JPS6140811A - Hydrated silica for melting and manufacture of melted silica by using it - Google Patents

Hydrated silica for melting and manufacture of melted silica by using it

Info

Publication number
JPS6140811A
JPS6140811A JP15913384A JP15913384A JPS6140811A JP S6140811 A JPS6140811 A JP S6140811A JP 15913384 A JP15913384 A JP 15913384A JP 15913384 A JP15913384 A JP 15913384A JP S6140811 A JPS6140811 A JP S6140811A
Authority
JP
Japan
Prior art keywords
silica
melting
hydrated
silica gel
hydrated silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15913384A
Other languages
Japanese (ja)
Other versions
JPH0127003B2 (en
Inventor
Toshihiko Morishita
森下 敏彦
Hitoshi Koshimizu
興水 仁
Kazuyoshi Torii
鳥井 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP15913384A priority Critical patent/JPS6140811A/en
Publication of JPS6140811A publication Critical patent/JPS6140811A/en
Publication of JPH0127003B2 publication Critical patent/JPH0127003B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain the hydrated silica for melting suitable as raw materials in case of manufacturing the melted silica which has specified physical properties and is used a resin filler for sealing the semiconductor elements. CONSTITUTION:The hydrated silica for melting which has (i) <=10ppb content of alpha-radiator (expressed in terms of U and Th), (ii) <=10ppm content of Na plus Cl respectively and (iii) 0.5-10wt% water content is formed from an aq. alkali silicate soln. The melted silica obtained by subjecting the above-mentioned hydrated silica to the flame-melting treatment has less contents of impurities and also is excellent in melt fluidity and suitable as a filler used as the resin composition for sealing of semiconductors.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高純度の球状溶融シリカ用原料およびこれを用
いた溶融球状シリカガラ7スの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a raw material for high purity spherical fused silica and a method for producing fused spherical silica glass using the same.

更に詳しくは半導体の樹脂封土用の充填材、研摩材、基
板、パッケージ材料等の高純度、高機能性を要する中間
原料として適用できる高純度の水和シリカおよび無水シ
リカの製法に関するものである。
More specifically, the present invention relates to a method for producing high-purity hydrated silica and anhydrous silica that can be used as intermediate raw materials that require high purity and high functionality, such as fillers for semiconductor resin filling, abrasive materials, substrates, and package materials.

従来の技術 半導体の樹脂封止において多量の無機質充填材が用いら
れるが、これには主として天然石英の粉砕品で、ある結
晶質シリカおよびこれを酸水素炎などの高温で溶融した
溶融シリカが用いられている。
Conventional technology A large amount of inorganic filler is used in the resin encapsulation of semiconductors, but this mainly uses crushed natural quartz, a certain type of crystalline silica, and fused silica, which is made by melting it at high temperatures such as in an oxyhydrogen flame. It is being

最近では、特に半導体の高集積化によって封止剤に対す
る品質特性の要求が一段と厳しくたとえば、シリカフィ
ラーに関して(1)充填材の高充填化、(2)α放射体
(たとえばウラン、トリウム)の低減化、(3)イオン
性不純物の低減化などがあげられる。これらに対応する
ためには従来の天然石英の粉砕又は/及び溶融によって
得たシリカを充填材に供すことは純度、資源の量的確保
、経済性に問題があり、また必ずしも安定した状態で要
求に追従することはできないため新たに合成シリカを用
いることが必要となって来た〇 これに応えるものとしてハロゲン化珪素、有機珪素の加
水分解など提案されており、また最近ではアルカリシリ
ケート等の珪酸塩と鉱酸との反応を水素イオン濃度/、
j以下で含水珪酸を沈殿させ、次いで洗浄、乾燥および
焼成して石英ガラス粉末を製造する方法が提案された(
特開昭、t9−14t4Jコ号)0 発明が解決しようとする問題点 本発明者らは先に珪酸アルカリ水溶液をシリカ源として
イオン交換に基づくシリカゾルよりシリカゲルを沈殿さ
せ、あるいは鉱酸との反応で生成したシリカゲルをいず
れも酸処理することによってα−放射体含有量の極めて
少ないシリカの製造方法あるいは更にこれより溶融して
球状シリカの製造方法を開発した。
Recently, especially with the increasing integration of semiconductors, quality characteristics requirements for encapsulants have become even stricter. For example, regarding silica fillers, (1) higher filler filling, (2) lower alpha emitters (e.g., uranium, thorium) and (3) reduction of ionic impurities. In order to cope with these problems, using silica obtained by conventional crushing and/or melting of natural quartz as a filler has problems with purity, securing the quantity of resources, and economic efficiency, and also requires a stable state. It has become necessary to use a new synthetic silica. In response to this, halogenated silicon and organic silicon hydrolysis have been proposed, and recently silicic acids such as alkali silicates have been proposed. The reaction between salt and mineral acid is determined by hydrogen ion concentration/,
A method was proposed for producing quartz glass powder by precipitating hydrated silicic acid at below j, followed by washing, drying and firing (
Problems to be Solved by the Invention The present inventors first precipitated silica gel from a silica sol based on ion exchange using an aqueous alkali silicate solution as a silica source, or precipitated silica gel from a silica sol based on ion exchange, or reacted with a mineral acid. We have developed a method for producing silica with an extremely low α-emitter content by treating the silica gel produced in the above with acid, or a method for producing spherical silica by melting it.

