JPS6140838A - Sio2-b2o3 series glass and its manufacture - Google Patents

Sio2-b2o3 series glass and its manufacture

Info

Publication number
JPS6140838A
JPS6140838A JP15913484A JP15913484A JPS6140838A JP S6140838 A JPS6140838 A JP S6140838A JP 15913484 A JP15913484 A JP 15913484A JP 15913484 A JP15913484 A JP 15913484A JP S6140838 A JPS6140838 A JP S6140838A
Authority
JP
Japan
Prior art keywords
glass
silica gel
boron
sio
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15913484A
Other languages
Japanese (ja)
Inventor
Toshihiko Morishita
森下 敏彦
Hitoshi Koshimizu
仁 輿水
Kazuyoshi Torii
鳥井 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP15913484A priority Critical patent/JPS6140838A/en
Publication of JPS6140838A publication Critical patent/JPS6140838A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz

Abstract

PURPOSE:To manufacture the SiO2-B2O3 series glass which is useful as the intermediate raw material of electronic material requiring high purity and high functional characteristics by adding B2O3 (a precursor) to the high-purity hydrated silica gel, drying the mixture and thereafter heating and melting it. CONSTITUTION:The silica sol obtained by purifying an aq. alkali silicate soln. with an ion exchange resin is changed to silica gel and the silica gel is pickled to obtain the high-purity hydrated silica gel which has <=10ppb alpha-radiator as (U+Th) per SiO2 and <=10ppb ionic impurities such as Na and Cl. B-contg. hydrated silica gel of 0.5-10wt% water content and 1-100mum average particle size is obtained by adding 1-10wt% (expressed in terms of B2O3) B2O3 or its precursor (e.g. trimethyl borate) per SiO2 to the silica gel and drying the mixture. Then the hydrated silica gel is heated and melted to obtain B-contg. silica glass having <=100mus/cm electric conductance of extracted water which is obtained by boiling and leaching of glass, >=80% degree of melting and 1-100mum average particle size.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高純度の溶融球状用シリカガラス用原料およ
びこれを用いた溶融球状シリカガラスの製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a raw material for high-purity fused spherical silica glass and a method for producing fused spherical silica glass using the same.

更に詳しくは、半導体の樹脂封止用の充填材、研摩材、
基板、パッケージ材料等の高純度、高機能性を要する電
子材料の中間原料として適用できる、高純度の水和シリ
カおよび無水シリカの製法に関するものである。
More specifically, fillers for resin encapsulation of semiconductors, abrasive materials,
The present invention relates to a method for producing high-purity hydrated silica and anhydrous silica, which can be used as intermediate raw materials for electronic materials that require high purity and high functionality, such as substrates and package materials.

従来の技術 半導体の樹脂封止において多量の無機質充填剤が用いら
れるが、これは主として天然石英の粉砕品である結晶質
シリカおよびこれを酸水素炎の高温で溶融した溶融シリ
カが知られている。
Conventional technology A large amount of inorganic fillers are used in the resin encapsulation of semiconductors, and these are mainly known as crystalline silica, which is a crushed product of natural quartz, and fused silica, which is made by melting this at high temperatures in an oxyhydrogen flame. .

最近では、特に半導体の高集積化によって封止剤に対す
る品質特性の要求が一段と厳しく、たとえば、シリカフ
ィラーに関して(1)充填剤の高充填化、(2)α放射
体(たとえばフラン、トリウム)の低減化、(3)イオ
ン性不純物の低減化、などがあげられる。これらに対応
するためには従来の天然石英の粉砕又は/及び溶融によ
って得られたシリカを充填材に供すことは純度、資源の
量的確保など、経済的に問題があり必ずしも安定した状
態で要求に追従することはできないため新たに合成シリ
カを用いることが必要となって来た。
Recently, quality characteristics requirements for encapsulants have become even stricter, especially due to the high integration of semiconductors. and (3) reduction of ionic impurities. In order to cope with these problems, using silica obtained by conventional crushing and/or melting of natural quartz as a filler has economical problems such as purity and securing the quantity of resources, and it is not always necessary to use silica in a stable state. However, it has become necessary to use a new synthetic silica.

これに応えるものとして、最近ではアルカリシリケート
等の珪酸塩と鉱酸との反応を水素イオン濃度i、s以下
で含水珪酸を沈殿させ次いで洗浄乾燥および焼成して石
英ガラス粉末を製造する方法が提案された(特開昭19
−、r’1AJJ号)0他方、特定な有機けい素化合物
と有機はう素化合物との混合物を酸化燃焼させることを
特徴とする酸化はう素含有微粉末シリカの製造方法があ
る(特公昭zs−tatio号)。
In response to this, a method has recently been proposed in which silica glass powder is produced by reacting a silicate such as alkali silicate with mineral acid at a hydrogen ion concentration of less than i, s to precipitate hydrated silicic acid, followed by washing, drying, and firing. (Unexamined Japanese Patent Application Publication No. 1989)
On the other hand, there is a method for producing fine powder silica containing boron oxide, which is characterized by oxidizing and burning a mixture of a specific organosilicon compound and an organoboronant compound. zs-tatio issue).

しかしながらこの方法はα−放射性物質や他の不純物量
については開示がないのみならず、シリカ源としての有
機けい素化合物は珪酸ソーダをシリカ源とする場合に比
して極めてコスト高であるなどの問題がある。
However, this method not only does not disclose the amount of α-radioactive substances and other impurities, but also has problems such as the fact that the cost of using an organosilicon compound as a silica source is extremely high compared to when sodium silicate is used as a silica source. There's a problem.

