JP2011256098A - Method for producing silica-based particle, silica-based particle and application of the silica-based particle - Google Patents

Method for producing silica-based particle, silica-based particle and application of the silica-based particle Download PDF

Info

Publication number
JP2011256098A
JP2011256098A JP2011104936A JP2011104936A JP2011256098A JP 2011256098 A JP2011256098 A JP 2011256098A JP 2011104936 A JP2011104936 A JP 2011104936A JP 2011104936 A JP2011104936 A JP 2011104936A JP 2011256098 A JP2011256098 A JP 2011256098A
Authority
JP
Japan
Prior art keywords
silica
based particles
range
particles
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011104936A
Other languages
Japanese (ja)
Other versions
JP5762120B2 (en
Inventor
Yuichi Hamazaki
裕一 濱崎
Naoyuki Enomoto
直幸 榎本
Hiroyasu Nishida
広泰 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2011104936A priority Critical patent/JP5762120B2/en
Publication of JP2011256098A publication Critical patent/JP2011256098A/en
Application granted granted Critical
Publication of JP5762120B2 publication Critical patent/JP5762120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing silica-based particles, having substantially no cavity in the interior portion of the particle, wherein the interior portion is porous or nonporous (not porous), or silica-based particles having an outer shell and having a cavity inside the outer shell, wherein the outer shell is porous or nonporous, and silica-based fine particles having an outer shell and having a cavity inside the outer shell, wherein the outer shell is porous or nonporous and the interior portion is kept under negative pressure.SOLUTION: The method comprises: (a) a step of preparing silica-based particle precursor particles by spray-drying an alkali silicate aqueous solution in a hot air flow; (b) a step of immersing the silica-based particle precursor particles in an acid aqueous solution to remove the alkali; and (c) a step of drying and heat-treating the resulting particles.

Description

本発明は、シリカ系微粒子の製造方法、該シリカ系微粒子およびこれを配合した化粧料、樹脂組成物、断熱材とに関するものである。   The present invention relates to a method for producing silica-based fine particles, the silica-based fine particles, and a cosmetic, a resin composition, and a heat insulating material containing the silica-based fine particles.

シリカ系粒子には種々の形状、大きさの粒子が知られており、その用途も多岐に亘っている。
平均粒子径がナノオーダーのシリカ微粒子、シリカコロイド微粒子は各種フィラーとして用いられ、また、本願出願人は、内部に空洞を有するシリカ系微粒子は屈折率が低く反射防止膜のフィラーとして好適に用いられることを開示している。(特開2001−233611号公報:特許文献1)
Silica-based particles are known in various shapes and sizes, and their uses are diverse.
Silica fine particles and silica colloidal fine particles having an average particle size of nano-order are used as various fillers. Further, the applicant of the present application suitably uses silica-based fine particles having cavities inside as low-refractive index fillers. It is disclosed. (Japanese Patent Laid-Open No. 2001-233611: Patent Document 1)

また、平均粒子径が2〜250nmの無機酸化物微粒子が集合した平均粒子径が1〜100μmである無機酸化物微粒子集合体と、これをシリカ系被覆層で被覆した球状の多孔質粒子、無孔質粒子を化粧料のフィラーとして用いると、非常に軽く、ソフトで伸びが良く、屈折率の低い粒子を用いると暈かし効果が得られることを開示している。(特開2002−160907号公報:特許文献2、WO2004/006873号国際公開公報:特許文献3)
しかしながら、前記球状の多孔質粒子、無孔質粒子の屈折率は必ずしも高くなく、屈折率を低くした場合は粒子の強度が低下し、用途に制限があった。また、これらの粒子は、先ず、粒子径がnmオーダーのシリカゾルを調製し、これを噴霧乾燥して平均粒子径が1〜100μmである無機酸化物微粒子集合体を調製し、ついで、シリカ被覆層を形成するために経済性が低く、この点でも化粧料その他の用途に制限があった。
Further, an inorganic oxide fine particle aggregate having an average particle diameter of 1 to 100 μm in which inorganic oxide fine particles having an average particle diameter of 2 to 250 nm are aggregated, and spherical porous particles in which this is coated with a silica-based coating layer, It is disclosed that when porous particles are used as a filler for cosmetics, a light effect is obtained by using particles that are very light, soft and have good elongation, and have a low refractive index. (Japanese Unexamined Patent Application Publication No. 2002-160907: Patent Document 2, WO2004 / 006873 International Publication: Patent Document 3)
However, the refractive index of the spherical porous particles and non-porous particles is not necessarily high, and when the refractive index is lowered, the strength of the particles is lowered, and there is a limitation in use. In addition, for these particles, first, a silica sol having a particle size of the order of nm is prepared, and this is spray-dried to prepare an inorganic oxide fine particle aggregate having an average particle size of 1 to 100 μm, and then a silica coating layer Therefore, there is a limitation in cosmetics and other uses.

また、特開2005−206436号公報(特許文献4)には平均粒子径が0.5〜8μm、球形度が0.85以上、平均中空率が20〜70体積%の非晶質球状シリカ中空粉体とその製造方法が開示されており、強度、軽量性、断熱性、低誘電特性等に優れていることが開示されている。
しかしながら、前記非晶質球状シリカ中空粉体は、比表面積が40m/g以上、平均粒子径が10μm以下のシリカ原料粉末を高温火炎中に供給して球状化・中空化させて得られるが、平均粒子径の約5倍の粒子径を有する粒子が存在し、粒子径分布が不均一で、用途に制限があり、粒子径をより均一にするにはシリカ原料粉末の粒子径分布をより均一にする必用があり、また、粒子表面に微細粒子が融着した粒子が選られやすく、表面の滑らかさを要求される用途には不向きであった。
JP-A-2005-206436 (Patent Document 4) discloses an amorphous spherical silica hollow having an average particle diameter of 0.5 to 8 μm, a sphericity of 0.85 or more, and an average hollowness of 20 to 70% by volume. A powder and a production method thereof are disclosed, and it is disclosed that the powder is excellent in strength, lightness, heat insulation, low dielectric properties, and the like.
However, the amorphous spherical silica hollow powder is obtained by supplying a silica raw material powder having a specific surface area of 40 m 2 / g or more and an average particle diameter of 10 μm or less into a high-temperature flame to make it spherical and hollow. In addition, there are particles having a particle size about 5 times the average particle size, the particle size distribution is non-uniform, the application is limited, and in order to make the particle size more uniform, the particle size distribution of the silica raw material powder is more It is necessary to make it uniform, and it is easy to select particles in which fine particles are fused on the particle surface, which is unsuitable for applications requiring smooth surface.

また、特開平4−2607号公報(特許文献5)には、密封筒状炉内を流通する燃焼ガス流中に水ガラス水溶液を200〜500℃の低温燃焼域に噴霧して脱アルカリし、生成したガラス微粒子中間体を一定時間1300℃以上の高温炉内に滞留させ、急速な脱水により発泡させてシリカバルーンに転化させる方法が開示されている。
しかしながら、本願出願人は、この方法について試験した結果、脱アルカリが困難で、できたとしても再現性がなく、ついで、炭化水素を加えることなく1300℃以上の高温に曝すと粒子が融着すると云う問題があった。
JP-A-4-2607 (Patent Document 5) discloses that a water glass aqueous solution is sprayed in a low-temperature combustion region of 200 to 500 ° C. in a combustion gas flow flowing in a sealed cylindrical furnace, and dealkalized. A method is disclosed in which the produced glass fine particle intermediate is retained in a high-temperature furnace at 1300 ° C. or higher for a certain period of time, foamed by rapid dehydration, and converted into a silica balloon.
However, as a result of testing this method, the present applicant has found that dealkalization is difficult, and even if it is not possible, it is not reproducible. Then, when the particles are fused when exposed to a high temperature of 1300 ° C. or higher without adding hydrocarbons. There was a problem.

さらに、特開平4−104907号公報(特許文献6)には、アルカリ金属ケイ酸塩水溶液を霧化し、100〜500℃の気流中へ導入してガラスバルーンとし、アルカリ金属の除去量を調節することにより、シリカバルーンの細孔径を制御したシリカバルーンの製造方法が開示されている。このとき、霧化する方法としては噴霧乾燥、超音波振動が採用されている。
しかしながら、本願出願人が噴霧乾燥法に準拠して試験をした結果、アルカリ金属の除去工程でガラスバルーンが一部溶解し、所望のシリカバルーンを効率よく得ることが困難であった。
また、得られるシリカバルーンは細孔を有する多孔質のシリカバルーンのみであり、内部に空洞を有する非孔質の粒子は得ることができなかった。
Furthermore, in Japanese Patent Application Laid-Open No. 4-104907 (Patent Document 6), an alkali metal silicate aqueous solution is atomized and introduced into an air stream at 100 to 500 ° C. to form a glass balloon to adjust the removal amount of alkali metal. Thus, a method for producing a silica balloon in which the pore diameter of the silica balloon is controlled is disclosed. At this time, spray drying and ultrasonic vibration are employed as the atomizing method.
However, as a result of a test conducted by the applicant of the present invention in accordance with the spray drying method, it was difficult to efficiently obtain a desired silica balloon because a part of the glass balloon was dissolved in the alkali metal removal step.
Moreover, the silica balloon obtained was only a porous silica balloon having pores, and non-porous particles having cavities inside could not be obtained.

本発明者等は、上記問題点について鋭意検討した結果、所定濃度の珪酸アルカリ水溶液を噴霧乾燥し、噴霧して得た粒子中のアルカリを除去するに充分な量の酸を含む水溶液に浸漬してアルカリを除去して粒子をシリカ化することによって内部が空洞のシリカ粒子が得られることを見出して本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have spray-dried an alkali silicate aqueous solution having a predetermined concentration, and immersed in an aqueous solution containing an amount of acid sufficient to remove alkali in the particles obtained by spraying. Thus, the present invention was completed by finding that silica particles having voids inside can be obtained by removing the alkali and silicifying the particles.