上記のシリカゲルを原料としてこれを溶融して球状のシ
リカガラス粉末を製造する際、特に生産規模を拡大する
場合に原料シリカの帯電性および発泡性の問題があるこ
とが分った0即ち、溶融原料のシリカの帯電性をみると
、溶融装置の原料供給管内の流動性にトラブルが起って
円滑な供給ができなくなり、又シリカの含有水分量の如
何では溶融の際発泡現象が起って具備すべき性能をもっ
た球状体シリカガラスが得られないなどの問題がある。
When manufacturing spherical silica glass powder by melting the above-mentioned silica gel as a raw material, it was found that there were problems with the charging and foaming properties of the raw silica, especially when expanding the production scale. Looking at the charging properties of the raw material silica, problems occur with the fluidity within the raw material supply pipe of the melting equipment, making smooth supply impossible, and depending on the water content of the silica, foaming may occur during melting. There are problems such as the inability to obtain spherical silica glass with the desired performance.

前記特開@Sq−おtl、J−号にみる石英ガラス粉末
の製造方法にはトリウムの除去については明らかでなく
、また焼成法に基づく石英ガラスであるために上記の間
“題の認識はない。
The manufacturing method of quartz glass powder found in the above-mentioned JP-A-Sq-Otl, J- issue does not clearly mention the removal of thorium, and since the quartz glass is based on a firing method, the above-mentioned "recognition of the title" is not clear. do not have.

本発明者らは斜上の問題点に鑑み、鋭意研究を重ねたと
ころ、驚くべきことに原料中の含水率が極めて重要な要
因であるとの知見に基づいて本発明を完成した〇 問題点を解決するための手段および作用すなわち、本発
明は珪酸アルカリ水溶液から得られるシリカのうちα−
放射体がU+Thとして/ Oppb以下、Na、αが
それぞれ/ Oppm以下の純度を有しかつ含水率がO
,S〜IO重量係の範囲にある含水シリカゲル粉末を溶
融原料として提供することを一つの目的とする。  □
本発明の他の目的は上記原料を用いて溶融シシリ力ガラ
スを製造することにある。
The inventors of the present invention conducted intensive research in view of the problem of slanting, and surprisingly completed the present invention based on the knowledge that the moisture content of the raw material is an extremely important factor.〇Problem Means and effect for solving the problem, namely, the present invention provides α-
The radiator has a purity of U + Th / Oppb or less, Na, α each / Oppm or less, and a water content of O
, S to IO as a molten raw material. □
Another object of the present invention is to produce molten glass using the above-mentioned raw materials.

本発明にかかる前記含水シリカゲル粉末は主として溶融
用原料として用いられるが、高純度および所定の粒度お
よび含水率のゆえに流動性もあって他の目的例えばセラ
ミック素材又はその原料として利用することができる。
The hydrated silica gel powder according to the present invention is mainly used as a raw material for melting, but due to its high purity, predetermined particle size and water content, it has fluidity and can be used for other purposes, such as as a ceramic material or its raw material.

含水シリカゲルの純度としてα−放射体がU+Thとし
て/ Oppb以下、Na、αがそれぞれ/ Oppm
以下であることが半導体の樹脂封止用充填材として不可
欠である0特′に好ましくは■およびThがそれぞれ/
 ppb以下の高純度であることが高集積度のLSI、
VLSIの封止用充填材、として使用時のソフトエラー
による誤動作をなくすことからみて必要とされる。
As for the purity of hydrated silica gel, α-radiator is U + Th / Oppb or less, Na and α are each / Oppm
Preferably, ■ and Th are indispensable as fillers for resin encapsulation of semiconductors.
Highly integrated LSI with high purity of ppb or less,
It is needed as a filler for VLSI sealing in order to eliminate malfunctions caused by soft errors when used.

かかる含水シリカゲルの他の特徴として含水率がo、5
−10重量嗟の範囲になければならずこれは本発明にお
いて、純度と共に重要な特徴となる。
Other characteristics of such hydrous silica gel include water content of o, 5
-10 weight range, which is an important characteristic in the present invention, as well as purity.

この運出は粒子の帯電性および発泡性は含水率に極めて
大きい関連があって上記含水率の範囲においては粉体輸
送が容易になると共に良好な溶融シリカが得られること
からそれらの問題は両者とも実質的に解決できるという
ことにある0 即ち、含水率がo、r重量係未満の場合は発泡性の問題
はないけれども帯電性が著しく、溶融の際にバーナ中へ
安定して供給することが難かしく、又10重量%を越え
ると流動性が同様に悪いのみならず溶融に際し発泡し、
良質な球状シリカガラスは効果的に得られない。
This transportation is because the chargeability and foamability of the particles are extremely closely related to the moisture content, and within the above moisture content range, powder transportation becomes easy and good fused silica can be obtained, so both of these problems are solved. In other words, if the water content is less than o, r weight ratio, there is no foaming problem, but the charging property is significant, and it is difficult to stably supply the material into the burner during melting. Moreover, if it exceeds 10% by weight, not only the fluidity is similarly poor but also foaming occurs when melting.
Good quality spherical silica glass cannot be obtained effectively.

