JPH0466809B2 - - Google Patents

Info

Publication number
JPH0466809B2
JPH0466809B2 JP25164087A JP25164087A JPH0466809B2 JP H0466809 B2 JPH0466809 B2 JP H0466809B2 JP 25164087 A JP25164087 A JP 25164087A JP 25164087 A JP25164087 A JP 25164087A JP H0466809 B2 JPH0466809 B2 JP H0466809B2
Authority
JP
Japan
Prior art keywords
silica
surface area
specific surface
fused spherical
synthetic silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25164087A
Other languages
Japanese (ja)
Other versions
JPH0196008A (en
Inventor
Hiroyuki Kashiwase
Yoshiharu Kobayashi
Yutaka Konose
Masayoshi Ooya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP25164087A priority Critical patent/JPH0196008A/en
Publication of JPH0196008A publication Critical patent/JPH0196008A/en
Publication of JPH0466809B2 publication Critical patent/JPH0466809B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は珪酸アルカリをシリカ源とする溶融球
状シリカ及びその製造方法に関し、特に、IC封
止剤用の合成樹脂組成物のフイラーとしての用途
に適する高純度の溶融球状シリカ及びその製造方
法に関する。 [従来の技術] 一般に、IC封止剤用合成樹脂組成物のフイラ
ーとしてのシリカの具備すべき要件は次のようで
あるとされている。 シリカ粒子の形状や粒度分布が適度であつ
て、それを配合した合成樹脂組成物のモールド
成形時の流動性が良好で、高い比率での配合に
適し、しかもモールド成形時のバリ発生のトラ
ブルや成形物の内部応力増大に伴うIC電極の
断線や封止不良等のトラブルが生じないこと。 シリカの純度が高く、ウラン、トリウムなど
のα線放射性元素の含有率が極めて少なく、
ICの集積度が向上してもα線によるソフトエ
ラーを生じないこと。また、NaやC等の水
可溶性成分や腐食性成分の含有率が少なく、封
止剤の電気特性の劣化やIC電極材料の腐食な
どのトラブルが生じないこと。 原料の入手が容易であり、シリカフイラーと
しての価格も比較的安価で、品質の再現性もよ
く、安定供給が可能であること。 従来、IC封止剤用合成樹脂組成物に使用され
るシリカフイラーとしては、水晶、珪石等の結晶
質シリカ、あるいは結晶質シリカや各種の合成シ
リカを加熱溶融してインゴツトにしたものを適度
の粒度に粉砕したものが主に使用されている。 しかし、これらの粉砕シリカの粒子表面は不規
則な破砕面であるため、それによる欠点を伴う。
例えば、256KDRAMや1MDRAMのように高集
積されたLSIにおいては配線パターンが5μm以下
となり、極細配線であるため成形時の熱収縮によ
る断線が生じ易く、また、集積度の増大に伴つて
使用時の発熱量が増大するので、これを放出させ
るため、シリカの充填量を多くする必要がある
が、粒子形状の点から流動性が低下し易く、高率
配合に適さない等の欠点を伴う。 そこで最近では粉砕シリカのこれらの欠点を改
良するために、更に、粉砕シリカを瞬間的に加熱
溶融し、球状化したシリカが次第に使用されるよ
うになつた。 従来、球状シリカの出発原料としては水晶や珪
石などの天然シリカの粉砕物が主として使われて
いたが、ICやLSIなどの集積度の増大に伴つて封
止剤中のウランやトリウムなどの放射性元素に起
因するソフトエラーの問題が重視されるようにな
り、ウランやトリウムの少ないより高純度の原料
への関心が高まつている。 しかしながら、高純度の天然品の入手は次第に
困難となり、各種の合成シリカの使用が試みられ
ている。その代表的なものにエチルシリケートや
四塩化珪素などの高純度原料をシリカ源とする高
純度の合成シリカがあるが、それらは一般に著し
く高価であるばかりでなく、製造時の反応副産物
の無害化処理にも特別な配慮が必要となるという
欠点がある。 他の合成シリカの例としては、比較的安価で、
しかも安定供給が期待される珪酸アルカリをシリ
カ源とする高純度シリカの製造方法が多数提案さ
れており、本発明者らも既にIC封止剤フイラー
用の合成シリカの製造方法については幾つかの特
許出願をしている(特開昭60−180991号公報、特
開昭61−40811号公報)。 係る合成シリカの溶融球状品はいずれも酸性領
域で珪酸アルカリと酸とを反応させてシリカゲル
の沈殿を析出することを特徴とし、次いで、酸処
理・乾燥・溶融処理を行なつて製造されるもので
ある。 [発明が解決しようとする問題点] 溶融球状シリカの最大の特徴はIC封止剤用合
成樹脂組成物のフイラーとして使用した場合に、
モールド成形時の流動性が特に良好で、より高率
の配合を可能とし、より高度の熱伝導性や寸法安
定性を必要とする集積度の高いIC用の封止剤へ
の適用を可能にすることにある。 従来の多くの球状シリカにおいては、その物性
値と流動性との関係は比較的単純であつて、例え
ば溶融球状シリカの形状(真球度)や粒度分布あ
るいは更に比表面積などをある範囲内に制御する
ことによつて所要の流動性を具備させることがで
きたが、珪酸アルカリと酸との湿式反応によつて
得られる高純度の合成シリカの場合には、溶融球
状化前のシリカの構造が相違するためか、従来の
溶融球状シリカの場合とは著しく状況が異なり、
単に形状や粒度分布などを調整するのみでは充分
な流動性が得られないという新たな問題が発生す
る。 本発明の目的はこの問題点を解決することにあ
る。 [問題点を解決するための手段] 本発明者らは珪酸アルカリと酸との湿式反応に
よつて得られる高純度の合成シリカの溶融球状化
物であつて、しかもIC封止剤用合成樹脂組成物
のフイラーとしてモールド成型時の流動性がよ
く、高率配合に適し、更に、バリ発生などのトラ
ブルを生じることのない溶融球状シリカ及びその
製造方法の実現について各種の実験研究を重ねた
結果、このような合成シリカの溶融球状化物にお
いては、合成樹脂組成物の流動性を確保するため
にはその粒子形状や粒度分布いかんに拘わらず、
粉体としてのタツプ密度がある値以上であること
が不可欠の要素であることを見出し本発明を完成
した。 すなわち、本発明は珪酸アルカリと酸との湿式
反応により生成した合成シリカの溶融球状化物で
あつて、粉体としてのタツプ密度が1.36g/cm3
上で且つBET比表面積が0.2〜3m2/gであるこ
とを特徴とする溶融球状シリカに係る。 更に、本発明は珪酸アルカリと酸との湿式反応
を常に酸性領域で行なつてBET比表面積300m2
g以上の多孔質合成シリカを生成させる工程;多
孔質合成シリカを加熱してBET比表面積が50
m2/g以下となるまで焼成する工程;得られた合
成シリカの焼成物を平均粒径2〜5μmに粉砕する
工程;及び該粉砕物を溶射溶融する工程からなる
ことを特徴とする溶融球状シリカの製造方法に係
る。 [作用] 本発明の溶融球状シリカのタツプ密度(以下、
TDと記載する)は1.36g/cm3以上でなければな
らない。 TDはシリカ粒子の形状、粒度分布、溶融や凝
集の状況、表面の状態等に関連した総合的な物性
尺度としての意義があり、下記の測定法により再
現性よく測定することができる。 このTDとシリカフイラー充填のエポキシ樹脂
組成物の物性、特に、流動性は強い相関性を示
す。従つて、このTDなるパラメータを測定する
ことによつてエポキシ樹脂用フイラーとしての流
動性を簡単且つ適切に評価することができる。従
つて、このため上記シリカのTDが1.36g/cm3
上であることが必要であり、好ましくは1.39〜
1.46g/cm3が実用的である。 また、本発明の溶融球状シリカの比表面積は
BET法による測定(以下、単に比表面積と記載
する)で0.2〜3m2/gでなければならない。 比表面積が0.2m2/g未満では、エポキシ樹脂
用フイラーとしてモールド成形時のバリ発生のト
ラブルが生じ易くなり、一方、比表面積が3m2
gを超えると流動性が不充分になり易く、いずれ
も実用性が失われる。 また、本発明に係る溶融球状シリカは珪酸アル
カリと酸との湿式反応によつて得られる合成シリ
カを溶射溶融して製造されるもので、ウラン、ト
リウムなどの放射性元素が1ppb以下、Naが
1ppm以下となるような高純度の実質的に球状粒
子であり、多くの場合、平均粒子径が2〜50μm
の範囲にあるものである。 係る溶融球状シリカは次の方法で製造すること
ができる。 すなわち、本発明の溶融球状シリカは珪酸アル
カリと酸との湿式反応を常に酸性領域で行なつて
BET比表面積300m2/g以上の多孔質合成シリカ
を生成させる工程;多孔質合成シリカを加熱して
BET比表面積が50m2/g以下となるまで焼成す
る工程;得られた合成シリカの焼成物を平均粒径
2〜5μmに粉砕する工程;及び該粉砕物を溶射溶
融する工程からなることを特徴として製造するこ
とができる。 本発明の方法で使用する珪酸アルカリとして
は、モル比SiO2/Na2Oが1〜4の市販の珪酸ナ
トリウム溶液(水ガラス)を使用することができ
るが、モル比の比較的大きいものが反応に必要と
する鉱酸の量が少なくてすむので経済的である。
珪酸ナトリウム溶液は水または鉱酸のナトリウム
塩水溶液で適宜希釈して使用してもよい。 一方、本発明の方法で使用する鉱酸としては塩
酸、硝酸、硫酸などが挙げられる。鉱酸は単独ま
たは2種以上の混酸として使用できる。更に、鉱
酸は適宜希釈して使用することができる。 本発明の方法では、前記の原料を用いて高純度
シリカを製造するに当たり、不純物を除くために
キレート剤、過酸化水素等、その他の反応助剤を
適宜反応系に存在させてもよい。 比表面積300m2/g以上の多孔質合成シリカの
生成工程は上記の珪酸アルカリを鉱酸中に添加す
るか、または珪酸アルカリ水溶液と鉱酸を同時に
反応器中に添加することによつて沈澱として析出
するが、いずれの場合でも反応系内を常に酸性領
域、好ましくはPH1以下に保つことが重要であ