特開2001−233611号公報JP 2001-233611 A 特開2002−160907号公報JP 2002-160907 A WO2004/006873号国際公開公報WO2004 / 006873 International Publication 特開2005−206436号公報JP 2005-206436 A 特開平4−2607号公報JP-A-4-2607 特開平4−104907号公報JP-A-4-104907

本発明は、粒子形状が球状であり、粒子内部に実質的に空洞がなく、内部が多孔質または非孔質(無孔質)であるシリカ系粒子、あるいは外殻を有し、外殻内部に空洞を有し、外殻が多孔質または非孔質であるシリカ系粒子、さらに、外殻を有し、外殻内部に空洞を有し、外殻が非孔質であり、内部が負圧であるシリカ系粒子の製造方法、該シリカ系微粒子およびこれを配合した化粧料、樹脂組成物、断熱材を提供することを目的としている。   The present invention includes a silica-based particle having a spherical particle shape, substantially no void inside the particle, and porous or non-porous (non-porous) inside, or an outer shell. Silica-based particles having a void in the outer shell and a porous or non-porous outer shell, and further having an outer shell, a void inside the outer shell, the outer shell being non-porous, and a negative inside It is an object of the present invention to provide a method for producing silica-based particles that is a pressure, a silica-based fine particle, and a cosmetic, a resin composition, and a heat insulating material containing the same.

本発明のシリカ系粒子の製造方法は、下記の工程(a)〜(c)からなることを特徴とする。
(a)珪酸アルカリ水溶液を熱風気流中に噴霧乾燥してシリカ系粒子前駆体粒子を調製する工程
(b)シリカ系粒子前駆体粒子を酸水溶液に浸漬し、アルカリを除去する工程
(c)乾燥・加熱処理する工程
The method for producing silica-based particles of the present invention is characterized by comprising the following steps (a) to (c).
(A) A step of preparing silica-based particle precursor particles by spray drying an alkali silicate aqueous solution in a hot air stream (b) A step of immersing the silica-based particle precursor particles in an acid aqueous solution to remove alkali (c) Drying・ Process to heat treatment

前記珪酸アルカリ水溶液の、SiO/MOモル比(但し、Mはアルカリ金属を示す。)は1〜5の範囲にあり、SiO濃度が1〜30重量%の範囲にあることが好ましい。
前記噴霧乾燥における熱風の入口温度が150〜600℃の範囲にあり、出口温度が40〜300℃の範囲にあることが好ましい。
前記工程(b)において、シリカ粒子前駆体粒子中のMOモル数(Msp)と酸のモル数(Ma)とのモル比(Ma)/(Msp)が0.6〜4.7の範囲にあり、シリカ系粒子前駆体粒子の濃度がSiOとして1〜30重量%の範囲にあることが好ましい。
前記工程(c)における乾燥・加熱処理温度が30〜1200℃の範囲にあることが好ましい。
The SiO 2 / M 2 O molar ratio (wherein M represents an alkali metal) of the alkali silicate aqueous solution is in the range of 1 to 5, and the SiO 2 concentration is preferably in the range of 1 to 30% by weight. .
It is preferable that the inlet temperature of hot air in the spray drying is in the range of 150 to 600 ° C and the outlet temperature is in the range of 40 to 300 ° C.
In the step (b), the molar ratio (Ma) / (Msp) between the number of moles of M 2 O (Msp) and the number of moles of acid (Ma) in the silica particle precursor particles is 0.6 to 4.7. in the range, the concentration of the silica-based particles precursor particles is preferably in the range of 1 to 30 wt% as SiO 2.
The drying / heat treatment temperature in the step (c) is preferably in the range of 30 to 1200 ° C.

本発明のシリカ系粒子の製造方法は、平均粒子径が0.1〜200μmの範囲にあるシリカ系粒子を製造することが好ましい。
前記噴霧乾燥における入口温度が150〜300℃の範囲にあり、出口温度が40〜120℃の範囲にあり、得られるシリカ系粒子の空隙率が20体積%未満であることが好ましい。
前記工程(c)における乾燥・加熱処理温度が30〜120℃の範囲にあり、得られるシリカ系粒子が多孔質であることが好ましい。
前記工程(c)における乾燥・加熱処理温度が90〜1200℃の範囲にあり、得られるシリカ系粒子が非孔質であることが好ましい。
The method for producing silica-based particles of the present invention preferably produces silica-based particles having an average particle diameter in the range of 0.1 to 200 μm.
It is preferable that the inlet temperature in the spray drying is in the range of 150 to 300 ° C, the outlet temperature is in the range of 40 to 120 ° C, and the porosity of the silica-based particles obtained is less than 20% by volume.
It is preferable that the drying / heat treatment temperature in the step (c) is in the range of 30 to 120 ° C., and the silica-based particles obtained are porous.
It is preferable that the drying / heat treatment temperature in the step (c) is in the range of 90 to 1200 ° C., and the resulting silica-based particles are non-porous.

前記噴霧乾燥における入口温度が300〜600℃の範囲にあり、出口温度が120〜300℃の範囲にあり、得られるシリカ系粒子が外殻シリカ層を有し、外殻内部の空隙率が20〜95体積%の範囲にあることが好ましい。
前記工程(c)における乾燥・加熱処理温度が30〜120℃の範囲にあり、得られるシリカ系粒子の外殻シリカ層が多孔質であることが好ましい。
前記工程(c)における乾燥・加熱処理温度が90〜1200℃の範囲にあり、得られるシリカ系粒子の外殻シリカ層が非孔質であることが好ましい。
The inlet temperature in the spray drying is in the range of 300 to 600 ° C., the outlet temperature is in the range of 120 to 300 ° C., the resulting silica-based particles have an outer silica layer, and the porosity inside the outer shell is 20 It is preferable to be in the range of ~ 95% by volume.
It is preferable that the drying / heat treatment temperature in the step (c) is in the range of 30 to 120 ° C., and the outer silica layer of the obtained silica-based particles is porous.
It is preferable that the drying / heating temperature in the step (c) is in the range of 90 to 1200 ° C., and the outer silica layer of the obtained silica-based particles is nonporous.

前記工程(c)における乾燥・加熱処理を減圧下で行い、得られるシリカ系粒子の外殻層内部が負圧であることが好ましい。
本発明のシリカ系微粒子は、平均粒子径が0.1〜200μmの範囲にあり、外殻シリカ層の内部に空洞を有し、該空洞の空隙率が20〜95重量%の範囲にあり、外殻シリカ層が非孔質であり、空洞内部が負圧であることを特徴とする。
前記空洞内部の負圧が133hPa以下であることが好ましい。
It is preferable that the drying / heating treatment in the step (c) is performed under reduced pressure, and the inside of the outer shell layer of the obtained silica-based particles has a negative pressure.
The silica-based fine particles of the present invention have an average particle diameter in the range of 0.1 to 200 μm, have a cavity inside the outer shell silica layer, and the void ratio in the range of 20 to 95% by weight, The outer shell silica layer is nonporous, and the inside of the cavity is negative pressure.
The negative pressure inside the cavity is preferably 133 hPa or less.

本発明の化粧料は、前記いずれかに記載のシリカ系粒子を0.1〜30重量%の範囲で配合してなることを特徴とする。
本発明の樹脂組成物は、前記いずれかに記載のシリカ系粒子を1〜90重量%の範囲で配合してなることを特徴とする。
本発明の断熱材は、前記した外殻シリカ層を有し、外殻内部の空隙率が20〜95体積%の範囲にあるシリカ系粒子を配合してなることを特徴とする。
The cosmetic of the present invention is characterized in that the silica-based particles described above are blended in the range of 0.1 to 30% by weight.
The resin composition of the present invention is characterized in that the silica-based particles described above are blended in an amount of 1 to 90% by weight.
The heat insulating material of the present invention is characterized by having silica shell particles having the outer shell silica layer described above and having a void ratio in the range of 20 to 95% by volume inside the outer shell.

本発明によれば、粒子形状が球状であり、粒子内部に実質的に空洞がなく、内部が多孔質または非孔質(無孔質)であるシリカ系粒子、あるいは外殻を有し、外殻内部に空洞を有し、外殻が多孔質または非孔質であるシリカ系粒子、さらに、外殻を有し、外殻内部に空洞を有し、外殻が多孔質または非孔質であり、内部が負圧であるシリカ系微粒子を容易にかつ、経済的に製造することができる。
また、本発明によれば、上記シリカ系粒子を用いた化粧料、断熱材、樹脂組成物を提供することができる。
According to the present invention, the particle shape is spherical, the inside of the particle is substantially free of cavities, the inside is porous or non-porous (non-porous) silica-based particle, or the outer shell, Silica-based particles having a void inside the shell and the outer shell being porous or non-porous, and further having an outer shell having a void inside the shell and the outer shell being porous or non-porous In addition, silica-based fine particles having a negative pressure inside can be easily and economically produced.
Moreover, according to this invention, the cosmetics, heat insulating material, and resin composition using the said silica type particle can be provided.

[シリカ系粒子の製造方法]
以下に、まず、本発明に係るシリカ系粒子の製造方法について説明する。
本発明に係るシリカ系粒子の製造方法は、下記の工程(a)〜(c)からなることを特徴としている。
(a)珪酸アルカリ水溶液を熱風気流中に噴霧乾燥してシリカ系粒子前駆体粒子を調製する工程
(b)シリカ系粒子前駆体粒子を酸水溶液に浸漬し、アルカリを除去する工程
(c)乾燥・加熱処理する工程
[Method for producing silica-based particles]
Below, the manufacturing method of the silica type particle which concerns on this invention is demonstrated first.
The method for producing silica-based particles according to the present invention is characterized by comprising the following steps (a) to (c).
(A) A step of preparing silica-based particle precursor particles by spray drying an alkali silicate aqueous solution in a hot air stream (b) A step of immersing the silica-based particle precursor particles in an acid aqueous solution to remove alkali (c) Drying・ Process to heat treatment

工程(a)
珪酸アルカリ水溶液を熱風気流中に噴霧乾燥してシリカ系粒子前駆体粒子を調製する。
本発明に用いる珪酸アルカリとしては、通常、水に可溶の珪酸ナトリウム、珪酸カリウムが用いられる。
珪酸アルカリのSiO/MOモル比(但し、Mはアルカリ金属を示す。)は1〜5、さらには2〜4の範囲にあることが好ましい。
珪酸アルカリのSiO/MOモル比が1未満の場合は、アルカリ量が多すぎるために後述する工程(b)における酸洗浄が困難となるだけでなく、噴霧乾燥品の潮解性が顕著となるためにシリカ系微粒子が得られない場合がある。
珪酸アルカリのSiO/MOモル比が5を越えると、珪酸アルカリの可溶性が低下し、水溶液の調製が困難であり、できたとしても水溶液中では数nm以下のシリカ微粒子が発生する場合があり、噴霧乾燥しても本発明に使用できるシリカ系粒子前駆体粒子が得られない場合がある。
Step (a)
An aqueous silica silicate solution is spray-dried in a hot air stream to prepare silica-based particle precursor particles.
As the alkali silicate used in the present invention, sodium silicate and potassium silicate soluble in water are usually used.
The SiO 2 / M 2 O molar ratio of alkali silicate (where M represents an alkali metal) is preferably in the range of 1 to 5, more preferably 2 to 4.
When the SiO 2 / M 2 O molar ratio of the alkali silicate is less than 1, the alkali amount is too large, so that not only acid cleaning in the step (b) described later becomes difficult, but also the deliquescence of the spray-dried product is remarkable. Therefore, silica-based fine particles may not be obtained.
When the SiO 2 / M 2 O molar ratio of the alkali silicate exceeds 5, the solubility of the alkali silicate is reduced, and it is difficult to prepare an aqueous solution. Even if it is possible, silica fine particles of several nm or less are generated in the aqueous solution. In some cases, silica-based particle precursor particles that can be used in the present invention may not be obtained even by spray drying.