このようなことから、含水シリカゲルの含水率は上記の
範囲であることが不可欠であるが、特に好ましくは溶融
シリカ製品の粒度とも関連するが概ね/−j重量%の範
囲である。
For this reason, it is essential that the water content of the hydrated silica gel is within the above range, and is particularly preferably within the range of /-j% by weight, although this is related to the particle size of the fused silica product.

上記含水率において粒子の帯電性によるトラブルは実質
的に回避されるが、必要に応じて例えばオダ級アンモニ
ウム塩等の公知の帯電防止剤を少量配合することによっ
て一層効果的に粒子の帯電を防ぐこともできる。
At the above water content, troubles due to the electrostatic properties of the particles can be practically avoided, but if necessary, a small amount of a known antistatic agent such as an Oda-class ammonium salt can be added to more effectively prevent the particles from becoming electrostatically charged. You can also do that.

この場合添加する帯電防止剤は溶融において完全に揮散
する性質の化合物であることが望ましいことはいうまで
もない。
It goes without saying that the antistatic agent added in this case is preferably a compound that completely volatilizes during melting.

なお、本発明において含水率というのは、試料を100
℃において1時間加熱焼成後の加熱減量より計算された
値で表わされたものとする0さらに、本発明にかかる含
水シリカゲルは溶融の際の流動特性の効果上および溶融
シリカガラス粒子の粒度を所定範囲にするために、要す
ればS〜λooμmの範囲、好ましくは10−100μ
屏間にgos以上分布していることが望ましい。
In addition, in the present invention, the moisture content refers to a sample of 100
It is expressed as a value calculated from the heating loss after heating and baking at ℃ for 1 hour. Furthermore, the hydrated silica gel according to the present invention has a particle size of molten silica glass particles due to the effect of fluidity during melting and the particle size of fused silica glass particles. In order to obtain a predetermined range, if necessary, the range is from S to λooμm, preferably from 10 to 100μm.
It is desirable that the distribution is more than gos between the folding screens.

なお、含水シリカゲルの粒子をみる場合−欠粒子は全て
7991m以下の微粒子であるが、本発明における粒度
は一次粒子が凝集した見掛けの二次粒子を意味し、この
粒度分布はコールタ−カウンターにて測定される値とし
て表わしたものである0次に本発明にかかる含水シリカ
ゲルは上記特性を有するものであれば珪酸アルカリ水溶
液から生成させる処理手段は特に限定する必要はない。
When looking at particles of hydrated silica gel, all missing particles are fine particles of 7991 m or less, but the particle size in the present invention refers to the apparent secondary particles that are aggregated primary particles, and this particle size distribution can be determined using a Coulter counter. As long as the hydrated silica gel according to the present invention has the above-mentioned characteristics, there is no need to particularly limit the treatment means used to produce it from an aqueous alkali silicate solution.

調製法としては例えば鉱酸中に珪酸アルカリ水溶液を添
加反応させてシリカゲルを生成させ、次いで回収したゲ
ルを再び酸処理して実質的に有害不純物をこの段階で除
去した後、洗浄後所定の含水率と粒径になるように乾燥
する。
As a preparation method, for example, an aqueous alkali silicate solution is added to mineral acid and reacted to produce silica gel, then the recovered gel is treated with acid again to substantially remove harmful impurities at this stage, and after washing, it is heated to a predetermined water content. Dry to achieve the desired particle size and particle size.

他の方法として希薄な珪酸アルカリ水溶液を4イオン交
換樹脂に―してシリカゾルを得た後、凝析剤によりシリ
カゲルとし、必要に応じ酸処理を施しこれを前記と同様
に処理して乾燥する。
Another method is to obtain a silica sol by converting a dilute aqueous alkali silicate solution into a 4-ion exchange resin, converting it into silica gel using a coagulant, subjecting it to acid treatment if necessary, and drying it in the same manner as described above.

なお、乾燥して、含水率を調整する場合には、例えば (1)シリカ粒度と許容含水分率の関係を把握して原料
シリカゲルの乾燥条件を決定する(2)予めaOO℃以
上で乾燥したものを空気中に曝露するかその他の方法で
調湿する (3)シリカゲルスラリーを噴霧乾燥する等が適当な方
法としてあげられるが、これらのうちでは(1)の場合
が作業性その他の面から好ましい。また粒度分布を狭く
するためには(3)の方法が好ましい。
In addition, when drying and adjusting the moisture content, for example, (1) determine the drying conditions of the raw silica gel by understanding the relationship between the silica particle size and the allowable moisture content (2) dry the raw material silica gel in advance at a temperature above aOO℃. Appropriate methods include exposing the material to the air or controlling its humidity by other methods (3) Spray-drying the silica gel slurry, but among these, method (1) is difficult due to workability and other aspects. preferable. Further, in order to narrow the particle size distribution, method (3) is preferable.

