(No. Publication), ■ A method of ion-exchanging an aqueous silicate solution to obtain silica sol, adding ammonia to it to adjust the pH, cooling and freezing, and then heating and melting to precipitate and recover silica (Special Publication No. 3B) 9415), but in both cases, the water content of the precipitated silica reaches 80% or more, making filtration, washing, etc. difficult.

そのうえ、S IO2純度か99.3〜999%程度で
不純物含有量はNa 150〜300ppmとされてい
るが、本発明者等の検討結果てはFe50〜150pp
m。
Furthermore, the impurity content is said to be 150 to 300 ppm Na at a SIO2 purity of 99.3 to 999%, but the inventors' study revealed that the impurity content is 50 to 150 ppm Fe.
m.

T h100〜250ppb程度であり、酸による精製
処理を加えてもFe3ppm以下、Th 1Oppb以
下のシリカを得ることは困難であった。また、近時、水
素イオン濃度1.5以下の条件でアルカリ金属ないしア
ルカリ土類金属の珪酸塩と鉱酸からU 1 ppb以下
の石英ガラスを製造する方法か提案されている(特開昭
59−54832号公報)。しかしながら、この発明で
は最も除去か困難となっているThの除去手段について
は全く配慮がなされていない。
Th is about 100 to 250 ppb, and even if a purification treatment with an acid is applied, it is difficult to obtain silica with Fe of 3 ppm or less and Th of 1 Oppb or less. Recently, a method has been proposed for producing silica glass with U 1 ppb or less from silicates of alkali metals or alkaline earth metals and mineral acids under conditions where the hydrogen ion concentration is 1.5 or less (Japanese Patent Application Laid-Open No. 59-1971). -54832). However, in this invention, no consideration is given at all to the means for removing Th, which is the most difficult to remove.

ところで、本発明者等は、すでに珪酸アルカリと鉱酸と
の湿式反応により、不純物金属元素が全て1 ppm以
下の高純度シリカの開発に成功した(特開昭62−12
808号公報)。しかしながら、この湿式法では、U、
Thなどのα−放射性元素をそれぞれ0.02ppb以
下に低減できる程の高純度には至っていない。
By the way, the present inventors have already succeeded in developing high-purity silica containing all impurity metal elements of 1 ppm or less through a wet reaction between an alkali silicate and a mineral acid (Japanese Unexamined Patent Publication No. 62-12).
Publication No. 808). However, in this wet method, U,
The purity has not been reached to the extent that α-radioactive elements such as Th can be reduced to 0.02 ppb or less.

本発明は、前記特開昭62−12608号による先行技
術をより改良して高純度シリカを提供することを目的と
するものである。
The object of the present invention is to provide high-purity silica by further improving the prior art disclosed in JP-A-62-12608.

〔課題を解決するための手段、作用〕[Means and actions for solving problems]

すなわち、本発明により提供される高純度シリカは、珪
酸アルカリの酸分解(湿式法)により得られる合成シリ
カであって、α−放射性を示すU及びThの含有量がそ
れぞれ0.02ppb以下であることを特徴とする。
That is, the high-purity silica provided by the present invention is a synthetic silica obtained by acid decomposition of an alkali silicate (wet method), and the content of U and Th, which exhibit α-radiation, is each 0.02 ppb or less. It is characterized by

珪酸アルカリの酸分解(湿式法)とは、珪酸アルカリと
鉱酸との湿式反応を指すが、本発明の高純度シリカは鉱
酸として硫酸を用い後記の条件下で選択的に得られるも
のである。この高純度シリカは、湿式反応において従来
最も困難とされていたThの除去が著しく達成されたも
のであって、特にα−放射性元素であるU及びThがそ
れぞれ0.02ppbという驚く程の高純度であり他の
金属元素も実質的に1 ppm以下にある純度水準を有
している。
Acid decomposition of an alkali silicate (wet method) refers to a wet reaction between an alkali silicate and a mineral acid, and the high-purity silica of the present invention can be obtained selectively using sulfuric acid as the mineral acid under the conditions described below. be. This high-purity silica has achieved remarkable success in removing Th, which was conventionally considered to be the most difficult process in a wet reaction, and has surprisingly high purity of 0.02 ppb each of U and Th, which are α-radioactive elements. and other metal elements have a purity level of substantially 1 ppm or less.

この合成シリカは、BET比表面積が300r&/g以
上の多孔質のものであることも特徴の1つと□ なっている。この理由は、BET比表面積が約300r
rr/g未満の合成シリカにあっては、前記の如き高純
度を具備することができす、この純度をもつためには、
その製造履歴上300ni/ g以上のものでなければ
ならない相関性があるからである。
One of the characteristics of this synthetic silica is that it is porous with a BET specific surface area of 300 r&/g or more. The reason for this is that the BET specific surface area is approximately 300 r.
Synthetic silica of less than rr/g can have the above-mentioned high purity. In order to have this purity,
This is because there is a correlation that it must be 300 ni/g or more due to its manufacturing history.

