JPH0431311A - Spherical silica, its production, epoxy resin composition and cured product thereof - Google Patents
Spherical silica, its production, epoxy resin composition and cured product thereofInfo
- Publication number
- JPH0431311A JPH0431311A JP13601490A JP13601490A JPH0431311A JP H0431311 A JPH0431311 A JP H0431311A JP 13601490 A JP13601490 A JP 13601490A JP 13601490 A JP13601490 A JP 13601490A JP H0431311 A JPH0431311 A JP H0431311A
- Authority
- JP
- Japan
- Prior art keywords
- silica
- spherical
- spherical silica
- range
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 437
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 196
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 36
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 36
- 239000000203 mixture Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000011148 porous material Substances 0.000 claims abstract description 58
- 239000002245 particle Substances 0.000 claims abstract description 35
- 239000000725 suspension Substances 0.000 claims abstract description 35
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 4
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 4
- 150000002367 halogens Chemical class 0.000 claims abstract description 4
- 230000002285 radioactive effect Effects 0.000 claims abstract description 4
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 4
- 239000000945 filler Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 abstract description 35
- 239000010419 fine particle Substances 0.000 abstract description 21
- 229920005989 resin Polymers 0.000 abstract description 13
- 239000011347 resin Substances 0.000 abstract description 13
- 238000001694 spray drying Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 7
- 239000004065 semiconductor Substances 0.000 abstract description 6
- 239000000853 adhesive Substances 0.000 abstract description 5
- 230000001070 adhesive effect Effects 0.000 abstract description 5
- 238000001354 calcination Methods 0.000 abstract description 5
- 238000007789 sealing Methods 0.000 abstract description 5
- 238000005476 soldering Methods 0.000 abstract description 2
- 150000001340 alkali metals Chemical class 0.000 abstract 1
- 150000001342 alkaline earth metals Chemical class 0.000 abstract 1
- 239000008187 granular material Substances 0.000 abstract 1
- 238000005507 spraying Methods 0.000 abstract 1
- 238000010304 firing Methods 0.000 description 29
- 239000008393 encapsulating agent Substances 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- 239000000565 sealant Substances 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000012535 impurity Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 9
- 238000000227 grinding Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 229920003986 novolac Polymers 0.000 description 8
- 238000010298 pulverizing process Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- -1 Silicon alkoxide Chemical class 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 230000015271 coagulation Effects 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N hydrochloric acid Substances Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 4
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N methyl ethyl ketone Substances CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- 229920005573 silicon-containing polymer Polymers 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Substances CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 230000003301 hydrolyzing effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 238000002459 porosimetry Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 125000005372 silanol group Chemical group 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000001238 wet grinding Methods 0.000 description 3
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229940113088 dimethylacetamide Drugs 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical class CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DYMZHQHZULZPES-UHFFFAOYSA-N O[N+]([O-])=O.O[N+]([O-])=O.OS(O)(=O)=O Chemical compound O[N+]([O-])=O.O[N+]([O-])=O.OS(O)(=O)=O DYMZHQHZULZPES-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241000269821 Scombridae Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 235000020640 mackerel Nutrition 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Glanulating (AREA)
- Silicon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、制御された径および容積の細孔を有する球状
シリカ、詳しくは、直径が0.01〜0.1μmの範囲
にある細孔を有し、かつ、それらの細孔の容積が0.0
2〜0.15mj!/gの範囲である球状シリカ及びそ
の製造方法並びにエポキシ樹脂組成物及びその硬化物に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to spherical silica having pores of controlled diameter and volume, specifically pores having a diameter in the range of 0.01 to 0.1 μm. and the volume of those pores is 0.0
2~0.15mj! The present invention relates to spherical silica and its manufacturing method, as well as epoxy resin compositions and cured products thereof.
近時、集積回路の高密度化に伴い、高密度集積回路電子
部品の封止用樹脂組成物(以下、封止材という)中に占
めるチップ面積の割合が増大すると共に、パッケージの
薄型化が進んでいる。このため、薄い封止材でチップを
保護できるよう、封止材の品質に対する要求はますます
厳しくなっている。In recent years, with the increase in the density of integrated circuits, the proportion of the chip area occupied in the encapsulating resin composition (hereinafter referred to as encapsulating material) of high-density integrated circuit electronic components has increased, and the thickness of the package has also been reduced. It's progressing. For this reason, requirements for the quality of the encapsulant are becoming increasingly strict so that the chip can be protected with a thin encapsulant.
かかる要求としては、先ず、耐熱応力性が挙げられる。Such requirements include, first of all, heat stress resistance.
即ち、シリコンチップと封止材それぞれの熱膨張率の差
によって熱応力が生ずるため、熱応力を可及的に小さ(
することが求められる。そこで、封止材の熱膨張率をシ
リコンチップのそれにできるだけ近づけるために、熱膨
張率の小さいシリカを充填材としてできるだけ多く樹脂
に加える方法が採用されている。In other words, thermal stress is generated due to the difference in thermal expansion coefficient between the silicon chip and the encapsulant.
are required to do so. Therefore, in order to bring the coefficient of thermal expansion of the sealing material as close as possible to that of the silicon chip, a method has been adopted in which silica, which has a low coefficient of thermal expansion, is added to the resin as much as possible as a filler.
ところで、充填材用シリカとしては、従来粉砕して製造
された形状が不規則で鋭い角を有する破砕体シリカが広
く用いられていた。しかし、このような破砕体シリカの
充填率の高い封止材は、その粘度が高まって成形時の流
動性が悪化し、所定の特性を有する均質なパッケージが
得られなくなる。また、鋭い角を有する破砕体シリカは
、成形用金型を摩耗させると共に、チップ表面の保護皮
膜を突き抜けてチップ上のアルミ配線を傷つけるおそれ
がある。このようなことから、封止材の流動性を低下さ
せることが少ない、鋭い角の無い球状シリカが求められ
、このような球状シリカを封止材の充填材として使用す
ることが種々提案された。By the way, as filler silica, crushed silica produced by crushing and having an irregular shape and sharp corners has been widely used. However, such a sealing material with a high filling rate of crushed silica has an increased viscosity and deteriorates fluidity during molding, making it impossible to obtain a homogeneous package having predetermined characteristics. Furthermore, crushed silica having sharp edges may wear out the molding die and may penetrate the protective film on the chip surface and damage the aluminum wiring on the chip. For this reason, there is a need for spherical silica without sharp edges that does not reduce the fluidity of the encapsulant, and various proposals have been made to use such spherical silica as a filler in encapsulants. .
従来、かかる封止材用充填材として用いられる球状シリ
カの製造方法としては、
(1) シリカ破砕体を火炎中で溶融する方法(例え
ば、特開昭58−145613号公報)、(2)アルキ
ルシリケートを加水分解して得られたゾル状溶液を加熱
媒体中に噴霧して乾燥造粒し、次いで火炎中で溶融する
方法(例えば、特開昭58−2233号公報)、
(3) シリコンアルコキシドを加水分解して得られ
た部分縮合体ゾルからアルコールを除去した後、これを
水に分散させて沈澱させることにより得られたシリカゲ
ルを焼成する方法(例えば、特開昭63−225538
号公報)などが提案されている。Conventionally, methods for producing spherical silica used as a filler for such sealants include (1) a method of melting crushed silica in a flame (for example, Japanese Patent Application Laid-open No. 145613/1983); (2) a method of melting a crushed silica in a flame; A method in which a sol-like solution obtained by hydrolyzing a silicate is sprayed into a heating medium, dried and granulated, and then melted in a flame (for example, JP-A-58-2233), (3) Silicon alkoxide A method of removing alcohol from a partial condensate sol obtained by hydrolyzing a silica gel, dispersing it in water and precipitating it, and firing the resulting silica gel (for example, Japanese Patent Application Laid-Open No. 63-225538
Publication No. 2), etc. have been proposed.
これらの従来技術におけるシリカの焼成においては、シ
リカの疎水化や焼成体の強度等を考慮して、細孔容積が
0.01ml/g以下になるまで完全に焼成が進む条件
が採用されていた。In the calcination of silica in these conventional techniques, conditions have been adopted in which calcination proceeds completely until the pore volume becomes 0.01 ml/g or less, taking into consideration the hydrophobicization of the silica and the strength of the fired product. .
しかし、上述した従来の球状シリカの製造法はそれぞれ
次の問題点を有している。However, each of the above-mentioned conventional methods for producing spherical silica has the following problems.
即ち、(1)または(2)の方法で得られる粒子は、そ
の表面が滑らか過ぎるために樹脂との接着力が小さく、
封止材用充填材としては適さない、また、火炎溶融法は
、高価な水素や酸素を多量に消費するために経済面の制
約がある。更に、(2)の方法は原料が高価であると共
に、原料由来の有機物を含む排水の処理を必要とする。That is, the particles obtained by method (1) or (2) have a weak adhesive force with the resin because their surfaces are too smooth.
It is not suitable as a filler for sealants, and the flame melting method has economic limitations because it consumes large amounts of expensive hydrogen and oxygen. Furthermore, method (2) requires expensive raw materials and requires treatment of wastewater containing organic matter derived from the raw materials.
一方、(3)の方法では、シリカ粒子の表面にマスクメ
ロン風の凹凸を与えることによって、封止材用充填材と
して用いたとき充填材と樹脂との接着力を高めようと試
みているが、破砕体シリカに比してなお十分なレベルに
達していない。On the other hand, in method (3), an attempt is made to increase the adhesive strength between the filler and the resin when used as a filler for a sealant by giving the surface of the silica particles a cantaloupe-like unevenness. , it still has not reached a sufficient level compared to crushed silica.
このように従来提案されている球状シリカは、封止材中
の充填率を高めたときに封止材の流動性が悪化すること
を防ぐことはできるが、樹脂とのなじみが悪く、接着強
度が劣り、パッケージの割れの原因となり易い。このよ
うなことがら封止材用充填材として球状シリカの改良が
強く求められている。In this way, the previously proposed spherical silica can prevent the fluidity of the encapsulant from deteriorating when the filling rate in the encapsulant is increased, but it has poor compatibility with the resin and has poor adhesive strength. It is inferior in quality and can easily cause the package to crack. For these reasons, there is a strong demand for improvements in spherical silica as a filler for sealants.