なお、必要に応じて所望の段階で帯電防止剤を添加する
ことができるが、例えばオダ級アンモニウム塩を(3)
の場合のスラリーに添加するのは効果的である〇 次に本発明にがかる含水シリカゲル粉末を用いて溶融し
て球状のシリカガラス粉末の製造方法について説明する
Note that an antistatic agent can be added at a desired stage if necessary, but for example, an antistatic agent can be added to (3).
It is effective to add it to the slurry in the following cases. Next, a method for producing spherical silica glass powder by melting the hydrated silica gel powder according to the present invention will be described.

シリカ粉末の溶融操作は、例えば酸素−水素炎、酸素−
アセチレン炎、酸素−プロパン炎あるいはプラズマ炎な
どの所定の火炎部分に上記含水シリカゲル粒子を連続的
に供給することによって、含水シリカゲル粒子の溶融球
状化を行なうものであり、′この火炎溶融操作自体は無
機粉体の溶融に古くより知られている技術である。
The melting operation of silica powder can be carried out using, for example, oxygen-hydrogen flame, oxygen-
The hydrated silica gel particles are melted and spheroidized by continuously supplying the hydrated silica gel particles to a predetermined flame area such as an acetylene flame, an oxygen-propane flame, or a plasma flame. This is a long-known technique for melting inorganic powders.

しかして、含水シリカゲル粒子を原料として用いて火炎
溶融成形して、平均粒子径が/−/DOμ島の球状又は
だ円状溶融シリカとするためには適度な火炎条件を必要
とする。即ち燃料ガスを用いた場合火炎温度を少なくと
も3000℃以上でかつ2000℃以上の火炎長を30
CIIL以上必要とする。この目的に利用出来るバーナ
ーの構成は酸素−燃料ガス系の場合、酸素をバーナー内
側から、燃料ガスを外側の多数の孔から噴射させ、含水
シリカゲル粒子は酸素ガスに同伴射出させることが好ま
しい。プラズマアークの場合はアーク部の温度が酸素−
燃料ガス系に比べ著しく高いため粉体の注入量を過度に
しない限り問題なく処理出来る。この様にして得られる
シリカは高温部分での接触時間はわずかであるけれども
実質的に溶融されたガラス状の透明な球形乃至だ円形粒
子となって極めて流動性の良好な粒子となる。
Therefore, appropriate flame conditions are required to flame-melt and mold hydrated silica gel particles as a raw material into spherical or elliptical fused silica with an average particle diameter of /-/DOμ. That is, when using fuel gas, the flame temperature should be at least 3000°C or higher, and the flame length should be 30°C or higher at 2000°C or higher.
Requires CIIL or higher. When the burner structure that can be used for this purpose is an oxygen-fuel gas system, it is preferable that oxygen is injected from inside the burner, fuel gas is injected from a number of holes on the outside, and the hydrated silica gel particles are ejected along with the oxygen gas. In the case of plasma arc, the temperature of the arc part is oxygen -
Since it is significantly higher than that of fuel gas systems, it can be processed without problems unless the amount of powder injected is excessive. Although the silica thus obtained is in contact for only a short time in the high-temperature part, it becomes substantially molten glass-like transparent spherical to elliptical particles with extremely good fluidity.

かくして、得られた溶融シリカ粒子は必要に応じてガス
流の冷却を施してからサイクロン、ベグフィルターなど
で回収するか又は水による湿式回収等を行って本発明に
かかる萬純度シリカガラス製品を得ることができる〇 このように、本発明にかかる方法により、珪酸アルカリ
水溶液を出発原料とする湿式シリカより、高性能が要求
される封止剤用充填材としての高純度溶融シリカ粒子を
工業的に有利に大量供給することが可能である。
The fused silica particles obtained in this manner are collected by a cyclone, a Veg filter, etc. after being cooled by a gas stream, if necessary, or by wet collection using water, etc., to obtain the 10000-purity silica glass product according to the present invention. As described above, by the method of the present invention, it is possible to industrially produce high-purity fused silica particles as a filler for sealants that require higher performance than wet silica using an aqueous alkali silicate solution as a starting material. Advantageously, large quantities can be supplied.

実施例 以下、本発明を以下に実施例及び比較例を掲げて説明す
る。
EXAMPLES The present invention will be explained below with reference to Examples and Comparative Examples.

実施例/−1および比較例1〜3 市販の3号珪酸ソーダ水溶液(Sin、−g、6重量%
、Na、09,4を重量係、S10.当りU/θθpp
b。
Example/-1 and Comparative Examples 1 to 3 Commercially available No. 3 sodium silicate aqueous solution (Sin, -g, 6% by weight
, Na, 09.4 for weight, S10. Hit U/θθpp
b.

Sin、当り’rha*0ppb含有)を水で希釈して
Sin、 4I重量%の希釈珪酸ソーダ水溶液とした。
A diluted sodium silicate aqueous solution containing 4I% by weight was prepared by diluting Sin (containing 'rha*0 ppb) with water.