したがって、本発明の高純度シリカは、BET比表面積
が300r&/g以上の未焼成含水シリカ及びBET比
表面積が50rrr/ g以下の焼成シリカを含むもの
である。
Therefore, the high-purity silica of the present invention includes uncalcined hydrated silica with a BET specific surface area of 300 r&/g or more and calcined silica with a BET specific surface area of 50 rrr/g or less.

かかる高純度シリカは、従来電子材料用や高純度シリカ
ガラス用の原料として使用されていた良質の天然珪砂や
水晶の純度を上回るものであるため、それらに代わって
使用可能であるばかりでなく、より高純度を必要とする
高集積度ICの樹脂封止用充填剤などの高性能電子材料
用に、あるいは石英ガラス、光学ガラス用としても安定
供給が可能となる点で良質のシリカ資源に恵まれぬ我国
にとって画期的な意義を有するものである。
Such high-purity silica has a purity higher than that of high-quality natural silica sand and crystal that have been conventionally used as raw materials for electronic materials and high-purity silica glass, so it can not only be used in place of them, but also We are blessed with high-quality silica resources in that we can stably supply it for use in high-performance electronic materials such as resin sealing fillers for highly integrated ICs that require higher purity, as well as for quartz glass and optical glass. This is of epoch-making significance for our country.

本発明に係る合成シリカを溶融球状化するとIC樹脂封
止用充填剤として好適なものとなる。
When the synthetic silica according to the present invention is molten and spheroidized, it becomes suitable as a filler for IC resin encapsulation.

特に好適な組織としてはBET比表面積が0.2〜3r
r1″/g、且つタップ密度が1.36g/c%以上の
溶融球状シリカがあげられる。
A particularly suitable structure has a BET specific surface area of 0.2 to 3r.
Examples include fused spherical silica having r1''/g and a tap density of 1.36 g/c% or more.

上記の本発明に係る高純度シリカは、キレート剤及び過
酸化水素が存在する酸濃度1規定以上の鉱酸中で珪酸ナ
トリウムと鉱酸とを反応させてシリカ沈澱を生成させ、
次いで分離回収したシリカをキレート剤及び過酸化水素
を含有する鉱酸にて洗浄することからなる高純度シリカ
の製法において、シリカ沈澱生成反応を硫酸を使用して
40’C以下の温度でおこなったのち反応生成物を70
’C以上の温度で熟成するプロセスによって製造される
The above-mentioned high-purity silica according to the present invention is produced by reacting sodium silicate with a mineral acid in a mineral acid having an acid concentration of 1N or more in the presence of a chelating agent and hydrogen peroxide to form a silica precipitate.
In a method for producing high-purity silica, which consists of washing the separated and recovered silica with a mineral acid containing a chelating agent and hydrogen peroxide, a silica precipitation reaction was carried out using sulfuric acid at a temperature of 40'C or less. Later, the reaction product was
It is produced by a process of ripening at temperatures above 'C.

この製造方法は特開昭62−12608号にょる先願技
術の改良に係るもので、その選択的条件において、予想
外の顕著な高純度化と好適な特性を見いだしたものであ
る。
This production method is an improvement on the prior art disclosed in Japanese Patent Application Laid-Open No. 12608/1982, and under the selective conditions, unexpectedly remarkable high purity and favorable properties were found.

本発明の方法で使用する珪酸ナトリウムとしては、モル
比SiO/Na  Oが1〜4の市販の珪酸ナトリウム
溶液(水ガラス)を使用することができるが、モル比の
値が比較的大きいものが反応に必要とする鉱酸の量が少
なくてすむので経済的である。珪酸ナトリウム溶液は水
または鉱酸のナトリウム塩水溶液で適宜希釈して使用し
てもよい。使用濃度は、SiO2として20重量%以上
、好ましくは25重量%以上が好適である。
As the sodium silicate used in the method of the present invention, commercially available sodium silicate solutions (water glass) with a molar ratio SiO/NaO of 1 to 4 can be used, but those with a relatively large molar ratio value are preferred. It is economical because the amount of mineral acid required for the reaction is small. The sodium silicate solution may be used after being appropriately diluted with water or an aqueous solution of a sodium salt of a mineral acid. The concentration used is preferably 20% by weight or more, preferably 25% by weight or more as SiO2.

一方、本発明の方法で使用する鉱酸としては硫酸の適用
が不可欠であり、必要に応じて塩酸、硝酸等を併用する
ことができる。
On the other hand, it is essential to use sulfuric acid as the mineral acid used in the method of the present invention, and hydrochloric acid, nitric acid, etc. can be used in combination as necessary.

本発明の方法では、前記の原料を用いて高純度シリカを
製造するに当たり、キレート剤及び過酸化水素を含有す
る酸濃度1規定以上の硫酸酸性領域中で珪酸ナトリウム
水溶液と鉱酸を反応させてシリカの沈澱を生成させる。
In the method of the present invention, when producing high-purity silica using the above raw materials, a sodium silicate aqueous solution and a mineral acid are reacted in a sulfuric acid acidic region containing a chelating agent and hydrogen peroxide and having an acid concentration of 1N or more. Forms a silica precipitate.