発明が解決しようとする問題点 本発明は珪酸アルカリ水溶液をシリカ源として、これよ
りイオン交換法又は酸中和法によって得られる含水シリ
カを精製処理した後加熱溶融することにより、α−放射
体含有量の少ない高純度シリカ系ガラスを工業的に有利
に製造することにある。しかし、この製造法において重
要なことは如何にして高純度の含水シリカを調製するか
という問題に加えて、得られた含水シリカを如何にして
熱エネルギー消費を低減するかにある。
Problems to be Solved by the Invention The present invention uses an aqueous alkali silicate solution as a silica source, and purifies hydrated silica obtained from this by an ion exchange method or an acid neutralization method, and then heats and melts it to obtain α-emitter-containing silica. The object of the present invention is to industrially advantageously produce a small amount of high-purity silica-based glass. However, what is important in this production method is not only how to prepare high-purity hydrated silica, but also how to reduce the thermal energy consumption of the obtained hydrated silica.

本発明者らは、既に珪酸アルカリ水溶液より高純度含水
シリカの製造法については幾つかの解決を見いだした。
The present inventors have already found several solutions to methods for producing high-purity hydrated silica using an aqueous alkali silicate solution.

樹脂封止用充填材としてのシリカについては非常に厳し
い品質特性が要求されており、その製造条件も自から極
めて制限されたものとならざるを得ない。
Very strict quality characteristics are required for silica as a filler for resin sealing, and the manufacturing conditions must also be extremely limited.

本発明者らは斜上の問題点に鑑み鋭意研究を重ねたとこ
ろ、高純度含水シリカゲルにホウ素化合物を存在させて
加熱溶融したものは、エネルギー消費の低減になること
は勿論、樹脂封止用充填材として求められる品質特性に
も充分応えることを知見し、本発明を完成した。
The inventors of the present invention have conducted extensive research in view of the problem of sloping, and have found that high-purity hydrated silica gel in which a boron compound is present and heated and melted can be used not only to reduce energy consumption but also to be used for resin sealing. The present invention was completed based on the finding that the material satisfactorily meets the quality characteristics required for a filler.

問題点を解決するための手段 本発明は、ホウ素含有率がガラス全重量に対し、B2O
8として1〜10重量%、α−放射体がU+Thとして
10ppb以下、ガラスを煮沸浸出した抽出水の電気伝
導度がiooμB/cm以下にあるホウ素含有シリカガ
ラスであることを特徴とするSiO2−B2O3系ガラ
スおよびその製造方法にかかる。
Means for Solving the Problems The present invention provides that the boron content is B2O based on the total weight of the glass.
SiO2-B2O3, characterized in that it is boron-containing silica glass with 1 to 10% by weight as 8, α-radiator is 10 ppb or less as U+Th, and the electric conductivity of the extracted water obtained by boiling and leaching the glass is iooμB/cm or less. The present invention relates to glass and a method for producing the same.

本発明にがかるSiO2−B2O3系ガラスは上記の特
性を有するが、この理由は半導体の樹脂用封止材として
不可欠であることによる。特に好ましくはUおよびTh
がそれぞれ/ ppb以下かつ上記電気伝導度がgoμ
θ/clIL以下であることが高集積度のLE3XやV
LBXの封止用充填材として使用時のソフトエラーによ
る誤動d<すことからみて必要である。
The SiO2-B2O3 glass according to the present invention has the above-mentioned properties because it is indispensable as a resin encapsulant for semiconductors. Particularly preferably U and Th
is less than/ppb and the above electrical conductivity is goμ
Highly integrated LE3X and V should be less than θ/clIL.
This is necessary in view of the possibility of malfunction due to soft errors when used as a sealing material for LBX.

ここに、電気伝導度の値は試料を純水に分散させた70
重量%スラリーを6時間煮沸した抽出水を検体として2
5℃における電気伝導度として求められるもので、これ
はアルカリ又は塩素等のイオン性不純分含有量の測定指
標となるものである。
Here, the value of electrical conductivity is 70% when the sample is dispersed in pure water.
The extracted water obtained by boiling the weight% slurry for 6 hours was used as the sample.
It is determined as electrical conductivity at 5°C, and serves as a measurement index for the content of ionic impurities such as alkali or chlorine.

本発明にかかるSiO□−B2O.系ガラスはインゴッ
ト又は粉末の形体をとるか、樹脂用フィラーとして多く
の使用目的をとるので好ましくは400μm以下の粉末
状であって、平均粒子径が1〜700μmの範囲にある
もの、特にそれが、5〜!0μ扉の範囲にあるものがよ
い。
SiO□-B2O. according to the present invention. Glasses are preferably in the form of ingots or powders, or because they are used for many purposes as fillers for resins, they are preferably in the form of powders of 400 μm or less, with an average particle size in the range of 1 to 700 μm. , 5~! Something in the 0μ door range is best.

ここに粒度分布はコールタ−カウンターで測定された場
合に示す値を意味する。
Particle size distribution here means the value shown when measured with a Coulter counter.

また上記ガラスというのは溶融化度がgoqb以上であ
る場合を言い、ここに溶融化度というのは次式 顕微鏡視野の全粒子数 で表わされる。この場合、顕微鏡視野は少なくともコ視
野以上とし、かつ/視野中には少なくとも50個以上の
粒子が把握できることが望ましい。
Further, the above-mentioned glass refers to a case where the degree of melting is equal to or higher than goqb, and the degree of melting is expressed by the total number of particles in the field of view of a microscope using the following formula. In this case, it is desirable that the field of view of the microscope is at least larger than the field of view, and that at least 50 or more particles can be detected in the field of view.

粒子の溶融性は顕微鏡観察により、ガラスとして透明性
があるか否かで容易に区別することができる。
The meltability of particles can be easily distinguished by microscopic observation, depending on whether or not they are transparent as glass.