珪酸アルカリ水溶液のSiOとしての濃度は1〜30重量%、さらには5〜28重量%の範囲にあることが好ましい。
珪酸アルカリ水溶液のSiOとしての濃度が1重量%未満の場合は、生産性を考慮した場合に非効率となる場合がある。
珪酸アルカリ水溶液のSiOとしての濃度が30重量%を越えると、珪酸アルカリ水溶液としての安定性が著しく低下して高粘性になり噴霧乾燥が困難となる場合があり、噴霧乾燥できたとしても粒子径分布、外殻の厚さ等が極めて不均一になる場合があり、用途が制限される場合がある。
The concentration of the alkali silicate aqueous solution as SiO 2 is preferably in the range of 1 to 30% by weight, more preferably 5 to 28% by weight.
When the concentration of the alkali silicate aqueous solution as SiO 2 is less than 1% by weight, it may be inefficient when productivity is taken into consideration.
If the concentration of the alkali silicate aqueous solution as SiO 2 exceeds 30% by weight, the stability as the alkali silicate aqueous solution is remarkably lowered and the viscosity may become high and spray drying may be difficult. In some cases, the diameter distribution, the thickness of the outer shell, and the like are extremely nonuniform, and the application may be limited.

珪酸アルカリ水溶液を熱風気流中に噴霧乾燥するが、噴霧乾燥方法としては、後述するシリカ系微粒子が得られれば特に制限は無いが、回転ディスク法、加圧ノズル法、2流体ノズル法等従来公知の方法を採用することができる。本発明では、内部に空洞を有する粒子を得る場合、2流体ノズル法が好適である。   The alkali silicate aqueous solution is spray-dried in a hot air stream, and the spray-drying method is not particularly limited as long as silica-based fine particles to be described later can be obtained. This method can be adopted. In the present invention, the two-fluid nozzle method is suitable for obtaining particles having cavities inside.

噴霧乾燥における熱風の入口温度が150〜600℃の範囲にあり、出口温度が40〜300℃の範囲にあることが好ましい。
熱風の入口温度が150℃未満の場合は、乾燥が不充分となる場合があり、内部に空洞を有するシリカ系粒子前駆体粒子は得られないばかりか、内部空洞のないシリカ系粒子前駆体粒子が得られたとしても、乾燥が不充分で噴霧乾燥室壁面等への付着が激しく、収率が著しく低下する場合がある。
熱風の入口温度が600℃を越えると、内部空洞の無いシリカ系粒子前駆体粒子が得られなくなる。更には、内部に空洞を有するシリカ系粒子前駆体粒子が得られたとしても、乾燥が速すぎるために、粒子径が大きくなるとともに外殻の厚みが薄くなり、割れやすいシリカ系粒子前駆体粒子となるために好ましくない。また、高温対応設備が必要となるために経済的でない。
It is preferable that the inlet temperature of hot air in spray drying is in the range of 150 to 600 ° C and the outlet temperature is in the range of 40 to 300 ° C.
When the inlet temperature of hot air is less than 150 ° C., drying may be insufficient, and silica-based particle precursor particles having cavities in the interior cannot be obtained, and silica-based particle precursor particles having no internal cavities are obtained. Even if obtained, the drying is insufficient, the adhesion to the wall of the spray drying chamber is severe, and the yield may be significantly reduced.
When the hot air inlet temperature exceeds 600 ° C., silica-based particle precursor particles having no internal cavities cannot be obtained. Furthermore, even when silica-based particle precursor particles having cavities inside are obtained, the drying is too fast, so that the particle diameter increases and the outer shell thickness decreases, and the silica-based particle precursor particles are easily broken. This is not preferable. In addition, it is not economical because high-temperature equipment is required.

熱風の出口温度が40℃未満の場合は、乾燥が不充分となり、内部に空洞を有するシリカ系粒子前駆体粒子は得られないばかりか、内部空洞の無いシリカ系粒子前駆体粒子が得られたとしても、噴霧乾燥室壁面等への付着が激しく、収率が著しく低下する場合がある。
熱風の出口温度が300℃を越えると、内部空洞の無いシリカ系粒子前駆体粒子が得られなくなる。更には、内部に空洞を有するシリカ系粒子前駆体粒子が得られたとしても、乾燥が速すぎるために、粒子径が大きくなるとともに外殻の厚みが薄くなり、割れやすいシリカ系粒子前駆体粒子となるために好ましくない。
When the outlet temperature of the hot air was less than 40 ° C., drying was insufficient, and not only silica-based particle precursor particles having cavities inside but also silica-based particle precursor particles having no internal cavities were obtained. However, the adhesion to the spray drying chamber wall surface and the like is severe, and the yield may be significantly reduced.
When the outlet temperature of hot air exceeds 300 ° C., silica-based particle precursor particles having no internal cavities cannot be obtained. Furthermore, even when silica-based particle precursor particles having cavities inside are obtained, the drying is too fast, so that the particle diameter increases and the outer shell thickness decreases, and the silica-based particle precursor particles are easily broken. This is not preferable.

ここでいう前駆体粒子とは、珪酸アルカリ水溶液を噴霧乾燥して得られた珪酸アルカリ粒子のことであり、後述する後工程(b)にて、酸水溶液浸漬工程によりアルカリ除去することによってシリカ系粒子となる前段階の物である。   The precursor particles here are alkali silicate particles obtained by spray-drying an alkali silicate aqueous solution, and are silica-based by removing the alkali by an acid aqueous solution dipping step in a later step (b) described later. It is the thing of the previous stage which becomes a particle.

本発明において中実のシリカ系粒子(第1の態様)を製造する場合は、前記噴霧乾燥における入口温度が150〜300℃、さらには160〜250℃の範囲にあり、出口温度が40〜120℃、さらには50〜100℃の範囲にあることが好ましい。
この時、噴霧乾燥における入口温度が150℃未満の場合は、内部空洞のないシリカ系粒子前駆体粒子が得られたとしても、乾燥が不充分で噴霧乾燥室壁面等への付着が激しく、収率が著しく低下する場合がある。
噴霧乾燥における入口温度が300℃を越えると、出口温度によっても異なるが、内部に空洞の無い粒子を得ることが困難となる場合がある。
In the present invention, when producing solid silica-based particles (first aspect), the inlet temperature in the spray drying is in the range of 150 to 300 ° C, more preferably 160 to 250 ° C, and the outlet temperature is 40 to 120. It is preferable that it exists in the range of 50 degreeC and also 50-100 degreeC.
At this time, when the inlet temperature in spray drying is less than 150 ° C., even if silica-based particle precursor particles without internal cavities are obtained, the drying is insufficient and the adhesion to the spray drying chamber wall surface is severe and The rate may decrease significantly.
When the inlet temperature in spray drying exceeds 300 ° C., it may be difficult to obtain particles without cavities inside, although it varies depending on the outlet temperature.

熱風の出口温度が40℃未満の場合は、乾燥が不充分となり、噴霧乾燥室壁面等への付着が激しく、収率が著しく低下する場合がある。
熱風の出口温度が120℃を越えると、入口温度によっても異なるが、内部に空洞の無い粒子を得ることが困難となる場合がある。
When the outlet temperature of the hot air is less than 40 ° C., the drying becomes insufficient, the adhesion to the spray drying chamber wall surface and the like is severe, and the yield may be significantly reduced.
If the outlet temperature of the hot air exceeds 120 ° C., it may be difficult to obtain particles having no cavities inside, depending on the inlet temperature.

本発明において中空のシリカ系粒子(第2の態様)を製造する場合は、前記噴霧乾燥における入口温度が300〜600℃、さらには350〜550℃の範囲にあり、出口温度が120〜300℃、さらには130〜250℃の範囲にあることが好ましい。
この時、噴霧乾燥における入口温度が300℃未満の場合は、出口温度によっても異なるが、内部に空洞を有するシリカ系粒子が得られない場合がある。
噴霧乾燥における入口温度が600℃を越えると、破裂状態のシリカ系粒子前駆体粒子が形成されるようになり、内部に空洞有するシリカ系粒子を得ることが困難となる場合があり、得られたとしても外殻の厚みが薄くなり、得られるシリカ系粒子の強度が不充分となる場合がある。
In the present invention, when producing hollow silica-based particles (second embodiment), the inlet temperature in the spray drying is in the range of 300 to 600 ° C, more preferably 350 to 550 ° C, and the outlet temperature is 120 to 300 ° C. Furthermore, it is preferable that it exists in the range of 130-250 degreeC.
At this time, when the inlet temperature in spray drying is less than 300 ° C., it may vary depending on the outlet temperature, but silica-based particles having cavities inside may not be obtained.
When the inlet temperature in spray drying exceeds 600 ° C., ruptured silica-based particle precursor particles are formed, and it may be difficult to obtain silica-based particles having cavities therein. However, the thickness of the outer shell may be reduced, and the strength of the resulting silica-based particles may be insufficient.

熱風の出口温度が120℃未満の場合は、内部に空洞を有するシリカ系粒子が得られない場合がある。
熱風の出口温度が300℃を越えると、破裂状態のシリカ系粒子前駆体粒子が形成されるようになり、内部に空洞有するシリカ系粒子を得ることが困難となる場合があり、得られたとしても外殻の厚みが薄くなり、得られるシリカ系粒子の強度が不充分となる場合がある。
When the outlet temperature of hot air is less than 120 ° C., silica-based particles having cavities inside may not be obtained.
When the outlet temperature of the hot air exceeds 300 ° C., the silica-based particle precursor particles in a bursting state are formed, and it may be difficult to obtain silica-based particles having cavities inside. However, the thickness of the outer shell may be reduced, and the strength of the silica-based particles obtained may be insufficient.