従って、本発明の目的は、樹脂に対する充填率が60〜
90重量%の範囲にあるような多量を配合しても封止材
の流動性を低下させることが少なく、かつ、樹脂とのな
じみがよい上、接着強度が大きく、封止体の強度を増大
させることができる球状シリカとその製造方法並びに半
導体封止に適したエポキシ樹脂組成物及びその硬化物を
提供するものである。Therefore, the object of the present invention is to achieve a resin filling rate of 60 to 60.
Even when blended in a large amount in the range of 90% by weight, the fluidity of the encapsulant is unlikely to decrease, and it is compatible with the resin, has high adhesive strength, and increases the strength of the encapsulant. The present invention provides spherical silica, a method for producing the same, an epoxy resin composition suitable for semiconductor encapsulation, and a cured product thereof.
〔課題を解決するための手段および作用〕本発明者らは
、上記目的を達成するため鋭意検討を進めた結果、球状
シリカが保有する細孔の径および容積を制御することに
より、封止材用充填材に適した球状シリカが得られるこ
とを知った。[Means and effects for solving the problem] As a result of intensive studies to achieve the above object, the present inventors have found that by controlling the diameter and volume of pores possessed by spherical silica, a sealing material can be developed. It was discovered that spherical silica suitable for use as a filler material can be obtained.
一般に、従来技術におけるシリカの焼成においては、シ
リカの疎水化や焼結体の強度等を考慮して細孔容積が0
.01sIJ/g以下になるまで完全に焼成が進む条件
が採用されている。In general, when firing silica in conventional techniques, the pore volume is reduced to 0, taking into account hydrophobicization of the silica, strength of the sintered body, etc.
.. Conditions are adopted that allow the firing to proceed completely until the temperature reaches 01 sIJ/g or less.
これに対して、本発明者らは封止用樹脂が侵入できる程
度の細孔を有するシリカ粒子は、封止材用充填材として
用いられたとき封止体の強度をむしろ向上させるのでは
ないかと考え、充填材としてのシリカ粒子が保有する細
孔径ならびに細孔容積と、このような充填材を配合した
封止材で成型して得られた封止体の強度との関係を検討
した。In contrast, the present inventors found that silica particles having pores large enough to allow the sealing resin to penetrate do not actually improve the strength of the sealed body when used as a filler for the sealant. Considering this, we investigated the relationship between the pore diameter and pore volume possessed by silica particles as a filler and the strength of a sealed body obtained by molding a sealing material containing such a filler.
その結果、充填材としてのシリカ粒子の細孔容積と封止
体強度との間には密接な関係があり、驚くべきことに、
細孔容積が大きくなる程、封止体の強度を増大させると
いう知見を得た。更に、かかる知見に基づき鋭意研究を
進めた結果、重量平均粒子径が10μ醜以下である非晶
質シリカの懸濁液を噴霧乾燥して得られた球形造粒シリ
カを温度1000〜1300℃の範囲で適宜な時間焼成
することにより、直径が0.O1〜0.1μ厘の範囲で
ある細孔の容積が0.02〜0.15mJ/gの範囲の
球状シリカが得られると共に、この球状シリカが封止材
用充填材として優れた特性を有し、上記目的を効果的に
達成し得ることを見い出し、本発明を完成した。As a result, surprisingly, there is a close relationship between the pore volume of silica particles as a filler and the strength of the sealed body.
It was found that the larger the pore volume, the greater the strength of the sealed body. Furthermore, as a result of intensive research based on this knowledge, spherical granulated silica obtained by spray drying a suspension of amorphous silica with a weight average particle size of 10 μm or less was dried at a temperature of 1000 to 1300°C. By firing within the range for an appropriate time, the diameter becomes 0. Spherical silica having a pore volume of 0.02 to 0.15 mJ/g, which is in the range of O1 to 0.1 μL, is obtained, and this spherical silica has excellent properties as a filler for a sealant. However, the inventors have discovered that the above object can be effectively achieved, and have completed the present invention.
従って、本発明は、
第一の発明として、直径が0.01〜0.1μmの範囲
にある細孔を有し、かつ、前記範囲の直径を有する細孔
の容積が0.02〜0.15mff1/gの範囲である
球状シリカを提供する。Therefore, the present invention, as a first invention, has pores with a diameter in the range of 0.01 to 0.1 μm, and the volume of the pores with the diameter in the range is 0.02 to 0.1 μm. Provided is spherical silica in the range of 15 mff1/g.
また、第二の発明として、重量平均粒子径が10μ■以
下である非晶質シリカの懸濁液を噴霧乾燥して球形造粒
シリカを得、次いで該球形造粒シリカを温度1000〜
1300℃の範囲で焼成して、直径が0.01〜0.1
μ腸の範囲にある細孔を有し、かつ、前記範囲の直径を
有する細孔の容積が0.02〜0.15sj!/gの範
囲である球状シリカを得ることを特徴とする球状シリカ
の製造方法を提供する。In addition, as a second invention, spherical granulated silica is obtained by spray drying a suspension of amorphous silica having a weight average particle size of 10 μ■ or less, and then the spherical granulated silica is heated at a temperature of 1000 to
Fired in the range of 1300℃, the diameter is 0.01~0.1
It has pores in the range of the μ intestine, and the volume of the pores with a diameter in the above range is 0.02 to 0.15 sj! Provided is a method for producing spherical silica, characterized by obtaining spherical silica having a weight of 1/g.
なおまた、第三の発明として、上記球状シリカを充填材
として含有することを特徴とするエポキシ樹脂組成物を
提供する。Furthermore, as a third invention, there is provided an epoxy resin composition characterized by containing the above-mentioned spherical silica as a filler.
更に、第4の発明として、上記エポキシ樹脂組成物を硬
化してなるエポキシ樹脂硬化物を提供する。Furthermore, as a fourth invention, there is provided a cured epoxy resin product obtained by curing the above-mentioned epoxy resin composition.
なお、本発明において、球状シリカとは、一つのシリカ
粒子における最大直径に対する最小直径の比が1〜0.
6の範囲であるものをいう。In the present invention, spherical silica is defined as one silica particle having a ratio of the minimum diameter to the maximum diameter of 1 to 0.
6.
以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.
本発明の第一発明に係る球状シリカは、上述したように
直径が0801〜0.1μmの範囲にある細孔を有し、
かつ、それらの細孔の容積が0.02〜0.15sI!
/gの範囲にあるものである。As mentioned above, the spherical silica according to the first aspect of the present invention has pores with a diameter in the range of 0801 to 0.1 μm,
And the volume of those pores is 0.02 to 0.15 sI!
/g.
ここで、本発明の球状シリカは、封止材として好適に用
いられるエポキシ樹脂組成物の充填材として有効に使用
されるものであるが、封止材用充填材としての球状シリ
カが保有する封止体の強度に寄与する細孔は、その径が
0.01〜o、1μmの範囲である。細孔径が0.01
μ■より小さくなると、細孔中に水分は浸透できても樹
脂の浸透は困難になる。また、径が0.01μmより小
さい細孔が存在することは焼成の程度が充分でないこと
を示していて好ましくなく、このような球状シリカは強
度が弱く、使用に耐えない。一方、径が0.1μmより
大きい細孔は、封止体の強度向上への寄与がほとんど認
められない。Here, the spherical silica of the present invention is effectively used as a filler in an epoxy resin composition that is suitably used as a sealant, but the spherical silica as a filler for a sealant has a The diameter of the pores that contribute to the strength of the stopper is in the range of 0.01 to 1 μm. Pore diameter is 0.01
If the diameter is smaller than μ■, even if moisture can penetrate into the pores, it becomes difficult for the resin to penetrate. Further, the presence of pores with a diameter smaller than 0.01 μm is not preferable as it indicates that the degree of sintering is insufficient, and such spherical silica has low strength and cannot be used. On the other hand, pores with a diameter larger than 0.1 μm hardly contribute to improving the strength of the sealed body.
次に、前記範囲の細孔の容積については、その値が0.
02mf/gより小さいと封止体強度向上への寄与はほ
とんど認められなく、一方、0.15m l / gよ
り大きくなると封止体強度を著しく増加させるが、成型
の際に封止材の流動性を著しく低下させるので、封止材
用充填材としては適さない。Next, regarding the pore volume in the above range, the value is 0.
If it is smaller than 0.02mf/g, there is almost no contribution to improving the strength of the sealing body, while if it is larger than 0.15ml/g, it will significantly increase the strength of the sealing body, but the flow of the sealant during molding will increase. It is not suitable as a filler for sealants because it significantly reduces the properties.
従って、封止材成型時の流動性と得られた封止体の強度
とが共に良好であるのは、封止材用充填材とL7て用い
られた球状シリカが0.01〜0.1μ鰺、より好まし
くは0.02〜0.08μmの範囲の直径の細孔を保有
し、かつ、それら細孔の容積が0.02〜0.15s!
!/g、より好ましくは0.03〜0.1+wI!/g
の範囲である場合である。Therefore, the reason why both the fluidity during molding of the encapsulant and the strength of the obtained encapsulant are good is that the spherical silica used as the filler for the encapsulant and L7 is 0.01 to 0.1 μm. Mackerel, more preferably has pores with a diameter in the range of 0.02 to 0.08 μm, and the volume of these pores is 0.02 to 0.15 s!
! /g, more preferably 0.03-0.1+wI! /g
This is the case when the range is within the range of .
第二の発明の球状シリカの製造方法は、次の工程から構
成される。The method for producing spherical silica according to the second invention is comprised of the following steps.
〈工程−1>:(li粒子シリカ懸濁液調製工程)非晶
質で、重量平均粒子径が10μ醜以下である微粒子シリ
カを含む懸濁液を調製する工程。<Step-1>: (Li particle silica suspension preparation step) A step of preparing a suspension containing fine particle silica that is amorphous and has a weight average particle diameter of 10 μm or less.
〈工程−2〉: (球形造粒シリカ製造工程)工程−1
で得られた微粒子シリカ懸濁液を噴霧乾燥法によって造
粒乾燥し、球形造粒シリカを得る工程。<Step-2>: (Spherical granulated silica manufacturing process) Step-1
A step of granulating and drying the fine particle silica suspension obtained in step 1 by a spray drying method to obtain spherical granulated silica.
