JP2002160907A - Spherical porous particle and its manufacturing method - Google Patents

Spherical porous particle and its manufacturing method

Info

Publication number
JP2002160907A
JP2002160907A JP2000355785A JP2000355785A JP2002160907A JP 2002160907 A JP2002160907 A JP 2002160907A JP 2000355785 A JP2000355785 A JP 2000355785A JP 2000355785 A JP2000355785 A JP 2000355785A JP 2002160907 A JP2002160907 A JP 2002160907A
Authority
JP
Japan
Prior art keywords
inorganic oxide
spherical porous
silica
oxide fine
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000355785A
Other languages
Japanese (ja)
Other versions
JP4911814B2 (en
Inventor
Mitsuru Nakai
満 中井
Takumi Miyazaki
巧 宮崎
Hiroyasu Nishida
広泰 西田
Hirokazu Tanaka
博和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2000355785A priority Critical patent/JP4911814B2/en
Publication of JP2002160907A publication Critical patent/JP2002160907A/en
Application granted granted Critical
Publication of JP4911814B2 publication Critical patent/JP4911814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Cosmetics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spherical porous particle which has a large particle size of 1 to 150 μm and is useful for a low refractive index material, an heat insulator, a cosmetic compounding ingredient or the like. SOLUTION: A first spherical porous particle, as a silica group layer is formed on its outer surface by which a material a fine particle of water molecule or the like is unable to penetrate into a ore interior, resulting in a low refractive index. A second spherical porous particle, as its silica group cover is compacted, is facilitated with a lower refractive indeed and a higher heat insulating effect. A third spherical porous particle, as its ore of the silica group layer is completely blocked by heating treatment d a solvent is absent in a space, has an extremely low refractive index and a high heat insulating effect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無機酸化物微粒子
集合体をシリカ系層によって被覆した球状多孔質粒子お
よびその製造方法に関するものである。
[0001] The present invention relates to a spherical porous particle in which an aggregate of inorganic oxide fine particles is covered with a silica-based layer, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、粒径が0.1〜300μm程度の
中空シリカ粒子は公知であり、特開平6ー330606
号公報には香料を内包した中空粒子を畳に用いることが
開示されており、特開平7ー013137号公報には液
晶を内包した無機中空粒子を液晶表示装置に用いること
が開示されている。また、特表2000ー500113
号公報によれば、珪酸アルカリ金属水溶液から活性シリ
カをシリカ以外の材料からなるコア上に沈殿させ、該材
料をシリカシェルを破壊させることなく除去することに
よって、稠密なシリカシェルからなる中空粒子を製造す
る方法が公知である。さらに、特開平11ー02931
8号公報によれば、外周部が殻、中心部が中空で、殻は
外側が緻密で内側ほど粗な濃度傾斜構造をもったコア・
シェル構造であるミクロンサイズの球状シリカ粒子が公
知である。しかしながら、これらの発明は工程が複雑で
粒子製造コストが高かったり、得られる粒子の強度が充
分でなく、このため用途に制約があった。また、本発明
者等は先に、多孔性の無機酸化物微粒子の表面をシリカ
等で完全に被覆することにより、低屈折率の複合酸化物
微粒子が得られることを提案している(特開平7ー13
3105号公報)。しかしながら、得られる粒子の粒子
径が小さく、やはり用途に制約があった。
2. Description of the Related Art Conventionally, hollow silica particles having a particle size of about 0.1 to 300 .mu.m are known, and are disclosed in JP-A-6-330606.
Japanese Patent Application Laid-Open No. 7-113137 discloses that hollow particles containing a fragrance are used for a tatami mat, and Japanese Patent Application Laid-Open No. 7-01137 discloses that inorganic hollow particles containing liquid crystal are used for a liquid crystal display device. Also, Table 2000-500113
According to the publication, active silica is precipitated from an aqueous solution of an alkali metal silicate on a core made of a material other than silica, and the material is removed without breaking the silica shell, whereby hollow particles made of a dense silica shell are formed. Manufacturing methods are known. Further, JP-A-11-02931
According to Japanese Patent Publication No. 8, a core having a shell whose outer periphery is hollow and whose center is hollow, and whose shell has a dense gradient structure with a dense outer surface and a coarser inner surface.
Micron-sized spherical silica particles having a shell structure are known. However, in these inventions, the steps are complicated, the production cost of the particles is high, and the strength of the obtained particles is not sufficient, and therefore, the use is restricted. In addition, the present inventors have previously proposed that by completely covering the surface of the porous inorganic oxide fine particles with silica or the like, composite oxide fine particles having a low refractive index can be obtained (Japanese Patent Application Laid-Open (JP-A) No. Heisei 9 (1994) -207). 7-13
No. 3105). However, the particle size of the obtained particles is small, and there is also a restriction on the application.

【0003】[0003]

【発明が解決しようとする課題】本発明は、粒子径が1
〜150μmと大きく、低屈折率材料、断熱材料、化粧
料配合剤、無機フィラー、防音材、消音材等として有用
な球状多孔質粒子およびその製造方法を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention has a particle size of 1
An object of the present invention is to provide spherical porous particles which are as large as 150 μm and are useful as a low refractive index material, a heat insulating material, a cosmetic compounding agent, an inorganic filler, a soundproofing material, a sound deadening material, and the like, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明の球状多孔質粒子
は、平均粒子径が2〜250nmである無機酸化物微粒
子が集まった平均粒子径が1〜100μmである無機酸
化物微粒子集合体と、これを被覆するシリカ系層とから
なるものである。前記無機酸化物微粒子集合体の細孔容
積は0. 01〜0. 8cc/gの範囲にあることが好ま
しい。前記シリカ系層の厚さ(TS )は0. 002〜2
5μmの範囲にあり、該シリカ系層の厚さ(TS )と球
状無機酸化物粒子の平均粒子径(PD )の比(TS )/
(PD )は0. 002〜0. 25の範囲にあることが好
ましい。前記無機酸化物微粒子集合体が、無機酸化物の
ヒドロゲルおよび/またはキセロゲルに由来するゲル成
分を含むものであることが好ましい。
Means for Solving the Problems The spherical porous particles of the present invention are composed of an aggregate of inorganic oxide fine particles having an average particle diameter of 1 to 100 μm in which inorganic oxide fine particles having an average particle diameter of 2 to 250 nm are collected. And a silica-based layer covering the same. The pore volume of the inorganic oxide fine particle aggregate is preferably in the range of 0.01 to 0.8 cc / g. The thickness (T s ) of the silica-based layer is 0.002 to 2
In the range of 5 μm, and the ratio (T s ) / thickness (T s ) of the silica-based layer to the average particle diameter (P D ) of the spherical inorganic oxide particles
(P D ) is preferably in the range of 0.002 to 0.25. It is preferable that the inorganic oxide fine particle aggregate contains a gel component derived from a hydrogel and / or xerogel of an inorganic oxide.

【0005】本発明の球状多孔質粒子の製造方法は、下
記の工程(a)〜工程(d)からなることを特徴とする
ものである。 (a)無機酸化物微粒子のコロイド液、または所望によ
り無機酸化物のヒドロゲルおよび/またはキセロゲルを
含むコロイド液を気流中に噴霧して無機酸化物微粒子集
合体を調製する工程 (b)該無機酸化物微粒子集合体を150〜600℃の
範囲で加熱処理する工程 (c)該無機酸化物微粒子集合体を水および/または有
機溶媒に分散させる工程 (d)該無機酸化物微粒子集合体の分散液に酸またはア
ルカリ水溶液と、化学式(1)で表される有機ケイ素化
合物および/またはその部分加水分解物とを添加し、該
集合体の外表面にシリカ系層を被覆する工程 Rn Si(OR′)4-n ・・・(1) 〔但し、R、R′:アルキル基、アリール基、ビニル
基、アクリル基等の炭化水素基、n=0、1、2または
3〕 工程(d)で得られた球状多孔質粒子の分散液は更に5
0〜350℃で水熱処理することが好ましい。また、工
程(d)または前記水熱処理して得られた球状多孔質粒
子の分散液から球状多孔質粒子を分離し、乾燥した後、
大気圧下または減圧下、400〜1200℃で加熱処理
することが好ましい。
[0005] The method for producing spherical porous particles of the present invention is characterized by comprising the following steps (a) to (d). (A) a step of spraying a colloidal liquid of inorganic oxide fine particles or a colloidal liquid containing an inorganic oxide hydrogel and / or xerogel as required into an air stream to prepare an inorganic oxide fine particle aggregate; (C) dispersing the inorganic oxide fine particle aggregate in water and / or an organic solvent; and (d) dispersing the inorganic oxide fine particle aggregate. Adding an aqueous solution of an acid or an alkali and an organosilicon compound represented by the chemical formula (1) and / or a partial hydrolyzate thereof to cover the outer surface of the aggregate with a silica-based layer R n Si (OR ') 4-n ··· (1) [However, R, R': hydrocarbon group such as alkyl group, aryl group, vinyl group, acrylic group, n = 0, 1, 2 or 3] Step (d) Spherical poly obtained in The dispersion of porous particles is 5 additional
It is preferable to perform a hydrothermal treatment at 0 to 350 ° C. Further, after separating the spherical porous particles from the dispersion of the spherical porous particles obtained by the step (d) or the hydrothermal treatment and drying,
The heat treatment is preferably performed at 400 to 1200 ° C. under atmospheric pressure or reduced pressure.

【0006】[0006]

【発明の実施の形態】以下、本発明の好適な実施形態を
説明する。本発明の球状多孔質粒子は、無機酸化物微粒
子集合体をシリカ系層によって被覆したものであり、無
機酸化物微粒子同士の間隙には細孔が形成される。無機
酸化物微粒子は、平均粒子径が2〜250nmの範囲に
あることが必要であるが、その他の特別の制約はなく従
来公知の無機酸化物微粒子を用いることができる。具体
的には、シリカ、アルミナ、ジルコニア、チタニア、シ
リカ・アルミナ、シリカ・ジルコニア、シリカ・チタニ
ア等の無機酸化物微粒子が挙げられる。特に本願出願人
の出願による特開平5−132309号公報等に開示し
たシリカゾルなどの酸化物ゾルは真球状の無機酸化物微
粒子であることから好ましい。さらに、特開平10−4
54043号公報に開示された有機基を含む複合酸化物
微粒子も好適に用いることができる。また、本願出願人
の出願による特開平7−133105号公報に開示され
た複合酸化物ゾルは粒子内部に空隙を有した粒子である
ので、より低屈折率あるいは断熱性に優れた球状多孔質
粒子を得ることができるので好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. The spherical porous particles of the present invention are obtained by coating an aggregate of inorganic oxide fine particles with a silica-based layer, and pores are formed in gaps between the inorganic oxide fine particles. The inorganic oxide fine particles need to have an average particle diameter in the range of 2 to 250 nm, but there are no other special restrictions, and conventionally known inorganic oxide fine particles can be used. Specific examples include fine particles of inorganic oxides such as silica, alumina, zirconia, titania, silica-alumina, silica-zirconia, silica-titania. Particularly, an oxide sol such as a silica sol disclosed in Japanese Patent Application Laid-Open No. 5-132309 filed by the applicant of the present application is preferable because it is a spherical inorganic oxide fine particle. Further, JP-A-10-4
The composite oxide fine particles containing an organic group disclosed in Japanese Patent No. 54043 can also be suitably used. Further, since the composite oxide sol disclosed in Japanese Patent Application Laid-Open No. Hei 7-133105 filed by the applicant of the present application is a particle having voids inside the particle, the spherical porous particle has a lower refractive index or excellent heat insulation. Is preferred because