このような特徴を有するホウ素含有の高純度シリカガラ
スは新規物質であり、特に工Oパ汐=ゼージ用樹脂コン
パンウンドの充填剤として好適である。
Boron-containing high-purity silica glass having such characteristics is a new substance, and is particularly suitable as a filler for resin compounds for Kopa Shio-Zage.

本発明にかかるSiO□−B2O.系ガラスは珪酸アル
カリを原料として得られる高純度含水シリカゲルに酸化
ホウ素又はその前駆体をS10!当りB2O.換算で1
〜10重量%添加した後乾燥した含ホウ素含水シリカゲ
ルを加熱溶融することを特徴として製造することができ
る。
SiO□-B2O. according to the present invention. The system glass is made by adding boron oxide or its precursor to high-purity hydrated silica gel obtained from alkali silicate as raw material (S10!). Hit B2O. 1 in conversion
It can be produced by heating and melting the dried boron-containing hydrous silica gel after addition of ~10% by weight.

本発明の主原料たるシリカ源は珪酸アルカリを原料とし
て得られる高純度含水シリカゲルであれば珪酸アルカリ
から製造する方法に特に限定はない。
As long as the silica source which is the main raw material of the present invention is a high purity hydrous silica gel obtained from an alkali silicate as a raw material, there is no particular limitation on the method of producing it from an alkali silicate.

最も好ましい方法としては、例えば珪酸アルカリ水溶液
をイオン交換樹脂を用いた精製方法によってシリカゾル
を経てシリカゲルとなし、このゲルを硝酸の如き酸で酸
洗して製造する場合、あるいは強酸性領域において珪酸
アルカリ水溶液を添加してシリカゲルを沈殿させ、同様
に酸洗いするなどの方法がある。このような高純度含水
シリカゲルはSiO,当り、ウランやトリウム等のα−
放射体の含有量がU−)−Thとして10ppb以下好
ましくは/ ppb以下、ナトリウムあるいは塩素など
のイオン性不純物が/ Oppb以下でなければならな
い。
The most preferable method is, for example, when an aqueous alkali silicate solution is purified by a purification method using an ion exchange resin to form a silica gel through a silica sol, and this gel is acid-washed with an acid such as nitric acid. There are methods such as adding an aqueous solution to precipitate silica gel and similarly acid-washing. Such high-purity hydrated silica gel contains α-
The content of the radiator must be 10 ppb or less as U-)-Th, preferably /ppb or less, and the content of ionic impurities such as sodium or chlorine must be /Oppb or less.

他方、ホウ素源としては酸化ホウ素又はその前駆体が用
いられるが、ここで前駆体というのは加熱すると酸化ホ
ウ素のみになって他の成分が熱揮散してしまう化合物で
あり、かつ該化合物が水溶性であるものをいう。このよ
うな化合物としてはホウ酸あるいは各種のホウ酸アンモ
ニウム又はホウ酸トリメチル、ホウ酸トリエチルの如き
有機ホウ酸エステルがあげられ、もちろんα−放射体や
イオン性不純物が実質的に含有されない高純度のもので
なければならない。
On the other hand, boron oxide or its precursor is used as a boron source, but the precursor here is a compound that becomes only boron oxide when heated and other components are volatilized by heat, and the compound is water-soluble. Refers to something that is sexual. Examples of such compounds include boric acid, various ammonium borates, and organic borate esters such as trimethyl borate and triethyl borate. It has to be something.

両原料はSiO2に対して、B2O3として1〜70重
量の範囲で均一に混合する。
Both raw materials are uniformly mixed in a range of 1 to 70% by weight of B2O3 relative to SiO2.

この理由は酸化ホウ素又はその前駆体の添加量がSiO
2に対し、B2O3として7重量%以下であると溶融化
に関し添加効果に乏しく、他方i。
The reason for this is that the amount of boron oxide or its precursor added is
In contrast to 2, if B2O3 is less than 7% by weight, the addition effect on melting is poor, and on the other hand, i.

重量%以上であると融点は大巾に下がり溶融は容易にな
るが抽出液電導度が大きくなる傾向となり真比重も小さ
くなる。
If it is more than % by weight, the melting point will drop significantly and melting will become easier, but the electrical conductivity of the extract will tend to increase and the true specific gravity will also decrease.

従ってホウ素′源としては上記範囲内の使用が必要であ
り、より好ましくは2〜3重量係が適当である。
Therefore, it is necessary to use the boron source within the above range, and more preferably 2 to 3 weight percent.

シリカ源とホウ素源との混合においては特に限定するこ
となく、所望の方法でできるだけ均一になるような方法
を採用すればよいが、通常は前記の含水シリカゲルを予
め水溶性ホウ素化合物を水に溶解させた含ホウ素水溶液
中に分散させるか又はシリカゲルを水に分散させたスラ
リーに水溶性ホウ素化合物を添加して溶解させるかによ
って含ホウ素シリカの均一スラリーを調製する。他の方
法としては高純度含水シリカゲルの濾過ケーキにホウ素
化合物の水溶液を添加してスラリーを構成することなく
含浸又は混練して均一な混合として調製してもよい。
There are no particular limitations on the mixing of the silica source and boron source, and any desired method may be used to achieve as uniform a mixture as possible, but usually the above-mentioned hydrated silica gel is mixed with a water-soluble boron compound in water beforehand. A uniform slurry of boron-containing silica is prepared by dispersing the boron-containing aqueous solution, or by adding and dissolving a water-soluble boron compound to a slurry of silica gel dispersed in water. As another method, an aqueous solution of a boron compound may be added to a filter cake of high-purity hydrous silica gel, and a uniform mixture may be prepared by impregnating or kneading without forming a slurry.