〈工程−3〉: (球形造粒シリカ焼結工程)工程−2
で得られた球形造粒シリカを焼成し、制御された径と容
積の細孔を有する球状シリカへ変換する工程。<Step-3>: (Spherical granulated silica sintering step) Step-2
A process of firing the spherical granulated silica obtained in step 1 and converting it into spherical silica having pores of controlled diameter and volume.
以下、前記各工程について順次説明する。Each of the steps described above will be explained in sequence below.
〔1〕微粒子シリカ懸濁液調製工程(工程−1)本発明
の方法を実施する場合において、原料となる非晶質シリ
カ中の不純物含有率は限定されないが、目的とする球状
シリカの用途に応じて不純物含有率の低い高純度非晶質
シリカを用いることが好ましい。[1] Particulate silica suspension preparation step (Step-1) When carrying out the method of the present invention, the impurity content in the raw material amorphous silica is not limited, but it may be Accordingly, it is preferable to use high-purity amorphous silica with a low impurity content.
特に、高密度集積回路電子部品の封止材用充填材として
用いられる球状シリカを製造する場合には、本発明の方
法において原料として使用される非晶質シリカおよび得
られた球状シリカは、■ Na、 Kなどのアルカリ
金属元素、Mg、 Caなどのアルカリ土類金属元素お
よびハロゲン類元素の含有率が各々]、ppm以下であ
り、かつ、■U。In particular, when producing spherical silica used as a filler for encapsulants in high-density integrated circuit electronic components, the amorphous silica used as a raw material in the method of the present invention and the obtained spherical silica are: The content of alkali metal elements such as Na and K, alkaline earth metal elements such as Mg and Ca, and halogen elements is 1 ppm or less, and 1)U.
Thなどの放射性元素の含有率が各々1 ppb以下で
あるものであることが好ましい。It is preferable that the content of each radioactive element such as Th is 1 ppb or less.
このような不純物含有率の低い高純度非晶質シリカは、
本発明者等が先に提案したたとえば特開昭62−301
1号または特開昭62−283809号各公報記数の方
法により、アルカリ金属珪酸塩水溶液を水混和性有機媒
体または酸溶液中に細孔から押し出して得られた微細な
繊維状凝固物を酸含有液で処理した後、水洗して不純物
を抽出除去することによって得ることができる。また、
この場合、アルコキシドを原料として用いることもでき
る。High purity amorphous silica with low impurity content is
For example, in JP-A-62-301 proposed by the present inventors,
No. 1 or JP-A No. 62-283809, a fine fibrous coagulum obtained by extruding an aqueous alkali metal silicate solution through pores into a water-miscible organic medium or an acid solution is acidified. It can be obtained by treating with a containing liquid and then washing with water to extract and remove impurities. Also,
In this case, alkoxides can also be used as raw materials.
アルカリ金属珪酸塩水溶液を原料として用いたときの実
施の態様としては、予め粘度が2〜500ポイズの範囲
に調製されたアルカリ金属珪酸塩水溶液を、孔径が0.
02〜1fiの範囲であるノズルから水混和性有機媒体
または酸溶液からなる凝固浴中に押し出して、繊維状な
いし柱状あるいは粒状に凝固させ、得られたゲルを酸含
有液で処理した後、水洗する。In an embodiment when an alkali metal silicate aqueous solution is used as a raw material, an alkali metal silicate aqueous solution prepared in advance to have a viscosity in the range of 2 to 500 poise is mixed with a pore size of 0.
The gel is extruded into a coagulation bath consisting of a water-miscible organic medium or an acid solution through a nozzle in the range of 0.02 to 1 fi to coagulate it into a fibrous, columnar or granular form, and the resulting gel is treated with an acid-containing liquid and then washed with water. do.
上記方法によって、前記の、更にはf41.Fe。By the above method, the f41. Fe.
Tiなどの遷移金属元素などの各種の不純物含有率がい
ずれも1ppm以下である高純度非晶質シリカを得るこ
とができる。High purity amorphous silica can be obtained in which the content of various impurities such as transition metal elements such as Ti is 1 ppm or less.
なお、凝固浴に用いられる水混和性有機媒体としては、
例えば、メタノール、エタノール、 n −プロパツ
ール等のアルコール類、酢酸メチル、酢酸エチル等のエ
ステル類、アセトン2メチルエチルケトン等のケトン類
、ジメチルアセトアミド。The water-miscible organic medium used in the coagulation bath is as follows:
For example, alcohols such as methanol, ethanol, and n-propanol, esters such as methyl acetate and ethyl acetate, ketones such as acetone 2-methyl ethyl ketone, and dimethyl acetamide.
ジメチルホルムアミドなどのアミド類、ジメチルスルフ
オキシド等を挙げることができる。Amides such as dimethylformamide, dimethyl sulfoxide, etc. can be mentioned.
また、凝固浴に用いられる酸としては、硫酸。In addition, the acid used in the coagulation bath is sulfuric acid.
硝酸9塩酸などの無機酸を挙げることができるが、特に
硫酸、硝酸を用いるのが好ましく、酸溶液としては、実
用上、これらの酸の水溶液が好ましい。Inorganic acids such as nitric acid and 9-hydrochloric acid can be mentioned, but it is particularly preferable to use sulfuric acid and nitric acid, and as the acid solution, an aqueous solution of these acids is practically preferable.
酸濃度は、0.1〜4規定、好ましくは0.5〜3規定
、更に好ましくは1〜2規定の範囲である。The acid concentration is in the range of 0.1 to 4N, preferably 0.5 to 3N, more preferably 1 to 2N.
凝固浴温度は、25℃以上、好ましくは40〜80℃の
範囲に保持するのがよい。The coagulation bath temperature is preferably maintained at 25°C or higher, preferably in the range of 40 to 80°C.
アルカリ金属珪酸塩水溶液と酸とを反応させて得られた
シリカの精製には、硫酸2硝酸、塩酸などの鉱酸、過酸
化水素などの過酸化物およびキレート剤などから選ばれ
た物質を含む水溶液による洗浄など、公知の方法を用い
ることができる。The purification of silica obtained by reacting an aqueous alkali metal silicate solution with an acid includes substances selected from mineral acids such as sulfuric acid dinitric acid and hydrochloric acid, peroxides such as hydrogen peroxide, and chelating agents. Known methods such as washing with an aqueous solution can be used.
このようにして得られた非晶質シリカを湿式粉砕して微
粒子シリカ懸濁液を調製する。The amorphous silica thus obtained is wet-pulverized to prepare a fine-particle silica suspension.
湿式粉砕には、通常の装置、たとえば、ポットミル、チ
ューブミル、コニカルボールミルまたはコンパートメン
トミルなどの転勤ボールミル、振動ボールミル、または
塔式粉砕機、撹拌槽型ミルなどの媒体撹拌ミルなどを用
いることができ、好ましくは、転勤ボールミル、振動ボ
ールミルが用いられる。For wet milling, conventional equipment can be used, such as pot mills, tube mills, transfer ball mills such as conical ball mills or compartment mills, vibrating ball mills, or media agitation mills such as tower mills, stirred tank mills, etc. Preferably, a transfer ball mill or a vibratory ball mill is used.
なお、砕料と接触する粉砕装置要部や必要によって用い
られるボール、ロッドなどの粉砕媒体の材質は、通常の
場合、アルミナ、ジルコニア、プラスチック被覆鋼、炭
化ケイ素または窒化ケイ素などから形成することができ
、また、アルミニウム、ジルコニウムなどの混入が好ま
しくない場合には、石英ガラス、溶融石英、水晶、瑞逼
または珪石などの珪酸質材料の中から適宜選択すればよ
い。In addition, the materials of the main parts of the crushing device that come into contact with the crushed material and the crushing media such as balls and rods used as necessary are usually made of alumina, zirconia, plastic-coated steel, silicon carbide, or silicon nitride. In addition, if mixing of aluminum, zirconium, etc. is undesirable, a suitable material may be selected from silicic materials such as quartz glass, fused silica, crystal, azure, or silica stone.
また、必要によって用いられるボールなどの剛体からな
る粉砕媒体の大きさは、直径が0.5〜25鶴の範囲、
好ましくは1〜10鶴の範囲である。特に、平均粒径が
1μ鋼以下である超微粒子シリカを得ようとする場合に
用いられる粉砕媒体は、直径が1〜5fiの範囲である
ものが好ましい。In addition, the size of the grinding medium made of a rigid body such as a ball, which may be used as necessary, is in the range of 0.5 to 25 mm in diameter;
Preferably it is in the range of 1 to 10 cranes. In particular, when it is desired to obtain ultrafine silica particles having an average particle diameter of 1 μm or less, the grinding media used preferably have a diameter in the range of 1 to 5 fi.
本発明の方法において、湿式粉砕の際の分散媒体として
は水が用いられ、結合剤としてコロイダルシリカ、カル
ボキシメチルセルロースなどを添加することもできる。In the method of the present invention, water is used as a dispersion medium during wet grinding, and colloidal silica, carboxymethyl cellulose, etc. can also be added as a binder.
また、分散媒体として液体有機化合物を用いることがで
き、水溶性液体有機化合物の具体例としては、メタノー
ル、エタノールなどのアルコール類、ホルムアミド、ジ
メチルホルムアミド、ジメチルアセトアミドなどのアミ
ド類、アセトン、メチルエチルケトンなどのケトン類な
どを挙げることができる。また、水と水溶性有機化合物
との混合物を分散媒体とすることもできる。In addition, a liquid organic compound can be used as a dispersion medium, and specific examples of water-soluble liquid organic compounds include alcohols such as methanol and ethanol, amides such as formamide, dimethylformamide, and dimethylacetamide, acetone, and methyl ethyl ketone. Examples include ketones. Moreover, a mixture of water and a water-soluble organic compound can also be used as a dispersion medium.
水性媒体を用いた場合の粉砕時の系のpHは、2〜11
の範囲、好ましくは2〜5または7〜11の範囲がよい
。粉砕時の系のpHが2未満では酸の含有率が高まり、
また、11を超えると媒体へのシリカの溶解度が高まる
ので好ましくない、更に、5を超え7未満の範囲では得
られるシリカ懸濁液の流動性が低下する傾向がある。p
Hの調節に際しては、酸としては硫酸、塩酸などの鉱酸
、また、アルカリとしてはアンモニア、メチルアミンな
どのアミン類を用いることができる。When using an aqueous medium, the pH of the system during grinding is between 2 and 11.