【0007】前記無機酸化物微粒子の平均粒子径が2n
m未満の場合は、粒子径が小さすぎて無機酸化物微粒子
の間隙による細孔容積が少なく(0. 01cc/g以
下)なり、粒子内部が緻密である通常の粒子と変わると
ころがなくなり、低屈折率や断熱効果を得ることが困難
である。平均粒子径が250nmを越えると、細孔容積
は多くなるものの、微粒子同士の結合力が弱く、無機酸
化物微粒子の集合体が得られ難い。また、そのような集
合体は得られたとしても無機酸化物微粒子の強度が不充
分なために、後述するシリカ系被覆層を形成することが
困難となる。無機酸化物微粒子の好ましい平均粒子径は
5〜100nmの範囲である。無機酸化物微粒子集合体
の平均粒子径は1〜100μmの範囲にあることが好ま
しい。平均粒子径が100μmを越えると、粒子径分布
が不均一になったり、形状がいびつで強度の低い粒子が
増加して好ましくない。平均粒子径が1μm未満の集合
体は得ることが困難である。
The average particle diameter of the inorganic oxide fine particles is 2n.
If it is less than m, the particle diameter is too small, the pore volume due to the gap between the inorganic oxide fine particles is small (0.01 cc / g or less), and there is no difference from ordinary particles having a dense inside of the particles. It is difficult to obtain the efficiency and thermal insulation effect. If the average particle diameter exceeds 250 nm, the pore volume increases, but the bonding force between the fine particles is weak, and it is difficult to obtain an aggregate of inorganic oxide fine particles. Further, even if such an aggregate is obtained, the strength of the inorganic oxide fine particles is insufficient, so that it is difficult to form a silica-based coating layer described later. The preferred average particle diameter of the inorganic oxide fine particles is in the range of 5 to 100 nm. The average particle diameter of the aggregate of inorganic oxide fine particles is preferably in the range of 1 to 100 μm. If the average particle size exceeds 100 μm, the particle size distribution becomes non-uniform, and the shape of the particle is distorted and low in strength, which is not preferable. It is difficult to obtain an aggregate having an average particle diameter of less than 1 μm.

【0008】前記無機酸化物微粒子集合体は0. 01〜
0. 8cc/gの範囲の細孔容積を有している。細孔容
積が0. 01cc/g未満の場合には、期待される低屈
折率効果や断熱効果が得られ難い。細孔容積が0. 8c
c/gを越えると、集合体の強度が不充分となり、シリ
カ系被覆層を形成することが困難となる。細孔容積の好
ましい範囲は、0. 05〜0. 75cc/gである。な
お、当該細孔容積は、窒素吸着法(液体窒素温度、相対
圧0. 6での窒素吸着量)によって求めることができ
る。このような無機酸化物微粒子集合体の製造方法とし
ては、従来公知の方法を採用することができ、例えば、
マイクロカプセル法、乳化法、オイル法、噴霧法などが
挙げられる。中でも本願出願人の出願による特公平3−
43201号公報、特公平2−61406号公報等に開
示した真球状微粒子粉末の製造方法は、出発無機酸化物
微粒子が球状で無い場合であっても真球状の無機酸化物
微粒子集合体が得られ、製造工程が複雑でなく経済性に
も優れている。この好ましい製造方法については後述す
る。
[0008] The aggregate of the inorganic oxide fine particles is 0.01 to
It has a pore volume in the range of 0.8 cc / g. If the pore volume is less than 0.01 cc / g, it is difficult to obtain the expected low refractive index effect and the expected heat insulating effect. The pore volume is 0.8c
If it exceeds c / g, the strength of the aggregate becomes insufficient, and it becomes difficult to form a silica-based coating layer. A preferred range of the pore volume is 0.05 to 0.75 cc / g. The pore volume can be determined by a nitrogen adsorption method (liquid nitrogen temperature, nitrogen adsorption amount at a relative pressure of 0.6). As a method for producing such an aggregate of inorganic oxide fine particles, a conventionally known method can be adopted, for example,
Examples include a microcapsule method, an emulsification method, an oil method, and a spray method. Above all, Japanese Patent Application 3-
No. 43201, Japanese Patent Publication No. 2-61406, etc., the production method of the spherical fine particle powder disclosed in the present invention provides a spherical inorganic oxide fine particle aggregate even when the starting inorganic oxide fine particles are not spherical. In addition, the manufacturing process is not complicated and the economy is excellent. This preferred manufacturing method will be described later.

【0009】無機酸化物微粒子集合体を被覆するシリカ
系層は、シリカのみからなる層(シリカ単独層)と、シ
リカを主成分としシリカ(SiO2 )以外の成分として
Al 2 3 、B2 3 、TiO2 、ZrO2 、Sn
2 、Ce2 3 、P2 5 、Sb2 3 、MoO3
ZnO2 、WO3 等の無機酸化物の1種または2種以上
からなる被覆層を含む。2種以上の無機酸化物として
は、TiO2 −Al2 3 、TiO2 −ZrO2 等を例
示することができる。このときシリカとシリカ以外の無
機酸化物の添加割合は、シリカをSiO2 で表し、シリ
カ以外の無機酸化物をMOX で表したときの重量比MO
X /SiO2 が0. 2以下であることが好ましい。重量
比MOX /SiO2 が0. 2を越えると緻密で均一な被
覆層を形成し難い。シリカ以外の成分を含ませることに
より、耐熱性、耐候性、耐薬品性等を向上させたり、屈
折率を調節することができる。他方、シリカ単独層は集
合体の被覆効果が得られる範囲内で、薄く均一な厚さの
被覆層を容易に形成することができる。なお、この被覆
効果とは、目的とする球状多孔質粒子が内部に前記した
空隙を保持することができ、低屈折率特性および/また
は断熱特性等を発現できる効果をいう。
Silica coating inorganic oxide fine particle aggregate
The system layer consists of a layer consisting of silica only (silica only layer) and a silica layer.
Silica (SiO)Two)
Al TwoOThree, BTwoOThree, TiOTwo, ZrOTwo, Sn
OTwo, CeTwoOThree, PTwoOFive, SbTwoOThree, MoOThree,
ZnOTwo, WOThreeOne or more inorganic oxides such as
And a coating layer comprising: As two or more inorganic oxides
Is TiOTwo-AlTwoOThree, TiOTwo-ZrOTwoExample
Can be shown. At this time, silica and non-silica
The addition ratio of organic oxide is as follows:Two, And
MO for inorganic oxides other thanXWeight ratio MO when expressed by
X/ SiOTwoIs preferably 0.2 or less. weight
Ratio MOX/ SiOTwoExceeds 0.2, a dense and uniform
It is difficult to form a cover layer. Including components other than silica
Heat resistance, weather resistance, chemical resistance, etc.
The folding rate can be adjusted. On the other hand, a silica single layer
A thin and uniform thickness within the range where the coalescence effect of coalescence can be obtained.
The coating layer can be easily formed. Note that this coating
The effect means that the intended spherical porous particles are
Can maintain voids and have low refractive index properties and / or
Means an effect capable of exhibiting heat insulation properties and the like.

【0010】上記シリカ系層の厚さ(TS )は0. 00
2〜25μm、特に0. 01〜5μmの範囲にあること
が好ましい。厚さ(TS )が0. 002μm未満の場合
は、前記被覆効果を発現できる被覆層となりにくい。即
ち、使用に際して溶媒等が粒子内部に容易に拡散して低
屈折率や断熱効果を発現できないことがあるので好まし
くない。厚さ(TS )が25μmを越えると、球状多孔
質粒子の粒子径に対して被覆層が厚すぎて、空隙の容積
割合が低く、低屈折率や断熱効果を発現し難い。このた
め、シリカ系層の厚さ(TS )と球状多孔質粒子の平均
粒子径(PD )の比(TS )/(PD )が0. 002〜
0. 25、特に0. 01〜0. 2の範囲にあることが好
ましい。シリカ系層の厚さ(TS )は球状多孔質粒子を
粉砕し、粒子の破断面の透過型電子顕微鏡写真(TE
M)を撮影し、粒子20個について被覆層部の厚さを測
定し、この平均値として求めることができる。なお、前
記集合体および球状多孔質粒子の平均粒子径は、遠心沈
降式粒度分布測定装置(堀場製作所製:CAPA−70
0)によって測定することができる。
The thickness (T S ) of the silica-based layer is 0.00
It is preferably in the range of 2 to 25 μm, particularly 0.01 to 5 μm. When the thickness (T S ) is less than 0.002 μm, it is difficult to form a coating layer capable of exhibiting the above-mentioned coating effect. That is, it is not preferable because a solvent or the like easily diffuses into the inside of the particles when used, and a low refractive index or a heat insulating effect may not be exhibited. If the thickness (T s ) exceeds 25 μm, the coating layer is too thick with respect to the particle diameter of the spherical porous particles, the volume ratio of voids is low, and it is difficult to exhibit a low refractive index and a heat insulating effect. Therefore, the ratio (T S ) / (P D ) of the thickness (T S ) of the silica-based layer to the average particle diameter (P D ) of the spherical porous particles is 0.002 to 0.002.
It is preferably in the range of 0.25, especially 0.01 to 0.2. The thickness (T s ) of the silica-based layer is determined by crushing spherical porous particles, and a transmission electron micrograph (TE
M) is photographed, the thickness of the coating layer portion is measured for 20 particles, and the average value can be obtained. The average particle diameter of the aggregate and the spherical porous particles is determined by a centrifugal sedimentation type particle size distribution analyzer (CAPA-70 manufactured by Horiba, Ltd.).
0).

【0011】このようなシリカ系被覆層の形成方法は、
前記した範囲にある被覆層が形成できれば特に限定され
ないが、後述する無機酸化物微粒子集合体の分散液中に
シリカのアルカリ金属塩(水ガラス)を脱アルカリして
得られる珪酸液を所定量添加し、同時にアルカリを加え
て珪酸液を集合体の外表面に沈着させる方法、あるいは
加水分解性の有機珪素化合物を酸またはアルカリ触媒を
用いて加水分解し、加水分解物を集合体の外表面に沈着
させる方法は、溶媒等が拡散し得る程度に緻密で均一な
被覆層を形成することができるので好ましい。また、必
要に応じて、珪酸液あるいは有機ケイ素化合物とともに
前記したシリカ以外の無機酸化物の前駆体無機化合物塩
を添加することによってシリカを主成分とし、シリカ以
外の無機酸化物を含むシリカ系被覆層を形成することが
できる。
The method of forming such a silica-based coating layer is as follows.
There is no particular limitation as long as a coating layer in the above range can be formed, but a predetermined amount of a silicate solution obtained by dealkalizing an alkali metal salt of silica (water glass) is added to a dispersion of an inorganic oxide fine particle aggregate described later. At the same time, a method of depositing a silicic acid solution on the outer surface of the aggregate by adding an alkali, or hydrolyzing a hydrolyzable organic silicon compound using an acid or an alkali catalyst, and causing the hydrolyzate on the outer surface of the aggregate The deposition method is preferable because a dense and uniform coating layer can be formed to such an extent that a solvent or the like can diffuse. Further, if necessary, a silica-based coating containing silica as a main component and an inorganic oxide other than silica by adding a precursor inorganic compound salt of the above-mentioned inorganic oxide other than silica together with a silicate solution or an organosilicon compound. Layers can be formed.