キレート剤としてはシュウ酸、マロン酸、コハク酸、グ
ルタル酸、マレイン酸、フマル酸等のジカルボン酸ニト
リカルバリル酸、プロパン−1,1,2,3−テトラカ
ルボン酸、ブタン−1,2,3,4−テトラカルボン酸
等のポリカルボン酸;グリコール酸、−1〇 − β−ヒドロキシプロピオン酸、クエン酸、リンゴ酸、酒
石酸、ピルビン酸、ジグリコール酸等のオキシカルボン
酸;ニトリルトリ酢酸(NTA)、ニトリロリプロピオ
ン酸、エチレンジアミンテトラ酢酸等のアミノポリカル
ボン酸またはそれらの塩などがあげられる。これらのう
ちでは、特にシュウ酸、クエン酸、酒石酸またはそれら
の可溶性塩等が好適である。キレート剤及び過酸化水素
の添加量は、それぞれ反応系内のシリカ(S i02 
)に対して0.1〜5重量%、好ましくは0.1〜2重
量%とする。キレート剤の添加量が0.1重量%未満で
は添加効果が充分でなく、また逆に2重量%を超えると
添加効果が飽和する傾向になる。このキレート剤及び過
酸化水素の存在により、特に、Thと同じ4価の不純物
であるZrやTi といった除去の困難な不純成分を選
択的にシリカから除去することができる。
Chelating agents include dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, maleic acid, fumaric acid, nitricarballylic acid, propane-1,1,2,3-tetracarboxylic acid, butane-1,2,3 , 4-tetracarboxylic acid; oxycarboxylic acids such as glycolic acid, -10-β-hydroxypropionic acid, citric acid, malic acid, tartaric acid, pyruvic acid, diglycolic acid; nitrile triacetic acid (NTA) , nitrilolipropionic acid, aminopolycarboxylic acids such as ethylenediaminetetraacetic acid, or salts thereof. Among these, oxalic acid, citric acid, tartaric acid or their soluble salts are particularly preferred. The amounts of the chelating agent and hydrogen peroxide added are determined by the amount of silica (S i02
), preferably 0.1 to 2% by weight. If the amount of the chelating agent added is less than 0.1% by weight, the effect of the addition will not be sufficient, and if it exceeds 2% by weight, the effect of the addition will tend to be saturated. The presence of the chelating agent and hydrogen peroxide makes it possible to selectively remove impurity components from the silica that are difficult to remove, such as Zr and Ti, which are tetravalent impurities similar to Th.

かかる反応では珪酸ナトリウム水溶液を鉱酸中に添加す
る方法、あるいは珪酸ナトリウム水溶液及び鉱酸を同時
に添加する方法か考えられるが、いずれの場合でも、反
応系内の酸濃度を常に1規定以上に維持することか重要
である。酸濃度1規定未満の領域では不純物を多量に月
っ強固に包含し、li!i′I液分離性の不良なシリカ
の沈澱か生成し、引続く酸による洗浄操作をおこなって
も不純物を充分に除去することが困難となる。
In such a reaction, a method of adding an aqueous sodium silicate solution to a mineral acid, or a method of adding an aqueous sodium silicate solution and a mineral acid simultaneously can be considered, but in either case, the acid concentration in the reaction system must always be maintained at 1N or higher. What you do is important. In the region where the acid concentration is less than 1N, a large amount of impurities are strongly included, and li! A silica precipitate having poor separation properties from the i'I liquid is formed, making it difficult to sufficiently remove impurities even in the subsequent acid washing operation.

本発明の製造方法において、特に重要な要件は次の二点
である。
In the manufacturing method of the present invention, the following two points are particularly important.

■反応用の鉱酸として硫酸を使用すること。■Use sulfuric acid as the mineral acid for the reaction.

■シリカ沈澱生成時の反応温度を40℃以下に保ち、次
いで得られた沈澱を70℃以上の温度で熟成すること。
(2) Maintaining the reaction temperature during silica precipitate formation at 40°C or lower, and then aging the resulting precipitate at a temperature of 70°C or higher.

シリカ沈澱生成反応を約40℃以上でおこなうと、シリ
カ沈澱の脱水硬化が速やかにおこなわれて固液分離し易
い反応生成物のスラリーか得られる反面、沈澱内部の不
純物か液相中へ溶出し難くなるためか、U、Th等の不
純物の除去に限度が生じる。
When the silica precipitate formation reaction is carried out at a temperature of about 40°C or higher, the silica precipitate is rapidly dehydrated and hardened, and a slurry of the reaction product that is easily separated into solid and liquid is obtained, but on the other hand, impurities inside the precipitate are eluted into the liquid phase. Perhaps because of this difficulty, there is a limit to the removal of impurities such as U and Th.