, preferably 2 to 5 or 7 to 11. If the pH of the system during pulverization is less than 2, the acid content increases,
Further, when it exceeds 11, the solubility of silica in the medium increases, which is undesirable.Furthermore, when it exceeds 5 and is less than 7, the fluidity of the obtained silica suspension tends to decrease. p
In adjusting H, mineral acids such as sulfuric acid and hydrochloric acid can be used as acids, and amines such as ammonia and methylamine can be used as alkalis.
本工程で湿式粉砕する非晶質シリカは、前記処理におい
て、水洗後で洗浄水を分離する前のスラリー状のもの、
洗浄水を分離して得られた湿った状態のもの、適宜の方
法で乾燥処理して得られた乾燥状態のもの、または適宜
の方法で加熱して焼成処理を施したものを用いることが
できる。これらは、各々単独で、または任意の割合に混
合して湿式粉砕することができる。The amorphous silica to be wet-pulverized in this step is a slurry-like silica that has not been washed with water and separated from the washing water in the above treatment;
A wet product obtained by separating the washing water, a dry product obtained by drying using an appropriate method, or a dry product obtained by heating and firing using an appropriate method can be used. . These can be wet-pulverized individually or mixed in any proportion.
なお、非晶質シリカを適宜の条件で焼成処理すると、シ
リカ粒子の細孔容積ならびにシラノール基濃度を調整す
ることができる。この場合、粉砕用原料非晶質シリカの
焼成温度は好ましくは500〜1300℃、更に好まし
くは800〜1290℃の範囲であり、湿式粉砕用原料
として、細孔容積が小さくシラノール基濃度が低いシリ
カを用いると、シリカ懸濁液の粘度の増大が比較的小さ
いので、取り扱いが可能な微粒子シリカ懸濁液中のシリ
カ濃度の限界を高めることができる。Note that by firing amorphous silica under appropriate conditions, the pore volume and silanol group concentration of the silica particles can be adjusted. In this case, the firing temperature of the raw material amorphous silica for grinding is preferably in the range of 500 to 1300°C, more preferably 800 to 1290°C. Since the increase in the viscosity of the silica suspension is relatively small, it is possible to increase the limit of the silica concentration in the fine-particle silica suspension that can be handled.
粉砕装置への原料シリカおよび粉砕媒体それぞれの充填
量、粉砕媒体の径の選択と組合せなどの粉砕処理の条件
は、原料シリカの組み合わせおよび目的とする微粒子シ
リカの平均粒径や懸濁液中のシリカ濃度などによって適
宜に選択するが、通常、湿式粉砕して得られる微粒子シ
リカ懸濁液中のシリカ濃度は、焼成処理を行わないシリ
カを用いた場合に5〜45重量%、焼成処理を行ったシ
リカを用いた場合には、焼成処理の条件によって変化し
、30〜80重量%の範囲である。The conditions of the grinding process, such as the amount of raw silica and grinding media loaded into the grinding device, and the selection and combination of the diameters of the grinding media, are determined by the combination of raw silica, the average particle size of the target fine silica, and the amount of silica in the suspension. The silica concentration is selected appropriately depending on the silica concentration, etc., but the silica concentration in the fine particle silica suspension obtained by wet pulverization is usually 5 to 45% by weight when using silica without calcination treatment, and 5 to 45% by weight when silica without calcination treatment is used. When using silica, the amount varies depending on the conditions of the firing process, and is in the range of 30 to 80% by weight.
ここで、工程−2において製造される球形造粒シリカを
構成するシリカ粒子の平均粒径は、次の工程−3におい
て焼成されて得られるシリカの緻密性と強度を支配する
重要な因子であり、焼結処理されるシリカ粒子の平均粒
径が小さい程、工程−3において得られる球状シリカが
緻密になる。Here, the average particle diameter of the silica particles constituting the spherical granulated silica produced in Step-2 is an important factor governing the density and strength of the silica obtained by firing in the next Step-3. The smaller the average particle diameter of the silica particles to be sintered, the more dense the spherical silica obtained in step-3 becomes.
従って、この工程−1で湿式粉砕して得られる微粒子シ
リカの平均粒径は、10μm以下であることが必要で、
好ましくは5μm以下、更に好ましくは0.3〜1μm
の範囲である。平均粒径が10μmを超えると焼結処理
に要する温度が高くなり過ぎ、粒子内の焼結と共に粒子
間の焼結が進み、目的とする球状シリカを得ることがで
きない。Therefore, the average particle size of the fine silica particles obtained by wet grinding in this step-1 must be 10 μm or less,
Preferably 5 μm or less, more preferably 0.3 to 1 μm
is within the range of When the average particle size exceeds 10 μm, the temperature required for the sintering process becomes too high, and sintering between particles progresses as well as within the particles, making it impossible to obtain the desired spherical silica.
なお、平均粒径が1μm以下である超微粒子状のシリカ
、例えばエアロジルシリカを原料として用いた場合には
、前記の湿式粉砕処理を行う必要はない。この場合には
所望のシリカ濃度になるよう原料シリカを水媒体に分散
させればよい。Note that when ultrafine silica particles having an average particle size of 1 μm or less, such as Aerosil silica, are used as a raw material, it is not necessary to perform the above-mentioned wet pulverization treatment. In this case, raw silica may be dispersed in an aqueous medium to obtain a desired silica concentration.
〔2〕球形造粒シリカ製造工程(工程−2)この工程に
おいては、工程−1で調製した微粒子シリカ懸濁液を噴
霧乾燥法によって熱風の流れの中に噴霧し、球形に造粒
し乾燥させて球形造粒シリカを製造する。[2] Spherical granulated silica manufacturing process (Step-2) In this step, the fine-particle silica suspension prepared in Step-1 is sprayed into a stream of hot air using a spray drying method, granulated into spherical shapes, and dried. to produce spherical granulated silica.
本発明の方法における噴霧乾燥に際しての微粒子シリカ
懸濁液を噴霧する方向と熱風の流れの方向との関係は、
並流、向流、混合流のいづれでも選択することができる
。また、乾燥域に熱風を多段に供給することもできる。The relationship between the direction in which the fine particle silica suspension is sprayed and the direction in which the hot air flows during spray drying in the method of the present invention is as follows:
You can choose between parallel flow, countercurrent flow, and mixed flow. Moreover, hot air can also be supplied to the drying area in multiple stages.
微粒子シリカ懸濁液の噴霧方式としては、遠心式、圧力
ノズル式、2流体ノズル式などの各種の機構を用いるこ
とができる。Various mechanisms such as a centrifugal type, a pressure nozzle type, and a two-fluid nozzle type can be used to spray the particulate silica suspension.
本発明の方法において、噴霧乾燥して得られる球形造粒
シリカの粒径は、0.1fi以下であることがよい。こ
れにより、工程−3で焼成して得られる球状シリカの粒
径を0.1鶴ないしそれ以下とすることができ、粒径1
〜100μmの範囲の球状シリカを得ることができる。In the method of the present invention, the particle size of the spherical granulated silica obtained by spray drying is preferably 0.1 fi or less. As a result, the particle size of the spherical silica obtained by firing in step-3 can be reduced to 0.1 or less, and the particle size is 1.
Spherical silica in the range of ~100 μm can be obtained.
また、噴霧乾燥する微粒子シリカ懸濁液中のシリカ濃度
は5〜80重量%、好ましくは10〜60重量%の範囲
であり、熱風温度は10〜450℃、好ましくは30〜
250℃の範囲であり、噴霧乾燥する微粒子シリカ懸濁
液のpHは2〜11の範囲がよい。The silica concentration in the fine particle silica suspension to be spray dried is in the range of 5 to 80% by weight, preferably 10 to 60% by weight, and the hot air temperature is 10 to 450°C, preferably 30 to 60%.
The temperature is preferably in the range of 250°C, and the pH of the fine particle silica suspension to be spray dried is preferably in the range of 2 to 11.
なお、噴霧乾燥に際して、微粒子シリカ懸濁液中のシリ
カ濃度が低く熱風温度が高い場合には、造粒シリカが球
形で得られず、中空状になったり粒子表面に大きな凹み
を生ずることがある。これを防ぐには、微粒子シリカ懸
濁液中のシリカ濃度を高め、熱風温度は低くすることが
好ましい。In addition, during spray drying, if the silica concentration in the particulate silica suspension is low and the hot air temperature is high, granulated silica may not be obtained in a spherical shape, and may become hollow or have large dents on the particle surface. . To prevent this, it is preferable to increase the silica concentration in the particulate silica suspension and lower the hot air temperature.
また、本工程で球形造粒シリカを得る場合の原料として
、工程−1において前記各種状態の非晶質シリカをそれ
ぞれ単独で湿式粉砕した後に、得られた微粒子シリカ懸
濁液を適宜の割合に混合したものを本工程における球形
造粒シリカ製造用の原料として用いることができる。In addition, as a raw material for obtaining spherical granulated silica in this step, after wet-pulverizing the amorphous silica in various states individually in step-1, the resulting fine particle silica suspension is mixed in an appropriate ratio. The mixture can be used as a raw material for producing spherical granulated silica in this step.
〔3〕球形造粒シリカ焼成工程(工程−3)この工程で
は、工程−2で得た球形造粒シリカを焼成し、本発明が
目的とする球状シリカを得る。[3] Spherical granulated silica firing step (Step-3) In this step, the spherical granulated silica obtained in Step-2 is fired to obtain the spherical silica targeted by the present invention.
工程−2で得られた非晶質シリカの水性媒体懸濁液を噴
霧乾燥して得られた球形造粒シリカは、なお多量の水分
を含むと共に多数の細孔を有し、また粉砕処理で得られ
た微粒子シリカが相互に単に軽度に凝集しているのみで
あるので、このままでは封止材用充填材として適さない
。The spherical granulated silica obtained by spray-drying the suspension of amorphous silica in an aqueous medium obtained in step-2 still contains a large amount of water and has many pores, and it cannot be pulverized by the pulverization process. Since the obtained particulate silica is only slightly aggregated with each other, it is not suitable as a filler for a sealant as it is.