工程(b)
シリカ系粒子前駆体粒子を酸水溶液に浸漬し、アルカリを除去する。
酸としては、塩酸、硝酸、硫酸等の鉱酸、酢酸、酒石酸、リンゴ酸等の有機酸等を用いることができる。通常、この様な酸を用いるが、陽イオン交換樹脂等を用いることもできる。本発明では塩酸、硝酸、硫酸等の鉱酸が好適に用いられる。
Step (b)
Silica-based particle precursor particles are immersed in an acid aqueous solution to remove alkali.
Examples of the acid include mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid, and organic acids such as acetic acid, tartaric acid, and malic acid. Usually, such an acid is used, but a cation exchange resin or the like can also be used. In the present invention, mineral acids such as hydrochloric acid, nitric acid and sulfuric acid are preferably used.

シリカ系粒子前駆体粒子を酸水溶液に浸漬する際、シリカ粒子前駆体粒子中のMOモル数(Msp)と酸のモル数(Ma)とのモル比(Ma)/(Msp)が0.6〜4.7、さらには1〜4.5の範囲となるように浸漬することが好ましい。
前記モル比(Ma)/(Msp)が0.6未満の場合は、MOに対して酸の量が少なすぎるために、アルカリの除去とともに起きると考えられる珪酸の縮合、ケイ酸のシリカ骨格化が進行せず、シリカ系粒子前駆体粒子が部分的に溶解したり、溶解した珪酸アルカリがゲル化する場合がある。
前記モル比(Ma)/(Msp)が4.7を越えてもさらに、上記した珪酸の縮合、骨格化が進むこともなく、酸が過剰であり経済的でない。
When the silica-based particle precursor particles are immersed in the acid aqueous solution, the molar ratio (Ma) / (Msp) between the number of moles of M 2 O (Msp) and the number of moles of acid (Ma) in the silica particle precursor particles is 0. It is preferable to immerse so that it may become the range of 1.6-4.7, and also 1-4.
When the molar ratio (Ma) / (Msp) is less than 0.6, the amount of acid relative to M 2 O is too small, so that condensation of silicic acid, which is considered to occur along with the removal of alkali, silica of silicic acid In some cases, the skeletonization does not proceed and the silica-based particle precursor particles are partially dissolved, or the dissolved alkali silicate is gelled.
Even if the molar ratio (Ma) / (Msp) exceeds 4.7, the above-described condensation and skeletonization of silicic acid does not proceed, and the acid is excessive and not economical.

また、酸水溶液に浸漬した際のシリカ系粒子前駆体粒子の濃度がSiOとして1〜30重量%、さらには5〜25重量%の範囲にあることが好ましい。
酸水溶液に浸漬した際のシリカ系粒子前駆体粒子の濃度がSiOとして1重量%未満の場合は、アルカリ除去、洗浄性に問題はないが製造効率が低下する。また、前記した酸とシリカのモル比、珪酸アルカリのシリカとアルカリのモル比によっては、酸の濃度が低くなる場合があり、シリカ系粒子前駆体粒子が部分的に溶解したり、溶解した珪酸アルカリがゲル化する場合がある。
酸水溶液に浸漬した際のシリカ系粒子前駆体粒子の濃度がSiOとして30重量%を越えると、濃度が濃すぎてアルカリ除去、洗浄効率が低下する場合があり、また、シリカ系粒子前駆体粒子の粒子径が小さい場合には特に分散液の粘度が高くなりアルカリ除去、洗浄効率が低下する場合がある。
The concentration of the silica-based particle precursor particles when immersed in an aqueous acid solution is 1 to 30 wt% as SiO 2, and more preferably in the range of 5 to 25 wt%.
The concentration of the silica-based particle precursor particles when immersed in aqueous acid solution in the case of less than 1% by weight SiO 2, alkali removal, there is no problem in cleanability production efficiency decreases. Further, depending on the molar ratio of the acid and silica described above and the silica and alkali molar ratio of the alkali silicate, the concentration of the acid may be lowered, and the silica-based particle precursor particles may be partially dissolved or dissolved silicic acid. The alkali may gel.
If the concentration of the silica-based particle precursor particles when immersed in an acid aqueous solution exceeds 30% by weight as SiO 2 , the concentration may be too high and alkali removal and cleaning efficiency may be reduced. When the particle diameter of the particles is small, the viscosity of the dispersion is particularly high, and alkali removal and cleaning efficiency may be reduced.

アルカリを除去する条件としては、アルカリを除去できれば特に制限はないが、概ね温度が5〜70℃の範囲、時間は0.5〜24時間の範囲である。
ついで、従来公知の方法で洗浄する。例えば、純水にて濾過洗浄すればよい。
なお、本発明では、必用に応じて上記アルカリの除去および洗浄を繰り返し行うこともできる。
The conditions for removing the alkali are not particularly limited as long as the alkali can be removed, but the temperature is generally in the range of 5 to 70 ° C. and the time is in the range of 0.5 to 24 hours.
Subsequently, it wash | cleans by a conventionally well-known method. For example, it may be filtered and washed with pure water.
In the present invention, the alkali removal and washing can be repeated as necessary.

洗浄後のアルカリの残存量は、用途によっても異なるが、MOとして0.5重量%以下、さらには0.1重量%以下であることが好ましい。
本発明の方法により、シリカ系粒子前駆体を前記した条件で酸水溶液に浸漬した場合、アルカリの残存量がMOとして0.5重量%を越えることはないが、0.5重量%を越えると、化粧料として使用する際、たとえば水に分散した場合に、分散液のpHが著しく高くなるために化粧品処方における安定性を著しく阻害する他、化粧料の効能を阻害する場合がある。
The remaining amount of alkali after washing varies depending on the use, but it is preferably 0.5% by weight or less, more preferably 0.1% by weight or less as M 2 O.
According to the method of the present invention, when the silica-based particle precursor is immersed in an acid aqueous solution under the above-described conditions, the residual amount of alkali does not exceed 0.5 wt% as M 2 O, but 0.5 wt% If it exceeds, when used as a cosmetic, for example, when dispersed in water, the pH of the dispersion becomes extremely high, so that the stability in the cosmetic formulation may be significantly inhibited, and the efficacy of the cosmetic may be inhibited.

工程(c)
ついで、乾燥・加熱処理する。
乾燥・加熱処理温度は30〜1200℃の範囲にあることが好ましい。
本発明に係る中実のシリカ系粒子(第1の態様)であって多孔質なものおよび中空のシリカ系粒子(第2の態様)であって外殻が多孔質なものを製造する場合は、乾燥・加熱処理温度が30〜120℃、さらには40〜100℃の範囲にあることが好ましい。
Step (c)
Next, it is dried and heated.
The drying / heat treatment temperature is preferably in the range of 30 to 1200 ° C.
When producing solid silica-based particles according to the present invention (first embodiment) that are porous and hollow silica-based particles (second embodiment) that have a porous outer shell The drying / heat treatment temperature is preferably 30 to 120 ° C, more preferably 40 to 100 ° C.

乾燥・加熱処理温度が30℃未満の場合は、付着水が多く残存し、用途に制限がある他、乾燥処理に長時間を要し生産性が低下する問題がある。
乾燥・加熱処理温度が120℃を越えると、アルカリを除去した際にできる細孔が消滅して多孔質シリカ系粒子、外殻が多孔質なシリカ系粒子が得られない場合がある。
なお、例えば、乾燥・加熱処理を120℃で実施し、ついで、さらに高温で第2回目の乾燥・加熱処理を行っても細孔が消滅することなく、多孔質シリカ系粒子および外殻が多孔質なシリカ系粒子が得られる場合がある。
When the drying / heat treatment temperature is less than 30 ° C., a large amount of adhering water remains, and there is a problem that productivity is reduced because the drying treatment takes a long time in addition to the limitation of use.
If the drying / heat treatment temperature exceeds 120 ° C., the pores formed when the alkali is removed may disappear and porous silica-based particles and porous silica-based particles may not be obtained.
Note that, for example, the drying / heating treatment is performed at 120 ° C., and the porous silica-based particles and the outer shell are porous without disappearing even if the second drying / heating treatment is performed at a higher temperature. Quality silica-based particles may be obtained.

本発明に係る中実のシリカ系粒子(第1の態様)であって非孔質なものおよび中空のシリカ系粒子(第2の態様)であって外殻が非孔質なものを製造する場合は、乾燥・加熱処理温度が90〜1200℃、さらには110〜1150℃の範囲にあることが好ましい。
乾燥・加熱処理温度が90℃未満の場合は、細孔が消失しない場合があり、非孔質シリカ系粒子または外殻が非孔質なシリカ系粒子が得られない場合がある。
乾燥・加熱処理温度が1200℃を越えても、さらに非孔質化することもなく、また、さらに粒子強度が向上することもなく、温度、粒子径によっては分散し難い凝集体粒子となる場合がある。
Solid silica-based particles according to the present invention (first embodiment) that are nonporous and hollow silica-based particles (second embodiment) that have non-porous outer shells are produced. In this case, the drying / heat treatment temperature is preferably in the range of 90 to 1200 ° C, more preferably 110 to 1150 ° C.
When the drying / heat treatment temperature is less than 90 ° C., pores may not disappear, and non-porous silica-based particles or silica-based particles having a non-porous outer shell may not be obtained.
Even if the drying / heating temperature exceeds 1200 ° C, it does not become non-porous, and the particle strength does not improve, resulting in aggregate particles that are difficult to disperse depending on the temperature and particle size. There is.