これを硫酸で再生しである陽イオン交換樹脂(アンバー
ライトエR−/IOB、オルガノ社製)で常法に従って
処理してpHJ、、2のシリカゾル水溶液を得た。
This was treated with a cation exchange resin (Amberlite R-/IOB, manufactured by Organo Co., Ltd.) which had been regenerated with sulfuric acid according to a conventional method to obtain an aqueous silica sol solution with a pH of 2.

常温で硝酸アンモニウム70.3重量係水溶液301を
攪拌しながら、上記シリカゾル水溶液にアンモニアを加
えpH10,!rにしたアルカシリカゾル溶液rotを
3時間かけて添加し、凝析沈殿させて沈jiF状シリカ
ゲルを得た。次いでこれを濾過および置換洗浄したのち
、イオン交換水に810.濃度70重量%となる様に再
分散させ、この中に硝酸をλM/lとなる様に加え9よ
℃で3時間攪拌して処理した。これを濾過、水洗して精
製を行って含水率りざ重量%の精製シリカゲルのケーキ
を得た。
While stirring the ammonium nitrate 70.3 weight aqueous solution 301 at room temperature, ammonia was added to the silica sol aqueous solution to pH 10! Rot of alkali silica sol solution adjusted to r was added over 3 hours and coagulated and precipitated to obtain precipitated jiF-like silica gel. Next, this was filtered and washed by substitution, and then added to 810% ion-exchanged water. The mixture was redispersed to a concentration of 70% by weight, and nitric acid was added thereto at a concentration of λM/l, followed by stirring at 9°C for 3 hours. This was purified by filtration and washing with water to obtain a cake of purified silica gel with a water content of 1% by weight.

この精製シリカゲルのケーキを水に分散させてis重量
%のシリカゲル懸濁液となしたのち、アシザワニロ社製
プロダクションマイナー型スプレードライヤーで各種条
件を変えて噴霧乾燥して各種の含水シリカゲル粉末を得
た。
This purified silica gel cake was dispersed in water to form a silica gel suspension of IS% by weight, and then spray-dried using a production minor type spray dryer manufactured by Ashizawa Iro Co., Ltd. under various conditions to obtain various hydrated silica gel powders. .

この粉末の純度を測定したところSiO,fiすNa 
: 0−ざppm %α:α:小検出:θJppb以下
およびTh : / ppb以下であった。
The purity of this powder was measured and found that it contained SiO, fisNa.
: 0-ppm % α: α: Small detection: θ J ppb or less and Th: / ppb or less.

次いで各種の含水シリカゲル粉末を原料として火炎溶融
実験を行い、この際の作業性および溶融ガラスの発泡性
を観察した。
Next, flame melting experiments were conducted using various hydrated silica gel powders as raw materials, and the workability and foamability of the molten glass were observed.

即ち、火炎溶融装置は中央部に酸素噴出孔を設け、ここ
から酸素及び脱水シリカを噴出させ、この外側に酸素噴
出孔を取りまいて燃料ガス噴出孔をリング状に設け、こ
こから燃料ガスを噴出させ、さらにこの外側に酸素噴出
孔、燃料ガス孔を設けたガスバーナーを用いた。燃料ガ
スは、プロパンガスを用い、その流量ノ、−1mン時間
、酸素流量z、bxm”7時間および含水シリカゲル粒
子の供給速度1kli/時間で含水シリカゲルの溶融処
理を行った。この際の条件と観察結果とを次のオ/表に
掲げる。
That is, the flame melting device has an oxygen nozzle in the center from which oxygen and dehydrated silica are ejected, and a ring-shaped fuel gas nozzle surrounding the oxygen nozzle on the outside, from which fuel gas is ejected. A gas burner was used which was equipped with an oxygen jet hole and a fuel gas hole on the outside. Propane gas was used as the fuel gas, and the hydrated silica gel was melted at a flow rate of −1 m for 7 hours, an oxygen flow rate of z, bxm of 7 hours, and a supply rate of hydrated silica gel particles of 1 kli/hour.The conditions at this time and the observation results are listed in the table below.

オ/表 上表中、mi、lI&Ls及びN115はそれぞれ比較
例1)比較例コ及び比較例3の含水シリカゲル溶融処理
品、Nllコ、Naダ、随6及び醜7はそれぞれ実施例
/、実施例コ、実施例3及び実施例ダの含水シリカ溶融
処理品である。
In the above table, mi, I&Ls and N115 are respectively Comparative Example 1) Hydrous silica gel melt-treated products of Comparative Example Ko and Comparative Example 3, Nll Ko, Nada, Sui 6 and Ugly 7 are Examples/ and Implementation, respectively. These are hydrous silica melt-treated products of Example A, Example 3, and Example D.

注)帯電性の観察:火炎溶融時のシリカ供給器(ピトー
管)での流動性及びバーナへ のシリカ供給管(ゴム製、一部ガラス)への付着などを
観察し供給が安定で最 もよいものを◎、次いで○および×の 3段階で評価; 発泡性の観察:溶融シリカガラス粉末を走査型電子顕微
鏡で観察し発泡がなく最 もよいものを◎、次いで○および×の 3段階で評価。
Note) Observation of charging properties: Observe the fluidity in the silica supply device (pitot tube) during flame melting and the adhesion to the silica supply tube (made of rubber, some glass) to the burner, and the supply is stable and is the best. The product was evaluated on a three-grade scale of ◎, then ○ and ×; Observation of foaming property: The fused silica glass powder was observed with a scanning electron microscope, and the best one with no foaming was evaluated on a three-grade scale of ◎, then ○ and ×.