かかる混合物は、次いで脱水乾燥するがスラリー状態か
ら乾燥する場合は噴霧乾燥することが最も有効で好まし
い方法である。
Such a mixture is then dehydrated and dried, and when drying from a slurry state, spray drying is the most effective and preferred method.

この理由は次の溶融工程において効果的に利用できる粒
度分布の揃った流動性の良好な供給体が一挙に調製しう
るからである。
The reason for this is that a feed material with uniform particle size distribution and good fluidity that can be effectively used in the next melting process can be prepared all at once.

他の方法としては、上記の含ホウ素含浸又は混練物を所
望の乾燥機例えばロータリー乾燥機又は静置型乾燥機な
どによって乾燥する。
Another method is to dry the boron-containing impregnated or kneaded product using a desired dryer such as a rotary dryer or a stationary dryer.

この場合、乾燥品を粉砕して粉末として溶融用の供給体
とするか、又はそのまま所望の大きさと形状において溶
融させるインゴット用とするか製品の目的によって使い
分ければよい。なお、含ホウ素シリカゲルの乾燥は次の
溶融工程へ供給すべき効果的な脱水を目的とするもので
あるから溶融手段によってどの程度に脱水させるかは一
様でないが、多くの場合、含水率が1〜10重量%の範
囲特に2〜7重量%が最も好ましい。この理由は/重量
%未溝の場合は粉末の供給体において粒子の帯電性のた
めに溶融させる際の供給口への付着等が生じて流動性が
悪くなり、又逆に70重量%を越えると溶融体の発泡現
象がみられるからである。
In this case, depending on the purpose of the product, the dry product may be pulverized into a powder to be used as a supply body for melting, or it may be used as is for ingots that are melted in a desired size and shape. Note that the purpose of drying boron-containing silica gel is to effectively dehydrate it to be supplied to the next melting process, so the degree of dehydration depending on the melting method is not uniform, but in most cases, the water content is A range of 1 to 10% by weight, particularly 2 to 7% by weight, is most preferred. The reason for this is that if /wt% is not grooved, particles may adhere to the feed port during melting due to the charged nature of the particles in the powder supply body, resulting in poor fluidity; This is because a foaming phenomenon of the molten material is observed.

なお本発明において、含水率というのは、試料を600
℃において7時間加熱焼成後の加熱減量より計算された
値で表わされたものとする。
Note that in the present invention, the moisture content refers to the moisture content of the sample at 600%
It is expressed as a value calculated from the loss on heating after baking at ℃ for 7 hours.

こうして得られた乾燥した含ホウ素シリカゲルを所望の
溶融炉で溶融する。溶融炉としては例えばアチソン炉、
アーク炉などの電気炉又は酸素燃料ガス炉が適用できる
が、製品の不純物混入および外観から酸水素による加熱
溶融が好適である。
The dried boron-containing silica gel thus obtained is melted in a desired melting furnace. Examples of melting furnaces include Acheson furnace,
An electric furnace such as an arc furnace or an oxy-fuel gas furnace can be applied, but heating and melting using oxyhydrogen is preferable in view of the contamination of impurities and the appearance of the product.

本発明では粉末を供給体とする溶融は火炎溶融が最も好
ましく、この方法について以下に説明する。
In the present invention, flame melting is the most preferable method of melting using powder as a feeder, and this method will be explained below.

この溶融操作は、例えば酸素−水素炎、酸素−アセチレ
ン炎、酸素−プロパン炎あるいはプラズマ炎などの所定
の火炎部分に上記含ホウ素シリカゲル粒子を連続的に供
給することによって、含ホウ素シリカゲル粒子の溶融球
状化を行なうものであり、この火炎溶融操作自体は無機
粉体の溶融に古くより知られている技術である。
This melting operation involves melting the boron-containing silica gel particles by continuously supplying the boron-containing silica gel particles to a predetermined flame section such as an oxygen-hydrogen flame, an oxygen-acetylene flame, an oxygen-propane flame, or a plasma flame. This flame melting operation itself is a technique that has long been known for melting inorganic powders.

しかして、含ホウ素シリカゲル粒子を原料として用いて
火炎溶融成形して、例えば平均粒子径が1〜/θOμ扉
の球状又はだ円状溶融シリカとするためには高温度にお
いて火炎長が30cIIL以上である等適度な火炎条件
を必要とする。この目的に利用出来るバーナーの構成は
酸素−燃料ガス系の場合、酸素をバーナー内側から、燃
料ガスを外側の多数の孔から噴射させ、脱水シリカは酸
素ガスに同伴射出させることが好ましい。
Therefore, in order to flame-melt and mold boron-containing silica gel particles as a raw material to obtain, for example, spherical or elliptical fused silica with an average particle diameter of 1 to /θOμ, the flame length must be 30 cIIL or more at high temperature. Requires moderate flame conditions. When a burner that can be used for this purpose is an oxygen-fuel gas system, it is preferable that oxygen is injected from inside the burner, fuel gas is injected from a number of holes on the outside, and dehydrated silica is injected along with the oxygen gas.

プラズマアークの場合はアーク部の温度が酸素−燃料ガ
ス系に比べ著しく高いため粉体の注入量を過度にしない
限り問題なく処理出来る0この様にして得られる含ホウ
素シリカは高温部分での接触時間はわずかであるけれど
も実質的に溶融されたガラス状の透明な球形乃至だ円形
粒子となって極めて流動性の良好な粒子となる。
In the case of plasma arc, the temperature of the arc part is significantly higher than in the oxygen-fuel gas system, so it can be processed without problems unless the amount of powder injected is excessive. Although it takes only a short time, it becomes substantially molten glass-like transparent spherical to elliptical particles with extremely good fluidity.