【0012】前記無機酸化物微粒子集合体は、前記無機
酸化物微粒子の前駆体無機化合物塩を中和あるいは加水
分解して得られるヒドロゲルに由来する乾燥ゲルおよび
/またはキセロゲル(以下、ゲル成分ということもあ
る。)を含むことが好ましい。これらのゲル成分として
は、四塩化珪素を気相熱分解して得られるシリカのキセ
ロゲルであるアエロジルや、珪酸塩を加水分解して得た
シリカヒドロゲルを加熱焼成して得られるシリカのキセ
ロゲルであるホワイトカーボン等を具体的に挙げること
ができる。上記ゲル成分の平均粒子径は、10〜500
nmの範囲にあることが好ましい。平均粒子径が500
nmを越えると粒子強度が低下したり、シリカ系層の形
成が難しくなり、平均粒子径が10nm未満の場合は、
集合体に空隙を増加させる効果が充分に現れない。ゲル
成分の配合割合は、ゲル成分を酸化物MOG で表し、無
機酸化物微粒子を酸化物MOS で表したときの重量比M
G /MOS が5/95〜90/10、特に、20/8
0〜70/30の範囲にあることが好ましい。重量比M
G /MO S が5/90未満の場合はゲル成分を用いて
空隙を増加させる効果が不充分となり、重量比MOG
MOS が90/10を越えると粒子強度が低下すること
がある。なお、ゲル成分を含む場合のコロイド液の濃度
も同様に酸化物換算で5〜60重量%、特に、10〜5
0重量%の範囲にあることが好ましい。
The above-mentioned inorganic oxide fine particle aggregate is preferably made of the above-mentioned inorganic oxide.
Neutralize or hydrolyze the precursor inorganic compound salt of oxide fine particles
Dried gel derived from hydrogel obtained by decomposition and
// xerogel (hereinafter sometimes referred to as gel component)
You. ) Is preferable. As these gel components
Is xenous silica obtained by gas phase pyrolysis of silicon tetrachloride.
It is obtained by hydrolyzing aerogels and silicates that are loggers.
Xe of silica obtained by heating and calcining silica hydrogel
Specific mention of white carbon, etc., which is a logger
Can be. The average particle diameter of the gel component is 10 to 500.
It is preferably in the range of nm. Average particle size 500
If it exceeds nm, the particle strength will decrease or the silica
When the average particle diameter is less than 10 nm,
The effect of increasing the voids in the aggregate is not sufficiently exhibited. gel
The mixing ratio of the components is such that the gel component isG, And nothing
Oxide MOSWeight ratio M when expressed by
OG/ MOSIs 5/95 to 90/10, especially 20/8
It is preferably in the range of 0 to 70/30. Weight ratio M
OG/ MO SIf less than 5/90, use gel component
The effect of increasing the voids becomes insufficient and the weight ratio MOG/
MOSExceeds 90/10, the particle strength decreases.
There is. In addition, the concentration of the colloid solution when the gel component is included
Similarly, 5 to 60% by weight in terms of oxide, particularly 10 to 5% by weight.
It is preferably in the range of 0% by weight.

【0013】続いて、本発明の球状多孔質粒子の製造方
法を工程順に説明する。工程(a)無機酸化物微粒子集合体の調製 無機酸化物微粒子のコロイド液、または、必要に応じて
前記ヒドロゲルおよび/またはキセロゲルを含むコロイ
ド液を気流中に噴霧して無機酸化物微粒子集合体を調製
する。該コロイド液としてはシリカ、アルミナ、ジルコ
ニア、チタニア、シリカ・アルミナ、シリカ・ジルコニ
ア、シリカ・チタニア等の無機酸化物微粒子の水または
有機溶媒を分散媒とするゾルを用いることができる。該
コロイド液の濃度は酸化物換算で5〜60重量%、特
に、10〜50重量%の範囲にあることが好ましい。コ
ロイド液の濃度が5重量%未満の場合は、集合体が得ら
れ難く、得られたとしても粒子径が1〜100μmの範
囲にある大きな粒子が得難くなるので好ましくない。コ
ロイド液の濃度が60重量%を越えると、コロイド液が
不安定になり球状の集合体が得難くなる。また、後述す
る噴霧乾燥を連続的に行えず、集合体の収率が低下す
る。
Next, the method for producing spherical porous particles of the present invention will be described in the order of steps. Step (a) Preparation of Inorganic Oxide Fine Particle Aggregate The inorganic oxide fine particle aggregate is sprayed by spraying a colloidal solution of inorganic oxide fine particles or a colloidal solution containing the hydrogel and / or xerogel as needed into an air stream. Prepare. As the colloid liquid, a sol using water or an organic solvent of inorganic oxide fine particles such as silica, alumina, zirconia, titania, silica-alumina, silica-zirconia, silica-titania as a dispersion medium can be used. The concentration of the colloid solution is preferably in the range of 5 to 60% by weight, particularly 10 to 50% by weight in terms of oxide. If the concentration of the colloid liquid is less than 5% by weight, it is difficult to obtain an aggregate, and even if it is obtained, it is difficult to obtain large particles having a particle diameter in the range of 1 to 100 μm, which is not preferable. When the concentration of the colloid liquid exceeds 60% by weight, the colloid liquid becomes unstable, and it becomes difficult to obtain a spherical aggregate. Further, spray drying described later cannot be continuously performed, and the yield of the aggregate is reduced.

【0014】前記コロイド液の噴霧乾燥方法としては、
前記した集合体が得られれば特に制限はなく、回転ディ
スク法、加圧ノズル法、2流体ノズル法など従来公知の
方法を採用することができる。特に、特公平2−614
06号公報に開示された2流体ノズル方法は、粒子径分
布の均一な無機酸化物微粒子集合体を得ることができ、
また平均粒子径をコントロールすることが容易であるの
で好ましい。このときの乾燥温度は、コロイド液の濃
度、処理速度等によっても異なるが、40〜150℃、
特に、50〜120℃の範囲にあることが好ましい。乾
燥温度が40℃未満では乾燥が不充分となり、コロイド
液が噴霧乾燥装置の器壁に付着して収率が低下し易く、
乾燥温度が150℃を越えると乾燥速度が速すぎてリン
ゴ様のくぼみを有する粒子が得られたり、ドーナツ状の
粒子となり、真球状の集合体が得にくくなる。
[0014] The method of spray-drying the colloid liquid includes the following.
There is no particular limitation as long as the above-mentioned aggregate is obtained, and a conventionally known method such as a rotating disk method, a pressure nozzle method, or a two-fluid nozzle method can be employed. In particular, Tokuhei 2-614
The two-fluid nozzle method disclosed in Japanese Patent Application Publication No. 06-2006 can obtain an inorganic oxide fine particle aggregate having a uniform particle size distribution,
Further, it is preferable because the average particle diameter can be easily controlled. The drying temperature at this time varies depending on the concentration of the colloid solution, the processing speed, and the like.
In particular, the temperature is preferably in the range of 50 to 120 ° C. If the drying temperature is less than 40 ° C., the drying becomes insufficient, and the colloidal liquid adheres to the wall of the spray drying device, and the yield tends to decrease,
If the drying temperature exceeds 150 ° C., the drying rate is too high, so that particles having apple-like depressions are obtained or donut-shaped particles, making it difficult to obtain true spherical aggregates.

【0015】工程(b)無機酸化物微粒子集合体の加熱
処理 工程(a)で得られた無機酸化物微粒子集合体は、無機
酸化物微粒子同士またはゲル成分との結合力を高めるた
めに、150〜600℃の温度範囲で加熱処理する。加
熱処理温度が150℃未満では結合力の向上効果が認め
られず、600℃を越えると無機酸化物微粒子集合体が
収縮するおそれがあり、最終的に得られる球状多孔質粒
子の空隙が小さくなり、好ましくない。
Step (b) Heating the aggregate of inorganic oxide fine particles
The aggregate of inorganic oxide fine particles obtained in the treatment step (a) is subjected to a heat treatment in a temperature range of 150 to 600 ° C. in order to increase the bonding force between the inorganic oxide fine particles or the gel component. When the heat treatment temperature is lower than 150 ° C., the effect of improving the bonding force is not recognized. When the heat treatment temperature is higher than 600 ° C., the aggregate of the inorganic oxide fine particles may shrink, and the voids of the spherical porous particles finally obtained become small. Is not preferred.

【0016】工程(c)無機酸化物微粒子集合体分散液
の調製 工程(b)で得られた無機酸化物微粒子集合体を水およ
び/または有機溶媒に分散させてその分散液を調製す
る。有機溶媒としては、エタノール、プロパノール、ブ
タノールなどの1価アルコール、エチレングリコール等
の多価アルコール等を用いることができる。分散液の濃
度は、無機酸化物微粒子集合体を酸化物に換算した濃度
で0. 1〜40重量%、特に0. 5〜20重量%の範囲
にあることが好ましい。濃度が0.1重量%未満の場合
は、工程(d)において無機酸化物微粒子集合体の内部
にもシリカ系成分が析出し、外表面に選択的に析出させ
ることが困難となり、細孔容積の大きな球状多孔質粒子
が得られ難くなる。他方、濃度が40重量%を越えると
工程(d)において集合体同士が凝集し易くなるので好
ましくない。
Step (c) Dispersion of aggregate of inorganic oxide fine particles
Is dispersed in water and / or an organic solvent to prepare a dispersion of the aggregated inorganic oxide particles obtained in the preparation step (b). As the organic solvent, a monohydric alcohol such as ethanol, propanol, and butanol, a polyhydric alcohol such as ethylene glycol, and the like can be used. The concentration of the dispersion is preferably in the range of 0.1 to 40% by weight, particularly 0.5 to 20% by weight in terms of the concentration of the inorganic oxide fine particle aggregate converted to oxide. If the concentration is less than 0.1% by weight, in the step (d), the silica-based component also precipitates inside the aggregate of inorganic oxide fine particles, making it difficult to selectively precipitate on the outer surface. It is difficult to obtain spherical porous particles having a large particle size. On the other hand, if the concentration exceeds 40% by weight, the aggregates tend to aggregate in step (d), which is not preferable.