従って、本工程における焼成処理の目的は、■ 球形造
粒シリカ中の残留水分を除去し、更に存在するシラノー
ル基を0.1重量%程度ないしそれ以下に減少させてシ
リカ粒子を疎水化する、■ 球形造粒シリカを構成する
シリカ粒子が有する細孔を閉孔させ、シリカ粒子を緻密
で、かつ、水分が浸透し難い構造に変化させる
ものであり、これにより、直径が0.01〜0.1μm
の範囲である細孔を保有し、かつ、それらの細孔の容積
が0.02〜0.15sl/Hの範囲の本発明の目的と
する球状シリカを得るものである。Therefore, the purpose of the firing treatment in this step is: (1) to remove the residual moisture in the spherical granulated silica, and further reduce the existing silanol groups to about 0.1% by weight or less to make the silica particles hydrophobic; ■ It closes the pores of the silica particles that make up spherical granulated silica, changing the silica particles into a dense structure that is difficult for moisture to penetrate. .1μm
The purpose of the present invention is to obtain spherical silica having pores in the range of 0.02 to 0.15 sl/H and having the pore volume in the range of 0.02 to 0.15 sl/H.
ここで、焼成は加熱処理によって行う。この場合、前記
■および■の目的を達成できる焼成温度は1000℃以
上であり、特に1100〜1300℃の範囲がよい。加
熱温度が1000℃未満では、前記のおよび■の目的を
達成する上でいずれも不充分である。Here, the firing is performed by heat treatment. In this case, the firing temperature that can achieve the objectives (1) and (2) above is 1000°C or higher, particularly preferably in the range of 1100 to 1300°C. If the heating temperature is less than 1000°C, it is insufficient to achieve the above objectives (1) and (2).
例えば、前記〔1〕の方法で得た非晶質シリカを温度8
00℃で焼成して得られたシリカでは、2重量%相当量
のシラノール基が残留しており(1250℃焼成法)、
また、比表面積は500ra”/gで、なお多数の細孔
が残存している。このシリカは、温度20℃で相対湿度
70%の雰囲気に3日間曝露したところ、3重量%相当
量の水分を吸収した。For example, the amorphous silica obtained by the method [1] above is heated to 8
In the silica obtained by firing at 00°C, silanol groups equivalent to 2% by weight remain (1250°C firing method),
In addition, the specific surface area is 500 ra''/g, and many pores still remain.When this silica was exposed to an atmosphere with a temperature of 20°C and a relative humidity of 70% for 3 days, it contained water equivalent to 3% by weight. absorbed.
従って、前記範囲の径および容積の細孔を有する球状シ
リカを得る焼成条件は、温度1000〜1300℃、好
ましくは1100〜1290℃、更に好ましくは120
0〜1280℃の範囲である。そして、焼成時間は1分
〜10時間、好ましくは30分〜6時間、更に好ましく
は1〜5時間の範囲である。焼成条件としての温度と時
間との組合せは、工程−1で調製された噴霧乾燥前の微
粒子シリカ懸濁液中のシリカの粒径に応じて適宜に選択
する。この段階におけるシリカの平均粒径が小さいほど
、前記物性を付与する焼成条件は低温−短時間側へ移動
する。Therefore, the firing conditions for obtaining spherical silica having pores with a diameter and volume in the above range are a temperature of 1000 to 1300°C, preferably 1100 to 1290°C, more preferably 120°C.
It is in the range of 0 to 1280°C. The firing time is in the range of 1 minute to 10 hours, preferably 30 minutes to 6 hours, and more preferably 1 to 5 hours. The combination of temperature and time as the firing conditions is appropriately selected depending on the particle size of the silica in the fine particle silica suspension before spray drying prepared in step-1. The smaller the average particle size of silica at this stage, the more the firing conditions for imparting the above-mentioned physical properties move toward lower temperatures and shorter times.
焼成処理を行う雰囲気は、特に制限されず、Ar 、
Heなどの不活性ガス雰囲気、空気などの酸化性雰囲気
、水素などの還元性雰囲気、水蒸気雰囲気、またシリカ
中の不純物を効果的に除去できる塩素含有雰囲気を用い
ることができる。The atmosphere in which the firing process is performed is not particularly limited, and may include Ar,
An inert gas atmosphere such as He, an oxidizing atmosphere such as air, a reducing atmosphere such as hydrogen, a water vapor atmosphere, or a chlorine-containing atmosphere that can effectively remove impurities in silica can be used.
また、加熱源は任意であり、電熱または燃焼ガスを経済
的な見地から使用することができる。その他、プラズマ
加熱、イメージ炉を用いることもできる。Moreover, the heating source is optional, and electric heat or combustion gas can be used from an economical point of view. In addition, plasma heating and an image furnace can also be used.
以上のようにして得られた球状シリカは、上述したよう
に直径が0.01〜0.1μmの細孔を有し、かつ該細
孔の容積が0.02〜0.15mI!/gであるもので
、本発明で得られる球状シリカは、エポキシ樹脂組成物
の充填材として好適であり、これを半導体封止用エポキ
シ樹脂組成物に用いると、低膨張係数、高流動性及び高
強度でかつ高信顧性といった利点を有するエポキシ樹脂
組成物を得ることができる。The spherical silica obtained as described above has pores with a diameter of 0.01 to 0.1 μm as described above, and a volume of the pores of 0.02 to 0.15 mI! /g, and the spherical silica obtained in the present invention is suitable as a filler for epoxy resin compositions, and when used in epoxy resin compositions for semiconductor encapsulation, it has a low expansion coefficient, high fluidity and An epoxy resin composition having the advantages of high strength and high reliability can be obtained.
ここで、本発明の球状シリカを充填材とする半導体封止
用エポキシ樹脂組成物につき更に詳述すルト、エポキシ
樹脂組成物はエポキシ樹脂(a)と硬化剤(b)と上記
した球状シリカ(C)とを含有する。Here, the epoxy resin composition for semiconductor encapsulation containing spherical silica as a filler of the present invention will be described in more detail. C).
この場合、本発明に使用するエポキシ樹脂(alは1分
子中に2個以上のエポキシ基を有するものであれば特に
制限はなく、例えばオルソクレゾールノボランク型エポ
キシ樹脂、フェノールノボラック型エポキシ樹脂、脂環
式エポキシ樹脂、ビスフェノール型エポキシ樹脂、置換
又は非置換のトリフエノールアルカン型エポキシ樹脂、
上記エポキシ樹脂類のハロゲン化物などを挙げることが
でき、これらの1種又は2種以上が適宜選択して使用さ
れる。In this case, the epoxy resin used in the present invention (al is not particularly limited as long as it has two or more epoxy groups in one molecule; for example, orthocresol novolank type epoxy resin, phenol novolak type epoxy resin, resin cyclic epoxy resin, bisphenol type epoxy resin, substituted or unsubstituted triphenol alkane type epoxy resin,
Examples include halides of the above-mentioned epoxy resins, and one or more of these may be appropriately selected and used.
また、硬化剤(′b)はエポキシ樹脂に応じたものが使
用され、例えばアミン系硬化剤、酸無水物系硬化剤、フ
ェノールノボラック型硬化剤などが用いられるが、中で
もフェノールノボラック型硬化剤が組成物の成形性、耐
湿性といった面でより望ましい。なお、フェノールノボ
ラック型硬化剤として、具体的にはフェノールノボラッ
ク樹脂、クレゾールノポラフク樹脂等が例示される。In addition, the curing agent ('b) is selected depending on the epoxy resin, such as amine curing agents, acid anhydride curing agents, phenol novolak type curing agents, etc. Among them, phenol novolak type curing agents are used. This is more desirable in terms of moldability and moisture resistance of the composition. In addition, specific examples of the phenol novolac type curing agent include phenol novolak resin, cresol novolac resin, and the like.
ここで、硬化剤の配合量は別に制限されないが、フェノ
ールノボラック型硬化剤を使用する場合は、エポキシ樹
脂中のエポキシ基と硬化剤中のフェノール性水酸基との
モル比を0.5〜1.5の範囲にすることが好適である
。Here, the amount of the curing agent is not particularly limited, but when using a phenol novolak type curing agent, the molar ratio of the epoxy group in the epoxy resin to the phenolic hydroxyl group in the curing agent is 0.5 to 1. A range of 5 is preferable.
更に、本発明エポキシ樹脂組成物には、エポキシ樹脂と
硬化剤との反応を促進させるために硬化促進剤を配合す
ることが好ましい。硬化促進剤としてはイミダゾール化
合物、1.8−ジアザビシクロ(5,4,0)ウンデセ
ン−7(DBU)等のウンデセン化合物、トリフェニル
ホスフィン等のホスフィン化合物、三級アミン類などの
1種又は2種以上が用いられる。なお、硬化促進剤の使
用量は特に制限されず、通常の使用量でよい。Further, it is preferable to add a curing accelerator to the epoxy resin composition of the present invention in order to promote the reaction between the epoxy resin and the curing agent. As the curing accelerator, one or two types of imidazole compounds, undecene compounds such as 1,8-diazabicyclo(5,4,0)undecene-7 (DBU), phosphine compounds such as triphenylphosphine, and tertiary amines can be used. The above is used. Note that the amount of the curing accelerator used is not particularly limited, and may be a normal amount.
更に、本発明ではエポキシ樹脂組成物の応力を低下させ
る目的でシリコーン系ポリマーを配合することができ、
シリコーン系ポリマーを添加すると、熱衝撃テストにお
けるパッケージクランクの発生が著しく少なくなる。Furthermore, in the present invention, a silicone polymer can be blended for the purpose of reducing stress in the epoxy resin composition.
The addition of silicone-based polymers significantly reduces the occurrence of package cranking in thermal shock tests.
ここで、シリコーン系ポリマーとしては、例えばエポキ
シ基、アミノ基、カルボキシル基、水酸基、ヒドロシリ
ル基、ビニル基等を有するシリコーンオイル、シリコー
ンレジン又はシリコーンゴム、更にはこれらシリコーン
ポリマーとフェノールノボラック樹脂、エポキシ化フェ
ノールノボラフク樹脂等の有機重合体との共重合体を用
いることができる。Here, silicone polymers include, for example, silicone oils, silicone resins, or silicone rubbers having epoxy groups, amino groups, carboxyl groups, hydroxyl groups, hydrosilyl groups, vinyl groups, etc., and furthermore, these silicone polymers and phenol novolak resins, epoxidized A copolymer with an organic polymer such as phenol novolafuku resin can be used.