なお、本実験およびその他の実験に基づく観察からシリ
カゲル粉末の二次粒子径の小さなものは発泡性は比較的
少ないが、シリカ粒子が大きくなるに従って発泡の度合
は多くなり、発泡に関し一定の溶融条件では粒度と許容
含水率の相関があることが判明した。その数値は数多く
の実験結果から平均粒径10μで含水率10重量%以下
、J(7μで3重量−以下、30μでり重量−以下であ
る。一方、予め仮焼するか又は噴霧乾燥時の温度を上げ
るなど原料含水シリカゲルをt%以下の含水率に脱水し
て火炎溶融バーナーに供給すると粉体相互の凝集、粉体
の機器への付着などにより導管の目づまり、ホッパー内
でのブリッジ形成などが生じ定量的に粉体供給が行われ
ない。
Note that observations based on this experiment and other experiments show that silica gel powder with a small secondary particle size has relatively little foaming property, but as the silica particles get larger, the degree of foaming increases, and foaming requires certain melting conditions. It was found that there is a correlation between particle size and allowable moisture content. Based on numerous experimental results, the average particle size is 10μ, the water content is 10% by weight or less, J(7μ is 3wt. or less, and 30μ is 3wt. If raw material hydrated silica gel is dehydrated to a moisture content of t% or less by raising the temperature and then fed to a flame melting burner, the powders will coagulate with each other and adhere to equipment, resulting in clogging of conduits and formation of bridges in the hopper. etc., and the powder cannot be supplied quantitatively.

以上のことから含水シリカゲルの含水率は粒子径との相
関関係および溶融ガラス粉末の使用目的によって一様で
はないが少なくともO,S〜IO重量%好ましくは1〜
7重量重量節囲が必要であると結論される〇 実施例3〜tおよび比較例II −A オコ表に示す方法により各種の含水シリカゲル粉末を調
製した: is表 含水シリカゲルの調製条件 なお含水シリカゲルはいずれも810. 尚りNa:/
 ppm以下、α:不検出、U : 0.’l ppb
以下、Th : / ppb以下であった。
From the above, the water content of hydrated silica gel varies depending on the correlation with the particle size and the purpose of use of the molten glass powder, but it is at least O, S to IO weight %, preferably 1 to 10% by weight.
It is concluded that a weight range of 7 is necessary.〇Examples 3 to t and Comparative Example II-A Various hydrated silica gel powders were prepared by the method shown in the table below: is table Preparation conditions for hydrated silica gel Further hydrated silica gel Both are 810. Shang Na:/
ppm or less, α: not detected, U: 0. 'lppb
Below, Th:/ppb or less.

上記の各種含水シリカゲル粉末を実施例1と同じ火炎溶
融装置を用いシリカ供給用酸素の流量/、 l: Nm
”7時間、プロパンガス流量へg Nm”7時間、総酸
素流量A、tNm”7時間、シリカ添加量/ 、 g 
kg−/’待時間条件で火炎溶融処理する以外は実施例
/と同様に溶融処理をした。生成した溶融シリカガラス
の特性値及び原料含水シリカゲル粉末の流動性をf3表
に示す。カサ比重の測定は顔料試験法に基づいて行なっ
た: 第3表 なお、この球状溶融シリカの純度等物性値を測定した結
果法の如くとなった: 第4表 注 電気伝導度の測定法:試料の一定量を高純度水に添
加して10重量%スラリーとし。
The above various hydrated silica gel powders were melted using the same flame melting device as in Example 1, and the flow rate of oxygen for supplying silica was: /, l: Nm
``7 hours, propane gas flow rate to g Nm'' 7 hours, total oxygen flow rate A, tNm'' 7 hours, silica addition amount / , g
The melting process was carried out in the same manner as in Example except that the flame melting process was carried out under the waiting time condition of kg-/'. The characteristic values of the produced fused silica glass and the fluidity of the raw material hydrated silica gel powder are shown in Table f3. The bulk specific gravity was measured based on the pigment test method: Table 3 The physical properties such as purity of this spherical fused silica were measured, and the results were as follows: Table 4 Note Measuring method of electrical conductivity: A certain amount of the sample was added to high purity water to make a 10% by weight slurry.

これをt時間煮沸した抽出水を検体として15℃の電気
伝導度を測定する。
The electrical conductivity at 15° C. is measured using the extracted water that has been boiled for t hours as a sample.