一方、シリカ沈澱生成反応を40℃以下でおこなうと、
含水率の多い軟かい沈澱が生成し、粘性を帯びて固液分
離の困難な反応生成物のスラリーが生成する。常識的に
は、このような作業性を困難にする反応条件は回避され
るが、本発明の方法においては硫酸を使用して敢えてこ
のような温度条件下で反応をおこなったのち、70 ’
C以上に加熱して熟成をおこなうことにより不純物含有
量が極端に少なく含水率の低いシリカの沈澱が得られる
という全く予想外の事実に依拠したのである。すなわち
、40℃以下で好ましくは室温近くで反応を終了したの
ち、15〜60分保持し、次いで加熱昇温させて70℃
以上好ましくは75℃〜系の沸点近くで30〜180分
間熟成するが、保持時間や熟成時間等は特に限定される
ものではない。
On the other hand, if the silica precipitation reaction is carried out at 40°C or lower,
A soft precipitate with a high water content is formed, and a slurry of reaction products that is viscous and difficult to separate from solid and liquid is formed. In common sense, such reaction conditions that make workability difficult are avoided, but in the method of the present invention, sulfuric acid is used and the reaction is carried out under such temperature conditions.
This was based on the completely unexpected fact that silica precipitates with extremely low impurity content and low water content can be obtained by aging at temperatures above C. That is, after completing the reaction at 40°C or lower, preferably near room temperature, the reaction is held for 15 to 60 minutes, and then heated to 70°C.
As mentioned above, it is preferably aged at 75° C. to near the boiling point of the system for 30 to 180 minutes, but the holding time, aging time, etc. are not particularly limited.

このようにして得られる合成シリカは後述する処理にも
多少影響されるがBET比表面積が300rrr/g以
上の多孔質となっている。シリカの沈澱生成反応と熟成
処理とは、シリカ粒子相互の構造に係って、不純金属成
分の分離性に影響し、300d/g未満のものは、いず
れも実質的に本発明で目的とする純度までは達すること
ができない。
The synthetic silica obtained in this manner is porous with a BET specific surface area of 300 rrr/g or more, although it is somewhat affected by the treatment described below. The silica precipitation reaction and aging treatment affect the mutual structure of silica particles and affect the separation of impure metal components, and anything less than 300 d/g is substantially the object of the present invention. Purity cannot be achieved.

次に、反応により生成するシリカの沈澱を青4′法によ
り分離し、分離したシリカを過酸化水素及びキレート剤
を含有する鉱酸て酸洗浄する。
Next, the silica precipitate produced by the reaction is separated by the Blue 4' method, and the separated silica is washed with mineral acid containing hydrogen peroxide and a chelating agent.

この場合の酸の種類及びキレート剤の種類については、
上記と同様であり、処理時の酸の濃度は0.5〜4規定
が望ましい。0.5規定未満てはシリカに付着する不純
物の除去が不充分であり、4規定を超える強酸を使用す
る場合では酸処理後の廃酸の中和または有効利用に問題
が生ずる。
Regarding the type of acid and type of chelating agent in this case,
This is the same as above, and the acid concentration during treatment is preferably 0.5 to 4 normal. If it is less than 0.5N, impurities adhering to the silica will not be removed sufficiently, and if a strong acid exceeding 4N is used, problems will arise in neutralizing or effectively utilizing the waste acid after acid treatment.

なお、キレート剤及び過酸化水素の酸への添加量は上記
と同様SiO2に対してそれぞれ0.1〜5重量%の割
合となる範囲′て含有させておくのがよい。
The amounts of the chelating agent and hydrogen peroxide to be added to the acid are preferably within the range of 0.1 to 5% by weight relative to SiO2, as described above.

このように、本発明ではシリカの沈澱を生成させる反応
工程及び次の洗浄工程もいずれも酸で処理するものであ
るが、必ずキレート剤(必要に応してその塩でもよい)
及び過酸化水素を含有させておこなう必要があり、いず
れかの工程でこれらを含有させない場合には、所期の目
的とする高純度シリカは得られない。
In this way, in the present invention, both the reaction step to form silica precipitate and the subsequent washing step are treated with acid, but a chelating agent (or its salt may be used if necessary) is always used.
It is necessary to contain hydrogen peroxide and hydrogen peroxide, and if these are not included in any of the steps, the desired high-purity silica cannot be obtained.

また、言うまでもないが、この酸洗浄による酸処理工程
は1回に限らず、必要に応じてその性質上、2回以上お
こなっても差し支えなく、処理温度も任意でおこなうこ
とかできる。
Further, it goes without saying that the acid treatment step by acid washing is not limited to one time, but may be performed two or more times depending on the nature of the process, and the treatment temperature can be set arbitrarily.

かくして、精製した高純度シリカは清適、遠心分離また
はその他の方法で充分に洗浄除去した後、乾燥して回収
する。さらに、必要に応じ焼成または溶融して高純度シ
リカの溶融球状化体として得ることができる。
Thus, the purified high-purity silica is thoroughly washed and removed by purification, centrifugation, or other methods, and then dried and recovered. Furthermore, if necessary, it can be fired or melted to obtain a molten spheroidized body of high-purity silica.