力1くして、得られた溶融含ホウ素シリカ粒子は必要に
応じてガス流の冷却を施してからサイクロンで回収する
か又は水による湿式回収等を行って本発明にかかる高純
度含ホウ素シリカガラス製品を得ることができる。
The obtained molten boron-containing silica particles are collected by a cyclone after cooling with a gas stream as necessary, or by wet recovery using water, etc. to obtain the high-purity boron-containing silica glass according to the present invention. You can get the product.

このように、本発明にかかる方法により、珪酸アルカリ
水溶液を出発原料とする湿式シリカより、高性能が要求
される封止剤用充填剤としての高純度溶融シリカ粒子を
工業的に有利に大量供給することが可能である。
As described above, the method of the present invention enables industrially advantageous mass supply of high-purity fused silica particles as a filler for sealants that require high performance, rather than wet silica using an aqueous alkali silicate solution as a starting material. It is possible to do so.

実施例 以下淳発明を実施例にて説明する。Example The Atsushi invention will be explained below using examples.

実施例/ メタ珪酸ナトリウムタ水塩を水に溶解してq% SiO
2、弘、/ % HalOの珪酸ナトリウム水溶液を得
た。この希釈水溶液を予め硫酸でH−型にしであるオル
ガノ(株)社製工R−/2OB陽イオン交換樹脂を充填
したカラムに通過させて処理した。
Example / Sodium metasilicate hydrate was dissolved in water to give q% SiO
2, Hiromu, / An aqueous sodium silicate solution of % HalO was obtained. This diluted aqueous solution was previously converted into H-form with sulfuric acid and passed through a column filled with R-/2OB cation exchange resin manufactured by Organo Co., Ltd. for treatment.

こうして得られるj X / f”μm以下の希シリカ
ゾル溶液をl/、5重量%に調整しである硝酸アンモニ
ウム溶液に滴下してシリカゲルスラリーとなした。この
スラリーを濾過したのち/M硝酸溶液で充分に酸処理し
、水洗してF遇した。
The dilute silica sol solution with j The sample was treated with acid, washed with water, and treated with F.

濾過ケークにホウ酸アンモニウム水溶液((NH4)1
1B2O110重量%〕を添加して(B、 O,/ S
iO2)重量比で約3重量%およびS10!含有率/j
−,0重量%となるスラリーとした。なお、これを乾燥
してtroo℃で焼成したのち化学分析および放射化分
析をしたところB2O3,74重量%、Ha 2.t 
pI)m、01 /、コppm 、 U O,? pp
b以下、Th o、g ppb以下であった。このスラ
リーを電熱による熱風を熱源とする噴霧乾燥機で処理し
て含水率!、コチの含ホウ素シリカゲル粉末を得た。
Ammonium borate aqueous solution ((NH4) 1
1B2O110% by weight] was added (B, O,/S
iO2) approximately 3% by weight and S10! Content rate/j
-, 0% by weight of the slurry. In addition, after drying and firing at 20°C, chemical analysis and activation analysis revealed that B2O3 was 74% by weight and Ha2. t
pI)m,01/,coppm,UO,? pp
b or less, Tho, g ppb or less. This slurry is treated with a spray dryer that uses electrically heated hot air as a heat source to reduce the moisture content. , flathead boron-containing silica gel powder was obtained.

火炎溶融に用いたバーナーはバーナー中心部にJ■φの
1次酸素噴出孔を設け、ここから原料含ホウ素シリカ粉
末を酸素に搬送させ、その外側に順に燃料ガス噴出孔、
二次酸素噴出孔、燃料ガス噴出孔を設けた。燃焼ガスは
ベンチュリスクラバーを用いて水噴霧によって処理しこ
れより含ホウ素融溶球状シリカをサイクロンで回収した
。本実施例では燃料ガスとしてプロパンλθ1/&、−
次酸素301.7分、二次酸素60t/分、含ホウ素シ
リカ粉末添加量30に費で処理した結果はぼ完全に溶融
化された溶融化度99%の球状の含ホウ素シリカが得ら
れた。
The burner used for flame melting has a primary oxygen nozzle of J■φ in the center of the burner, from which the raw material boron-containing silica powder is transported by oxygen, and on the outside thereof, fuel gas nozzles,
A secondary oxygen nozzle and fuel gas nozzle were provided. The combustion gas was treated with water spray using a venturi scrubber, and boron-containing fused spherical silica was recovered using a cyclone. In this example, the fuel gas is propane λθ1/&, -
As a result of processing with secondary oxygen for 301.7 minutes, secondary oxygen at 60 t/min, and amount of boron-containing silica powder added at 30%, spherical boron-containing silica was obtained which was almost completely melted and had a melting degree of 99%. .

この溶融球状含ホウ素シリカの性状は次のとおりであっ
た。
The properties of this fused spherical boron-containing silica were as follows.

l平均粒径及び   平均粒径 J、lt、7μ扉粒度
分布   j−30μ扉の正規分布ユ真  比  重 
   x、og 3化学分析値  元素  含有率 (放射化分析値)    B     O,92重量%
Ha       ’1.4 ppm QJ、    0.g ppm U    θ、りppb以下 X熱水抽出試験 含ホウ素シリカ溶融物1011を純水100dに浸漬し
てioθ℃で6時間煮沸したのち上澄液を検討した よ溶融化率 100 ts 電気伝導匿(コj℃)     i2.、jpe/cm
Na+                 6.θすp
mO’−0,0/ ppm以下 pH、t、、を 実施側御 実施例/で得られた含ホウ素シリカゲルを噴霧乾燥の代
りに静置型の乾燥機で75θ℃で乾燥したのち、粉砕し
て100μ隅篩で分級し100μm以下の部分(含水率
1./重量係)を実施例1と同じ方法で火炎溶融処理し
た。こうして得られた溶融球状含ホウ素シリカの性状は
次のとおりであった。
l average particle size and average particle size J, lt, 7μ door particle size distribution j-30μ door normal distribution Yu true specific gravity
x, og 3 chemical analysis value Element content (activation analysis value) B O, 92% by weight
Ha '1.4 ppm QJ, 0. g ppm U θ, ppb or less (Koj℃) i2. , jp/cm
Na+ 6. θsp
The boron-containing silica gel obtained in Example 1 was dried at 75θ°C in a stationary dryer instead of spray drying, and then pulverized. The material was classified using a 100 μm square sieve, and the portion with a size of 100 μm or less (moisture content: 1./weight) was subjected to flame melting treatment in the same manner as in Example 1. The properties of the fused spherical boron-containing silica thus obtained were as follows.