実施例9〜ノコおよび比較例7〜9 シリカ供給用酸素の流量/、 g Nm”7時間、水素
ガス流量コθHmj/時間、総酸素流量t 、 S N
m淘間、シリカ添加量1.コIcg/時間で前述の原料
魚/〜りを同様の操作にて火炎溶融した。生成した溶融
シリカ及びシリカ粉末流動性を第5表に示すニオ3表 発明の効果 本発明によれば高集積の半導体に用られるエポキシ樹脂
等の封止剤用充填材として好適なものが安定した操業性
の下で信頼性の高い品質の高純度シリカを提供すること
ができ工業的意義は大きい。
Example 9 - Saw and Comparative Examples 7 - 9 Flow rate of oxygen for supplying silica/, g Nm"7 hours, hydrogen gas flow rate θHmj/hour, total oxygen flow rate t, SN
m aging, silica addition amount 1. The above-mentioned raw material fish was flame-melted in the same manner at 1cg/hour. The fluidity of the produced fused silica and silica powder is shown in Table 5. Effects of the Invention According to the present invention, a material suitable as a filler for encapsulants such as epoxy resins used in highly integrated semiconductors has been stabilized. It is of great industrial significance as it can provide high purity silica of highly reliable quality with ease of operation.

特に従来、溶融シリカガラス粉末を製造する場合に火炎
溶融炉への原料供給段階で非常なバラツキが生じトラブ
ルのもとであったが、本発明によれば再現性よく改善さ
れると共に溶融ガラスの品質も安定したものとなる。
In particular, in the past, when manufacturing fused silica glass powder, there were large variations in the raw material supply stage to the flame melting furnace, which caused trouble, but according to the present invention, this can be improved with good reproducibility, and the molten glass The quality will also be stable.

Claims (1)

【特許請求の範囲】 1、珪酸アルカリ水溶液から得られるシリカであってα
−放射体がU+Thとして10ppb以下、Na、Cl
の含有率が各々10ppm以下および含水率が0.5〜
10重量%であることを特徴とする溶融用水和シリカ。 2、珪酸アルカリ水溶液から得られるシリカがイオン交
換樹脂によって生成するシリカゾルを経由したものであ
る特許請求の範囲第1項記載の溶融用水和シリカ。 3、珪酸アルカリ水溶液から得られるシリカが鉱酸中に
該溶液を添加して生成するシリカである特許請求の範囲
第1項記載の溶融用水和シリカ。 4、平均粒子径が200μm以下である特許請求の範囲
第1項ないし第3項のいずれかに記載の溶融用水和シリ
カ。 5、帯電防止剤を含有する特許請求の範囲第1項ないし
第4項のいずれかに記載の溶融用水和シリカ。 6、シリカ粉末を火炎溶融して溶融球状シリカを製造す
るに当り、珪酸アルカリ水溶液を処理してα−放射体が
U+Thとして10ppb以下、Na、Clの含有率が
各々10ppm以下、および含水率が0.5〜10重量
%の範囲にある水和シリカゲル粉末を使用することを特
徴とする溶融シリカの製造方法。
[Scope of Claims] 1. Silica obtained from an aqueous alkali silicate solution, wherein α
- Emitter is 10 ppb or less as U+Th, Na, Cl
The content of each is 10 ppm or less and the water content is 0.5 to 0.5.
Hydrated silica for melting, characterized in that the content is 10% by weight. 2. The hydrated silica for melting according to claim 1, wherein the silica obtained from the aqueous alkali silicate solution is obtained via a silica sol produced by an ion exchange resin. 3. The hydrated silica for melting according to claim 1, wherein the silica obtained from an aqueous alkali silicate solution is silica produced by adding the solution to a mineral acid. 4. The hydrated silica for melting according to any one of claims 1 to 3, which has an average particle diameter of 200 μm or less. 5. The hydrated silica for melting according to any one of claims 1 to 4, which contains an antistatic agent. 6. In producing fused spherical silica by flame-melting silica powder, an aqueous alkali silicate solution is treated so that the α-emitter is 10 ppb or less as U+Th, the content of Na and Cl is 10 ppm or less, and the water content is A method for producing fused silica, characterized in that a hydrated silica gel powder in the range of 0.5 to 10% by weight is used.
JP15913384A 1984-07-31 1984-07-31 Hydrated silica for melting and manufacture of melted silica by using it Granted JPS6140811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15913384A JPS6140811A (en) 1984-07-31 1984-07-31 Hydrated silica for melting and manufacture of melted silica by using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15913384A JPS6140811A (en) 1984-07-31 1984-07-31 Hydrated silica for melting and manufacture of melted silica by using it

Publications (2)

Publication Number Publication Date
JPS6140811A true JPS6140811A (en) 1986-02-27
JPH0127003B2 JPH0127003B2 (en) 1989-05-26

Family

ID=15686966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15913384A Granted JPS6140811A (en) 1984-07-31 1984-07-31 Hydrated silica for melting and manufacture of melted silica by using it

Country Status (1)

Country Link
JP (1) JPS6140811A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230422A (en) * 1988-03-10 1989-09-13 Nippon Chem Ind Co Ltd High-purity silica and production thereof
US7265167B2 (en) 2002-11-12 2007-09-04 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same
JP2012142439A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Paste for mounting semiconductor device
JP2014141382A (en) * 2013-01-25 2014-08-07 Nikon Corp Method of producing silica particle dispersion and polishing method using silica particle dispersion