溶融球状シリカを得る方法としては次の如き条件にてお
こなうのが好ましい。
The method for obtaining fused spherical silica is preferably carried out under the following conditions.

すなわち、300rrl”/ g以下の比表面積を有す
る多孔質合成シリカを50rrr/ g以下、好ましく
は30rr1″/g以下の比表面積となるまで焼成し、
この焼成粉砕粒子を火炎溶融して球状化することである
That is, porous synthetic silica having a specific surface area of 300 rrr1''/g or less is fired until it has a specific surface area of 50 rrr1''/g or less, preferably 30 rrr1''/g or less,
The fired and pulverized particles are flame-fused and spheroidized.

焼成物の粒子は、平均粒子径で2〜50uyl好ましく
は3〜35tErlの範囲に粒度調整したものか適当で
ある。かくして、本発明に係る方法によれば、タップ密
度(T D)が1.38g/c%以上、好ましくは、1
.39−1.46g /c++1、且つBET比表面積
か0.2〜3m2/gにある高純度、高密度の溶融球状
シリカとして得られる。この溶融球状シリカは、IC樹
脂封止用充填剤として好適な特性が付与される。
The particles of the fired product are suitably adjusted to have an average particle size in the range of 2 to 50 uyl, preferably 3 to 35 tErl. Thus, according to the method according to the invention, the tapped density (TD) is 1.38 g/c% or more, preferably 1.
.. It is obtained as high-purity, high-density fused spherical silica with a particle size of 39-1.46 g/c++1 and a BET specific surface area of 0.2 to 3 m2/g. This fused spherical silica has properties suitable as a filler for IC resin encapsulation.

〔実 施 例〕〔Example〕

以下、本発明を実施例及び比較例に基づいて説明する。 The present invention will be described below based on Examples and Comparative Examples.

実施例−1 撹拌機(=Iき反応槽に、硫酸水溶液(H2S O4−
23,7重量%) 1.200gをとり、これにシュウ
酸(二水塩 市販品)2g、35%過酸化水素水(市販
品)5gを添加溶解した。この硫酸水溶液に、JI83
号珪酸ソーダ(Na O−9,2重量%、S 102−
28.5重量%)  600gを約20分間を要して1
mmφのノズル先端より連続的に添加しシリカの沈澱を
生成させた。この間、反応槽を充分撹拌し、また液温を
25〜30℃に保持した。反応終了後スラリーを30℃
て30分間撹拌したのち80℃まで昇温し、80℃で2
時間撹拌して熟成をおこなった。
Example-1 A sulfuric acid aqueous solution (H2S O4-
23.7% by weight) was taken, and 2 g of oxalic acid (dihydrate, commercial product) and 5 g of 35% hydrogen peroxide solution (commercial product) were added and dissolved therein. Add JI83 to this sulfuric acid aqueous solution.
No. Sodium silicate (Na O-9, 2% by weight, S 102-
28.5% by weight) 600g was heated in about 20 minutes.
It was added continuously from the tip of a mmφ nozzle to form a silica precipitate. During this time, the reaction tank was sufficiently stirred and the liquid temperature was maintained at 25 to 30°C. After the reaction is completed, the slurry is heated to 30°C.
After stirring for 30 minutes, the temperature was raised to 80℃, and the
Aging was performed by stirring for hours.

この熟成終了スラリーからのシリカ沈澱をン濾過、洗浄
をくり返した後、分離回収した。分離回収したシリカを
撹拌機付き酸処理槽にとり、これに水と硫酸を加えてス
ラリー全量1,7ρ、液中の硫酸濃度が16.6重量%
となるように調製し、更にンユウ酸2g、35%過酸化
水素水5gを添加して撹拌しながら85℃で2時間加熱
して酸処理した。このスラリーからシリカを濾過分離し
、以下常温で水によるリパルプ洗浄、固液分離をおこな
い、105℃、2時間乾燥した。更に、その一部につい
て1100℃で2時間焼成したのち、粉砕して、平均粒
子径23.3mlの焼成シリカ粉末を得た。
After repeated filtration and washing, the silica precipitate from this aged slurry was separated and recovered. The separated and recovered silica was placed in an acid treatment tank with a stirrer, and water and sulfuric acid were added to it to make a slurry with a total volume of 1.7ρ and a sulfuric acid concentration of 16.6% by weight.
Further, 2 g of sulfuric acid and 5 g of 35% hydrogen peroxide were added, and the mixture was heated at 85° C. for 2 hours with stirring for acid treatment. Silica was separated from this slurry by filtration, followed by repulping washing with water at room temperature, solid-liquid separation, and drying at 105° C. for 2 hours. Furthermore, a portion of the powder was calcined at 1100° C. for 2 hours and then ground to obtain calcined silica powder with an average particle size of 23.3 ml.

なお、焼成品の不純物含有量及び物性については表−1
に示す。
The impurity content and physical properties of fired products are shown in Table 1.
Shown below.