l平均粒径及び   平均粒径 17.6μm粒度分布
   粒度分布−〜soμmの正規分布2真  比  
重    λ、Or 3化学分析値  元素  含有率 B   0.97重量% Na   タ、s ppm CA   O,’7 ppm U   θ、t ppb以下 X熱水抽出試験 実施例/と同じ操作によって検討した。
l Average particle size and average particle size 17.6 μm Particle size distribution Particle size distribution - normal distribution of ~ so μm 2 true ratio
Weight λ, Or 3 Chemical analysis values Element Content B 0.97% by weight Na ta, s ppm CA O, '7 ppm U θ, t ppb or less

電導度(コ3℃)   /b、3μSムMa”    
     6.θ、? ppm0J−−0,01ppm
以下 pHおり よ溶融化率: ioo% 比較例/ 実施例/と同じ操作をホウ酸アンモニウム水溶液を添加
しない実施例/で得られた含水シリカゲルについて行な
った結果、溶融処理後のシリカ粉末のIOμ風以下の部
分は球状の溶融シリカであったが粒子の大きな部分は表
面だけが溶融して、溶融処理前の形骸を保っており、溶
融化率はグ5チであった0その嵩比重を調べると/、/
kg/mlcタップ法)であり、実施例/で得うレタ嵩
比重13ag/mlに比べ著しく嵩高であった。溶融化
率1ootlbの完全溶融化させるためには溶融条件と
してプロパン30t/分、−次酸素4’ O11分、二
次酸素/ o o t1分、シリカ添加量30i/分を
必要とした。
Electrical conductivity (3℃) /b, 3μS Ma”
6. θ,? ppm0J--0.01ppm
The following pH melting rate: ioo% The same operation as in Comparative Example/Example/ was performed on the hydrous silica gel obtained in Example/ without the addition of ammonium borate aqueous solution. The following parts were spherical fused silica, but only the surface of the large particles was melted, retaining the shape before melting treatment, and the melting rate was only 5.0. Examine its bulk specific gravity. and/,/
kg/mlc (tap method), and was significantly bulkier than the bulk specific gravity of 13ag/ml obtained in Example. In order to achieve complete melting with a melting rate of 1 ootlb, the following melting conditions were required: propane 30 t/min, secondary oxygen 4'O 11 min, secondary oxygen/o ot 1 min, and silica addition amount 30 i/min.

実施例J−sおよび比較例コ 実施例1でメタ珪酸ナトリウム水溶液の代りに3号珪酸
ナトリウムから得られるダ重量%シリカ含有溶液を実施
例/と同様にイオン交換処理、凝析沈殿および酸処理に
よって得られたシリカゲルに所定量のホウ酸アンモニウ
ム水溶液を添加し、混練したのち静置型の乾燥機で75
θ℃で乾燥して含水率3.3重量%のものを得た。
Examples J-s and Comparative Examples In Example 1, a silica-containing solution obtained from No. 3 sodium silicate instead of the sodium metasilicate aqueous solution was subjected to ion exchange treatment, coagulation precipitation, and acid treatment in the same manner as in Example. A predetermined amount of ammonium borate aqueous solution was added to the silica gel obtained, and after kneading, it was dried in a stationary dryer for 75 minutes.
It was dried at θ°C to obtain a product with a water content of 3.3% by weight.

これを粉砕したのちS0ゴルツボに詰めて所定温度の電
気炉で2時間加熱処理して溶融化傾向を観察した。
After pulverizing this, it was packed in an S0 crucible and heated in an electric furnace at a predetermined temperature for 2 hours to observe the melting tendency.