なお、シリコーン系ポリマーの配合量は、エポキシ樹脂
と硬化剤との合計量100部に対して1〜50部とする
ことが好ましい。The amount of the silicone polymer to be blended is preferably 1 to 50 parts based on 100 parts of the total amount of the epoxy resin and curing agent.
かかるエポキシ樹脂組成物の充填材として用いられる本
発明の球状シリカは、上述した特定の細孔を有するもの
であるが、更に平均粒径が1〜30μ書、特に5〜15
μmであることが好ましい。また、比表面積が1〜lO
+”/g、特に2〜7+st/gのものが好適に用いら
れる。The spherical silica of the present invention used as a filler in such an epoxy resin composition has the above-mentioned specific pores, but also has an average particle size of 1 to 30 μm, particularly 5 to 15 μm.
Preferably it is μm. In addition, the specific surface area is 1 to 1O
+"/g, particularly 2 to 7+st/g, is preferably used.
この球状シリカの配合量は、エポキシ樹脂と硬化剤との
合計量100重量部に対して250〜700重量部、特
に350〜650重量部とすることが好ましい。The blending amount of the spherical silica is preferably 250 to 700 parts by weight, particularly 350 to 650 parts by weight, based on 100 parts by weight of the total amount of the epoxy resin and curing agent.
なお、エポキシ樹脂組成物には、上記球状シリカに加え
、必要に応じ破砕シリカ等の他の充填材を配合しても差
支えない。In addition to the above-mentioned spherical silica, other fillers such as crushed silica may be added to the epoxy resin composition as needed.
エポキシ樹脂組成物には、更に必要により各種の添加剤
を添加することができる。例えばワックス類、ステアリ
ン酸などの脂肪酸及びその金属塩等の離型剤、カーボン
ブラック等の顔料、難燃化剤、表面処理剤(T−グリシ
ドキシプロビルトリメトキシシラン等)、エポキシシラ
ン、ビニルシラン、はう素化合物、アルキルチタネート
等のカップリング剤、老化防止剤、その他の添加剤の1
種又は2種以上を配合することができる。Various additives can be further added to the epoxy resin composition if necessary. For example, waxes, mold release agents such as fatty acids such as stearic acid and their metal salts, pigments such as carbon black, flame retardants, surface treatment agents (T-glycidoxypropyltrimethoxysilane, etc.), epoxysilane, Coupling agents such as vinyl silane, boromine compounds, alkyl titanates, anti-aging agents, and other additives.
A species or two or more species can be blended.
上記エポキシ樹脂組成物は、その製造に際し上述した成
分の所定量を均一に撹拌、混合し、予め70〜95℃に
加熱しであるニーダ−、ロール、エクストルーダーなど
で混練、冷却し、粉砕するなどの方法で得ることができ
る。ここで、成分の配合順序に特に制限はない。The above-mentioned epoxy resin composition is manufactured by uniformly stirring and mixing a predetermined amount of the above-mentioned components, heating the mixture to 70 to 95°C in advance, kneading it with a kneader, roll, extruder, etc., cooling it, and pulverizing it. It can be obtained by such methods. Here, there is no particular restriction on the order of blending the components.
かくして得られるエポキシ樹脂組成物は、DIP型、フ
ラットパンク型、PLCC型、SO型等の半導体装置の
封止に有効に使用でき、この場合、従来より採用されて
いる成形法、例えばトランスファ成形、インジェクショ
ン成形、注型法などを採用して行うことができる。なお
、エポキシ樹脂組成物の成形温度は150〜180℃、
ポストキュアーは150〜180℃で2〜16時間行う
ことが好ましい。The epoxy resin composition thus obtained can be effectively used for sealing semiconductor devices such as DIP type, flat punk type, PLCC type, SO type, etc. In this case, conventionally employed molding methods such as transfer molding, etc. This can be done by employing injection molding, casting methods, etc. In addition, the molding temperature of the epoxy resin composition is 150 to 180°C,
Post-curing is preferably performed at 150-180°C for 2-16 hours.
〔発明の効果〕
本発明の球状シリカは、充填率を高めても封止材の流動
性を低下させることが少なく、かつ、封止体の強度を増
大させるので、電子部品の封止材用充填材として好適に
用いられる。[Effects of the Invention] The spherical silica of the present invention hardly reduces the fluidity of the encapsulant even when the filling rate is increased, and increases the strength of the encapsulant, so it is suitable for use as an encapsulant for electronic components. It is suitably used as a filler.
また、本発明の方法によって、径が0.01〜0.1μ
mの範囲にある細孔を有し、かつ、それら細孔の容積が
0.02〜0.15蒙1!/gの範囲である、充填率を
高めても封止材の流動性を低下させることが少なく、し
かも封止体の強度を増大させる封止材用充填材に適した
球状シリカを得ることができる。Moreover, by the method of the present invention, the diameter is 0.01 to 0.1μ.
m, and the volume of these pores is 0.02 to 0.15 mm. It is possible to obtain spherical silica suitable as a filler for an encapsulant, which does not reduce the fluidity of the encapsulant even when the filling rate is increased and increases the strength of the encapsulant, which is in the range of /g. can.
更に、本発明の球状シリカを充填材として用いることに
より、充填率を高めても流動性が低下せず、低膨張係数
及び高強度を有する半導体封止用エポキシ樹脂組成物を
得ることができる。Furthermore, by using the spherical silica of the present invention as a filler, it is possible to obtain an epoxy resin composition for semiconductor encapsulation that has a low coefficient of expansion and high strength without decreasing fluidity even when the filling rate is increased.
以下、実施例により本発明を更に具体的に説明するが、
本発明は下記の実施例に制限されるものではない。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to the following examples.
ス1」にY
1−1) 非晶質シリカの製造
JIS 3号水ガラスを加熱濃縮して、20℃における
粘度を300cpsとした。この水ガラス約81をポン
プで加圧し、濾過器(目開き70μm)を通してノズル
(孔径Q、2m、孔数50個)から、50℃に保持され
た8重量%硫酸水溶液3001を入れた凝固浴中へ速度
1m/秒で押し出した。1-1) Production of amorphous silica JIS No. 3 water glass was heated and concentrated to have a viscosity of 300 cps at 20°C. Approximately 81 of this water glass was pressurized with a pump, passed through a filter (opening 70 μm), and passed through a nozzle (pore diameter Q, 2 m, number of holes 50) into a coagulation bath containing 8 wt% sulfuric acid aqueous solution 3001 maintained at 50°C. It was pushed out at a speed of 1 m/sec.
繊維状で得られたシリカを10倍量の新たに調製した8
重量%硫酸水溶液中に浸漬し、温度約95℃で約1時間
撹拌して不純物の抽出を行った。Freshly prepared 10 times the amount of silica obtained in fibrous form 8
The sample was immersed in a wt% aqueous sulfuric acid solution and stirred for about 1 hour at a temperature of about 95°C to extract impurities.
得られた短繊維状シリカを純水を用いて洗液のpHが4
になるまで洗浄した後、遠心分離機で脱水し、7.1
kgの非晶質湿シリカを得た。The obtained short fibrous silica was washed with pure water until the pH of the washing solution was 4.
After washing until
kg of amorphous wet silica was obtained.
この湿シリカを熱風乾燥機を用いて温度150℃で8時
間乾燥し、3.7 kgの乾燥シリカを得た。This wet silica was dried using a hot air dryer at a temperature of 150° C. for 8 hours to obtain 3.7 kg of dry silica.
1−2)微粒子シリカ懸濁液の調製
前記1−1)のようにし2て得られた乾燥シリカ1.0
瞳を純水2.071と共に石英ガラス製ボール(直径5
1n)41を充填した石英ガラス製ボールミル(内容積
1ON)に入れて、50rpn+で24時間粉砕処理を
行い、平均粒径1,0μmの微粒子シリカ懸濁液(シリ
カ濃度=30重量%)を得た。1-2) Preparation of fine particle silica suspension 1.0% of the dried silica obtained in step 2 of 1-1) above.
Place the pupil in a quartz glass ball (diameter 5
1n) 41 was placed in a quartz glass ball mill (inner volume: 1ON) and pulverized at 50 rpm+ for 24 hours to obtain a fine particle silica suspension (silica concentration = 30% by weight) with an average particle size of 1.0 μm. Ta.
1−3)球形造粒シリカの製造および焼成前記1−2)
のようにして得られた微粒子シリカ懸濁液(3バッチ分
)を噴霧乾燥装置を用いて造粒乾燥し、約2.5瞳の球
形造粒シリカを得た。1-3) Production and firing of spherical granulated silica 1-2)
The fine particle silica suspension (3 batches) obtained as above was granulated and dried using a spray dryer to obtain spherical granulated silica having a diameter of about 2.5 pupils.
得られた球形造粒シリカを石英製坩堝に入れ、電気炉を
用いて温度1250℃で4時間の加熱処理を行い、2.
3 kgの球状シリカを得た。The obtained spherical granulated silica was placed in a quartz crucible, and heat treated for 4 hours at a temperature of 1250°C using an electric furnace.2.
3 kg of spherical silica was obtained.
得られた球状シリカは、平均粒径が15μ網で密度が2
.2 g /am’であり、水銀圧入法で測定した0、
01〜0.1μmの範囲の径を有する細孔の容積は0.
03mJ/gであり、陥没のない球状で凹凸の少ない滑
らかな表面状態であった。The obtained spherical silica has an average particle size of 15μ and a density of 2.
.. 2 g/am', measured by mercury porosimetry, 0,
The volume of pores with a diameter in the range of 0.01 to 0.1 μm is 0.01 μm.
03 mJ/g, and the surface was spherical with no depressions and had a smooth surface with few irregularities.
この球状シリカの不純物含有率は、Na O,3ppm
八10.4ppmであり、KはO,l ppm以下、U
は0.05ppb以下であった。The impurity content of this spherical silica is NaO, 3ppm
810.4ppm, K is O,l ppm or less, U
was less than 0.05 ppb.
1ル桝二姿
実施例−1と同様にして得た球形造粒シリカの焼成時間
を変えて球状シリカを得た。その結果は第1表に示した
通りで、焼成時間を短縮すると細孔容積が増加すること
が認められた。Spherical silica was obtained by changing the firing time of spherical granulated silica obtained in the same manner as in Example-1. The results are shown in Table 1, and it was found that the pore volume increased as the firing time was shortened.