る。析出した沈澱は必要に応じて適宜酸処理、水
洗、乾燥、粉砕などの処理を加える。なお、比表
面積が300m2/g以上で特に純度のよい多孔質合
成シリカの製造方法の詳細については例えば本発
明者らの特開昭62−12608号公報に記載されてい
る。 上記のように合成シリカの生成工程において、
比表面積300m2/g以上とした理由はこの比表面
積値以上の多孔質合成シリカを酸性領域で得なけ
れば、α線放射性元素やその他の不純金属成分が
その生成または洗浄の際に除去できず、高純度の
ものが得られないからである。 次いで、焼成工程は常法により乾燥した合成シ
リカを溶射溶融に先立つて加熱により脱水及び焼
成する工程である(この場合、乾燥後必要に応じ
て粉砕することもできる)。 本発明では、この工程において、300m2/g以
上の比表面積を有する多孔質合成シリカを50m2
g以下、好ましくは30m2/g以下の比表面積とな
るまでに焼成することが重要である。 この理由は後の工程である溶射溶融処理におい
て可能な条件を選択してもTDが1.36g/cm3以上
の高密度の溶融球状シリカの粒子は得られないた
めである。 係る原因は溶射溶融としう瞬時の溶融処理のた
め主として生成する球状溶融シリカ中に気泡が封
じ込められたり、粒子表面が他の粒子の溶着によ
つて粗雑になるからであり、中空状や凹状にくぼ
んだいわゆるへそのある粒子になつたりして、密
度の向上が期待できない。従つて、このような粒
子であるか、否かは顕微鏡によつて確認すること
ができる。比表面積50m2/g以下にするための焼
成条件は多孔質合成シリカの性状や焼成方法によ
つて異なるけれども、温度と時間の密接な関係が
あるので、これらの函数として設定されなければ
ならない。 しかしながら、多くの場合、焼成温度は少なく
とも1000℃以上であり、好ましくは1100〜1300℃
で、焼成時間は0.2〜2時間の範囲にある。焼成
温度が1000℃未満では所要時間が著しく大となり
実用的ではない。 焼成方法としてはるつぼや匣鉢などを用いるバ
ツチ式の焼成、たて型炉による焼成あるいはロー
タリーキルン、その他による連続式の焼成のいず
れでもよく、使用する装置の種類も限定する必要
はない。 焼成された合成シリカは1部焼結しているの
で、溶融工程での合成シリカのチヤージを円滑に
するため、あるいは所望の溶融シリカ粒子を得る
ために粉砕工程を行なう必要がある。 この粉砕工程において、平均粒子径が2〜
50μm、好ましくは5〜35μmの範囲に粒度調整す
る。 次いで、係る合成シリカを溶融工程に送るが、
この溶融処理は酸素−プロパン、酸素−水などの
火炎溶射あるいはプラズマ溶射などの公知の溶射
溶融装置と操作により行なえばよい。 かくして、本発明の係る方法によれば、TDが
1.36g/cm3以上、好ましくは1.39〜1.46g/cm3
且つ比表面積が0.2〜3m2/gにある高純度、高
密度の溶融球状シリカを製造することができ、係
るシリカはIC樹脂封止用フイラーとして極めて
好適なものである。 本発明の製造方法において、比表面積300m2
g以上の多孔質合成シリカを焼成して比表面積が
50m2/g以下とした後、溶射溶融処理することに
よりTDが1.36g/cm3以上の高密度の球状シリカ
が生成する作用機構の詳細は必ずしも明らかでな
いが、恐らく焼成により個々のシリカ粒子の細孔
径が充分に増大し、溶射溶融に際しての粒子内部
からの空気や水蒸気の拡散・移動が容易となつて
溶融粒子内に気泡が封じ込められる現象や溶融粒
子が破裂して複雑な形状となる現象などが消滅
し、シリカガラス本来の比重(約2.2)に近い高
比重値と粒子間の滑り易さが増大して高いTDを
示すようになるものと考えられる。 [実施例] 実施例 1 攪拌機付き反応槽に、硝酸水溶液(HNO3
19.3重量%)4000gをとり、これにシユウ酸(二
水塩:市販品)6g、35重量%過酸化水素水(市
販品)17gを添加溶解した。この硝酸水溶液に、
JIS3号珪酸ソーダ(Na2O=9.2重量%、SiO2
28.5重量%)2100gを約30分間を要して添加し、
シリカの沈澱を生成させた。この間、反応槽を攪
拌下、加温・保持した。なお、この時の反応母液
中の硝酸濃度は1.1規定であつた。 この反応終了スラリーから分離回収したシリカ
を攪拌機付き酸処理槽にとり、少量のシユウ酸お
よび過酸化水素水含有の硝酸にて酸処理した。 次いで、このスラリーからシリカを過分離
し、以下、常法による水洗、固液分離を行なつた
のち、シリカ沈澱を回収して105℃で2時間乾燥
し、BET法による比表面積478m2/gの多孔質シ
リカを得た。 この多孔質シリカを耐火性るつぼに入れ、1300
℃で30分間焼成し、比表面積11.3m2/gの焼成シ
リカを得た。この焼成シリカを粉砕して平均粒径
19μmに粒度調整したのち、酸素−プロパンガス
炎による溶射溶融処理を施して溶融球状シリカを
得た。 得られた溶融球状シリカの不純物含有量、
TD、比表面積等を以下の第1表に示す。 第1表から明らかなように、この溶融球状シリ
カは各不純物含有量が極めて少なく、高純度であ
り、また,TDや比重が高く、IC封止剤用の合成
樹脂組成物のフイラーとしての好ましい純度及び
物性を有している。 なお、顕微鏡による観察では、各粒子はほぼ完
全な球状を呈しており、気泡や孔の存在は認めら
れなかつた。 実施例 2 実施例1と同様の方法によつて珪酸ソーダと硝
酸との湿式反応により調製した比表面積421m2
gの多孔質シリカをたて型電気炉で1100〜1200℃
で各温度で30分間焼成した。焼成したシリカを実
施例1におけると同様に粒度調整(平均粒径
25μm)し、次に、火炎溶射溶融処理を施し、溶
融球状シリカを得た。 得られた球状シリカの分析値及び物性値を第1
表に併記する。 なお、顕微鏡による観察では、シリカ粒子はほ
ぼ完全な球状を呈しており、気泡や孔の存在は認
められなかつた。 実施例 3 実施例1に記載した多孔質シリカをロータリー
キルンで1200℃で連続焼成(平均焼成時間20分
間)し、焼成したシリカを粉砕して粒度調整(平
均粒径16μm)したのち実施例1と同様にして火
炎溶射溶融処理を施し、溶融球状シリカを得た。 得られた球状シリカの分析値及び物性値を第1
表に併記する。 なお、顕微鏡による観察では、シリカ粒子はほ
ぼ完全な球状を呈しており、気泡や孔の存在は認
められなかつた。 比較例 1 1200℃での焼成を行なわず、多孔質シリカを粉
砕して平均粒径17μmに粒度調整したものを溶射
溶融した他は実施例1と同様にして溶融球状シリ
カを得た。 得られた球状シリカの分析値及び物性値を第1
表に併記する。 第1表から、焼成を行なわずに比表面積が50
m2/gより遥かに大きい多孔質シリカをそのまま
溶射溶融すると比重やTDの低い溶融球状シリカ
が得られることが明らかである。 顕微鏡による観察では、各粒子は概ね球状であ
るが、粒子内の気泡や粒子表面の孔が目立ち、粒
子同志が融着しているものも認められた。 なお、このようにして得られた溶融球状シリカ
を再度溶射溶融したが比重やTDは再溶融前の溶
融球状シリカと殆ど同一の値を示し、顕微鏡によ
る観察では依然として粒子内の気泡や粒子表面の
孔が認められた。 比較例 2 実施例1において900℃、4時間の焼成操作を
行なつた以外は実施例1と全く同様の操作と条件
にて溶融シリカを得た。 このシリカを顕微鏡でみると、凹状のへそのあ
る粒子が球状粒子に混じつてかなり存在すること
が認められた。 なお、他の化学分析値や物性値を第1表に併記
する。
[Industrial Application Field] The present invention relates to fused spherical silica using an alkali silicate as a silica source and a method for producing the same, and particularly relates to a high-purity fused spherical silica suitable for use as a filler in synthetic resin compositions for IC sealants. This invention relates to silica and its manufacturing method. [Prior Art] Generally, the requirements that silica should have as a filler in a synthetic resin composition for an IC encapsulant are as follows. The shape and particle size distribution of silica particles are appropriate, and the synthetic resin composition blended with them has good fluidity when molded, making it suitable for blending at a high ratio, and eliminating the problem of burr generation during molding. No problems such as IC electrode disconnection or poor sealing due to increased internal stress of the molded product. The purity of silica is high, and the content of alpha-ray radioactive elements such as uranium and thorium is extremely low.