【0017】工程(d)シリカ系被覆層の形成 工程(d)では、前記集合体分散液に酸またはアルカリ
水溶液と、次の化学式(1)で表される有機ケイ素化合
物および/またはその部分加水分解物とを添加して、集
合体の外表面をシリカ系層で被覆する。 Rn Si(OR′)4-n ・・・(1) 〔但し、R、R′:アルキル基、アリール基、ビニル
基、アクリル基等の炭化水素基、n=0、1、2または
3〕 このような有機ケイ素化合物としては、具体的に、テト
ラメトキシシラン、テトラエトキシシラン、テトライソ
プロポキシシラン、メチルトリメトキシシラン、ジメチ
ルジメトキシシラン、フェニルトリメトキシシラン、ジ
フェニルジメトキシシラン、メチルトリエトキシシラ
ン、ジメチルジエトキシシラン、フェニルトリエトキシ
シラン、ジフェニルジエトキシシラン、イソブチルトリ
メトキシシラン、ビニルトリメトキシシラン、ビニルト
リエトキシシラン、ビニルトリス(βメトキシエトキ
シ)シラン、3,3,3−トリフルオロプロピルトリメ
トキシシラン、メチル−3,3,3−トリフルオロプロ
ピルジメトキシシラン、β−(3,4エポキシシクロヘ
キシル)エチルトリメトキシシラン、γ−グリシドキシ
トリプロピルトリメトキシシラン、γ−グリシドキシプ
ロピルメチルジエトキシシラン、γ−グリシドキシプロ
ピルトリエトキシシラン、γ−メタクリロキシプロピル
メチルジメトキシシラン、γ−メタクリロキシプロピル
トリメトキシシラン、γ−メタクリロキシプロピルメチ
ルジエトキシシラン、γ−メタクリロキシプロピルトリ
エトキシシラン、N−β(アミノエチル)γ−アミノプ
ロピルメチルジメトキシシラン、N−β(アミノエチ
ル)γ−アミノプロピルトリメトキシシラン、N−β
(アミノエチル)γ−アミノプロピルトリエトキシシラ
ン、γ−アミノプロピルトリメトキシシラン、γ−アミ
ノプロピルトリエトキシシラン、N−フェニル−γ−ア
ミノプロピルトリメトキシシラン、γ−メルカプトプロ
ピルトリメトキシシラン、トリメチルシラノール、メチ
ルトリクロロシラン、メチルジクロロシラン、ジメチル
ジクロロシラン、トリメチルクロロシラン、フェニルト
リクロロシラン、ジフェニルジクロロシラン、ビニルト
リクロルシラン、トリメチルブロモシラン、ジエチルシ
ラン等が挙げられる。
Step (d) In the step (d) of forming a silica-based coating layer , an acid or alkali aqueous solution is added to the above-mentioned aggregate dispersion and an organosilicon compound represented by the following chemical formula (1) and / or a partial hydrolyzate thereof. A decomposed product is added, and the outer surface of the aggregate is covered with a silica-based layer. R n Si (OR ′) 4-n (1) [where R and R ′ are a hydrocarbon group such as an alkyl group, an aryl group, a vinyl group, and an acrylic group, n = 0, 1, 2, or 3] As such organosilicon compounds, specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, Dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane , Methyl-3,3,3- Trifluoropropyldimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxytripropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane Γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyl Dimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β
(Aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol And methyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, trimethylbromosilane, diethylsilane and the like.

【0018】球状多孔質粒子を有機溶媒に分散させて用
いたり、有機樹脂に配合して用いる場合には、上記有機
ケイ素化合物でnが1〜3の化合物、フッ素置換アルキ
ル基含有化合物を用いることにより、有機溶媒への分散
性がよく、有機樹脂との親和性の高い球状多孔質粒子が
得られる。なお、有機ケイ素化合物でnが0の化合物は
そのまま用いることができるが、nが1〜3の化合物は
親水性に乏しいので、予め加水分解しておくことによ
り、反応系に均一に混合できるようにすることが好まし
い。加水分解には、これら有機ケイ素化合物の加水分解
法として周知の方法を採用することができる。加水分解
触媒として、アルカリ金属の水酸化物や、アンモニア
水、アミン等の塩基性のものを用いた場合、加水分解後
これらの塩基性触媒を除去して、酸性溶液にして用いる
こともできる。また、有機酸や無機酸などの酸性触媒を
用いて加水分解物を調製した場合、加水分解後、イオン
交換等によって酸性触媒を除去することが好ましい。な
お、得られた有機ケイ素化合物の加水分解物は、水溶液
の形態で使用することが望ましい。ここで水溶液とは加
水分解物がゲルとして白濁した状態になく透明性を有し
ている状態を意味する。
When the spherical porous particles are used by being dispersed in an organic solvent or blended with an organic resin, the above-mentioned organosilicon compound having n of 1 to 3 and a fluorine-substituted alkyl group-containing compound must be used. Thereby, spherical porous particles having good dispersibility in an organic solvent and high affinity with an organic resin can be obtained. In addition, the compound in which n is 0 in the organosilicon compound can be used as it is, but the compound in which n is 1 to 3 has poor hydrophilicity, so that it can be uniformly mixed with the reaction system by being hydrolyzed in advance. Is preferable. For the hydrolysis, a well-known method for hydrolyzing these organosilicon compounds can be employed. When a basic catalyst such as an alkali metal hydroxide, aqueous ammonia, or an amine is used as the hydrolysis catalyst, these basic catalysts may be removed after the hydrolysis and used as an acidic solution. When a hydrolyzate is prepared using an acidic catalyst such as an organic acid or an inorganic acid, it is preferable to remove the acidic catalyst by ion exchange or the like after the hydrolysis. The obtained hydrolyzate of the organosilicon compound is desirably used in the form of an aqueous solution. Here, the aqueous solution means a state in which the hydrolyzate is not clouded as a gel but has transparency.

【0019】また、上記有機ケイ素化合物以外に、シリ
カのアルカリ金属塩(水ガラス)を脱アルカリして得ら
れる珪酸液を用いることができる。集合体粒子の分散媒
が水単独、または有機溶媒に対する水の比率が高い場合
には、このような珪酸液による被覆処理も可能である。
珪酸液を用いる場合には、分散液中に珪酸液を所定量添
加し、同時にアルカリを加えて珪酸液を集合体粒子の外
表面に沈着させる。珪酸液としては、珪酸アルカリ水溶
液を陽イオン交換樹脂で処理すること等によって、アル
カリを除去して得られる珪酸液を用いることができ、特
に、pH2〜pH4、SiO2 濃度が約7重量%以下の
酸性珪酸液が好ましい。
In addition to the above-mentioned organosilicon compound, a silicate solution obtained by alkali-removing an alkali metal salt of silica (water glass) can be used. When the dispersion medium of the aggregate particles is water alone or the ratio of water to the organic solvent is high, such a coating treatment with a silicate solution is also possible.
When a silicate solution is used, a predetermined amount of the silicate solution is added to the dispersion, and simultaneously an alkali is added to deposit the silicate solution on the outer surfaces of the aggregated particles. As the silicate solution, a silicate solution obtained by removing an alkali by treating an alkali silicate aqueous solution with a cation exchange resin or the like can be used. Particularly, the pH is 2 to 4, and the SiO 2 concentration is about 7% by weight or less. Is preferable.

【0020】上記機ケイ素化合物および/またはその部
分加水分解物あるいは珪酸液と共に、前述したシリカ以
外の無機酸化物の前駆体金属塩を添加してシリカとシリ
カ以外の無機酸化物とからなるシリカ系層を形成するこ
ともできる。シリカ以外の無機酸化物の原料として、ア
ルカリ可溶の無機化合物を用いることが好ましく、前記
した金属または非金属のオキソ酸のアルカリ金属塩また
はアルカリ土類金属塩、アンモニウム塩、第4級アンモ
ニウム塩を挙げることができ、より具体的には、アルミ
ン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルア
ンモニウム、アンチモン酸カリウム、錫酸カリウム、ア
ルミノ珪酸ナトリウム、モリブデン酸ナトリウム、硝酸
セリウムアンモニウム、燐酸ナトリウム等が適当であ
る。
A silica metal comprising silica and an inorganic oxide other than silica by adding a precursor metal salt of the above-mentioned inorganic oxide other than silica together with the above-mentioned organosilicon compound and / or a partial hydrolyzate thereof or a silicic acid solution. Layers can also be formed. As a raw material of the inorganic oxide other than silica, it is preferable to use an alkali-soluble inorganic compound, and an alkali metal salt or an alkaline earth metal salt, an ammonium salt, or a quaternary ammonium salt of the above-mentioned metal or nonmetal oxo acid More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, sodium phosphate and the like are suitable. is there.

【0021】このようなシリカ源、シリカ以外の無機化
合物塩を含むシリカ源の添加量は、無機酸化物微粒子集
合体の平均粒子径および空隙率を考慮し、前記(TS
/(PD )が0. 002〜0. 25の範囲となり、シリ
カ系層の厚さ(TS )が0.002〜25μmの範囲と
なるようにすることが好ましい。例えば、平均粒子径が
100μmで細孔容積が0. 3cc/gの無機酸化物微
粒子集合体100gの外表面に厚さ2μmの被覆層を形
成するのに必要な酸化物量を計算によって求めると、シ
リカ(または、シリカとシリカ以外の無機酸化物)とし
て約21gとなり、これに相当するシリカ源、シリカ以
外の無機化合物塩を添加すればよい。なお、ここではシ
リカ以外の無機酸化物の含有量が少ないため被覆層の密
度はシリカと同じ(d=2.2)として計算した。シリ
カ系層で被覆した無機酸化物微粒子集合体の分散液は、
限外濾過等の公知の洗浄方法により洗浄することができ
る。この場合、予め分散液中のアルカリ金属イオン、ア
ルカリ土類金属イオンおよびアンモニウムイオン等の一
部をイオン交換樹脂などで除去した後に限外濾過しても
よい。次いで、上記分散液から粒子を濾過分離し、乾燥
して第1の球状多孔質粒子を得る。この球状多孔質粒子
の外表面にはシリカ系層が形成されているので、水分子
等の微小粒子以外は細孔内部に入り込まず、低屈折率と
なる。即ち、第1の球状多孔質粒子を有機樹脂のような
高分子化合物に分散させて用いる場合、高分子化合物が
シリカ系層の細孔を通して粒子内部の空隙に入ることが
なく、このため空隙が維持されるために低屈折率や断熱
効果を有する。
The addition amount of the silica source and the silica source containing an inorganic compound salt other than silica is determined in consideration of the average particle diameter and the porosity of the inorganic oxide fine particle aggregate, and is determined by the above (T S ).
/ (P D ) is preferably in the range of 0.002 to 0.25, and the thickness (T S ) of the silica-based layer is preferably in the range of 0.002 to 25 μm. For example, when the amount of oxide required to form a coating layer having a thickness of 2 μm on the outer surface of 100 g of the inorganic oxide fine particle aggregate having an average particle diameter of 100 μm and a pore volume of 0.3 cc / g is obtained by calculation, About 21 g of silica (or silica and an inorganic oxide other than silica) is obtained, and a corresponding silica source and an inorganic compound salt other than silica may be added. Here, since the content of the inorganic oxide other than silica was small, the calculation was performed on the assumption that the density of the coating layer was the same as that of silica (d = 2.2). Dispersion of the inorganic oxide fine particle aggregate coated with the silica-based layer,
It can be washed by a known washing method such as ultrafiltration. In this case, ultrafiltration may be carried out after previously removing a part of the alkali metal ion, alkaline earth metal ion, ammonium ion and the like in the dispersion with an ion exchange resin or the like. Next, the particles are separated from the dispersion by filtration and dried to obtain first spherical porous particles. Since the silica-based layer is formed on the outer surface of the spherical porous particles, only the fine particles such as water molecules do not enter the inside of the pores and have a low refractive index. That is, when the first spherical porous particles are used by being dispersed in a polymer compound such as an organic resin, the polymer compound does not enter the voids inside the particles through the pores of the silica-based layer. Since it is maintained, it has a low refractive index and a heat insulating effect.