実施例−2 実施例−1の操作手順に従い、キレ−1・剤としてシュ
ウ酸2gの代わりにEDTA O,5gを使用し、他の
条件は全て実施例−1と同様の条件で高純度シリカを製
造した。得られたシリカ中の不純物含有量を表−1に併
せて示す。
Example-2 Following the operating procedure of Example-1, using 5 g of EDTA O instead of 2 g of oxalic acid as the cleaning agent, and using high-purity silica under all the same conditions as Example-1. was manufactured. The impurity content in the obtained silica is also shown in Table-1.

一  16 − 比較例−1 実施例−1の操作手順に従い、反応を80℃で20分間
おこない、次いでそのまま80℃で2時間熟成した。他
の条件は全て実施例1と同様の条件で高純度シリカを製
造した。得られたシリカ中の不純物含有量を表−1に併
せて示す。表−1より明らかなように、反応を40℃以
上の高温でおこなった場合はU、Thの含有量が多く、
目的とする高純度シリカは得られない。
116 - Comparative Example-1 According to the operating procedure of Example-1, the reaction was carried out at 80°C for 20 minutes, and then aged as it was at 80°C for 2 hours. High purity silica was produced under all other conditions similar to those in Example 1. The impurity content in the obtained silica is also shown in Table-1. As is clear from Table 1, when the reaction is carried out at a high temperature of 40°C or higher, the content of U and Th is high;
The desired high purity silica cannot be obtained.

比較例−2 撹拌機付き反応槽に35重1%塩酸250g、水350
 g、EDTAo、25gをとり、溶解した。この塩酸
水溶液にJIS  3号珪酸ソーダ(N a 209.
2重量%、S IO228,5重量%)  350gを
約12分間を要して1 mmφのノズル先端より連続的
に滴下してシリカの沈澱を生成させた。この間反応槽を
充分撹拌し、また液温を45〜50℃に保持した。
Comparative Example-2 250g of 35w 1% hydrochloric acid and 350g of water in a reaction tank with a stirrer
g and 25 g of EDTAo were taken and dissolved. JIS No. 3 sodium silicate (N a 209.
2% by weight, SIO228, 5% by weight) was continuously dropped from a 1 mmφ nozzle tip over a period of about 12 minutes to form a silica precipitate. During this time, the reaction tank was sufficiently stirred and the liquid temperature was maintained at 45 to 50°C.

反応終了後、スラリーを50℃で2時間熟成したのち、
35%過酸化水素水3mlを添加し10分間撹拌後、実
施例−1と同様に固液分離した。分離回収したシリカを
撹拌機付き酸処理槽にとり、これに35重量%塩酸10
0 mlと水を加えて全量を900m1とし、更にED
TAo、25gを加えて80℃で2時間加熱して酸処理
した。70℃まで冷却したのち35%過酸化水素水3m
lを添加し10分間撹拌後、以下実施例−1と同様に固
液分離、乾燥、焼成して高純度シリカを得た。得られた
シリカ中の不純物含有量を表−1に併せて示す。表−1
より明らかなように反応を40℃以上でおこなった場合
はU、Thの含有量が多く目的とする高純度シリカは得
られない。
After the reaction was completed, the slurry was aged at 50°C for 2 hours, and then
After adding 3 ml of 35% hydrogen peroxide solution and stirring for 10 minutes, solid-liquid separation was performed in the same manner as in Example-1. The separated and recovered silica is placed in an acid treatment tank equipped with a stirrer, and 35% by weight hydrochloric acid (10%) is added to it.
Add 0 ml and water to make a total volume of 900 ml, and then add ED
25 g of TAo was added and heated at 80° C. for 2 hours for acid treatment. After cooling to 70℃, add 3m of 35% hydrogen peroxide solution.
After stirring for 10 minutes, solid-liquid separation, drying, and calcination were performed in the same manner as in Example-1 to obtain high-purity silica. The impurity content in the obtained silica is also shown in Table-1. Table-1
As is clearer, if the reaction is carried out at 40° C. or higher, the desired high purity silica cannot be obtained due to the high U and Th contents.

表   −I ICP法による分析で求めた。Table-I It was determined by analysis using the ICP method.

注2)比表面積はいずれもBET法による。Note 2) All specific surface areas are based on the BET method.

−19一 実施例−3 実施例−1で得られた高純度シリカ焼成品を樹脂製ボー
ルミルで平均粒径25虜まで粉砕した。次いでこの粉末
を酸素−プロパンガスによる火炎溶融炉に連続的に流下
させて溶融処理を施して溶融球状シリカを得た。このシ
リカは平均粒径31庫、比表面積0.8Bttf/g及
びTDl、45g/c−の高純度シリカ球状溶融体であ
フた。
-191 Example-3 The high-purity sintered silica product obtained in Example-1 was pulverized with a resin ball mill to an average particle size of 25 mm. Next, this powder was melted by flowing continuously into a flame melting furnace using oxygen-propane gas to obtain fused spherical silica. This silica was a high purity spherical molten silica having an average particle size of 31 mm, a specific surface area of 0.8 Bttf/g, and a TDl of 45 g/c.