Soft errors due to alpha rays should not occur even if the degree of IC integration improves. In addition, the content of water-soluble components such as Na and C and corrosive components is low, so problems such as deterioration of the electrical properties of the sealant and corrosion of IC electrode materials do not occur. The raw materials are easy to obtain, the price as a silica filler is relatively low, the quality is reproducible, and stable supply is possible. Conventionally, silica fillers used in synthetic resin compositions for IC encapsulants are made of crystalline silica such as quartz, silica stone, or ingots made by heating and melting crystalline silica or various synthetic silicas. It is mainly used after being crushed to a fine particle size. However, since the particle surfaces of these crushed silicas are irregularly fractured surfaces, they are accompanied by drawbacks.
For example, in highly integrated LSIs such as 256KDRAM and 1MDRAM, the wiring pattern is less than 5μm, and because the wiring is extremely thin, it is easy to break due to heat shrinkage during molding. Since the calorific value increases, in order to release this, it is necessary to increase the amount of silica packed, but this has the disadvantage that fluidity tends to decrease due to the particle shape, making it unsuitable for high-rate blending. Recently, in order to improve these drawbacks of pulverized silica, silica obtained by instantaneously heating and melting pulverized silica into spheroidized silica has come to be used. Conventionally, crushed natural silica such as crystal or silica stone has been mainly used as the starting material for spherical silica, but as the degree of integration of ICs and LSIs has increased, radioactive substances such as uranium and thorium in the encapsulant have increased. The problem of elemental soft errors has become more important, and there is increasing interest in higher purity raw materials with less uranium and thorium. However, it has become increasingly difficult to obtain highly purified natural products, and attempts have been made to use various synthetic silicas. A typical example is high-purity synthetic silica, which uses high-purity raw materials such as ethyl silicate and silicon tetrachloride as a silica source. The drawback is that special considerations are required for processing. Other examples of synthetic silica include: relatively inexpensive;
Moreover, many methods for producing high-purity silica using alkali silicate as a silica source, which is expected to be stably supplied, have been proposed, and the present inventors have already proposed several methods for producing synthetic silica for IC encapsulant fillers. Patent applications have been filed (Japanese Patent Application Laid-open No. 180991/1983, 40811/1982). All of these fused synthetic silica spherical products are characterized by reacting an alkali silicate with an acid in an acidic region to precipitate silica gel, and are then produced by acid treatment, drying, and melting treatment. It is. [Problems to be solved by the invention] The greatest feature of fused spherical silica is that when used as a filler in a synthetic resin composition for IC encapsulant,
It has particularly good fluidity during molding, making it possible to mix at a higher ratio, making it possible to apply it to encapsulants for highly integrated ICs that require higher thermal conductivity and dimensional stability. It's about doing. For many conventional spherical silicas, the relationship between their physical properties and fluidity is relatively simple. However, in the case of high-purity synthetic silica obtained by a wet reaction between an alkali silicate and an acid, the structure of the silica before molten spheroidization The situation is markedly different from that of conventional fused spherical silica, perhaps because of the difference in
A new problem arises in that sufficient fluidity cannot be obtained simply by adjusting the shape, particle size distribution, etc. The purpose of the present invention is to solve this problem. [Means for Solving the Problems] The present inventors have developed a synthetic resin composition for IC encapsulant, which is a molten spheroid of high-purity synthetic silica obtained by a wet reaction between an alkali silicate and an acid. As a result of various experimental studies to realize fused spherical silica as a filler for products, which has good fluidity during molding, is suitable for high-rate compounding, and does not cause problems such as burrs, and its manufacturing method, In such a molten spheroidized synthetic silica, in order to ensure the fluidity of the synthetic resin composition, regardless of its particle shape and particle size distribution,
They discovered that it is an essential element that the tap density as a powder is at least a certain value, and completed the present invention. That is, the present invention is a molten spheroidized synthetic silica produced by a wet reaction of an alkali silicate and an acid, which has a tap density as a powder of 1.36 g/cm 3 or more and a BET specific surface area of 0.2 to 3 m 2 / It relates to fused spherical silica characterized by g. Furthermore, in the present invention, a wet reaction between an alkali silicate and an acid is always carried out in an acidic region to achieve a BET specific surface area of 300 m 2 /