[シリカ系粒子]
本発明に係る中実のシリカ系粒子(第1の態様)は、内部に実質的に空洞を有しておらず、空隙率が20体積%未満であることが好ましい。
ここで、空隙率は、粒子のTEM写真を測定し、50個の粒子について粒子径を測定し、その平均値として平均粒子径を測定し、次に、粒子を1/2に破断し、50個の破断切片について空洞部の直径を測定して空洞部の平均直径を求め、計算により空洞部の平均空洞体積率を求める。なお、空洞部は球状である。さらに、空隙率には多孔質部分の細孔容積は含まない。
空隙率が20体積%を越えると、外殻部が少なくなり、外殻部が有用な用途、例えば吸着剤、吸油剤等に用いた場合に吸着量、吸油量が不充分となる場合がある。
[Silica particles]
The solid silica-based particles (first aspect) according to the present invention are preferably substantially free of voids inside and preferably have a porosity of less than 20% by volume.
Here, the porosity is determined by measuring a TEM photograph of particles, measuring the particle size of 50 particles, measuring the average particle size as the average value, and then breaking the particles by half. The diameter of the cavity is measured for each piece of fracture, the average diameter of the cavity is determined, and the average cavity volume ratio of the cavity is determined by calculation. Note that the hollow portion is spherical. Furthermore, the porosity does not include the pore volume of the porous portion.
When the porosity exceeds 20% by volume, the outer shell portion is reduced, and when the outer shell portion is used for useful applications such as an adsorbent and an oil absorbent, the adsorbed amount and the oil absorbed amount may be insufficient. .

本発明に係る中空のシリカ系粒子(第2の態様)は、内部に空洞を有し、粒子の空隙率が20〜95体積%、さらには25〜90体積%の範囲にあることが好ましい。
空隙率が20体積%未満の場合は、屈折率が充分に低くならず、断熱材として用いても充分な断熱効果が得られない場合がある。
前記シリカ系粒子の空隙率が95体積%を越えるものは得ることが困難であり、得られたとしても粒子径によっては殻が薄くなり、粒子強度が不充分となる場合がある。
The hollow silica-based particles (second aspect) according to the present invention preferably have cavities in the interior and have a particle porosity of 20 to 95% by volume, more preferably 25 to 90% by volume.
When the porosity is less than 20% by volume, the refractive index is not sufficiently low, and a sufficient heat insulating effect may not be obtained even when used as a heat insulating material.
It is difficult to obtain a silica-based particle having a porosity of more than 95% by volume. Even if it is obtained, the shell may become thin depending on the particle diameter, and the particle strength may be insufficient.

本発明のシリカ系粒子はいずれの態様のものも、平均粒子径が0.1〜200μmの範囲にある。平均粒子径が0.1μm未満のもの、また、平均粒子径が200μmを超えるものは、噴霧乾燥法を用いた生産性を考慮した場合、噴霧乾燥法を用いて製造することが困難である。   The silica-based particles of the present invention have an average particle diameter in the range of 0.1 to 200 μm in any aspect. Those having an average particle diameter of less than 0.1 μm and those having an average particle diameter exceeding 200 μm are difficult to produce using the spray drying method in view of productivity using the spray drying method.

上記中空のシリカ系粒子(第2の態様)を製造する場合、乾燥・加熱処理を減圧下で行うと、得られるシリカ系粒子の外殻層内部が負圧のシリカ系粒子を得ることができる。
この時得られる球状のシリカ系粒子は、屈折率が低く、化粧料に配合して用いると、滑性、皮膚の欠点を暈かす効果や透明感などシリカ系粒子の配合効果が得られる。また、断熱材として用いると断熱効果に優れている。
When the hollow silica-based particles (second aspect) are produced, when the drying / heating treatment is performed under reduced pressure, silica particles having a negative pressure inside the outer shell layer of the obtained silica-based particles can be obtained. .
The spherical silica-based particles obtained at this time have a low refractive index, and when used in cosmetics, the effects of silica-based particles such as lubricity, the effect of blurring skin defects and transparency can be obtained. Moreover, when it uses as a heat insulating material, it is excellent in the heat insulation effect.

従って、上記減圧下で乾燥・加熱処理して得られるシリカ系粒子は、平均粒子径が0.1〜200μmの範囲にあり、外殻シリカ層の内部に空洞を有し、該空洞の空隙率が20〜95重量%の範囲にあり、外殻シリカ層が非孔質であり、空洞内部が負圧であることを特徴としている。
前記空洞内部の負圧が133hPa以下あることが好ましい。
空洞内部が負圧であるシリカ系粒子は、屈折率が低く、断熱性に優れている。
Therefore, the silica-based particles obtained by drying and heat treatment under reduced pressure have an average particle diameter in the range of 0.1 to 200 μm and have cavities inside the outer shell silica layer, and the porosity of the cavities. Is in the range of 20 to 95% by weight, the outer silica layer is non-porous, and the inside of the cavity is negative pressure.
The negative pressure inside the cavity is preferably 133 hPa or less.
Silica-based particles having a negative pressure inside the cavity have a low refractive index and excellent heat insulating properties.

[化粧料]
本発明に係る化粧料は、前記したいずれかの製造方法で得られたシリカ系粒子を配合してなることを特徴としている。
本発明に係る化粧料は、前記シリカ系粒子の配合量が0.1〜30重量%の範囲にあり、特に1〜20重量%の範囲にあることが好ましい。シリカ系粒子の配合量が0.1重量%未満では、滑性、皮膚の欠点を暈かす効果や透明感などシリカ系粒子の配合効果が得られず、30重量%を越えると本来化粧料に求められる着色性、油分感等が損なわれることがある。
[Cosmetics]
The cosmetic according to the present invention is characterized by blending silica-based particles obtained by any one of the production methods described above.
In the cosmetic according to the present invention, the amount of the silica-based particles is preferably in the range of 0.1 to 30% by weight, and particularly preferably in the range of 1 to 20% by weight. If the blending amount of the silica particles is less than 0.1% by weight, the blending effect of the silica particles such as lubricity, the effect of blurring the skin, and the transparency cannot be obtained. The required colorability, oiliness, etc. may be impaired.

なお、本発明のシリカ系粒子を化粧料に配合するに際し、その表面を従来公知の表面処理剤、例えば、シリコーン化合物、フッ素化合物、金属石鹸類、シランカップリング剤、チタネート系カップリング剤、アミノ酸類、レシチン類等で処理しても良い。
本発明の化粧料は、前記シリカ系粒子と、通常、化粧料に配合されることのある成分、例えば、オリーブ油、ナタネ油、牛脂等の油脂類、ホホバ油、カルナバロウ、キャンデリラロウ、ミツロウ等のロウ類、パラフィン、スクワラン、合成及び植物性スクワラン、α−オレフィンオリゴマー、マイクロクリスタリンワックス、ペンタン、ヘキサン等の炭化水素類、ステアリン酸、ミリスチン酸、オレイン酸、α−ヒドロキシ酸等の脂肪酸類、イソステアリルアルコール、オクチルドデカノール、ラウリルアルコール、エタノール、イソプロパノール、ブチルアルコール、ミリスチルアルコール、セタノール、ステアリルアルコール、ベヘニルアルコール等のアルコール類、アルキルグリセリルエーテル類、ミリスチン酸イソプロピル、パルチミン酸イソプロピル、ステアリン酸エチル、オレイン酸エチル、ラウリル酸セチル、オレイン酸デシル等のエステル類、エチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ジグリセリン等の多価アルコール類、ソルビトール、ブドウ糖、ショ糖、トレハロース等の糖類、メチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルシリコーン油、各種変性シリコーン油、環状ジメチルシリコン油等のシリコーン油、パーフルオロポリエーテル等のフッ素油、アラビアガム、カラギーナン、寒天、キサンタンガム、ゼラチン、アルギン酸、グアーガム、アルブミン、プルラン、カルボキシビニルポリマー、セルロース及びその誘導体、ポリアクリル酸アミド、ポリアクリル酸ナトリウム、ポリビニルアルコール等の各種高分子、アニオン、カチオン、ノニアオン系各種界面活性剤類、動植物抽出物、アミノ酸及びペプチド類、ビタミン類、パラメトキシケイ皮酸オクチル等のケイ皮酸系、サリチル酸系、安息香酸エステル系、ウロカニン酸系、ベンゾフェノン系をはじめとした紫外線防御剤、殺菌・防腐剤、酸化防止剤、変性又は未変性の粘土鉱物、酢酸ブチル、アセトン、トルエンなどの溶剤、各種粒子径、粒子径分布及び形状の酸化チタン、酸化亜鉛、酸化アルミニウム、水酸化アルミニウム、ベンガラ、黄色酸化鉄、黒色酸化鉄、酸化セリウム、酸化ジルコニウム、シリカ、マイカ、タルク、セリサイト、窒化ホウ素、硫酸バリウム、パール光沢を有する雲母チタン、及びそれらの複合物、各種有機顔染料、水、香料などの少なくとも1 種を含んでいる。ここで、酸化チタン、酸化亜鉛等の無機化合物はシリコン処理、フッ素処理、金属石鹸処理等の表面処理をして用いてもよい。
In addition, when blending the silica-based particles of the present invention into cosmetics, the surface thereof is conventionally known surface treatment agents such as silicone compounds, fluorine compounds, metal soaps, silane coupling agents, titanate coupling agents, amino acids. Or lecithin may be used.
The cosmetic composition of the present invention is composed of the silica-based particles and components that are usually blended in the cosmetic composition, for example, oils such as olive oil, rapeseed oil, and beef tallow, jojoba oil, carnauba wax, candelilla wax, beeswax and the like. Waxes, paraffin, squalane, synthetic and vegetable squalane, α-olefin oligomers, microcrystalline wax, hydrocarbons such as pentane, hexane, fatty acids such as stearic acid, myristic acid, oleic acid, α-hydroxy acid, Isostearyl alcohol, octyldodecanol, lauryl alcohol, ethanol, isopropanol, butyl alcohol, myristyl alcohol, cetanol, stearyl alcohol, behenyl alcohol, and other alcohols, alkyl glyceryl ethers, isopropyl myristate, palmimi Esters such as isopropyl acetate, ethyl stearate, ethyl oleate, cetyl laurate, decyl oleate, polyhydric alcohols such as ethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, glycerin, diglycerin, sorbitol, Sugars such as glucose, sucrose and trehalose, methylpolysiloxane, methylhydrogenpolysiloxane, methylphenyl silicone oil, various modified silicone oils, silicone oils such as cyclic dimethylsilicone oil, fluorine oils such as perfluoropolyether, gum arabic Carrageenan, agar, xanthan gum, gelatin, alginic acid, guar gum, albumin, pullulan, carboxyvinyl polymer, cellulose and its derivatives, polyacrylamide, poly Various polymers such as sodium chlorate, polyvinyl alcohol, anions, cations, various nonionic surfactants, animal and plant extracts, amino acids and peptides, vitamins, cinnamic acid such as octyl paramethoxycinnamate, salicylic acid , Benzoic acid ester, urocanic acid, benzophenone and other UV protection agents, bactericides / preservatives, antioxidants, modified or unmodified clay minerals, solvents such as butyl acetate, acetone, toluene, various particles Titanium oxide, zinc oxide, aluminum oxide, aluminum hydroxide, bengara, yellow iron oxide, black iron oxide, cerium oxide, zirconium oxide, silica, mica, talc, sericite, boron nitride, sulfuric acid with diameter, particle size distribution and shape Barium, titanium mica with pearl luster, and their composites Pigment or dye, water, contains at least one such perfume. Here, inorganic compounds such as titanium oxide and zinc oxide may be used after being subjected to surface treatment such as silicon treatment, fluorine treatment, and metal soap treatment.