な詔、実施例ダの/!00℃溶融条件で得られた製品に
ついて代表的に物性を測定したところ次の結果であった
O l平均粒子径及び   ノ9./μm 粒度分布   コ〜!rθμmの正規分布ユ真  比 
 重   2.Og 3分 析 値  元素  含有率 B    3.18重量% Na    &、/ppm α   Olざppm U   /pp、)以下 Th   ノppb以下 偶然水抽出試験 電気伝導度   lコ、Sμ8/備 xt?       o、o3ppm α−0,07ppm以下 pH5,、t よ溶融比率 100チ 実施例6 攪拌器付きのrt反応槽にHNO,/q、コチの硝酸溶
液32ざgrをとり10℃に加温した0攪拌しながらこ
こへJ工S3号珪酸ソーダ(Na2O9.コ優、SiO
2コl:、A; %、Si%/NagOモル比3.コθ
)コ100f!を約30分かけて添加した。反応に使用
した原料のHNOs/Na、oモル比は3.2/であっ
た。この間反応槽の温度はり0〜90℃の間に保持した
。珪酸ソーダを添加終了後、反応スラリーを90℃で7
時間攪拌した。反応終了スラリーから固液分離により、
シリカの沈殿を分離し、得られたシリカは水でリパルプ
洗浄したのち分離したシリカを攪拌器付きstの槽にと
り、これに水と硝酸を加えてスラリー全量をstとし、
スラリー中の硝酸濃度はINになるように調製して、攪
拌しながらこのシリカスラリーを90℃で3時間加熱酸
処理した。スラリーよりシリカゲルを分離して水洗して
高純度含水シリカゲルを得た。このシリカゲルを分析し
たところNa : 2..3 ppm 、 UおよびT
hは共に/ ppb以下であった0 このシリカゲルをスラリー化してトリエチルホウ素をS
10.に対してB2O.として−85重量%となるよう
に添加した後、充分に混合させた。
An edict, an example of /! When representative physical properties were measured for products obtained under 00°C melting conditions, the following results were obtained: O l average particle diameter and No. 9. /μm Particle size distribution Ko~! Normal distribution ratio of rθμm
Heavy 2. Og 3 Analysis Value Element Content B 3.18% by weight Na &, /ppm α Olzappm U /pp, ) or less Th Noppb or less Accidental water extraction test Electrical conductivity 1, Sμ8/pxt? o, o 3 ppm α - 0,07 ppm or less pH 5,, t Melting ratio 100 t Example 6 32 gr of HNO, /q, flathead nitric acid solution was placed in an RT reaction tank equipped with a stirrer and heated to 10°C. While stirring, add J Engineering S No. 3 sodium silicate (Na2O9.
2 Col:, A; %, Si%/NagO molar ratio 3. koθ
)ko100f! was added over about 30 minutes. The HNOs/Na,O molar ratio of the raw materials used in the reaction was 3.2/. During this time, the temperature of the reaction tank was maintained between 0 and 90°C. After adding the sodium silicate, the reaction slurry was heated at 90°C for 7 days.
Stir for hours. Through solid-liquid separation from the reaction-completed slurry,
Separate the silica precipitate, repulp the obtained silica with water, take the separated silica in a st tank with a stirrer, add water and nitric acid to it, make the entire slurry st,
The nitric acid concentration in the slurry was adjusted to IN, and the silica slurry was heated and acid-treated at 90° C. for 3 hours while stirring. Silica gel was separated from the slurry and washed with water to obtain high purity hydrous silica gel. Analysis of this silica gel revealed that Na: 2. .. 3 ppm, U and T
h were both /ppb or less0 This silica gel was made into a slurry and triethylboron was added to S
10. Against B2O. After adding it to a concentration of -85% by weight, it was thoroughly mixed.

次いで実施例/と同様に噴霧乾燥して含水率3.5重量
係の含ホウ素シリカゲルを調製した。
Next, a boron-containing silica gel having a moisture content of 3.5% by weight was prepared by spray drying in the same manner as in Example.

塩 このシリカゲ、>☆施例/と同様な操作にて火炎溶融処
理して含ホウ素シリカガラス球状物を得た0 得られたガラス球状物の物性を測定したところ、次の結
果の如くであった。
A boron-containing silica glass sphere was obtained by flame-melting the silica gel in the same manner as in Example 0. The physical properties of the obtained glass sphere were measured, and the results were as follows. Ta.

l平均粒子径  / g−Aμm 粒度分布  −〜jθμ脇の正規分布 2真比重 2.0g 3分 析 値  元素 含有率 B   コ、5ダ重量% Na  2. / ppm α   θ+sppm U十Th共に/ ppb以下 久慈水抽出試験 電気伝導度     μs/cm N a+0.62ppm以下 α−0,07ppm以下 pH!rJ よ溶融比率 loO係 発明の効果 本発明にかかる含ホウ素シリカガラスは封止剤用充填剤
として従来使用されている天然の高純度シリカと同様に
利用できる。特に珪酸アルカリから製造でき、かつホウ
素含有のため溶融化処理において熱エネルギ、−をかな
り節減でき、しかも充填剤としての機能は充分有してい
るために、工業的に有利に大量供給することができる。
1 Average particle diameter / g-Aμm Particle size distribution - Normal distribution beside jθμ 2 True specific gravity 2.0 g 3 Analysis value Element Content B 5 da Weight % Na 2. / ppm α θ + sppm Both U and Th / ppb or less Kuji water extraction test electrical conductivity μs/cm Na + 0.62 ppm or less α - 0.07 ppm or less pH! Effects of the Invention The boron-containing silica glass according to the present invention can be used in the same manner as natural high-purity silica conventionally used as a filler for sealants. In particular, it can be manufactured from alkali silicate, and because it contains boron, thermal energy can be saved considerably in the melting process, and it also has a sufficient function as a filler, so it can be industrially advantageously supplied in large quantities. can.

Claims (1)