Process of producing porous synthetic silica with a weight of 50 g or more; heating the porous synthetic silica so that the BET specific surface area is 50
m 2 /g or less; pulverizing the obtained sintered synthetic silica to an average particle size of 2 to 5 μm; and spraying and melting the pulverized material. It relates to a method for producing silica. [Function] The tap density (hereinafter referred to as
(written as TD) must be 1.36 g/cm 3 or more. TD is significant as a comprehensive physical property measure related to silica particle shape, particle size distribution, melting and aggregation status, surface condition, etc., and can be measured with good reproducibility using the measurement method below. There is a strong correlation between this TD and the physical properties of the epoxy resin composition filled with silica filler, especially the fluidity. Therefore, by measuring this parameter called TD, the fluidity as a filler for epoxy resin can be easily and appropriately evaluated. Therefore, it is necessary for the silica to have a TD of 1.36 g/cm 3 or more, preferably 1.39 to 1.39.
1.46 g/cm 3 is practical. Furthermore, the specific surface area of the fused spherical silica of the present invention is
It must be 0.2 to 3 m 2 /g as measured by the BET method (hereinafter simply referred to as specific surface area). If the specific surface area is less than 0.2 m 2 /g, troubles such as burrs will occur during molding as a filler for epoxy resin are likely to occur.On the other hand, if the specific surface area is less than 3 m 2 /g
If it exceeds g, fluidity tends to be insufficient, and practicality is lost in both cases. Furthermore, the fused spherical silica according to the present invention is produced by thermal spraying and melting synthetic silica obtained through a wet reaction between an alkali silicate and an acid, and contains less than 1 ppb of radioactive elements such as uranium and thorium, and less than 1 ppb of Na.
Substantially spherical particles of high purity, less than 1 ppm, often with an average particle size of 2 to 50 μm
It is within the range of Such fused spherical silica can be produced by the following method. That is, the fused spherical silica of the present invention is produced by constantly performing a wet reaction between an alkali silicate and an acid in an acidic region.
Process of producing porous synthetic silica with a BET specific surface area of 300 m 2 /g or more; heating porous synthetic silica
A process of firing until the BET specific surface area becomes 50 m 2 /g or less; a process of pulverizing the obtained synthetic silica sintered product to an average particle size of 2 to 5 μm; and a process of thermal spraying and melting the pulverized product. It can be manufactured as As the alkali silicate used in the method of the present invention, a commercially available sodium silicate solution (water glass) with a molar ratio SiO 2 /Na 2 O of 1 to 4 can be used, but one with a relatively large molar ratio is preferable. It is economical because the amount of mineral acid required for the reaction is small.
The sodium silicate solution may be used after being appropriately diluted with water or an aqueous solution of a sodium salt of a mineral acid. On the other hand, examples of mineral acids used in the method of the present invention include hydrochloric acid, nitric acid, and sulfuric acid. Mineral acids can be used alone or as a mixed acid of two or more. Furthermore, the mineral acid can be used after being diluted as appropriate. In the method of the present invention, when producing high-purity silica using the above raw materials, other reaction aids such as a chelating agent and hydrogen peroxide may be appropriately present in the reaction system in order to remove impurities. The production process of porous synthetic silica with a specific surface area of 300 m 2 /g or more is performed by adding the above-mentioned alkali silicate to mineral acid, or by adding an aqueous alkali silicate solution and mineral acid simultaneously into a reactor to form a precipitate. However, in any case, it is important to always maintain the reaction system in an acidic region, preferably at a pH of 1 or less. The deposited precipitate is subjected to appropriate treatments such as acid treatment, water washing, drying, and pulverization as necessary. Details of the method for producing porous synthetic silica with a specific surface area of 300 m 2 /g or more and particularly high purity are described in, for example, Japanese Patent Application Laid-open No. 12608/1983 by the present inventors. As mentioned above, in the synthetic silica production process,