また、ポリアクリル酸メチル、ナイロン、シリコーン樹脂、シリコーンゴム、ポリエチレン、ポリエステル、ポリウレタン等の樹脂粒子を含んでいてもよい。
さらに、美白効果を有する有効成分としてアルブチン、コウジ酸、ビタミンC 、アスコルビン酸ナトリウム、アスコルビン酸リン酸エステルマグネシウム、ジ−パルチミン酸アスコルビル、アスコルビン酸グルコシド、その他のアスコルビン酸誘導体、プラセンタエキス、イオウ、油溶性甘草エキス、クワエキス等の植物抽出液、リノール酸、リノレイン酸、乳酸、トラネキサム酸等を含むことができる。
肌荒れ改善効果を有する有効成分としてビタミンC 、カロチノイド、フラボノイド、タンニン、カフェー誘導体、リグナン、サポニン、レチノイン酸及びレチノイン酸構造類縁体、N − アセチルグルコサミン、α − ヒドロキシ酸等の抗老化効果を有する有効成分、グリセリン、プロピレングリコール、1,3−ブチレングリコール等の多価アルコール類、混合異性化糖、トレハロース、プルラン等の糖類、ヒアルロン酸ナトリウム、コラーゲン、エラスチン、キチン・キトサン、コンドロイチン硫酸ナトリウム等の生体高分子類、アミノ酸、ベタイン、セラミド、スフィンゴ脂質、コレステロール及びその誘導体、ε−アミノカプロン酸、グリチルリチン酸、各種ビタミン類等を含むことができる。
In addition, resin particles such as polymethyl acrylate, nylon, silicone resin, silicone rubber, polyethylene, polyester, and polyurethane may be included.
Further, as an active ingredient having a whitening effect, arbutin, kojic acid, vitamin C, sodium ascorbate, magnesium ascorbate phosphate, ascorbyl di-palmitate, ascorbyl glucoside, other ascorbic acid derivatives, placenta extract, sulfur, oil Plant extracts such as soluble licorice extract and mulberry extract, linoleic acid, linolenic acid, lactic acid, tranexamic acid and the like can be included.
Effective ingredients with anti-aging effects such as vitamin C, carotenoids, flavonoids, tannins, cafe derivatives, lignans, saponins, retinoic acid and retinoic acid structural analogs, N-acetylglucosamine, α-hydroxy acids, etc. Ingredients, polyhydric alcohols such as glycerin, propylene glycol, 1,3-butylene glycol, mixed isomerized sugars, sugars such as trehalose, pullulan, sodium hyaluronate, collagen, elastin, chitin / chitosan, sodium chondroitin sulfate, etc. Polymers, amino acids, betaines, ceramides, sphingolipids, cholesterol and derivatives thereof, ε-aminocaproic acid, glycyrrhizic acid, various vitamins, and the like can be included.

本発明の化粧料には、医薬部外品原料規格2006(発行:株式会社薬事日報社、平成18年6月16日)や、International Cosmetic Ingredient Dictionary and Handbook(発行:The Cosmetic, Toiletry, and Fragrance Association、13th Edition 2010)等に収載されている化粧料成分を特に制限なく使用することができる。
本発明による化粧料は、従来公知の一般的な方法で製造することができる。
The cosmetics of the present invention include quasi-drug raw material standards 2006 (issued by Yakuji Nippo Co., Ltd., June 16, 2006) and International Cosmetic Ingredient Dictionary and Handbook (issued by The Cosmetic, Toiletry, and Fragrance). Cosmetic ingredients listed in Association, 13th Edition 2010) etc. can be used without particular limitation.
The cosmetic according to the present invention can be produced by a conventionally known general method.

このような方法で製造された化粧料は、粉末状、ケーキ状、ペンシル状、スティック状、クリーム状、ジェル状、ムース状、液状、クリーム状などの各種形態で使用され、さらに具体的に述べれば、石鹸、クレンジングフォーム、メーク落とし用クリーム等の洗浄用化粧料、保湿・肌荒れ防止、アクネ、角質ケア、マッサージ、しわ・たるみ対応、くすみ・くま対応、紫外線ケア、美白、抗酸化ケア用等のスキンケア化粧料、パウダーファンデーション、リキッドファンデーション、クリームファンデーション、ムースファンデーション、プレスドパウダー、化粧下地等のベースメークアップ化粧料、アイシャドウ、アイブロー、アイライナー、マスカラ、口紅等のポイントメークアップ化粧料、育毛用、フケ防止、かゆみ防止、洗浄用、コンディショニング・整髪、パーマネント・ウエーブ用、ヘアカラー・ヘアブリーチ用等のヘアケア化粧料、洗浄用、日焼け防止、手荒れ防止、スリミング用、血行改善用、かゆみ抑制、体臭防止、制汗、体毛ケア、リペラント用、ボディパウダー等のボディーケア化粧料、香水、オードパルファム、オードトワレ、オーデコロン、シャワーコロン等、練香水、ボディーロ−ション、バスオイル等のフレグランス化粧料、歯磨き、マウスウォッシュ等のオーラルケア製品などが挙げられる。   The cosmetics produced by such a method are used in various forms such as powder, cake, pencil, stick, cream, gel, mousse, liquid, cream, and more specifically described. Washing cosmetics such as soap, cleansing foam, makeup remover, moisturizing / rough skin prevention, acne, keratin care, massage, wrinkle / sagging, dullness / bearing, UV care, whitening, antioxidant care, etc. Skincare cosmetics, powder foundation, liquid foundation, cream foundation, mousse foundation, pressed powder, base makeup cosmetics such as makeup base, eye shadow, eyebrow, eyeliner, mascara, lipstick, etc. point makeup cosmetics, For hair growth, anti-dandruff, itching, cleaning, co Hair care cosmetics such as conditioning, hair styling, permanent wave, hair color, hair bleach, etc., for washing, sun protection, hand roughening, slimming, blood circulation improvement, itching suppression, body odor prevention, antiperspirant, body hair care, For repellant, body care cosmetics such as body powder, perfume, eau de parfum, eau de toilette, eau de cologne, shower colon, fragrance cosmetics such as perfume, body lotion, bath oil, oral care products such as toothpaste, mouthwash, etc. Can be mentioned.

[断熱材]
本発明の製造方法で得られたシリカ系粒子は断熱材として好適に用いることができる。
断熱材に用いるシリカ系粒子としては、中空のシリカ系粒子(第2の態様)であって外殻が非孔質なシリカ系粒子が好ましく、さらには、空洞内部が負圧であるシリカ系粒子が好ましく、特に負圧が133hPa(100mmHg)以下のシリカ系粒子が好ましい。
断熱材に用いる用法としては、従来公知の方法に準拠して用いることができ、例えば、
断熱用の隔壁に充填して使用することができ、さらには住宅建材(壁材、窓材等)に配合して用いたり、断熱フィラーとして含むシートとして用いる等種々の用途が提案されている。
[Insulation]
Silica-based particles obtained by the production method of the present invention can be suitably used as a heat insulating material.
As the silica-based particles used for the heat insulating material, hollow silica-based particles (second embodiment), preferably silica-based particles having a non-porous outer shell, and further, silica-based particles having a negative pressure inside the cavity In particular, silica-based particles having a negative pressure of 133 hPa (100 mmHg) or less are preferable.
As usage for the heat insulating material, it can be used in accordance with a conventionally known method, for example,
It can be used by filling a partition wall for heat insulation, and has been proposed for various uses such as being blended with a housing building material (wall material, window material, etc.) or used as a sheet containing as a heat insulation filler.

[樹脂組成物]
本発明の製造方法で得られたシリカ系粒子は樹脂組成物に配合することができる。配合量は用途によって異なるが、1〜90重量%の範囲にあることが好ましい。
樹脂組成物がフィルムであれば、前記シート状断熱材として使用することができ、空隙率の大きい粒子、特に殻が非孔質で空隙内部が負圧のシリカ系粒子は吸湿性が無く、低誘電率を長期にわたって保持することができ、低誘電率膜として好適に用いることができる。
また、多層プリント基板や半導体封止材料としても好適に用いることができる。
[Resin composition]
Silica-based particles obtained by the production method of the present invention can be blended in the resin composition. The blending amount varies depending on the use, but is preferably in the range of 1 to 90% by weight.
If the resin composition is a film, it can be used as the sheet-like heat insulating material, and particles having a large porosity, particularly silica-based particles having a non-porous shell and a negative pressure inside the void are not hygroscopic and have a low The dielectric constant can be maintained over a long period of time, and it can be suitably used as a low dielectric constant film.
Moreover, it can be used suitably also as a multilayer printed circuit board or a semiconductor sealing material.

樹脂としては、従来公知の樹脂を用いることができ、例えば、特開2005−206436号公報等に例示された、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、BTレジン、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネイト、マレイミド変成樹脂、ABS樹脂、AAS樹脂、AES樹脂などの樹脂が使用される。
さらに、樹脂を硬化させるに硬化剤が必用な場合には硬化剤、硬化促進剤を用いることができ、さらに必用に応じて各種添加剤を用いることもできる。
As the resin, a conventionally known resin can be used, for example, an epoxy resin, a silicone resin, a phenol resin, a melamine resin, a urea resin, an unsaturated polyester, a fluorine resin exemplified in JP-A-2005-206436. , BT resin, polyimide, polyamideimide, polyetherimide and other polyamides, polybutylene terephthalate, polyethylene terephthalate, etc. polyester, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS Resins such as resin, AAS resin, and AES resin are used.
Furthermore, when a curing agent is necessary to cure the resin, a curing agent and a curing accelerator can be used, and various additives can be used as necessary.