、比1効例−二上(焼成の程度を強化した場合)。, ratio 1 effect example - 2 upper (when the degree of firing is strengthened).
実施例−1と同様にして得られた球形造粒シリカを温度
1280℃で4時間焼成したところ、細孔容積が0.0
1a+l/gのシリカが得られた。When the spherical granulated silica obtained in the same manner as in Example 1 was fired at a temperature of 1280°C for 4 hours, the pore volume was 0.0.
1a+l/g of silica was obtained.
、比較M−二I(焼成の程度をゆるめた場合)。, Comparison M-2I (when the degree of firing is relaxed).
一方、実施例−1と同様にして得られた球形造粒シリカ
を温度1200℃で2時間焼成したところ、細孔容積が
0.16ml/gのシリカが得られた。On the other hand, when the spherical granulated silica obtained in the same manner as in Example-1 was fired at a temperature of 1200° C. for 2 hours, silica with a pore volume of 0.16 ml/g was obtained.
天施貫二1
実施例−1と同様にして得られた乾燥シリカを粉砕処理
して得た微粒子状シリカ懸濁液(シリカ濃度:30重量
%)と、粉砕処理する前の乾燥シリカを温度1200℃
で2時間焼成して得た焼成シリカを粉砕処理して得られ
た微粒子状シリカ懸濁液(シリカ濃度:30重1%)と
を重量比8o:20の割合で混合し、その他の条件は実
施例−1と同様にして球形造粒シリカを得た。Tensuke Kanji 1 A fine particulate silica suspension (silica concentration: 30% by weight) obtained by pulverizing dry silica obtained in the same manner as in Example-1 and dry silica before pulverizing were heated at different temperatures. 1200℃
The calcined silica obtained by firing for 2 hours at Spherical granulated silica was obtained in the same manner as in Example-1.
得られた球形造粒シリカについて、温度1250℃で4
時間または2時間、それぞれ焼成して球状シリカを得た
。その結果を第1表に示す。Regarding the obtained spherical granulated silica, at a temperature of 1250 ° C.
Spherical silica was obtained by firing for 1 hour or 2 hours, respectively. The results are shown in Table 1.
人差±二(
微粒子シリカ懸濁液中の微粒子シリカの平均粒径が0.
3μ讃または0.5μmであるものをそれぞれ調製し、
その他の条件は実施例−1と同様にして球形造粒シリカ
を得た。それぞれについて温度1200℃で4時間焼成
したところ、細孔容積が0.03または0.04ml!
/gである球状シリカが得られた。Individual difference ±2 (The average particle size of the fine silica particles in the fine silica suspension is 0.
Prepare 3 μm or 0.5 μm, respectively.
Other conditions were the same as in Example-1 to obtain spherical granulated silica. When each was fired at a temperature of 1200°C for 4 hours, the pore volume was 0.03 or 0.04ml!
/g of spherical silica was obtained.
四−擾−
微粒子シリカ懸濁液中のシリカ濃度が40重置%または
50重量%であるものをそれぞれ調製し、その他の条件
は実施例−1と同様にして球状シリカを得た。得られた
球状シリカの細孔容積は実施例−1の場合と同様に0.
03+wl/gであった。4-Suspension- Spherical silica particles were obtained in the same manner as in Example 1 except that fine particle silica suspensions having a silica concentration of 40% or 50% by weight were prepared respectively. The pore volume of the obtained spherical silica was 0.0 as in Example-1.
It was 03+wl/g.
大庭±二五
微粒子シリカ(日本アエロジル社製、平均粒径0.05
μm+)3kgを純水12眩と混合し、微粒子シリカ懸
濁液(シリカ濃度:20重量%)を得た。Ohba ±25 fine particle silica (manufactured by Nippon Aerosil Co., Ltd., average particle size 0.05
μm+) was mixed with 12 ml of pure water to obtain a fine particle silica suspension (silica concentration: 20% by weight).
このようにして得られた微粒子シリカ懸濁液を噴霧乾燥
装置を用いて造粒乾燥し、約2.5 kgの球形造粒シ
リカを得た。The thus obtained fine particle silica suspension was granulated and dried using a spray dryer to obtain about 2.5 kg of spherical granulated silica.
得られた球形造粒シリカを石英製坩堝に入れ電気炉を用
いて温度1000℃で2時間の加熱処理を行い、2.3
kgの球状シリカを得た。The obtained spherical granulated silica was placed in a quartz crucible and heat treated for 2 hours at a temperature of 1000°C using an electric furnace.
kg of spherical silica was obtained.
得られた球状シリカは、平均粒径が12μmで密度が2
.2g/C!13であり、水銀圧入法で測定した0、0
1〜0.1μmの範囲の径を有する細孔の容積は0.0
4*J/gであり、陥没のない球状で凹凸の少ない滑ら
かな表面状態であった。The obtained spherical silica has an average particle size of 12 μm and a density of 2
.. 2g/C! 13, and 0,0 as measured by mercury porosimetry
The volume of pores with diameters ranging from 1 to 0.1 μm is 0.0
It was 4*J/g, and had a spherical shape with no depressions and a smooth surface with few irregularities.
この球状シリカの不純物含有率は、Na 0.2pp
+111A I 0.3ppmであり、KはOol p
pm以下、Uは0.05ppb以下であった。The impurity content of this spherical silica is Na 0.2pp
+111A I 0.3ppm, K is Ool p
pm or less, and U was 0.05 ppb or less.
大施勇ニユ
エチルシリケートを液相で加水分解して得られたシリカ
ゾル(平均粒径: 0.05μm)から微粒子シリカ懸
濁液(シリカ濃度:20重量%)を得た。A fine particle silica suspension (silica concentration: 20% by weight) was obtained from a silica sol (average particle size: 0.05 μm) obtained by hydrolyzing ethyl silicate in the liquid phase.
この微粒子シリカ懸濁液を噴霧乾燥装置を用いて造粒乾
燥し、球形造粒シリカを得た。This fine particle silica suspension was granulated and dried using a spray dryer to obtain spherical granulated silica.
得られた球形造粒シリカを石英製坩堝に入れ、電気炉を
用いて温度1000℃で2゜5時間の加熱処理を行い、
球状シリカを得た。The obtained spherical granulated silica was placed in a quartz crucible and heat treated at 1000°C for 2°5 hours using an electric furnace.
Spherical silica was obtained.
得られた球状シリカは、平均粒径が13μ霧で密度が2
.2 g />”であり、水銀圧入法で測定した0、0
1〜0.1μmの範囲の径を有する細孔の容積は0.0
3m#/gであり、陥没のない球状で凹凸の少ない滑ら
かな表面状態であった。The obtained spherical silica has an average particle size of 13 μm and a density of 2
.. 2 g/>” and 0,0 as measured by mercury porosimetry.
The volume of pores with diameters ranging from 1 to 0.1 μm is 0.0
It was 3 m#/g, and had a spherical shape with no depressions and a smooth surface with few irregularities.
この球状シリカの不純物含有率は、Na 0.2pp
s++Al10.1ppmであり、Kは0.1 ppm
以下、Uは0.05ppb以下であった。The impurity content of this spherical silica is Na 0.2pp
s++Al10.1ppm, K is 0.1ppm
Hereinafter, U was 0.05 ppb or less.
以上の方法で得られた球状シリカの性状を第1表に示す
。Table 1 shows the properties of the spherical silica obtained by the above method.
大m針=、比、較側1
実施例1〜7、比較例1,2で得られたシリカA〜0と
、更に比較例として下記シリカP、 Qを用いて、第2
表に示すエポキシ樹脂組成物を作成し、下記の諸試験を
行なった。Large m needle=, comparison, comparative side 1 Using silicas A to 0 obtained in Examples 1 to 7 and comparative examples 1 and 2, and the following silicas P and Q as comparative examples, the second
The epoxy resin compositions shown in the table were prepared and the following tests were conducted.
シリカP:平均粒径 工5μ麺。Silica P: Average particle size: 5μ noodles.
比表面積 1.5+ez/g シリカQ:平均粒径 14μm。Specific surface area 1.5+ez/g Silica Q: average particle size 14 μm.
比表面積 3.2+n2/g 細孔容積0.01w i 7g。Specific surface area 3.2+n2/g Pore volume 0.01w i 7g.
の球状シリカ 細孔容積0.01m l 7g。spherical silica Pore volume 0.01ml 7g.
の破砕体シリカ
試11」l
(イ)スパイラルフロー値
EMMI規格に準じた金型を使用して、160℃、70
kg/cdの条件で測定した。Crushed silica test 11''l (a) Spiral flow value Using a mold according to EMMI standard, 160℃, 70℃
It was measured under the condition of kg/cd.
(ロ)曲げ強度
J I S −K6911に準じて160℃、70kg
/cd成形温度3分の条件で10X4X100n+の抗
折棒を成形し、180℃で4時間ポストキュアーしたも
のについて25℃で測定した(曲げ強度■)。(b) Bending strength: 160℃, 70kg according to JIS-K6911
A bending rod of 10×4×100n+ was molded at a /cd molding temperature of 3 minutes, post-cured at 180° C. for 4 hours, and then measured at 25° C. (bending strength ■).
また、上記180℃で4時間ポストキュアーしたものを
121tプレツシヤークンカーに20時間放置したもの
について、215℃で測定した(曲げ強度■)。In addition, the sample was post-cured at 180°C for 4 hours and left in a 121t presser car for 20 hours, and then measured at 215°C (bending strength ■).
(ハ)膨張係数、ガラス転移温度
4鶴φ×15鶴の試験片を用いて、デイライトメーター
により毎分5℃の速さで25℃〜250℃まで昇温した
時の50℃〜100℃までの直線部分から測定した。(c) Expansion coefficient, glass transition temperature 50°C to 100°C when the temperature was raised from 25°C to 250°C at a rate of 5°C per minute using a daylight meter using a test piece of 4 cranes φ x 15 cranes. Measured from the straight line up to.