The reason for setting the specific surface area to 300 m 2 /g or higher is that unless porous synthetic silica with a specific surface area value or higher is obtained in an acidic region, α-ray radioactive elements and other impure metal components cannot be removed during generation or cleaning. This is because high purity cannot be obtained. Next, the firing step is a step in which synthetic silica dried by a conventional method is dehydrated and fired by heating prior to thermal spray melting (in this case, it can be pulverized if necessary after drying). In the present invention, in this step, porous synthetic silica having a specific surface area of 300 m 2 /g or more is added in an amount of 50 m 2 /g.
It is important to carry out the firing until the specific surface area is 30 m 2 /g or less, preferably 30 m 2 /g or less. The reason for this is that high-density fused spherical silica particles with a TD of 1.36 g/cm 3 or more cannot be obtained even if possible conditions are selected in the subsequent thermal spray melting process. The reason for this is that air bubbles are trapped in the spherical fused silica that is mainly produced due to the instantaneous melting process of thermal spray melting, and the surface of the particles becomes rough due to welding of other particles, resulting in hollow or concave shapes. This results in particles with a concave so-called navel, and no improvement in density can be expected. Therefore, whether or not the particles are of this type can be confirmed using a microscope. The firing conditions for reducing the specific surface area to 50 m 2 /g or less vary depending on the properties of the porous synthetic silica and the firing method, but since there is a close relationship between temperature and time, they must be set as a function of these. However, in many cases the firing temperature is at least 1000°C or higher, preferably 1100-1300°C
The firing time is in the range of 0.2 to 2 hours. If the firing temperature is less than 1000°C, the time required will be extremely long and it is not practical. The firing method may be batch firing using a crucible or sagger, firing in a vertical furnace, continuous firing in a rotary kiln, or the like, and there is no need to limit the type of equipment used. Since the calcined synthetic silica is partially sintered, it is necessary to carry out a pulverization process in order to smoothly charge the synthetic silica during the melting process or to obtain desired fused silica particles. In this pulverization process, the average particle size is
The particle size is adjusted to 50 μm, preferably in the range of 5 to 35 μm. The synthetic silica is then sent to a melting process,
This melting treatment may be carried out using known thermal spray melting equipment and operations such as oxygen-propane, oxygen-water flame spraying or plasma spraying. Thus, according to the method of the present invention, TD is
1.36 g/cm 3 or more, preferably 1.39 to 1.46 g/cm 3 ,
In addition, high-purity, high-density fused spherical silica having a specific surface area of 0.2 to 3 m 2 /g can be produced, and such silica is extremely suitable as a filler for IC resin encapsulation. In the manufacturing method of the present invention, the specific surface area is 300 m 2 /
The specific surface area of porous synthetic silica
The details of the mechanism by which high-density spherical silica with a TD of 1.36 g/cm 3 or more is produced by thermal spray melting after reducing the silica to 50 m 2 /g or less are not necessarily clear, but it is likely that the individual silica particles are A phenomenon in which the pore size increases sufficiently and air and water vapor can easily diffuse and move from inside the particles during thermal spray melting, trapping air bubbles within the molten particles, and rupturing the molten particles to form a complex shape. It is thought that this causes the glass to exhibit a high specific gravity value close to the original specific gravity of silica glass (approximately 2.2) and increased slipperiness between particles, resulting in a high TD. [Example] Example 1 A nitric acid aqueous solution (HNO 3 =
19.3% by weight) was taken, and 6g of oxalic acid (dihydrate: commercially available) and 17g of 35% by weight hydrogen peroxide (commercially available) were added and dissolved therein. In this nitric acid aqueous solution,