〔発明の効果〕 以上の記載から明らかなように、本発明の高純度シリカ
の製造方法によれば、珪酸アルカリ及び酸との湿式反応
により不純物含有量がU(ウラン)及びTh(トリウム
)それぞれ0.02ppb以下の高純度シリカが比較的
安価な原料から比較的単純な工程によって確実に製造す
ることが可能となる。本発明の高純度シリカはIC封止
剤用樹脂の充填剤、基板、電子材料や半導体製造装置用
高純度シリカガラスの原料等の用途に好適であり、枯渇
しつ\ある良質の天然珪砂や水晶等の資源に代って安定
供給を可能とする点で特に有意義なものである。
[Effects of the Invention] As is clear from the above description, according to the method for producing high-purity silica of the present invention, the impurity contents are reduced by U (uranium) and Th (thorium) through wet reaction with alkali silicate and acid. High purity silica of 0.02 ppb or less can be reliably produced from relatively inexpensive raw materials through a relatively simple process. The high-purity silica of the present invention is suitable for use as a filler for resins for IC encapsulants, substrates, electronic materials, and raw materials for high-purity silica glass for semiconductor manufacturing equipment, etc. It is particularly significant in that it enables a stable supply in place of resources such as crystal.

Claims (1)

【特許請求の範囲】 1、珪酸アルカリの酸分解(湿式法)により得られる合
成シリカであって、α−放射性を示すU(ウラン)及び
Th(トリウム)の含有量がそれぞれ0.02ppb以
下であることを特徴とする高純度シリカ。 2、BET比表面積が300m^2/g以上の未焼成含
水シリカである請求項1の高純度シリカ。 3、BET比表面積が50m^2/g以下の焼成シリカ
である請求項1の高純度シリカ。4、BET比表面積が
0.2〜3m^2/g、且つタップ密度が1.36g/
cm^3以上の溶融球状シリカである請求項1の高純度
シリカ。 5、キレート剤及び過酸化水素が存在する酸濃度1規定
以上の鉱酸中で珪酸ナトリウムと鉱酸とを反応させてシ
リカ沈澱を生成させ、次いで分離回収したシリカをキレ
ート剤及び過酸化水素を含有する鉱酸にて洗浄すること
からなる高純度シリカの製法において、シリカ沈澱生成
反応を硫酸を使用して40℃以下の温度でおこなったの
ち、反応生成物を70℃以上の温度で熟成することを特
徴とする高純度シリカの製造方法。 6、キレート剤がジカルボン酸、ポリカルボン酸、オキ
シカルボン酸、アミノポリカルボン酸またはそれらの塩
である請求項5記載の高純度シリカの製造方法。 7、キレート剤及び過酸化水素を、それぞれ反応系内の
SiO_2に対して0.1〜5重量%添加する請求項5
記載の高純度シリカの製造方法。 8、請求項5記載の製造方法により得られた合成シリカ
を、BET比表面積が50m^2/g以下となるような
焼成工程を経て火炎溶融することを特徴とする高純度シ
リカの製造方法。
[Scope of Claims] 1. Synthetic silica obtained by acid decomposition of alkali silicate (wet method), wherein the content of U (uranium) and Th (thorium), which exhibit α-radiation, is 0.02 ppb or less each. High purity silica characterized by: 2. The high-purity silica according to claim 1, which is uncalcined hydrated silica having a BET specific surface area of 300 m^2/g or more. 3. The high-purity silica according to claim 1, which is calcined silica having a BET specific surface area of 50 m^2/g or less. 4. BET specific surface area is 0.2 to 3 m^2/g, and tap density is 1.36 g/g.
The high-purity silica according to claim 1, which is fused spherical silica with a diameter of cm^3 or more. 5. Sodium silicate and mineral acid are reacted in a mineral acid with an acid concentration of 1N or more in which a chelating agent and hydrogen peroxide are present to form a silica precipitate, and then the separated and recovered silica is treated with a chelating agent and hydrogen peroxide. In the manufacturing method of high-purity silica, which consists of washing with mineral acid contained in the product, the silica precipitation reaction is carried out using sulfuric acid at a temperature of 40°C or lower, and then the reaction product is aged at a temperature of 70°C or higher. A method for producing high purity silica, characterized by: 6. The method for producing high-purity silica according to claim 5, wherein the chelating agent is dicarboxylic acid, polycarboxylic acid, oxycarboxylic acid, aminopolycarboxylic acid, or a salt thereof. 7. Claim 5: chelating agent and hydrogen peroxide are each added in an amount of 0.1 to 5% by weight based on SiO_2 in the reaction system.
The method for producing high-purity silica described above. 8. A method for producing high-purity silica, which comprises flame-melting the synthetic silica obtained by the production method according to claim 5 through a firing step such that the BET specific surface area becomes 50 m^2/g or less.
JP5686888A 1988-03-10 1988-03-10 High-purity silica and production thereof Granted JPH01230422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5686888A JPH01230422A (en) 1988-03-10 1988-03-10 High-purity silica and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5686888A JPH01230422A (en) 1988-03-10 1988-03-10 High-purity silica and production thereof