【0022】工程(e)球状多孔質粒子分散液の水熱処
工程(d)で得られた球状多孔質粒子の分散液を、所望
により50〜350℃の温度範囲で水熱処理することに
より、無機酸化物微粒子集合体を被覆しているシリカ系
層を緻密化することができる。即ち、シリカ系層の細孔
を減少あるいは消失させることにより、球状多孔質粒子
の内部空隙には、溶媒および/または気体が残留するこ
とになる。水熱処理は、該分散液に必要に応じてアルカ
リ水溶液を添加して好ましくはpH8〜13の範囲に調
整し、加熱処理することにより行われる。このときの加
熱処理温度は、特に100〜300℃の範囲が好まし
い。加熱処理に際しては、分散液の濃度を予め希釈し
て、あるいは濃縮して処理することもできる。また、こ
の後、前記工程(d)と同様にして、水熱処理した分散
液の洗浄を行ってもよく、最後に、上記水熱処理した分
散液から粒子を濾過分離し、乾燥して第2の球状多孔質
粒子を得る。この球状多孔質粒子は、シリカ系被覆層が
緻密化されているので、低屈折率化や断熱効果が促進さ
れる。
Step (e) Hydrothermal treatment of the spherical porous particle dispersion
By subjecting the dispersion of the spherical porous particles obtained in the step (d) to hydrothermal treatment at a temperature range of 50 to 350 ° C. as desired, the silica-based layer covering the aggregate of inorganic oxide fine particles is densely packed. Can be That is, by reducing or eliminating the pores of the silica-based layer, the solvent and / or gas remains in the internal voids of the spherical porous particles. The hydrothermal treatment is performed by adding an aqueous alkali solution to the dispersion as needed, preferably adjusting the pH to a range of 8 to 13, and performing a heat treatment. The heat treatment temperature at this time is particularly preferably in the range of 100 to 300 ° C. At the time of the heat treatment, the concentration of the dispersion liquid may be previously diluted or concentrated. After that, the dispersion subjected to the hydrothermal treatment may be washed in the same manner as in the step (d). Finally, the particles are separated by filtration from the dispersion subjected to the hydrothermal treatment, dried and dried to form the second dispersion. Obtain spherical porous particles. In the spherical porous particles, since the silica-based coating layer is densified, the lowering of the refractive index and the heat insulating effect are promoted.

【0023】工程(f)球状多孔質粒子の加熱処理 さらに、上記第1の球状多孔質粒子および第2の球状多
孔質粒子は所望により、乾燥した後、大気圧下または減
圧下、400〜1200℃で加熱処理して、シリカ系層
により内部空隙が密封された第3の球状多孔質粒子を得
ることができる。加熱処理温度が400℃未満では、シ
リカ系層の細孔を完全に閉塞して緻密化することができ
ない。一方、加熱処理温度が1200℃を越えると球状
多孔質粒子が互いに融着し易く、球状を保持し難い。こ
の第3の球状多孔質粒子は、空隙に溶媒が存在しないた
めに粒子の屈折率は極めて低い。従って、この粒子を用
いて得られる被膜は低屈折率であり、被膜付基材は反射
防止性能に優れる。また、この粒子を積層した膜は優れ
た断熱効果を有する。
Step (f) Heat treatment of the spherical porous particles Further, the first spherical porous particles and the second spherical porous particles are optionally dried, and then dried under atmospheric pressure or reduced pressure at 400-1200. By performing heat treatment at a temperature of ° C., third spherical porous particles whose internal voids are sealed by the silica-based layer can be obtained. If the heat treatment temperature is lower than 400 ° C., the pores of the silica-based layer cannot be completely closed and densified. On the other hand, when the heat treatment temperature exceeds 1200 ° C., the spherical porous particles are easily fused to each other, and it is difficult to maintain the spherical shape. The third spherical porous particles have a very low refractive index because no solvent is present in the voids. Therefore, the coating obtained using these particles has a low refractive index, and the coated substrate has excellent antireflection performance. Further, a film in which these particles are laminated has an excellent heat insulating effect.

【0024】[0024]

【発明の効果】本発明によれば、平均粒子径が2〜25
0nmという微細な無機酸化物微粒子の集合体をシリカ
系層によって被覆した構造からなる、球状多孔質粒子を
得ることができる。この球状多孔質粒子は低屈折率で断
熱特性を有することから、断熱材、消音材、防音材等と
して、好適である。また、シリカ被膜の球状多孔質粒子
を高級滑性フィラーとして化粧料に用いれば、非常に軽
く、ソフトで伸びのよいファンデーションが得られる。
このほか、インク用体質顔料、トナー、剥離性改良剤、
潤滑剤、自動車用ワックス等の研磨材、樹脂・ゴム耐摩
耗性改良用高硬度フィラー剤、流動性改良剤、艶消フィ
ラー、無収縮フィラー、パテ用充填剤、吸着剤、クロマ
ト用担体、香料包括ビーズ、殺菌剤・殺虫剤・防黴剤包
括ビーズ、液晶包括ビーズ等の用途も例示することがで
きる。本発明に係る球状多孔質粒子の製造方法は、工程
が簡易であり製造コストが安価である。
According to the present invention, the average particle size is 2 to 25.
It is possible to obtain spherical porous particles having a structure in which an aggregate of fine inorganic oxide fine particles of 0 nm is covered with a silica-based layer. Since the spherical porous particles have a low refractive index and a heat insulating property, they are suitable as a heat insulating material, a sound deadening material, a sound insulating material and the like. In addition, if the spherical porous particles of the silica coating are used as a high-grade lubricating filler in cosmetics, a very light, soft and stretchable foundation can be obtained.
In addition, extenders for ink, toner, release improver,
Lubricants, abrasives such as wax for automobiles, high hardness fillers for improving abrasion resistance of resins and rubbers, fluidity improvers, matte fillers, non-shrinkage fillers, putty fillers, adsorbents, chromatographic carriers, and fragrances Uses such as comprehensive beads, fungicide / insecticide / fungicide-inclusive beads, liquid crystal inclusion beads and the like can also be exemplified. The method for producing spherical porous particles according to the present invention has simple steps and low production costs.

【0025】[0025]

【実施例】以下に示す実施例により、本発明を更に具体
的に説明する。実施例1 無機酸化物微粒子のコロイド液としてシリカゾル(触媒
化成工業(株)製:Cataloid S-20L、平均粒子径12n
m、濃度20重量%)1000gを用い、温度105℃
の乾燥気流中に、二流体ノズルの一方に5kg/hrの流量
で、他方のノズルに気体圧力を2kg/hrの流量で供給し
て噴霧乾燥した。この粉末を500℃で5時間焼成して
無機酸化物微粒子集合体(A)を得た。この平均粒子径
と空隙割合(細孔容積)を測定し、結果を表1に示し
た。次いで、純水1300g、エタノール1100gに
濃度28重量%のアンモニア水400gを加えた混合溶
媒に、集合体(A)20gを分散させ、分散液の温度を
35℃に維持しながら、これに有機ケイ素化合物として
メチルトリエトキシシラン(信越化学(株)製:KBE
−13、SiO2 濃度34重量%)12gを12分間で
添加した。その後、濾過分離し、乾燥してメチル基含有
シリカ層で被覆された球状多孔質粒子(A)を得た。被
覆層の厚さ、平均粒子径、空隙割合(細孔容積)および
屈折率を測定し、結果を表2に示した。
The present invention will be described more specifically with reference to the following examples. Example 1 Silica sol (Cataloid S-20L, average particle size: 12 n, manufactured by Catalysis Chemical Industry Co., Ltd.)
m, concentration 20% by weight) 1000 g at a temperature of 105 ° C.
Of the two-fluid nozzle at a flow rate of 5 kg / hr and a gas pressure of 2 kg / hr at the other nozzle for spray drying. This powder was fired at 500 ° C. for 5 hours to obtain an inorganic oxide fine particle aggregate (A). The average particle diameter and the void ratio (pore volume) were measured, and the results are shown in Table 1. Next, 20 g of the aggregate (A) was dispersed in a mixed solvent obtained by adding 400 g of ammonia water having a concentration of 28% by weight to 1300 g of pure water and 1100 g of ethanol, and while maintaining the temperature of the dispersion at 35 ° C., the organic silicon was added thereto. As a compound, methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBE)
-13 and the SiO 2 concentration of 34 wt%) 12 g was added in 12 minutes. Thereafter, the resultant was separated by filtration and dried to obtain spherical porous particles (A) coated with a methyl group-containing silica layer. The thickness, average particle diameter, void ratio (pore volume), and refractive index of the coating layer were measured, and the results are shown in Table 2.

【0026】実施例2 シリカゾル(触媒化成工業(株)製:Cataloid SI-30、
平均粒子径12nm、濃度30重量%)1000gに、
アエロジル(日本アエロジル(株)製:平均粒子径0.
05μm)75gを添加し、これに水を加えて濃度が2
0重量%の無機酸化物微粒子のコロイド液を調製し、実
施例1と同様にして噴霧乾燥および焼成して無機酸化物
微粒子集合体(B)を得た。次いで、純水1300g、
エタノール1100gに濃度29重量%のアンモニア水
400gを加えた混合溶媒に、集合体(B)20gを分
散させ、分散液の温度を35℃に維持しながら、これに
有機ケイ素化合物としてテトラエトキシシラン(多摩化
学工業(株)製:エチルシリケート−A、SiO2 濃度
28重量%)14gを14分間で添加した。その後、濾
過分離し、乾燥してシリカ層で被覆された球状多孔質粒
子(B)を得た。
Example 2 Silica sol (Cataloid SI-30, manufactured by Catalyst Chemical Industry Co., Ltd.)
Average particle diameter 12 nm, concentration 30% by weight) 1000 g,
Aerosil (manufactured by Nippon Aerosil Co., Ltd .: average particle size of 0.
05 μm), and water was added thereto to give a concentration of 2
A colloidal solution of 0% by weight of inorganic oxide fine particles was prepared, spray-dried and fired in the same manner as in Example 1 to obtain an inorganic oxide fine particle aggregate (B). Then, 1300 g of pure water,
20 g of the aggregate (B) was dispersed in a mixed solvent obtained by adding 400 g of aqueous ammonia having a concentration of 29% by weight to 1100 g of ethanol, and while maintaining the temperature of the dispersion at 35 ° C., tetraethoxysilane (organic silicon compound) was added thereto. 14 g of ethyl silicate-A (manufactured by Tama Chemical Industry Co., Ltd., SiO 2 concentration: 28% by weight) was added over 14 minutes. Thereafter, the mixture was separated by filtration and dried to obtain spherical porous particles (B) covered with a silica layer.

【0027】実施例3 実施例2と同様にしてテトラエトキシシランを添加した
無機酸化物微粒子集合体(B)の分散液を調製した。次
いで、この分散液をオートクレーブに充填し、180℃
で10時間水熱処理し、冷却した後、濾過分離し、乾燥
して緻密なシリカ被覆層が形成された球状多孔質粒子
(C)を得た。
Example 3 In the same manner as in Example 2, a dispersion liquid of the inorganic oxide fine particle aggregate (B) to which tetraethoxysilane was added was prepared. Next, this dispersion was filled in an autoclave,
For 10 hours, cooled, filtered, separated and dried to obtain spherical porous particles (C) on which a dense silica coating layer was formed.

【0028】実施例4 実施例3で得た球状多孔質粒子(C)の一部を450℃
で3時間加熱処理して球状多孔質粒子(D)を得た。
Example 4 A part of the spherical porous particles (C) obtained in Example 3 was heated at 450 ° C.
For 3 hours to obtain spherical porous particles (D).

【0029】実施例5 実施例3で、テトラエトキシシランの添加量と添加速度
を70g/70分間に代えた以外は実施例3と同様にし
て、シリカ被覆層が形成された球状多孔質粒子(E)を
得た。
Example 5 In the same manner as in Example 3 except that the addition amount and the addition speed of tetraethoxysilane were changed to 70 g / 70 minutes, spherical porous particles having a silica coating layer formed thereon were prepared in the same manner as in Example 3. E) was obtained.