JIS No. 3 Sodium Silicate (Na 2 O = 9.2% by weight, SiO 2 =
28.5% by weight) was added over a period of about 30 minutes.
A precipitate of silica formed. During this time, the reaction tank was heated and maintained while stirring. Note that the nitric acid concentration in the reaction mother liquor at this time was 1.1N. The silica separated and recovered from this reaction-completed slurry was placed in an acid treatment tank equipped with a stirrer, and acid treated with a small amount of oxalic acid and nitric acid containing hydrogen peroxide. Next, silica was over-separated from this slurry, followed by washing with water and solid-liquid separation using conventional methods, and then the silica precipitate was collected and dried at 105°C for 2 hours to obtain a specific surface area of 478 m 2 /g by the BET method. Porous silica was obtained. This porous silica was placed in a refractory crucible and heated to 1300
It was calcined at ℃ for 30 minutes to obtain calcined silica with a specific surface area of 11.3 m 2 /g. This calcined silica is crushed to obtain an average particle size of
After adjusting the particle size to 19 μm, thermal spray melting treatment was performed using an oxygen-propane gas flame to obtain fused spherical silica. Impurity content of the obtained fused spherical silica,
TD, specific surface area, etc. are shown in Table 1 below. As is clear from Table 1, this fused spherical silica has extremely low impurity content and high purity, and also has high TD and specific gravity, making it suitable as a filler for synthetic resin compositions for IC sealants. It has purity and physical properties. In addition, when observed under a microscope, each particle had an almost perfect spherical shape, and no air bubbles or pores were observed. Example 2 A specific surface area of 421 m 2 / prepared by wet reaction of sodium silicate and nitric acid in the same manner as in Example 1.
g of porous silica in a vertical electric furnace at 1100-1200℃
Baked for 30 minutes at each temperature. The calcined silica was subjected to particle size adjustment (average particle size) in the same manner as in Example 1.
25 μm) and then subjected to flame spray melting treatment to obtain fused spherical silica. The analytical values and physical property values of the obtained spherical silica are
Also listed in the table. In addition, when observed under a microscope, the silica particles had an almost perfect spherical shape, and no air bubbles or pores were observed. Example 3 The porous silica described in Example 1 was continuously fired at 1200°C in a rotary kiln (average firing time 20 minutes), and the fired silica was pulverized to adjust the particle size (average particle size 16 μm). Flame spray melting treatment was performed in the same manner to obtain fused spherical silica. The analytical values and physical property values of the obtained spherical silica are
Also listed in the table. In addition, when observed under a microscope, the silica particles had an almost perfect spherical shape, and no air bubbles or pores were observed. Comparative Example 1 Molten spherical silica was obtained in the same manner as in Example 1, except that porous silica was pulverized and adjusted to an average particle size of 17 μm and then thermally sprayed and melted without being calcined at 1200°C. The analytical values and physical property values of the obtained spherical silica are
Also listed in the table. From Table 1, the specific surface area is 50 without firing.
It is clear that if porous silica with a particle size far larger than m 2 /g is directly thermally sprayed and melted, fused spherical silica with low specific gravity and TD can be obtained. When observed under a microscope, each particle was generally spherical, but air bubbles within the particles and pores on the surface of the particles were noticeable, and some particles were observed to be fused together. The fused spherical silica obtained in this way was thermally sprayed and melted again, but the specific gravity and TD showed almost the same values as the fused spherical silica before remelting, and microscopic observation still showed that air bubbles inside the particles and on the particle surface were observed. A hole was observed. Comparative Example 2 Fused silica was obtained under the same operation and conditions as in Example 1 except that the firing operation was performed at 900° C. for 4 hours. When this silica was examined under a microscope, it was found that there were a considerable number of concave particles mixed with spherical particles. In addition, other chemical analysis values and physical property values are also listed in Table 1.