[実施例1]
シリカ系粒子(1)の調製
水ガラス水溶液(SiO/NaOモル比3.2、SiO濃度24重量%)3000gを用い、2流体ノズルの一方に0.62kg/hrの流量で、他方のノズルに空気を31800L/hr(空/液体積比63600)の流量で、入口温度250℃の熱風に噴霧してシリカ系粒子前駆体粒子(1)を得た。この時、出口温度は50℃であった。
ついで、シリカ系粒子前駆体粒子(1)500gを濃度10重量%の硫酸水溶液3200gに浸漬して1.5時間撹拌した。この時、固形分(SiO)濃度は10.2重量%、分散液の温度は35℃、pHは3.0であった。また、酸のモル数(Ma)とのモル比(Ma)/(Msp)は1.2であった。
ついで、乾燥機にて、80℃で60時間乾燥・加熱処理してシリカ系粒子(1)を調製した。
得られたシリカ系粒子(1)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。
吸油量は以下の方法で測定し、結果を表に示した。
[Example 1]
Preparation of silica-based particles (1) Using 3000 g of water glass aqueous solution (SiO 2 / Na 2 O molar ratio: 3.2, SiO 2 concentration: 24 wt%) at a flow rate of 0.62 kg / hr in one of two fluid nozzles, The other nozzle was sprayed with hot air having an inlet temperature of 250 ° C. at a flow rate of 31800 L / hr (air / liquid volume ratio 63600) to obtain silica-based particle precursor particles (1). At this time, the outlet temperature was 50 ° C.
Next, 500 g of silica-based particle precursor particles (1) were immersed in 3200 g of a 10 wt% sulfuric acid aqueous solution and stirred for 1.5 hours. At this time, the solid content (SiO 2 ) concentration was 10.2 wt%, the temperature of the dispersion was 35 ° C., and the pH was 3.0. The molar ratio (Ma) / (Msp) with the number of moles of acid (Ma) was 1.2.
Next, the silica-based particles (1) were prepared by drying and heat treatment at 80 ° C. for 60 hours in a dryer.
The average particle diameter, specific surface area, particle density, porosity, residual amount of alkali, oil absorption and feel characteristics of the obtained silica particles (1) were measured, and the results are shown in the table.
The oil absorption was measured by the following method, and the results are shown in the table.

吸油量
顔料試験方法JIS−K5101に準拠して測定した。概略は、一定の条件下でシリカ系粒子(1)に吸収される煮あまに油の量を測定し、吸油量をシリカ系粒子(1)の重量で除して求める。本発明においては、吸油量をml/100gで表示してある。
Oil absorption pigment test method Measured according to JIS-K5101. The outline is obtained by measuring the amount of oil that is absorbed into the silica-based particles (1) under certain conditions and dividing the oil absorption by the weight of the silica-based particles (1). In the present invention, the oil absorption is indicated in ml / 100 g.

感触特性
シリカ系粒子(1)の粉体について、20名の専門パネラーによる官能テストを行い、(1)さらさら感、(2)しっとり感、(3)転がり感、(4)均一な延び広がり性、(5)肌への付着性、(6)転がり感の持続性、および(7)シリカ系粒子(1)のシャリシャリ感の低さの7つの評価項目に関して聞き取り調査を行う。その結果を以下の評価点基準(a)に基づき評価する。次いで、各人がつけた評価点を合計し、以下の評価基準(b)に基づき多孔質シリカ系粒子の感触に関する評価を行う。
Sensory characteristics The powder of silica particles (1) is subjected to a sensory test by 20 expert panelists. (1) Smooth feeling, (2) Moist feeling, (3) Rolling feeling, (4) Uniform spreading Interviews were conducted on seven evaluation items: (5) Adhesion to the skin, (6) Persistence of rolling feeling, and (7) Low sharpness of silica-based particles (1). The result is evaluated based on the following evaluation point criteria (a). Subsequently, the evaluation points given by each person are summed up, and the evaluation relating to the feel of the porous silica-based particles is performed based on the following evaluation criteria (b).

評価点基準(a
5点:非常に優れている。
4点:優れている。
3点:普通。
2点:劣る。
1点:非常に劣る。
評価基準(b)
◎:合計点が80点以上
○:合計点が60点以上80点未満
△:合計点が40点以上60点未満
▲:合計点が20点以上40点未満
×:合計点が20点未満
Evaluation point criteria (a )
5 points: Excellent.
4 points: Excellent.
3 points: Normal.
2 points: Inferior.
1 point: Very inferior.
Evaluation criteria (b)
◎: Total score is 80 or more ○: Total score is 60 or more and less than 80 △: Total score is 40 or more and less than 60 ▲: Total score is 20 or more and less than 40 ×: Total score is less than 20

[実施例2]
シリカ系粒子(2)の調製
実施例1において、乾燥・加熱処理を120℃で24時間行った以外は同様にしてシリカ系粒子(2)を調製した。
得られたシリカ系粒子(2)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。
[Example 2]
Preparation of silica-based particles (2) Silica-based particles (2) were prepared in the same manner as in Example 1 except that drying and heat treatment were performed at 120 ° C for 24 hours.
The resulting silica-based particles (2) were measured for average particle size, specific surface area, particle density, porosity, residual amount of alkali, oil absorption and feel characteristics, and the results are shown in the table.

[実施例3]
シリカ系粒子(3)の調製
実施例1において、噴霧乾燥を入口温度400℃、出口温度150℃で行った以外は同様にしてシリカ系粒子(3)を調製した。
得られたシリカ系粒子(3)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。
[Example 3]
Preparation of silica-based particles (3) Silica-based particles (3) were prepared in the same manner as in Example 1 except that spray drying was performed at an inlet temperature of 400 ° C and an outlet temperature of 150 ° C.
The resulting silica-based particles (3) were measured for average particle size, specific surface area, particle density, porosity, residual amount of alkali, oil absorption and feel characteristics, and the results are shown in the table.

[実施例4]
シリカ系粒子(4)の調製
実施例3において、乾燥・加熱処理を120℃で24時間行った以外は同様にしてシリカ系粒子(4)を調製した。
得られたシリカ系粒子(4)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。
[Example 4]
Preparation of silica-based particles (4) Silica-based particles (4) were prepared in the same manner as in Example 3 except that drying and heat treatment were performed at 120 ° C for 24 hours.
The resulting silica-based particles (4) were measured for average particle size, specific surface area, particle density, porosity, residual alkali amount, oil absorption and feel characteristics, and the results are shown in the table.

[実施例5]
シリカ系粒子(5)の調製
実施例4において、真空ポンプにて、減圧度1hPaで排気しながら、乾燥・加熱処理を120℃で24時間行った以外は同様にしてシリカ系粒子(5)を調製した。
得られたシリカ系粒子(5)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。なお、空隙内部圧を乾燥・加熱処理時の減圧度で表に示した。
[Example 5]
Preparation of silica-based particles (5) In Example 4, silica-based particles (5) were prepared in the same manner except that drying and heat treatment were performed at 120 ° C. for 24 hours while evacuating with a vacuum pump at a reduced pressure of 1 hPa. Prepared.
The resulting silica-based particles (5) were measured for average particle size, specific surface area, particle density, porosity, residual alkali amount, oil absorption and feel characteristics, and the results are shown in the table. The void internal pressure is shown in the table as the degree of pressure reduction during the drying / heating treatment.

また、以下の方法で空隙内部圧を測定し、以下の基準で評価した。
U字管マノメータの一方に接続した100ccガラス瓶に、シリカ系粒子(5)を粒子密度で換算した40cc相当の重量を投入し、次に濃度48重量%の水酸化ナトリウム水溶液50cc投入し、直ちに圧抜き弁を閉じて密閉状態にした。このときのガラス瓶内部の空気層の空間は10ccであった。次に、マグネットスターラーを用いて攪拌しながら、オイルバスにて80℃で15時間加熱してシリカ系粒子(5)を溶解させ、ついで、室温まで冷却した。この時の空気層の空間は25cc(ガラス瓶内部の空気層の体積:10ccとシリカ系粒子の内部空隙体積:16ccの和と凡そ等しい)となった。これにより、シリカ系粒子の内部空隙がシリカの溶解により開放されたことが分かった。次に、U字管マノメータの他方には48%水酸化ナトリウム水溶液のみを90cc投入した100ccガラス瓶を接続し、双方のガラス瓶内部の蒸気圧を等しくした。これにより、マノメータで測定した差圧を元に、ボイルの法則からシリカ系粒子の内部圧力を算出できる。このときのU字管マノメータの差圧を読み取って、空隙内部圧を算出した。
この結果、シリカ系粒子(5)の空隙内部圧は◎であった。
Further, the void internal pressure was measured by the following method and evaluated according to the following criteria.
A 100 cc glass bottle connected to one of the U-tube manometers was charged with a weight equivalent to 40 cc of silica-based particles (5) in terms of particle density, and then 50 cc of a sodium hydroxide aqueous solution with a concentration of 48% by weight was added immediately. The vent valve was closed and sealed. The space of the air layer inside the glass bottle at this time was 10 cc. Next, while stirring with a magnetic stirrer, the silica-based particles (5) were dissolved by heating in an oil bath at 80 ° C. for 15 hours, and then cooled to room temperature. The space of the air layer at this time was 25 cc (the volume of the air layer inside the glass bottle: 10 cc and the internal void volume of the silica-based particles: approximately 16 cc). Thereby, it turned out that the internal space | gap of the silica type particle | grains was open | released by melt | dissolution of the silica. Next, the other U-tube manometer was connected to a 100 cc glass bottle filled with 90 cc of a 48% aqueous sodium hydroxide solution, and the vapor pressures inside both glass bottles were made equal. Thus, the internal pressure of the silica-based particles can be calculated from Boyle's law based on the differential pressure measured with a manometer. The pressure inside the U-tube manometer at this time was read to calculate the internal pressure of the air gap.
As a result, the void internal pressure of the silica-based particles (5) was ◎.