【0030】実施例6 無機酸化物微粒子のコロイド液としてシリカゾル(触媒
化成工業(株)製:Cataloid SI-50、平均粒子径25n
m、濃度50重量%)800gと水450gを混合し、
実施例1と同様にして噴霧乾燥および焼成して無機酸化
物微粒子集合体(F)を得た。次いで、純水1300
g、エタノール1100gに濃度29重量%のアンモニ
ア水400gを加えた混合溶媒に、集合体(F)20g
を分散させ、分散液の温度を35℃に維持しながら、こ
れに有機ケイ素化合物としてテトラエトキシシラン(多
摩化学工業(株)製:エチルシリケート−A、SiO2
濃度28重量%)14gを14分間で添加した。次い
で、この分散液をオートクレーブに充填し、180℃で
10時間水熱処理し、冷却した後、濾過分離し、乾燥し
て緻密なシリカ層で被覆された球状多孔質粒子(F)を
得た。
Example 6 Silica sol (Cataloid SI-50, manufactured by Catalysis Kasei Kogyo Co., Ltd., average particle diameter 25 n) was used as a colloid liquid of inorganic oxide fine particles.
m, concentration 50% by weight) 800 g and water 450 g are mixed,
Spray drying and firing were performed in the same manner as in Example 1 to obtain an inorganic oxide fine particle aggregate (F). Then, pure water 1300
20 g of aggregate (F) in a mixed solvent obtained by adding 400 g of 29% by weight ammonia water to 1100 g of ethanol and 1100 g of ethanol.
While maintaining the temperature of the dispersion at 35 ° C., and adding tetraethoxysilane (Tama Chemical Industry Co., Ltd .: ethyl silicate-A, SiO 2 ) as an organosilicon compound.
14 g (concentration 28% by weight) were added in 14 minutes. Next, this dispersion was filled in an autoclave, subjected to a hydrothermal treatment at 180 ° C. for 10 hours, cooled, separated by filtration, and dried to obtain spherical porous particles (F) covered with a dense silica layer.

【0031】実施例7 シリカゾル(触媒化成工業(株)製:Cataloid SI-50、
平均粒子径25nm、濃度50重量%)400gに、水
60gとアエロジル(日本アエロジル(株)製:平均粒
子径0. 05μm)133gを添加し、これに水を加え
て濃度が20重量%の無機酸化物微粒子のコロイド液を
調製し、実施例1と同様にして噴霧乾燥および焼成して
無機酸化物微粒子集合体(G)を得た。次いで、純水1
300g、エタノール1100gに濃度29重量%のア
ンモニア水400gを加えた混合溶媒に、集合体(G)
20gを分散させ、分散液の温度を35℃に維持しなが
ら、これに有機ケイ素化合物としてテトラエトキシシラ
ン(多摩化学工業(株)製:エチルシリケート−A、S
iO2 濃度28重量%)14gを14分間で添加した。
次いで、この分散液をオートクレーブに充填し、180
℃で10時間水熱処理し、冷却した後、濾過分離し、乾
燥して緻密なシリカ層で被覆した球状多孔質粒子(G)
を得た。
Example 7 Silica sol (Cataloid SI-50, manufactured by Catalyst Chemical Industry Co., Ltd.)
To 400 g of an average particle diameter of 25 nm and a concentration of 50% by weight, 60 g of water and 133 g of Aerosil (manufactured by Nippon Aerosil Co., Ltd .; average particle diameter of 0.05 μm) are added, and water is added to the resultant to add 20% by weight of inorganic substance. A colloidal solution of oxide fine particles was prepared, spray-dried and fired in the same manner as in Example 1 to obtain an inorganic oxide fine particle aggregate (G). Then, pure water 1
Aggregate (G) was added to a mixed solvent obtained by adding 400 g of 29% by weight aqueous ammonia to 300 g and 1100 g of ethanol.
While dispersing 20 g of the dispersion and maintaining the temperature of the dispersion at 35 ° C., tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd .: ethyl silicate-A, S) was added thereto as an organosilicon compound.
14 g of an iO 2 concentration of 28% by weight were added in 14 minutes.
Next, this dispersion was filled in an autoclave,
Hydrothermal treatment at 10 ° C. for 10 hours, cooling, filtration, separation, drying and spherical porous particles (G) covered with a dense silica layer
Got.

【0032】実施例8 濃度3重量%に希釈したメタチタン酸にアンモニア水を
加えてpH8に調整し、得られた沈殿を洗浄して脱塩し
た。この沈殿1000g(TiO2 としての濃度10重
量%)に4級アミン(トリエタノールアミン)480g
を添加し、95℃で1時間加温して分散粒子の濃度が2
0重量%、平均粒子径が48nmの酸化チタンのコロイ
ド液を得た。これを実施例1と同様にして噴霧乾燥およ
び焼成して無機酸化物微粒子集合体(H)を得た。次い
で、純水1300g、エタノール1100gに濃度29
重量%のアンモニア水400gを加えた混合溶媒に、集
合体(H)20gを分散させ、分散液の温度を35℃に
維持しながら、これに有機ケイ素化合物としてテトラエ
トキシシラン(多摩化学工業(株)製:エチルシリケー
ト−A、SiO2 濃度28重量%)14gを14分間で
添加した。次いで、この分散液をオートクレーブに充填
し、180℃で10時間水熱処理し、冷却した後、濾過
分離し、乾燥して緻密なシリカ層で被覆した球状多孔質
粒子(H)を得た。
Example 8 Aqueous ammonia was added to metatitanic acid diluted to a concentration of 3% by weight to adjust the pH to 8, and the resulting precipitate was washed and desalted. 480 g of a quaternary amine (triethanolamine) was added to 1000 g of this precipitate (concentration as TiO 2 of 10% by weight).
And heated at 95 ° C. for 1 hour to reduce the concentration of the dispersed particles to 2
A colloidal solution of titanium oxide having a weight percentage of 0% and an average particle diameter of 48 nm was obtained. This was spray-dried and fired in the same manner as in Example 1 to obtain an inorganic oxide fine particle aggregate (H). Then, a concentration of 29 was added to 1300 g of pure water and 1100 g of ethanol.
20 g of the aggregate (H) was dispersed in a mixed solvent to which 400 g of aqueous ammonia was added by weight, and while maintaining the temperature of the dispersion at 35 ° C., tetraethoxysilane (Tama Chemical Industry Co., Ltd.) was added thereto as an organosilicon compound. ): Ethyl silicate-A, SiO 2 concentration 28% by weight) in 14 minutes. Next, this dispersion was filled in an autoclave, subjected to a hydrothermal treatment at 180 ° C. for 10 hours, cooled, separated by filtration, and dried to obtain spherical porous particles (H) covered with a dense silica layer.

【0033】実施例9 濃度2. 5重量%に希釈した塩化アルミニウムに、濃度
3重量%の苛性ソーダ水溶液を加えてpH7. 5に調整
し、得られた沈殿を洗浄して脱塩した。この沈殿に硝酸
を添加して解膠し、分散粒子の濃度が10重量%、平均
粒子径が15nmのアルミナのコロイド液を得た。これ
を実施例1と同様にして噴霧乾燥および焼成して無機酸
化物微粒子集合体(I)を得た。次いで、純水1300
g、エタノール1100gに濃度29重量%のアンモニ
ア水400gを加えた混合溶媒に、無機酸化物粒子
(I)20gを分散させ、分散液の温度を35℃に維持
しながら、これに有機ケイ素化合物としてテトラエトキ
シシラン(多摩化学工業(株)製:エチルシリケート−
A、SiO2 濃度28重量%)14gを14分間で添加
した。次いで、この分散液をオートクレーブに充填し、
180℃で10時間水熱処理し、冷却した後、濾過分離
し、乾燥して緻密なシリカ層で被覆した球状多孔質粒子
(I)を得た。
Example 9 A 3% by weight aqueous solution of caustic soda was added to aluminum chloride diluted to a concentration of 2.5% by weight to adjust the pH to 7.5, and the resulting precipitate was washed and desalted. Nitric acid was added to the precipitate to peptize it to obtain a colloidal solution of alumina having a dispersed particle concentration of 10% by weight and an average particle diameter of 15 nm. This was spray-dried and fired in the same manner as in Example 1 to obtain an inorganic oxide fine particle aggregate (I). Then, pure water 1300
20 g of inorganic oxide particles (I) are dispersed in a mixed solvent obtained by adding 400 g of aqueous ammonia having a concentration of 29% by weight to 1100 g of ethanol, and while maintaining the temperature of the dispersion at 35 ° C., an organic silicon compound is added thereto. Tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd .: ethyl silicate)
A, was added with SiO 2 concentration of 28 wt%) 14 g 14 min. Next, this dispersion was filled in an autoclave,
After hydrothermal treatment at 180 ° C. for 10 hours, and after cooling, the mixture was separated by filtration and dried to obtain spherical porous particles (I) covered with a dense silica layer.

【0034】比較例1 実施例1の途中工程で得た無機酸化物微粒子集合体
(A)について、屈折率を測定し、結果を表2に示す。
Comparative Example 1 The refractive index of the inorganic oxide fine particle aggregate (A) obtained in the middle step of Example 1 was measured, and the results are shown in Table 2.

【0035】比較例2 実施例2の途中工程で得た無機酸化物微粒子集合体
(B)について、屈折率を測定し、結果を表2に示す。
Comparative Example 2 The refractive index of the aggregate (B) of inorganic oxide fine particles obtained in the middle of Example 2 was measured, and the results are shown in Table 2.

【0036】比較例3 テトラエトキシシラン(多摩化学工業(株)製:エチル
シリケート−A)を加水分解して得た中実球であるシリ
カ粒子(触媒化成工業(株)製:真絲球SW−5、平均
粒子径5μm)について空隙割合、屈折率を測定し、結
果を表2に示す。
Comparative Example 3 Silica particles which are solid spheres obtained by hydrolyzing tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd .: ethyl silicate-A) 5, average particle diameter 5 μm), the void ratio and the refractive index were measured, and the results are shown in Table 2.