【表】【table】

【表】 TDの測定法 試料10gを秤量し、25mlのメスシリンダーに移
し入れる。次いで、このメスシリンダーを5cmの
高さから毎分74回の周期で300回落下させた後、
試料の容積(Vcm3)を読み取り、次式によりTD
の値を算出する。 TD(g/cm3)=10(g)/V(cm3) 参考例 1 実施例1〜3及び比較例1〜2で得られた溶融
球状シリカをフイラーとして下記組成のエポキシ
樹脂組成物を調製してその物性を評価した。 溶融球状シリカ 70重量部 オルソクレゾールノボラツク型エポキシ樹脂
(エピクロンN665:大日本インキ製) 20重量部 ノボラツク型フエノール樹脂(バーカム
TD2131:大日本インキ製) 10重量部 OPワツクス(ヘキストジヤパン製) 1重量部 上記組成物を混合し、80〜90℃に加熱したミキ
シングロールにて5分間溶融混練したのち、シー
ト状にした。これを冷却粉砕して樹脂組成物粉末
を得た。得られた樹脂組成物粉末につき、溶融粘
度の測定(島津フローテスタCFT−20、130℃、
10Kg/cm2、1mm×10mmノズル使用)及びノズル
よりの溶融物の流動状態の観察を行なつた。 結果を第2表に示す。また、第2表の溶融粘度
とTDとの関係を第1図に示す。第1図よりTD
が高いほど、溶融粘度が低くなり、流動性が良く
なることが明白である。
[Table] TD measurement method Weigh 10g of the sample and transfer it to a 25ml graduated cylinder. Next, after dropping this graduated cylinder from a height of 5 cm 300 times at a rate of 74 times per minute,
Read the volume of the sample (Vcm 3 ) and calculate TD using the following formula.
Calculate the value of TD (g/cm 3 ) = 10 (g)/V (cm 3 ) Reference Example 1 An epoxy resin composition having the following composition was prepared using the fused spherical silica obtained in Examples 1 to 3 and Comparative Examples 1 to 2 as a filler. It was prepared and its physical properties were evaluated. Fused spherical silica 70 parts by weight Orthocresol novolac type epoxy resin (Epicron N665: manufactured by Dainippon Ink) 20 parts by weight novolac type phenolic resin (Barcam)
TD2131: manufactured by Dainippon Ink) 10 parts by weight OP wax (manufactured by Hoechst Japan) 1 part by weight The above compositions were mixed and melt-kneaded for 5 minutes using a mixing roll heated to 80 to 90°C, and then formed into a sheet. This was cooled and ground to obtain a resin composition powder. Measurement of melt viscosity of the obtained resin composition powder (Shimadzu Flow Tester CFT-20, 130℃,
(10 Kg/cm 2 , using a 1 mm x 10 mm nozzle) and the flow state of the melt from the nozzle was observed. The results are shown in Table 2. Furthermore, the relationship between the melt viscosity in Table 2 and TD is shown in FIG. From Figure 1, TD
It is clear that the higher the value, the lower the melt viscosity and the better the fluidity.

【表】 ○:ノズルから出た溶融物が平らに堆
積し、碁石状に固化する。
×:ノズルから出た溶融物が細い筋状
を呈したまま堆積し、固化
する。
参考例 2 実施例1〜3及び比較例1〜2で得られた溶融
球状シリカをフイラーとして下記組成のエポキシ
樹脂組成物を調製してその物性を評価した。 溶融球状シリカ 70重量部 オルソクレゾールノボラツク型エポキシ樹脂
(エピクロンN665:大日本インキ製) 18重量部 ノボラツク型フエノール樹脂(バーカム
TD2131:大日本インキ製) 9重量部 OPワツクス(離型剤) 0.3重量部 表面処理剤 0.5重量部 硬化促進剤 0.4重量部 三酸化アンチモン 1.5重量部 顔料 0.3重量部 上記組成物のうち、まず、溶融球状シリカ及び
三酸化アンチモンを表面処理剤で混合処理し、そ
の後、残余の材料を加え更に混合し、次に、80〜
90℃に加熱したミキシングロールにて10分間溶融
混練したのちシート状にした。これを冷却粉砕し
て半導体封止用樹脂組成物粉末を得た。 得られた樹脂組成物粉末につき、5μmのクリア
ランスを有するうすバリ判定用スリツト金型を用
いて成形した時のバリの長さ(mm)及びEMMI1
−66(Epoxy Molding Material Institute:
Society of Plastic Industry)に準じてスパイラ
ルフローを測定した。 測定結果を第3表に示す。また、第3表のスパ
イラルフロー値とTDの関係を第2図に示す。第
2図より流動性の指標としてのスパイラルフロー
値はTDが高いほど大きいことが明白である。
[Table] ○: The molten material discharged from the nozzle is deposited flatly and solidified into a Go stone shape.
×: The molten material coming out of the nozzle accumulates in a thin streak and solidifies.
do.
Reference Example 2 An epoxy resin composition having the following composition was prepared using the fused spherical silica obtained in Examples 1 to 3 and Comparative Examples 1 to 2 as a filler, and its physical properties were evaluated. Fused spherical silica 70 parts by weight Orthocresol novolak-type epoxy resin (Epicron N665: manufactured by Dainippon Ink) 18 parts by weight novolak-type phenolic resin (Barcam)
TD2131: Dainippon Ink) 9 parts by weight OP wax (mold release agent) 0.3 parts by weight Surface treatment agent 0.5 parts by weight Curing accelerator 0.4 parts by weight Antimony trioxide 1.5 parts by weight Pigment 0.3 parts by weight Among the above compositions, first, Fused spherical silica and antimony trioxide are mixed with a surface treatment agent, then the remaining materials are added and mixed further, and then 80~
The mixture was melt-kneaded for 10 minutes using a mixing roll heated to 90°C, and then formed into a sheet. This was cooled and pulverized to obtain a resin composition powder for semiconductor encapsulation. The length of burr (mm) and EMMI1 when the obtained resin composition powder was molded using a slit mold for thin burr determination with a clearance of 5 μm.
−66 (Epoxy Molding Material Institute:
Spiral flow was measured according to the Society of Plastic Industry). The measurement results are shown in Table 3. Furthermore, the relationship between the spiral flow value in Table 3 and TD is shown in FIG. From Figure 2, it is clear that the higher the TD, the greater the spiral flow value as an indicator of liquidity.