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125235A (en) * 1974-08-23 1976-03-01 Ichikoh Industries Ltd
JPS54141569A (en) * 1978-04-26 1979-11-02 Toshiba Corp Semiconductor device
JPS554952A (en) * 1978-06-28 1980-01-14 Toshiba Corp Semiconductor device
JPS5610947A (en) * 1979-07-10 1981-02-03 Toshiba Corp Semiconductor sealing resin composition
JPS5659837A (en) * 1979-09-28 1981-05-23 Hitachi Chem Co Ltd Epoxy resin composition
JPS5693749A (en) * 1979-12-27 1981-07-29 Hitachi Chem Co Ltd Epoxy resin composition
JPS56116647A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Manufacturing of silica-alumina type filler for semiconductor memory element covering resin
JPS57195151A (en) * 1981-05-27 1982-11-30 Denki Kagaku Kogyo Kk Low-radioactive resin composition
JPS57212224A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS58145613A (en) * 1982-02-15 1983-08-30 Denki Kagaku Kogyo Kk Molten silica sphere, its preparation and its device
JPS5954632A (en) * 1982-09-21 1984-03-29 Mitsubishi Metal Corp Preparation of quartz glass powder
JPS5955722A (en) * 1982-09-27 1984-03-30 Nichias Corp Molding method of diaphragm made of fluorocarbon resin
JPS59107937A (en) * 1982-12-10 1984-06-22 Seiko Epson Corp Manufacture of quartz glass

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125235A (en) * 1974-08-23 1976-03-01 Ichikoh Industries Ltd
JPS54141569A (en) * 1978-04-26 1979-11-02 Toshiba Corp Semiconductor device
JPS554952A (en) * 1978-06-28 1980-01-14 Toshiba Corp Semiconductor device
JPS5610947A (en) * 1979-07-10 1981-02-03 Toshiba Corp Semiconductor sealing resin composition
JPS5659837A (en) * 1979-09-28 1981-05-23 Hitachi Chem Co Ltd Epoxy resin composition
JPS5693749A (en) * 1979-12-27 1981-07-29 Hitachi Chem Co Ltd Epoxy resin composition
JPS56116647A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Manufacturing of silica-alumina type filler for semiconductor memory element covering resin
JPS57195151A (en) * 1981-05-27 1982-11-30 Denki Kagaku Kogyo Kk Low-radioactive resin composition
JPS57212224A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS58145613A (en) * 1982-02-15 1983-08-30 Denki Kagaku Kogyo Kk Molten silica sphere, its preparation and its device
JPS5954632A (en) * 1982-09-21 1984-03-29 Mitsubishi Metal Corp Preparation of quartz glass powder
JPS5955722A (en) * 1982-09-27 1984-03-30 Nichias Corp Molding method of diaphragm made of fluorocarbon resin
JPS59107937A (en) * 1982-12-10 1984-06-22 Seiko Epson Corp Manufacture of quartz glass

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230422A (en) * 1988-03-10 1989-09-13 Nippon Chem Ind Co Ltd High-purity silica and production thereof
JPH0516372B2 (en) * 1988-03-10 1993-03-04 Nippon Chemical Ind
US7265167B2 (en) 2002-11-12 2007-09-04 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same
JP2012142439A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Paste for mounting semiconductor device
JP2014141382A (en) * 2013-01-25 2014-08-07 Nikon Corp Method of producing silica particle dispersion and polishing method using silica particle dispersion

Also Published As

Publication number Publication date
JPH0127003B2 (en) 1989-05-26

Similar Documents

Publication Publication Date Title
JPS60221315A (en) Precipitated silicic acid having high constitutive property and manufacture thereof
JPH02500972A (en) Improvements in and related to vitreous silica
JPH01138157A (en) Production of hollow glass fine globule high in silica content
CN111547730B (en) Preparation method of ultrafine precipitated silica anticaking agent for powder coating
JP4043103B2 (en) Fused spherical silica and method for producing the same
JPS6140811A (en) Hydrated silica for melting and manufacture of melted silica by using it
US3762936A (en) Manufacture of borosilicate glass powder essentially free of alkali and alkaline earth metals
US8117867B2 (en) Process for producing spherical inorganic particle
CN111204769A (en) Method for preparing spherical white carbon black by supersonic carbon dioxide fluid carbonization method
KR20130035712A (en) Super-hydrophobic silica aerogel granule and method of fabricating the same
JPS6212609A (en) Modified fused spherical silica and production thereof
CA1112823A (en) Process for the granulation of sodium metasilicate and products obtained
JPH041018B2 (en)
JPH0121091B2 (en)
JPH10226511A (en) Production of super high purity spherical silica fine particle
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPS6140838A (en) Sio2-b2o3 series glass and its manufacture
EP0434762B1 (en) Nonpigmentary titanium dioxide powders
CN112374504B (en) Process for manufacturing nano silicon dioxide by physical method
CN107652628B (en) Quartz glass filler, resin composition and copper-clad plate
JPH0466809B2 (en)
CN111661874A (en) Method for reducing content of silicon oxide in fused zirconia powder
KR960010902B1 (en) Process for the preparation of high purity amorphous spherical silica powder
JP2002500558A (en) Method for producing substantially spherical lyogel and airgel
JPH10203821A (en) Production of synthetic quartz glass powder and quartz glass formed product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term