【0037】[0037]

【表1】 無機酸化物微粒子 ゲル成分 分散液 噴霧 平均 細孔 成分 平均 配合比 の濃度 乾燥 粒径 容積 粒径 MOG /MOS 温度 (nm) (wt%) (℃) (μm) (cc/g) 実施例1 SiO2 12 − 20 105 5 0.3 実施例2 SiO2 12 2/8 20 105 5 0.4 実施例3 SiO2 12 2/8 20 105 5 0.4 実施例4 SiO2 12 2/8 20 105 5 0.4 実施例5 SiO2 12 2/8 20 105 5 0.4 実施例6 SiO2 25 − 32 105 5 0.4 実施例7 SiO2 25 4/6 20 105 5 0.7 実施例8 TiO2 48 − 20 105 4.5 0.7 実施例9 Al2O3 15.4 − 20 105 3.6 0.5 比較例1 SiO2 12 − 20 105 5 0.3 比較例2 SiO2 12 2/8 20 105 5 0.4 比較例3 − − − − − − −TABLE 1 Inorganic oxide concentration dry particle size volume of the particulate gel component dispersion mist average pore components mean blending ratio particle diameter MO G / MO S Temperature (nm) (wt%) ( ℃) (μm) (cc / g) Example 1 SiO 2 12 −20 105 5 0.3 Example 2 SiO 2 12 2/8 20 105 5 0.4 Example 3 SiO 2 12 2/8 20 105 5 0.4 Example 4 SiO 2 12 2/8 20 105 5 0.4 Example 5 SiO 2 12 2/8 20 105 5 0.4 Example 6 SiO 2 25−32 105 5 0.4 Example 7 SiO 2 25 4/6 20 105 5 0.7 Example 8 TiO 2 48−20 105 4.5 0.7 Example 9 Al 2 O 3 15.4 −20 105 3.6 0.5 Comparative Example 1 SiO 2 12 −20 105 5 0.3 Comparative Example 2 SiO 2 12 2/8 20 105 5 0.4 Comparative Example 3 − − − − − − − −

【0038】[0038]

【表2】 球 状 多 孔 質 粒 子 被覆層 後処理 平均 細孔 Ts/P D 屈折率 粒子 成分 厚Ts 粒径 PD 容積 密度 (nm) (μm) (cc/g) (g/cc) 実施例1 SiO2 0.15 D 5.3 0.27 0.03 1.43 2.1 実施例2 SiO2 0.10 D 5.2 0.35 0.02 1.41 2.0 実施例3 SiO2 0.10 A/D 5.2 0 0.02 1.34 1.7 実施例4 SiO2 0.10 A/C 5.2 0 0.02 1.34 1.7 実施例5 SiO2 0.40 A/D 5.8 0 0.08 1.37 1.8 実施例6 SiO2 0.10 A/D 5.2 0 0.02 1.34 1.7 実施例7 SiO2 0.05 A/D 5.1 0 0.01 1.31 1.6 実施例8 SiO2 0.15 A/D 4.8 0 0.03 2.21 2.9 実施例9 SiO2 0.20 A/D 4.0 0 0.06 1.47 1.9 比較例1 − − − 5 0.3 0 1.45 2.2 比較例2 − − − 5 0.4 0 1.45 2.2 比較例3 − − − 5 0 0 1.45 2.2 後処理欄において、A:水熱処理、C:焼成処理、D:乾燥処理である。Table 2 Sphere-shaped multifilamentary porous particle child covering layer post-treatment average pore Ts / P D refractive index particle component thickness Ts particle size P D volumetric density (nm) (μm) (cc / g) (g / cc) Example 1 SiO 2 0.15 D 5.3 0.27 0.03 1.43 2.1 Example 2 SiO 2 0.10 D 5.2 0.35 0.02 1.41 2.0 Example 3 SiO 2 0.10 A / D 5.2 0 0.02 1.34 1.7 Example 4 SiO 2 0.10 A / C 5.2 0 0.02 1.34 1.7 Example 5 SiO 2 0.40 A / D 5.8 0 0.08 1.37 1.8 Example 6 SiO 2 0.10 A / D 5.2 0 0.02 1.34 1.7 Example 7 SiO 2 0.05 A / D 5.1 0 0.01 1.31 1.6 Example 8 SiO 2 0.15 A / D 4.8 0 0.03 2.21 2.9 Example 9 SiO 2 0.20 A / D 4.0 0 0.06 1.47 1.9 Comparative example 1 − − − 5 0.3 0 1.45 2.2 Comparative example 2 − − − 5 0.4 0 1.45 2.2 Comparative example 3 − − − 5 0 0 1.45 2.2 In the post-treatment column, A: hydrothermal treatment, C: baking treatment, D: drying treatment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09C 3/06 C09C 3/06 4J002 // A61K 7/00 A61K 7/00 B 4J037 C08K 9/06 C08K 9/06 (72)発明者 西田 広泰 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 田中 博和 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 Fターム(参考) 4C083 AB171 AB172 AD151 AD152 BB23 CC12 EE07 FF01 4G042 DA01 DB27 DC03 DD01 DD03 DE12 4G047 CA02 CB08 CC03 CD04 4G072 AA41 BB07 BB15 GG01 GG03 HH14 QQ09 TT09 UU07 UU30 4G076 AA02 AB02 BA38 BF05 CA03 CA12 DA02 DA16 DA30 4J002 AA011 DE096 DE136 DE146 DJ016 FB106 FD016 4J037 CB23 CC28 DD05 DD06 EE03 EE16 EE25 EE28 EE35 EE43 EE47 FF01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09C 3/06 C09C 3/06 4J002 // A61K 7/00 A61K 7/00 B 4J037 C08K 9/06 C08K 9 / 06 (72) Inventor Hiroyasu Nishida 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-city, Fukuoka Prefecture Inside the Wakamatsu Plant of Kasei Kogyo Co., Ltd. (72) Inventor Hirokazu Tanaka 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka Catalyst Kasei F-term in the Wakamatsu Plant of Industrial Corporation (reference) DA02 DA16 DA30 4J002 AA011 DE096 DE136 DE146 DJ016 FB106 FD016 4J037 CB23 CC28 DD05 DD06 EE03 EE16 EE25 EE28 EE35 EE43 EE47 FF01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が2〜250nmである無機
酸化物微粒子が集まった平均粒子径が1〜100μmで
ある無機酸化物微粒子集合体と、これを被覆するシリカ
系層とからなる球状多孔質粒子。
1. A spherical porous body comprising an inorganic oxide fine particle aggregate having an average particle diameter of 1 to 100 μm in which inorganic oxide fine particles having an average particle diameter of 2 to 250 nm are collected, and a silica-based layer covering the same. Quality particles.
【請求項2】 前記無機酸化物微粒子集合体の細孔容積
が0. 01〜0. 8cc/gの範囲にある請求項1記載
の球状多孔質粒子。
2. The spherical porous particles according to claim 1, wherein the pore volume of the aggregate of inorganic oxide fine particles is in the range of 0.01 to 0.8 cc / g.
【請求項3】 前記シリカ系層の厚さ(TS )が0. 0
02〜25μmの範囲にあり、該シリカ系層の厚さ(T
S )と球状無機酸化物粒子の平均粒子径(P D )の比
(TS )/(PD )が0. 002〜0. 25の範囲にあ
る請求項1または請求項2記載の球状多孔質粒子。
3. The thickness (T) of the silica-based layer.S) Is 0.0
02 to 25 μm, and the thickness of the silica-based layer (T
S) And the average particle diameter of the spherical inorganic oxide particles (P D) Ratio
(TS) / (PD) Is in the range of 0.002 to 0.25
The spherical porous particles according to claim 1 or 2.
【請求項4】 前記無機酸化物微粒子集合体が、無機酸
化物のヒドロゲルおよび/またはキセロゲルに由来する
ゲル成分を含む請求項1〜請求項3のいずれか記載の球
状多孔質粒子。
4. The spherical porous particles according to claim 1, wherein the inorganic oxide fine particle aggregate contains a gel component derived from a hydrogel and / or xerogel of an inorganic oxide.
【請求項5】 下記の工程(a)〜工程(d)からなる
請求項1〜請求項4のいずれか記載の球状多孔質粒子の
製造方法。 (a)無機酸化物微粒子のコロイド液、または所望によ
り無機酸化物のヒドロゲルおよび/またはキセロゲルを
含むコロイド液を気流中に噴霧して無機酸化物微粒子集
合体を調製する工程 (b)該無機酸化物微粒子集合体を150〜600℃の
範囲で加熱処理する工程 (c)該無機酸化物微粒子集合体を水および/または有
機溶媒に分散させる工程 (d)該無機酸化物微粒子集合体の分散液に酸またはア
ルカリ水溶液と、化学式(1)で表される有機ケイ素化
合物および/またはその部分加水分解物とを添加し、該
集合体の外表面にシリカ系層を被覆する工程 Rn Si(OR′)4-n ・・・(1) 〔但し、R、R′:アルキル基、アリール基、ビニル
基、アクリル基等の炭化水素基、n=0、1、2または
3〕
5. The method for producing spherical porous particles according to claim 1, comprising the following steps (a) to (d). (A) a step of spraying a colloidal liquid of inorganic oxide fine particles or a colloidal liquid containing an inorganic oxide hydrogel and / or xerogel as required into an air stream to prepare an inorganic oxide fine particle aggregate; (C) dispersing the inorganic oxide fine particle aggregate in water and / or an organic solvent; and (d) dispersing the inorganic oxide fine particle aggregate. Adding an aqueous solution of an acid or an alkali and an organosilicon compound represented by the chemical formula (1) and / or a partial hydrolyzate thereof to cover the outer surface of the aggregate with a silica-based layer R n Si (OR ') 4-n ... (1) [where R and R' are hydrocarbon groups such as alkyl group, aryl group, vinyl group and acrylic group, n = 0, 1, 2 or 3]
【請求項6】 更に下記工程(e)を含む請求項5記載
の球状多孔質粒子の製造方法。 (e)工程(d)で得られた球状多孔質粒子の分散液を
50〜350℃で水熱処理する工程
6. The method for producing spherical porous particles according to claim 5, further comprising the following step (e). (E) hydrothermally treating the dispersion of spherical porous particles obtained in step (d) at 50 to 350 ° C.
【請求項7】 更に下記工程(f)を含む請求項5また
は請求項6記載の球状多孔質粒子の製造方法。 (f)球状多孔質粒子分散液から球状多孔質粒子を分離
し、乾燥した後、大気圧下または減圧下、400〜12
00℃で加熱処理する工程
7. The method for producing spherical porous particles according to claim 5, further comprising the following step (f). (F) After the spherical porous particles are separated from the spherical porous particle dispersion and dried, 400 to 12 under atmospheric pressure or reduced pressure.
Step of heat treatment at 00 ° C
JP2000355785A 2000-11-22 2000-11-22 Spherical porous particles and method for producing the same Expired - Lifetime JP4911814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000355785A JP4911814B2 (en) 2000-11-22 2000-11-22 Spherical porous particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000355785A JP4911814B2 (en) 2000-11-22 2000-11-22 Spherical porous particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002160907A true JP2002160907A (en) 2002-06-04
JP4911814B2 JP4911814B2 (en) 2012-04-04