【表】 [発明の効果] 本発明の第1の効果は電子産業の発展に伴い今
後更に高集積化される半導体ICの優れた樹脂系
封止剤用に望まれている高率配合での充填が可能
であり、熱伝導率の増大、残留応力の軽減、耐湿
性の向上等に適する高密度の球状フイラーを比較
的安価に安定供給することが可能となる。 また、本発明の第2の効果は比較的安価な珪酸
アルカリと鉱酸を主原料として上記の優れた特性
を有する球状フイラーを確実に得られ、しかも有
害または処理困難な副生物などを発生することの
ない工業的に有利な製造方法を提供することがで
きる。
[Table] [Effects of the Invention] The first effect of the present invention is that it can be used at a high compounding rate, which is desired as an excellent resin encapsulant for semiconductor ICs, which will become more highly integrated in the future with the development of the electronic industry. It becomes possible to stably supply a high-density spherical filler that can be filled and is suitable for increasing thermal conductivity, reducing residual stress, improving moisture resistance, etc. at a relatively low cost. In addition, the second effect of the present invention is that a spherical filler having the above-mentioned excellent properties can be reliably obtained using relatively inexpensive alkali silicate and mineral acid as main raw materials, and it also generates harmful or difficult-to-process by-products. It is possible to provide an industrially advantageous manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融粘度とTDの関係を示すグラフで
あり、第2図はスパイラルフロー値とTDの関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between melt viscosity and TD, and FIG. 2 is a graph showing the relationship between spiral flow value and TD.

Claims (1)

【特許請求の範囲】 1 珪酸アルカリと酸との湿式反応により生成し
た合成シリカの溶融球状化物であつて、粉体とし
てのタツプ密度が1.36g/cm3以上で且つBET比
表面積が0.2〜3m2/gであることを特徴とする
溶融球状シリカ。 2 溶融球状シリカはウラン、トリウムなどのα
線放射性元素の含有率が1ppb以下、Naが1ppm
以下の高純度である特許請求の範囲第1項記載の
溶融球状シリカ。 3 珪酸アルカリと酸との湿式反応を常に酸性領
域で行なつてBET比表面積300m2/g以上の多孔
質合成シリカを生成させる工程;多孔質合成シリ
カを加熱してBET比表面積が50m2/g以下とな
るまで焼成する工程;得られた合成シリカの焼成
物を平均粒径2〜5μmに粉砕する工程;及び該粉
砕物を溶射溶融する工程からなることを特徴とす
る溶融球状シリカの製造方法。
[Scope of Claims] 1. A molten spheroidized synthetic silica produced by a wet reaction between an alkali silicate and an acid, which has a tap density as a powder of 1.36 g/cm 3 or more and a BET specific surface area of 0.2 to 3 m 2 /g of fused spherical silica. 2. Fused spherical silica contains α such as uranium and thorium.
Content of radioactive elements is 1ppb or less, Na is 1ppm
The fused spherical silica according to claim 1, which has the following high purity. 3 A step of producing porous synthetic silica with a BET specific surface area of 300 m 2 /g or more by carrying out a wet reaction between an alkali silicate and an acid always in an acidic region; heating the porous synthetic silica and producing a BET specific surface area of 50 m 2 /g. Production of fused spherical silica characterized by comprising the following steps: firing until the synthetic silica has a particle diameter of 2 to 5 μm; pulverizing the resulting fired synthetic silica to an average particle size of 2 to 5 μm; and spraying and melting the pulverized product. Method.
JP25164087A 1987-10-07 1987-10-07 Molten spherical silica and its production Granted JPH0196008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25164087A JPH0196008A (en) 1987-10-07 1987-10-07 Molten spherical silica and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25164087A JPH0196008A (en) 1987-10-07 1987-10-07 Molten spherical silica and its production

Publications (2)

Publication Number Publication Date
JPH0196008A JPH0196008A (en) 1989-04-14
JPH0466809B2 true JPH0466809B2 (en) 1992-10-26

Family

ID=17225827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25164087A Granted JPH0196008A (en) 1987-10-07 1987-10-07 Molten spherical silica and its production

Country Status (1)

Country Link
JP (1) JPH0196008A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY135619A (en) 2002-11-12 2008-05-30 Nitto Denko Corp Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same
JP5817620B2 (en) * 2012-03-29 2015-11-18 三菱マテリアル株式会社 Method for producing synthetic amorphous silica powder

Also Published As

Publication number Publication date
JPH0196008A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
KR102595535B1 (en) Spherical crystalline silica particles and method for producing the same
KR100793503B1 (en) Non-porous spherical silica and method for production thereof
CN104058405B (en) A kind of remove foreign matter of phosphor and the method for boron in metallic silicon
JP2004131378A (en) Process for manufacturing opaque quartz glass material
US3762936A (en) Manufacture of borosilicate glass powder essentially free of alkali and alkaline earth metals
JPS62176928A (en) Production of quartz glass powder
JPH04219310A (en) Production of non-sintered cristobalite particle
US2573057A (en) Process of preparing white finely divided amorphous silica
WO2007020855A1 (en) Process for producing spherical inorganic particle
JPH0466809B2 (en)
JP2684396B2 (en) Fused spherical silica and sealing resin composition using the same
CN107963632A (en) A kind of porous silica modified material and preparation method thereof
US3956004A (en) Manufacture of granular lead compounds
JPS59189140A (en) Inorganic sphere, production thereof and resin composition containing the same
JPH0431311A (en) Spherical silica, its production, epoxy resin composition and cured product thereof
US2865781A (en) Production of finely divided calcium carbonate
JPH02158637A (en) Silica filler and sealing resin composition using the same
JP4216510B2 (en) Layered silicate and method for producing the same
JPS6065041A (en) Inorganic sphere and composition thereof
JPS6065719A (en) Preparation of lithium aluminate powder
JP2665539B2 (en) Silica filler and sealing resin composition using the same
JP2955672B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
CN114293257B (en) Preparation method of novel blue single-crystal corundum and novel blue single-crystal corundum
JPH04154613A (en) Synthetic silica powder having high purity
JP7480659B2 (en) Transparent glass manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term