(ニ)吸湿後の耐半田クラック性
175℃、2分で成形し、180℃、4時間でポストキ
ュアーしたパッケージサイズ14x20X2.31m、
アイランド面積8X10mのフラットパッケージを85
℃/85%RHの恒温恒湿槽に24時間放置した後、2
15℃の半田浴に入れた時、パッケージクランクが発生
した個数を測定した。(d) Solder crack resistance after moisture absorption Package size: 14 x 20 x 2.31 m, molded at 175°C for 2 minutes and post-cured at 180°C for 4 hours;
85 flat packages with an island area of 8 x 10 m
After leaving it in a constant temperature and humidity chamber at ℃/85%RH for 24 hours,
When placed in a 15° C. solder bath, the number of package cranks generated was measured.
以上の結果を第2表に示す。The above results are shown in Table 2.
以上の結果より、本発明の球状シリカが充填されたエポ
キシ樹脂組成物は、流動性にずくれ、かつ、曲げ強度が
強く、吸湿半田後の耐クラ・ツク性にもすぐれているこ
とがわかる。From the above results, it is clear that the epoxy resin composition filled with spherical silica of the present invention has low fluidity, high bending strength, and excellent cracking and scratching resistance after moisture absorption and soldering. .
代 理 人 小 島 隆 司 (他1名)teenager Reason Man small island Takashi Tsukasa (1 other person)
Claims (1)
し、かつ、前記範囲の直径を有する細孔の容積が0.0
2〜0.15ml/gの範囲である球状シリカ。 2 球状シリカ中のアルカリ金属元素、アルカリ土類金
属元素、ハロゲン類元素および遷移金属元素の含有率が
各々1ppm以下であり、かつ、放射性元素の含有率が
各々1ppb以下である請求項1記載の球状シリカ。 3 重量平均粒子径が10μm以下である非晶質シリカ
の懸濁液を噴霧乾燥して球形造粒シリカを得、次いで該
球形造粒シリカを温度1000〜1300℃の範囲で焼
成して、直径が0.01〜0.1μmの範囲にある細孔
を有し、かつ、前記範囲の直径を有する細孔の容積が0
.02〜0.15ml/gの範囲である球状シリカを得
ることを特徴とする球状シリカの製造方法。 4 非晶質シリカ中のアルカリ金属元素、アルカリ土類
金属元素、ハロゲン類元素および遷移金属元素の含有率
が各々1ppm以下であり、かつ、放射性元素の含有率
が各々1ppb以下である請求項3記載の球状シリカの
製造方法。 5 請求項1に記載の球状シリカを充填材として含有す
ることを特徴とするエポキシ樹脂組成物。 6 請求項5に記載の組成物を硬化してなる硬化物。[Scope of Claims] 1. A pore having a diameter in the range of 0.01 to 0.1 μm, and a volume of the pore having a diameter in the range of 0.0 μm.
Spherical silica ranging from 2 to 0.15 ml/g. 2. The spherical silica according to claim 1, wherein the content of alkali metal elements, alkaline earth metal elements, halogen elements, and transition metal elements is each 1 ppm or less, and the content of radioactive elements is each 1 ppb or less. Spherical silica. 3 A suspension of amorphous silica having a weight average particle diameter of 10 μm or less is spray-dried to obtain spherical granulated silica, and then the spherical granulated silica is fired at a temperature in the range of 1000 to 1300°C to reduce the diameter has pores with a diameter in the range of 0.01 to 0.1 μm, and the volume of the pores with a diameter in the range is 0.
.. A method for producing spherical silica, characterized in that spherical silica is obtained in a range of 0.02 to 0.15 ml/g. 4. The content of alkali metal elements, alkaline earth metal elements, halogen elements, and transition metal elements in the amorphous silica is each 1 ppm or less, and the content of radioactive elements is each 1 ppb or less. The method for producing the described spherical silica. 5. An epoxy resin composition containing the spherical silica according to claim 1 as a filler. 6. A cured product obtained by curing the composition according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13601490A JPH0798659B2 (en) | 1990-05-25 | 1990-05-25 | Spherical silica, production method thereof, epoxy resin composition and cured product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13601490A JPH0798659B2 (en) | 1990-05-25 | 1990-05-25 | Spherical silica, production method thereof, epoxy resin composition and cured product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0431311A true JPH0431311A (en) | 1992-02-03 |
JPH0798659B2 JPH0798659B2 (en) | 1995-10-25 |
Family
ID=15165168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13601490A Expired - Lifetime JPH0798659B2 (en) | 1990-05-25 | 1990-05-25 | Spherical silica, production method thereof, epoxy resin composition and cured product thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0798659B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002160907A (en) * | 2000-11-22 | 2002-06-04 | Catalysts & Chem Ind Co Ltd | Spherical porous particle and its manufacturing method |
JP2006021948A (en) * | 2004-07-07 | 2006-01-26 | Asahi Denka Kogyo Kk | Manufacturing method of high purity silica particle, high purity silica particle obtained thereby and manufacturing method of high purity quartz glass particle using it |
JP2006256913A (en) * | 2005-03-17 | 2006-09-28 | Admatechs Co Ltd | Spherical silica particle, resin composition and semiconductor liquid sealing material |
WO2011093142A1 (en) | 2010-01-26 | 2011-08-04 | 堺化学工業株式会社 | Silica particles, process for production of same, and resin composition containing same |
WO2014199904A1 (en) * | 2013-06-10 | 2014-12-18 | 日産化学工業株式会社 | Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition |
WO2015016359A1 (en) * | 2013-08-01 | 2015-02-05 | 日揮触媒化成株式会社 | Method for producing crushed silica particles, and resin composition containing said particles |
JP2015140271A (en) * | 2014-01-28 | 2015-08-03 | 日揮触媒化成株式会社 | Hydrophobic silica powder and method of producing the same |
JP2019503405A (en) * | 2015-11-12 | 2019-02-07 | ピロット | Spherical particles filled with colorant |
-
1990
- 1990-05-25 JP JP13601490A patent/JPH0798659B2/en not_active Expired - Lifetime
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002160907A (en) * | 2000-11-22 | 2002-06-04 | Catalysts & Chem Ind Co Ltd | Spherical porous particle and its manufacturing method |
JP2006021948A (en) * | 2004-07-07 | 2006-01-26 | Asahi Denka Kogyo Kk | Manufacturing method of high purity silica particle, high purity silica particle obtained thereby and manufacturing method of high purity quartz glass particle using it |
JP4649677B2 (en) * | 2004-07-07 | 2011-03-16 | 株式会社Adeka | Method for producing high-purity silica particles, high-purity silica particles obtained thereby, and method for producing high-purity quartz glass particles using the same |
JP2006256913A (en) * | 2005-03-17 | 2006-09-28 | Admatechs Co Ltd | Spherical silica particle, resin composition and semiconductor liquid sealing material |
WO2011093142A1 (en) | 2010-01-26 | 2011-08-04 | 堺化学工業株式会社 | Silica particles, process for production of same, and resin composition containing same |
KR20160018692A (en) * | 2013-06-10 | 2016-02-17 | 닛산 가가쿠 고교 가부시키 가이샤 | Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition |
WO2014199904A1 (en) * | 2013-06-10 | 2014-12-18 | 日産化学工業株式会社 | Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition |
JPWO2014199904A1 (en) * | 2013-06-10 | 2017-02-23 | 日産化学工業株式会社 | Silica-containing resin composition, method for producing the same, and molded article of silica-containing resin composition |
US9777141B2 (en) | 2013-06-10 | 2017-10-03 | Nissan Chemical Industries, Ltd. | Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition |
WO2015016359A1 (en) * | 2013-08-01 | 2015-02-05 | 日揮触媒化成株式会社 | Method for producing crushed silica particles, and resin composition containing said particles |
JPWO2015016359A1 (en) * | 2013-08-01 | 2017-03-02 | 日揮触媒化成株式会社 | Method for producing crushed silica particles and resin composition containing the fine particles |
US10358353B2 (en) | 2013-08-01 | 2019-07-23 | Jgc Catalysts And Chemicals Ltd. | Method for producing disintegrated silica particles |
JP2015140271A (en) * | 2014-01-28 | 2015-08-03 | 日揮触媒化成株式会社 | Hydrophobic silica powder and method of producing the same |
JP2019503405A (en) * | 2015-11-12 | 2019-02-07 | ピロット | Spherical particles filled with colorant |
JP2021185248A (en) * | 2015-11-12 | 2021-12-09 | ピロット | Spherical particles filled with coloring agents |
US11208560B2 (en) | 2015-11-12 | 2021-12-28 | Pylote | Spherical particles filled with colouring agents |
Also Published As
Publication number | Publication date |
---|---|
JPH0798659B2 (en) | 1995-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4306951B2 (en) | Surface-treated fine spherical silica powder and resin composition | |
JP4614214B2 (en) | Hollow package for semiconductor device elements | |
JPS6157347B2 (en) | ||
EP0829455B1 (en) | Inorganic filler, epoxy resin composition, and semiconductor device | |
US5028360A (en) | Method of manufacturing spherical silica particles | |
JPH02117936A (en) | Method of using resin composition containing spherical fused silica | |
JP5380290B2 (en) | Method for producing silica powder | |
JP4112125B2 (en) | Method for producing fine spherical silica powder | |
JP3800277B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JPH0431311A (en) | Spherical silica, its production, epoxy resin composition and cured product thereof | |
JPH0450223A (en) | Epoxy resin composition and semiconductor device | |
JP2016190769A (en) | Method for producing silica particle | |
JP3694474B2 (en) | Method for producing spherical silica powder | |
JP2010155750A (en) | Method of producing surface sealed silica particles, surface sealed silica particles, and resin composition for encapsulating semiconductor constituted by mixing the particles | |
JP5526027B2 (en) | Amorphous siliceous powder, method for producing the same, resin composition, and semiconductor sealing material | |
JP2013103850A (en) | Silica-based particle with moisture resistance, method for producing the same, semiconductor sealing resin composition containing the particle, and substrate with coating film formed using the resin composition | |
JPH08245214A (en) | Silica fine powder, its production, and epoxy resin composition for sealing semiconductor | |
JP2000319633A (en) | Silica filter for epoxy resin sealing material | |
WO2018186315A1 (en) | Powder mixture | |
JPS6210159A (en) | Resin composition for semiconductor sealing | |
JPS6119620A (en) | Liquid epoxy resin composition | |
JPH0496929A (en) | Epoxy resin composition and semiconductor device | |
JP2684396B2 (en) | Fused spherical silica and sealing resin composition using the same | |
JPH01234319A (en) | Production of spherical silica | |
JP2000264619A (en) | Siliceous powder and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 15 |