【特許請求の範囲】 1、ホウ素含有率がB_2O_3として1〜10重量%
、α−放射体がガラス全量に対し、U+Thとして10
ppb以下、ガラスを煮沸浸出した抽出水の電気伝導度
が100μc/cm以下にあるホウ素含有シリカガラス
であることを特徴とするSiO_2−B_2O_3系ガ
ラス。 2、ホウ素含有シリカガラスが平均粒子径1〜100μ
mの範囲の粉末である特許請求の範囲第1項記載のSi
O_2−B_2O_3系ガラス。 3、ホウ素含有シリカガラスは溶融化度が80%以上で
ある特許請求の範囲第1項又は第2項記載のSiO_2
−B_2O_3系ガラス。 4、珪酸アルカリを原料として得られる高純度含水シリ
カゲルに酸化ホウ素又はその前駆体をSiO_2当りB
_2O_3換算で1〜10重量%添加した後乾燥した含
ホウ素含水シリカゲルを加熱溶融することを特徴とする
、SiO_2−B_2O_3系ガラスの製造方法。 5、高純度シリカゲルはSiO_2当りα−放射体がU
+Thとして10ppb以下、ナトリウムおよび塩素な
どのイオン性不純物が10ppm以下である特許請求の
範囲第4項記載のSiO_2−B_2O_3系ガラスの
製造方法。 6、ホウ酸の前駆体がホウ酸、ホウ酸アンモニウム、ホ
ウ酸エステルから選ばれた少なくとも1種又は2種以上
の水溶性含ホウ素化合物である特許請求の範囲第4項記
載のSiO_2−B_2O_3系ガラスの製造方法。 7、含ホウ素含水シリカゲルは含水率0.5〜10重量
%である特許請求の範囲第4項記載の SiO_2−B_2O_3系ガラスの製造方法。 8、含ホウ素含水シリカゲルが平均粒子径1〜100μ
mの範囲の粉末である特許請求の範囲第4項又は第7項
記載のSiO_2−B_2O_3系ガラスの製造方法。 9、加熱溶融が火炎溶融である特許請求の範囲第4項記
載のSiO_3−B_2O_3系ガラスの製造方法。
[Claims] 1. Boron content is 1 to 10% by weight as B_2O_3
, the α-radiator is 10 as U+Th relative to the total amount of glass.
SiO_2-B_2O_3-based glass, characterized in that it is a boron-containing silica glass in which the electric conductivity of extracted water obtained by boiling and leaching the glass is 100 μc/cm or less. 2. Boron-containing silica glass has an average particle size of 1 to 100μ
Si according to claim 1, which is a powder in the range of m
O_2-B_2O_3 glass. 3. SiO_2 according to claim 1 or 2, wherein the boron-containing silica glass has a melting degree of 80% or more
-B_2O_3 glass. 4. Add boron oxide or its precursor to high-purity hydrated silica gel obtained from alkali silicate as a raw material per SiO_2
A method for producing SiO_2-B_2O_3-based glass, which comprises heating and melting dried boron-containing hydrous silica gel after addition of 1 to 10% by weight in terms of_2O_3. 5. High purity silica gel has α-emitter U per SiO_2
The method for producing SiO_2-B_2O_3 glass according to claim 4, wherein +Th is 10 ppb or less and ionic impurities such as sodium and chlorine are 10 ppm or less. 6. SiO_2-B_2O_3 system according to claim 4, wherein the boric acid precursor is at least one or two or more water-soluble boron-containing compounds selected from boric acid, ammonium borate, and boric acid ester. Glass manufacturing method. 7. The method for producing SiO_2-B_2O_3 glass according to claim 4, wherein the boron-containing hydrous silica gel has a water content of 0.5 to 10% by weight. 8. Boron-containing hydrous silica gel has an average particle size of 1 to 100μ
The method for producing SiO_2-B_2O_3 glass according to claim 4 or 7, wherein the SiO_2-B_2O_3-based glass is a powder in the range of m. 9. The method for producing SiO_3-B_2O_3 glass according to claim 4, wherein the heat melting is flame melting.
JP15913484A 1984-07-31 1984-07-31 Sio2-b2o3 series glass and its manufacture Pending JPS6140838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15913484A JPS6140838A (en) 1984-07-31 1984-07-31 Sio2-b2o3 series glass and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15913484A JPS6140838A (en) 1984-07-31 1984-07-31 Sio2-b2o3 series glass and its manufacture

Publications (1)

Publication Number Publication Date
JPS6140838A true JPS6140838A (en) 1986-02-27

Family

ID=15686988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15913484A Pending JPS6140838A (en) 1984-07-31 1984-07-31 Sio2-b2o3 series glass and its manufacture

Country Status (1)

Country Link
JP (1) JPS6140838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013133357A1 (en) * 2012-03-08 2015-07-30 日本山村硝子株式会社 Method for producing spherical particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013133357A1 (en) * 2012-03-08 2015-07-30 日本山村硝子株式会社 Method for producing spherical particles

Similar Documents

Publication Publication Date Title
US20110262339A1 (en) Production of solar-grade silicon from silicon dioxide
US20110262336A1 (en) Production of solar-grade silicon from silicon dioxide
US2535036A (en) Manufacture of finely divided silica
US3837843A (en) Process for thermal production of magnesium
JPH02500972A (en) Improvements in and related to vitreous silica
JPH0566888B2 (en)
JPS62176928A (en) Production of quartz glass powder
US3762936A (en) Manufacture of borosilicate glass powder essentially free of alkali and alkaline earth metals
CN103708472A (en) Method for preparing SiO2 powder by using zircon sand
JPH0940434A (en) High purity quartz glass and production thereof
JPS6140838A (en) Sio2-b2o3 series glass and its manufacture
CN102795632B (en) Method for preparing superfine silica fine powder by self-spreading low-temperature combustion
JPS6140811A (en) Hydrated silica for melting and manufacture of melted silica by using it
JPS60180911A (en) High-purity silica and its manufacture
Yoshikawa et al. Preparation of porous ceramics by the hydrothermal reaction of blast furnace slag for use in a water-retentive material
CN106976886A (en) A kind of preparation method of high dispersive silica sodium silicate solid
JPH0466809B2 (en)
KR960010902B1 (en) Process for the preparation of high purity amorphous spherical silica powder
RU2197440C2 (en) Raw material concentrate for production of glass and ceramics and method of production of such material
JPS60260419A (en) Manufacture of silane
CN111661874A (en) Method for reducing content of silicon oxide in fused zirconia powder
JPH08208217A (en) Production of synthetic quartz glass powder and molded material of quartz glass
JP5097427B2 (en) Method for producing metal silicon powder, method for producing spherical silica powder, and method for producing resin composition
RU2156222C1 (en) Method of manufacturing agglomerated silicate
NO122094B (en)