Publications (2)

Publication Number Publication Date
JPH01230422A true JPH01230422A (en) 1989-09-13
JPH0516372B2 JPH0516372B2 (en) 1993-03-04

Family

ID=13039402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5686888A Granted JPH01230422A (en) 1988-03-10 1988-03-10 High-purity silica and production thereof

Country Status (1)

Country Link
JP (1) JPH01230422A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2279944B (en) * 1993-06-29 1996-10-02 Nitto Chemical Industry Co Ltd High-purity spherical silica and process for producing same
JPWO2014188934A1 (en) * 2013-05-20 2017-02-23 日産化学工業株式会社 Silica sol and silica-containing epoxy resin composition
CN112678831A (en) * 2021-02-02 2021-04-20 福建省三明正元化工有限公司 Method for preparing silicon dioxide by using graphene oxide waste liquid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115641A (en) * 1983-11-25 1985-06-22 Denki Kagaku Kogyo Kk Filler for sealing resin and its composition
JPS6140811A (en) * 1984-07-31 1986-02-27 Nippon Chem Ind Co Ltd:The Hydrated silica for melting and manufacture of melted silica by using it
JPS61186216A (en) * 1985-02-12 1986-08-19 Denki Kagaku Kogyo Kk Production of spherical silica
JPS6212609A (en) * 1985-07-11 1987-01-21 Nippon Chem Ind Co Ltd:The Modified fused spherical silica and production thereof
JPS6212608A (en) * 1985-07-11 1987-01-21 Nippon Chem Ind Co Ltd:The Silica of high purity and production thereof
JPS6296311A (en) * 1985-10-24 1987-05-02 Denki Kagaku Kogyo Kk Production of high-purity spherical silica filler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115641A (en) * 1983-11-25 1985-06-22 Denki Kagaku Kogyo Kk Filler for sealing resin and its composition
JPS6140811A (en) * 1984-07-31 1986-02-27 Nippon Chem Ind Co Ltd:The Hydrated silica for melting and manufacture of melted silica by using it
JPS61186216A (en) * 1985-02-12 1986-08-19 Denki Kagaku Kogyo Kk Production of spherical silica
JPS6212609A (en) * 1985-07-11 1987-01-21 Nippon Chem Ind Co Ltd:The Modified fused spherical silica and production thereof
JPS6212608A (en) * 1985-07-11 1987-01-21 Nippon Chem Ind Co Ltd:The Silica of high purity and production thereof
JPS6296311A (en) * 1985-10-24 1987-05-02 Denki Kagaku Kogyo Kk Production of high-purity spherical silica filler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2279944B (en) * 1993-06-29 1996-10-02 Nitto Chemical Industry Co Ltd High-purity spherical silica and process for producing same
JPWO2014188934A1 (en) * 2013-05-20 2017-02-23 日産化学工業株式会社 Silica sol and silica-containing epoxy resin composition
CN112678831A (en) * 2021-02-02 2021-04-20 福建省三明正元化工有限公司 Method for preparing silicon dioxide by using graphene oxide waste liquid
CN112678831B (en) * 2021-02-02 2022-06-07 福建省三明正元化工有限公司 Method for preparing silicon dioxide by using graphene oxide waste liquid

Also Published As

Publication number Publication date
JPH0516372B2 (en) 1993-03-04

Similar Documents

Publication Publication Date Title
US5028407A (en) Method of production of high purity fusible silica
JPH0481526B2 (en)
JPH05503066A (en) Method for producing alkali metal silicate
JPH072512A (en) Preparation of pure amorphous silica from rock
KR20070095439A (en) Methods for producing cesium hydroxide solutions
JP2542797B2 (en) Method for producing high-purity silica
JPH01230422A (en) High-purity silica and production thereof
JPS63291808A (en) Production of high-purity silica
JPH0124728B2 (en)
JPH0118006B2 (en)
US4693878A (en) Process for the production of soluble alkali silicates
JPS6321212A (en) Production of high purity silica
JPH055766B2 (en)
JP2002241122A (en) Method for manufacturing high-purity silica
JPS6335414A (en) Manufacture of sodium tetraborate pentahydrate
JP2694163B2 (en) Method for producing high-purity silica
JPH075289B2 (en) Method for producing low-thorium high-purity silica
JPS6117416A (en) High-purity silica and its preparation
JPS60191016A (en) High-purity silica and its manufacture
JPS6090812A (en) Manufacture of high purity silica
JP2769113B2 (en) Method for producing high-purity silica
JP2003146646A (en) Lumpy, high purity silica, and production method therefor
JPH0457604B2 (en)
JPS62270424A (en) Production of ultra-high purity quartz glass powder
JPH0121092B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 16