Family

ID=18828141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000355785A Expired - Lifetime JP4911814B2 (en) 2000-11-22 2000-11-22 Spherical porous particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP4911814B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006873A1 (en) * 2002-07-11 2004-01-22 Catalysts & Chmicals Industries Co.,Ltd. Cosmetic
JP2006188413A (en) * 2004-12-08 2006-07-20 Nittetsu Mining Co Ltd Method of manufacturing oxide film-coated particulate
WO2006129408A1 (en) * 2005-06-02 2006-12-07 Asahi Glass Company, Limited PROCESS FOR PRODUCING DISPERSION OF HOLLOW FINE SiO2 PARTICLES, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
WO2006129411A1 (en) * 2005-06-02 2006-12-07 Asahi Glass Company, Limited DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
JP2008133409A (en) * 2006-10-31 2008-06-12 Sk Kaken Co Ltd Colored inorganic particle and its production method
JP2009040966A (en) * 2007-08-10 2009-02-26 Panasonic Electric Works Co Ltd Resin composition for forming low thermal conductivity film, low thermal conductivity film, and method for producing low thermal conductivity film
US7537877B2 (en) * 2006-06-08 2009-05-26 Canon Kabushiki Kaisha Toner used in electrophotography having toner particles and silica powder
WO2010004814A1 (en) * 2008-07-07 2010-01-14 旭硝子株式会社 Core-shell particle and method for producing core-shell particle
JP2010138021A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle and producing method of the same
JP2010138022A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle, producing method of the same and composite material comprising the porous silica particle
JP2011008296A (en) * 2010-09-29 2011-01-13 Konica Minolta Opto Inc Method for manufacturing antiglare antireflective film
JP2011256098A (en) * 2010-05-11 2011-12-22 Jgc Catalysts & Chemicals Ltd Method for producing silica-based particle, silica-based particle and application of the silica-based particle
JP2012079872A (en) * 2010-09-30 2012-04-19 Shin Etsu Chem Co Ltd Underfill agent for flip-chip connection, and manufacturing method of semiconductor device using it
US8356798B2 (en) * 2008-03-03 2013-01-22 Fuji Xerox Co., Ltd. Method for manufacturing aggregated resin particles
JP2014007221A (en) * 2012-06-22 2014-01-16 Fujitsu Ltd Resin composition, wiring structure, multilayer circuit board, and semiconductor device
WO2015115667A1 (en) * 2014-01-31 2015-08-06 日本碍子株式会社 Porous plate-shaped filler
WO2015115668A1 (en) * 2014-01-31 2015-08-06 日本碍子株式会社 Porous plate-shaped filler and thermal insulation film
US9232648B2 (en) 2011-09-26 2016-01-05 Mitsubishi Gas Chemical Company, Inc. Molybdenum compound powder, prepreg, and laminate
JP2016065237A (en) * 2008-03-28 2016-04-28 スリーエム イノベイティブ プロパティズ カンパニー Process for surface modification of particles
KR20160148724A (en) 2014-06-30 2016-12-26 닛키 쇼쿠바이카세이 가부시키가이샤 Porous silica particles, method for producing same, and cosmetic compounded with same
CN106675519A (en) * 2016-12-21 2017-05-17 安徽中创电子信息材料有限公司 Inorganic compound abrasive and preparation method thereof
JP2017194632A (en) * 2016-04-22 2017-10-26 キヤノン株式会社 Heat-blocking film, heat-blocking paint, and optical instrument
CN110167883A (en) * 2017-01-06 2019-08-23 住友大阪水泥股份有限公司 Silica coats water system composition, the cosmetic of ultraviolet screener particle, the cladding ultraviolet screener particle containing silica

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279841A (en) * 1985-10-02 1987-04-13 Teikoku Kako Kk Production of inorganic spherical body
JPH0261406B2 (en) * 1985-01-23 1990-12-20 Catalysts & Chem Ind Co
JPH0431311A (en) * 1990-05-25 1992-02-03 Shin Etsu Chem Co Ltd Spherical silica, its production, epoxy resin composition and cured product thereof
JPH07133105A (en) * 1993-11-04 1995-05-23 Catalysts & Chem Ind Co Ltd Multiple oxide sol, its production and base material
JPH08253309A (en) * 1995-02-04 1996-10-01 Degussa Ag Granule composed of silicon dioxide as base produced by pyrolysis method,its production, and catalyst carrier containing it
WO2000021488A1 (en) * 1998-10-09 2000-04-20 Degussa Ag Dental material with porous glass ceramics
WO2000042112A1 (en) * 1999-01-11 2000-07-20 Showa Denko K. K. Cosmetic preparation, surface-hydrophobized silica-coated metal oxide particles, sol of silica-coated metal oxide, and processes for producing these

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261406B2 (en) * 1985-01-23 1990-12-20 Catalysts & Chem Ind Co
JPS6279841A (en) * 1985-10-02 1987-04-13 Teikoku Kako Kk Production of inorganic spherical body
JPH0431311A (en) * 1990-05-25 1992-02-03 Shin Etsu Chem Co Ltd Spherical silica, its production, epoxy resin composition and cured product thereof
JPH07133105A (en) * 1993-11-04 1995-05-23 Catalysts & Chem Ind Co Ltd Multiple oxide sol, its production and base material
JPH08253309A (en) * 1995-02-04 1996-10-01 Degussa Ag Granule composed of silicon dioxide as base produced by pyrolysis method,its production, and catalyst carrier containing it
WO2000021488A1 (en) * 1998-10-09 2000-04-20 Degussa Ag Dental material with porous glass ceramics
WO2000042112A1 (en) * 1999-01-11 2000-07-20 Showa Denko K. K. Cosmetic preparation, surface-hydrophobized silica-coated metal oxide particles, sol of silica-coated metal oxide, and processes for producing these

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311801C (en) * 2002-07-11 2007-04-25 触媒化成工业株式会社 Cosmetics
JPWO2004006873A1 (en) * 2002-07-11 2005-11-10 触媒化成工業株式会社 Cosmetics
WO2004006873A1 (en) * 2002-07-11 2004-01-22 Catalysts & Chmicals Industries Co.,Ltd. Cosmetic
JP2006188413A (en) * 2004-12-08 2006-07-20 Nittetsu Mining Co Ltd Method of manufacturing oxide film-coated particulate
JP2006335605A (en) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd Method for producing hollow sio2 microparticle liquid dispersion, coating composition and substrate with antireflection coating film
JP2006335881A (en) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION AND SUBSTRATE HAVING REFLECTION-PREVENTING COATING
CN101184695B (en) * 2005-06-02 2011-01-05 旭硝子株式会社 Process for producing dispersion of hollow fine SiO2 particles, coating composition, and substrate with antireflection coating film
WO2006129411A1 (en) * 2005-06-02 2006-12-07 Asahi Glass Company, Limited DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
US8623312B2 (en) 2005-06-02 2014-01-07 Asahi Glass Company, Limited Process for producing dispersion of hollow fine SiO2 particles, coating composition and substrate with antireflection coating film
WO2006129408A1 (en) * 2005-06-02 2006-12-07 Asahi Glass Company, Limited PROCESS FOR PRODUCING DISPERSION OF HOLLOW FINE SiO2 PARTICLES, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
US7537877B2 (en) * 2006-06-08 2009-05-26 Canon Kabushiki Kaisha Toner used in electrophotography having toner particles and silica powder
JP2008133409A (en) * 2006-10-31 2008-06-12 Sk Kaken Co Ltd Colored inorganic particle and its production method
JP2009040966A (en) * 2007-08-10 2009-02-26 Panasonic Electric Works Co Ltd Resin composition for forming low thermal conductivity film, low thermal conductivity film, and method for producing low thermal conductivity film
US8356798B2 (en) * 2008-03-03 2013-01-22 Fuji Xerox Co., Ltd. Method for manufacturing aggregated resin particles
JP2016065237A (en) * 2008-03-28 2016-04-28 スリーエム イノベイティブ プロパティズ カンパニー Process for surface modification of particles
WO2010004814A1 (en) * 2008-07-07 2010-01-14 旭硝子株式会社 Core-shell particle and method for producing core-shell particle
JP5633371B2 (en) * 2008-07-07 2014-12-03 旭硝子株式会社 Method for producing core-shell particles
JP2010138022A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle, producing method of the same and composite material comprising the porous silica particle
JP2010138021A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle and producing method of the same
JP2011256098A (en) * 2010-05-11 2011-12-22 Jgc Catalysts & Chemicals Ltd Method for producing silica-based particle, silica-based particle and application of the silica-based particle
JP2011008296A (en) * 2010-09-29 2011-01-13 Konica Minolta Opto Inc Method for manufacturing antiglare antireflective film
JP2012079872A (en) * 2010-09-30 2012-04-19 Shin Etsu Chem Co Ltd Underfill agent for flip-chip connection, and manufacturing method of semiconductor device using it
US9232648B2 (en) 2011-09-26 2016-01-05 Mitsubishi Gas Chemical Company, Inc. Molybdenum compound powder, prepreg, and laminate
TWI551648B (en) * 2011-09-26 2016-10-01 三菱瓦斯化學股份有限公司 Molybdenum compound powder, prepreg, and laminate
JP2014007221A (en) * 2012-06-22 2014-01-16 Fujitsu Ltd Resin composition, wiring structure, multilayer circuit board, and semiconductor device
US10442739B2 (en) 2014-01-31 2019-10-15 Ngk Insulators, Ltd. Porous plate-shaped filler
WO2015115667A1 (en) * 2014-01-31 2015-08-06 日本碍子株式会社 Porous plate-shaped filler
JPWO2015115667A1 (en) * 2014-01-31 2017-03-23 日本碍子株式会社 Porous plate filler
WO2015115668A1 (en) * 2014-01-31 2015-08-06 日本碍子株式会社 Porous plate-shaped filler and thermal insulation film
KR20160148724A (en) 2014-06-30 2016-12-26 닛키 쇼쿠바이카세이 가부시키가이샤 Porous silica particles, method for producing same, and cosmetic compounded with same
US9808407B2 (en) 2014-06-30 2017-11-07 Jgc Catalysts And Chemicals Ltd. Porous silica particle, method for producing the same, and cosmetic containing the same
JP2017194632A (en) * 2016-04-22 2017-10-26 キヤノン株式会社 Heat-blocking film, heat-blocking paint, and optical instrument
CN106675519A (en) * 2016-12-21 2017-05-17 安徽中创电子信息材料有限公司 Inorganic compound abrasive and preparation method thereof
CN110167883A (en) * 2017-01-06 2019-08-23 住友大阪水泥股份有限公司 Silica coats water system composition, the cosmetic of ultraviolet screener particle, the cladding ultraviolet screener particle containing silica
US11141363B2 (en) * 2017-01-06 2021-10-12 Sumitomo Osaka Cement Co., Ltd. Ultraviolet-shielding particle coated with silicon oxide, aqueous composition containing ultraviolet-shielding particle coated with silicon oxide, and cosmetic
CN110167883B (en) * 2017-01-06 2022-03-22 住友大阪水泥股份有限公司 Silica-coated ultraviolet-shielding particles, aqueous composition containing silica-coated ultraviolet-shielding particles, and cosmetic

Also Published As

Publication number Publication date
JP4911814B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4911814B2 (en) Spherical porous particles and method for producing the same
JP5328101B2 (en) Method for producing silica-based fine particles
JP5132193B2 (en) Porous silica particles and method for producing the same
JP5247753B2 (en) Fine particles, fine particle dispersed sol, and coated substrate
JP5148971B2 (en) Spherical silica particles and method for producing the same
JP4046921B2 (en) Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
CN101517012B (en) Method of preparing hydrophobic silica
JP5253124B2 (en) Porous silica particles and method for producing the same
KR101790553B1 (en) Process for production of hollow silica particles, hollow silica particles, and composition and insulation sheet which contain same
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JPH04108606A (en) Water-repellent silica sol and its production
JP5253125B2 (en) Porous silica particles, method for producing the same, and composite material comprising the porous silica particles
JP4883967B2 (en) Method for producing porous silica-based particles and porous silica-based particles obtained from the method
KR101864767B1 (en) Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder
CN107614436B (en) Composite particle containing zinc oxide, composition for shielding ultraviolet ray, and cosmetic
JP5426869B2 (en) Method for producing mesoporous silica fine particles, mesoporous silica fine particle-containing composition, and mesoporous silica fine particle-containing molded product
CN1608032A (en) Inorganic oxide
JPH0470255B2 (en)
JP2021187692A (en) Porous metal oxide powder and method for producing the same
JPH08119619A (en) Surface treatment of silica particles
JP2009190909A (en) Method for surface-treating of mesoporous silica, and method for producing slurry composition for adding to resin, filler for resin and resin composition
JP3493109B2 (en) Method for producing organic group-containing silica fine particle dispersion sol
JP3992949B2 (en) Coating liquid for forming sol-gel film for base film having pit-like or uneven surface shape, and method for obtaining sol-gel film for base film
JP2002105354A (en) Ultramarine composition and method for producing the same
TW495485B (en) Fine particle, sol having fine particles dispersed, method for preparing said sol an

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4911814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term