評価基準
差圧が133hPa以下 : ◎
差圧が133hPa超〜500hPa : ○
差圧が500hPa超〜1013hPa未満 : △
差圧が1013hPa : ×
Evaluation standard differential pressure is 133 hPa or less: ◎
Differential pressure is over 133 hPa to 500 hPa: ○
Differential pressure is over 500 hPa and less than 1013 hPa: Δ
Differential pressure is 1013 hPa: ×

[実施例6]
シリカ系粒子(6)の調製
水ガラス水溶液(SiO/NaOモル比3.2、SiO濃度24重量%)3000gを用い、0.12kg/hrの流量で、他方のノズルに空気を31800L/hr(空/液体積比318000)の流量で、入口温度250℃の熱風に噴霧してシリカ系粒子前駆体粒子(2)を得た。この時、出口温度は50℃であった。
ついで、シリカ系粒子前駆体粒子(2)500gを濃度10重量%の硫酸水溶液3200gに浸漬して1.5時間撹拌した。この時、固形分(SiO)濃度は10.2重量%、分散液の温度は35℃、pHは3.0であった。また、酸のモル数(Ma)とのモル比(Ma)/(Msp)は1.2であった。
ついで、乾燥機にて、80℃で60時間乾燥・加熱処理してシリカ系粒子(6)を調製した。
得られたシリカ系粒子(6)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。
[Example 6]
Preparation of silica-based particles (6) Using 3000 g of a water glass aqueous solution (SiO 2 / Na 2 O molar ratio: 3.2, SiO 2 concentration: 24% by weight), air was supplied to the other nozzle at a flow rate of 0.12 kg / hr. Silica-based particle precursor particles (2) were obtained by spraying with hot air having an inlet temperature of 250 ° C. at a flow rate of 31800 L / hr (air / liquid volume ratio 318000). At this time, the outlet temperature was 50 ° C.
Subsequently, 500 g of silica-based particle precursor particles (2) were immersed in 3200 g of a 10 wt% sulfuric acid aqueous solution and stirred for 1.5 hours. At this time, the solid content (SiO 2 ) concentration was 10.2 wt%, the temperature of the dispersion was 35 ° C., and the pH was 3.0. The molar ratio (Ma) / (Msp) with the number of moles of acid (Ma) was 1.2.
Subsequently, it dried and heat-processed at 80 degreeC for 60 hours with the dryer, and prepared the silica type particle (6).
The resulting silica-based particles (6) were measured for average particle diameter, specific surface area, particle density, porosity, residual alkali amount, oil absorption and feel characteristics, and the results are shown in the table.

[実施例7]
シリカ系粒子(7)の調製
実施例6において、120℃で24時間乾燥・加熱処理した以外は同様にしてシリカ系粒子(7)を調製した。
得られたシリカ系粒子(7)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。
[Example 7]
Preparation of silica-based particles (7) Silica-based particles (7) were prepared in the same manner as in Example 6 except that they were dried and heated at 120 ° C for 24 hours.
The average particle diameter, specific surface area, particle density, porosity, residual amount of alkali, oil absorption and feel characteristics of the obtained silica particles (7) were measured, and the results are shown in the table.

[実施例8]
シリカ系粒子(8)の調製
実施例6において、入口温度400℃の熱風に噴霧し(この時、出口温度は150℃)、真空ポンプにて、減圧度1hPaで排気しながら、乾燥・加熱処理を120℃で24時間行った以外は同様にしてシリカ系粒子(8)を調製した。
得られたシリカ系粒子(8)の平均粒子径、比表面積、粒子密度、空隙率、空隙内部圧、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。シリカ系粒子(8)の空隙内部圧は◎であった。
[Example 8]
Preparation of silica-based particles (8) In Example 6, sprayed with hot air having an inlet temperature of 400 ° C. (the outlet temperature was 150 ° C. at this time), dried and heat-treated while evacuating with a vacuum pump at a reduced pressure of 1 hPa. A silica-based particle (8) was prepared in the same manner except that was carried out at 120 ° C. for 24 hours.
The average particle diameter, specific surface area, particle density, porosity, void internal pressure, residual amount of alkali, oil absorption and feel characteristics of the obtained silica particles (8) were measured, and the results are shown in the table. The void internal pressure of the silica-based particles (8) was ◎.

[実施例9]
シリカ系粒子(9)の調製
水ガラス水溶液(SiO/NaOモル比3.2、SiO濃度24重量%)3000gを用い、2流体ノズルの一方に0.62kg/hrの流量で、他方のノズルに空気を15900L/hr(空/液体積比31800)の流量で、入口温度250℃の熱風に噴霧してシリカ系粒子前駆体粒子(9)を得た。この時、出口温度は50℃であった。
ついで、シリカ系粒子前駆体粒子(3)500gを濃度10重量%の硫酸水溶液3200gに浸漬して1.5時間撹拌した。この時、固形分(SiO)濃度は10.2重量%、分散液の温度は35℃、pHは3.0であった。また、酸のモル数(Ma)とのモル比(Ma)/(Msp)は1.2であった。
ついで、乾燥機にて、80℃で60時間乾燥・加熱処理してシリカ系粒子(9)を調製した。
得られたシリカ系粒子(9)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。
[Example 9]
Preparation of silica-based particles (9) Using 3000 g of water glass aqueous solution (SiO 2 / Na 2 O molar ratio 3.2, SiO 2 concentration 24 wt%) at a flow rate of 0.62 kg / hr in one of two fluid nozzles, The other nozzle was sprayed with hot air at an inlet temperature of 250 ° C. at a flow rate of 15900 L / hr (air / liquid volume ratio 31800) to obtain silica-based particle precursor particles (9). At this time, the outlet temperature was 50 ° C.
Subsequently, 500 g of silica-based particle precursor particles (3) were immersed in 3200 g of a 10 wt% sulfuric acid aqueous solution and stirred for 1.5 hours. At this time, the solid content (SiO 2 ) concentration was 10.2 wt%, the temperature of the dispersion was 35 ° C., and the pH was 3.0. The molar ratio (Ma) / (Msp) with the number of moles of acid (Ma) was 1.2.
Subsequently, it dried and heat-processed for 60 hours at 80 degreeC with the dryer, and prepared the silica particle (9).
The resulting silica-based particles (9) were measured for average particle size, specific surface area, particle density, porosity, residual alkali amount, oil absorption and feel characteristics, and the results are shown in the table.

[実施例10]
シリカ系粒子(10)の調製
実施例9において、入口温度400℃の熱風に噴霧し(この時、出口温度は150℃)、乾燥・加熱処理を120℃で24時間行った以外は同様にしてシリカ系粒子(10)を調製した。
得られたシリカ系粒子(10)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。
[Example 10]
Preparation of silica-based particles (10) In Example 9, spraying is performed on hot air having an inlet temperature of 400 ° C. (at this time, the outlet temperature is 150 ° C.), and the drying / heating treatment is performed at 120 ° C. for 24 hours. Silica-based particles (10) were prepared.
The resulting silica-based particles (10) were measured for average particle size, specific surface area, particle density, porosity, residual alkali amount, oil absorption and feel characteristics, and the results are shown in the table.

[実施例11]
シリカ系粒子(11)の調製
実施例10において、真空ポンプにて、減圧度1hPaで排気しながら、乾燥・加熱処理を120℃で24時間行った以外は同様にしてシリカ系粒子(11)を調製した。
得られたシリカ系粒子(11)の平均粒子径、比表面積、粒子密度、空隙率、空隙内部圧、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。シリカ系粒子(11)の空隙内部圧は◎であった。
[Example 11]
Preparation of silica-based particles (11) In Example 10, silica-based particles (11) were prepared in the same manner except that drying and heat treatment were performed at 120 ° C. for 24 hours while evacuating with a vacuum pump at a reduced pressure of 1 hPa. Prepared.
The average particle diameter, specific surface area, particle density, void ratio, void internal pressure, residual alkali amount, oil absorption and feel characteristics of the obtained silica particles (11) were measured, and the results are shown in the table. The void internal pressure of the silica-based particles (11) was ◎.

[比較例1]
シリカ系粒子(R1)の調製
水ガラス水溶液(SiO/NaOモル比3.2、SiO濃度24重量%)3000gを用い、2流体ノズルの一方に0.62kg/hrの流量で、他方のノズルに空気を31800L/hr(空/液体積比63600)の流量で、入口温度140℃の熱風に噴霧してシリカ系粒子前駆体粒子を得ようとしたが、乾燥が不充分なために、乾燥室内壁及び配管内壁に付着して乾燥粉末を得ることができなかった。この時、出口温度は30℃であった。そのため、続く工程(b)、(c)は実施しなかった。
[Comparative Example 1]
Preparation of silica-based particles (R1) Using 3000 g of a water glass aqueous solution (SiO 2 / Na 2 O molar ratio 3.2, SiO 2 concentration 24 wt%) at a flow rate of 0.62 kg / hr in one of two fluid nozzles, An attempt was made to obtain silica-based particle precursor particles by spraying hot air having an inlet temperature of 140 ° C. at a flow rate of 31800 L / hr (air / liquid volume ratio 63600) to the other nozzle, but drying was insufficient. Furthermore, it was impossible to obtain a dry powder by adhering to the inner wall of the drying chamber and the inner wall of the pipe. At this time, the outlet temperature was 30 ° C. Therefore, subsequent steps (b) and (c) were not performed.

[比較例2]
シリカ系粒子(R2)の調製
比較例1において、入口温度700℃の熱風に噴霧した以外は同様にしてシリカ系粒子前駆体粒子(R2)を得た。この時、出口温度は350℃であった。シリカ系粒子前駆体粒子(R2)は、殻が薄く、中にはお碗状および破砕された粒子が混在していたので、続く工程(b)、(c)は実施しなかった。
[Comparative Example 2]
Preparation of silica-based particles (R2) Silica-based particle precursor particles (R2) were obtained in the same manner as in Comparative Example 1 except that the particles were sprayed with hot air having an inlet temperature of 700 ° C. At this time, the outlet temperature was 350 ° C. The silica-based particle precursor particle (R2) had a thin shell and contained bowl-like and crushed particles therein, so the subsequent steps (b) and (c) were not performed.

[比較例3]
シリカ系粒子(R3)の調製
実施例1と同様にして調製した。シリカ系粒子前駆体粒子(1)500gを濃度1重量%の硫酸水溶液3200gに浸漬して撹拌した。この時、酸のモル数(Ma)とのモル比(Ma)/(Msp)は0.12、固形分(SiO)濃度は10.2重量%で、温度は30℃、1.5時間、pH=9.5であったが、酸による洗浄の工程で、酸の量が少なすぎたため、粒子の溶解が顕著に見られ、工程完了後の収率が著しく低かった。このために、続く工程(c)は実施しなかった。
[Comparative Example 3]
Preparation of silica-based particles (R3) It was prepared in the same manner as in Example 1. 500 g of silica-based particle precursor particles (1) were immersed in 3200 g of a 1% by weight sulfuric acid aqueous solution and stirred. At this time, the molar ratio (Ma) / (Msp) to the number of moles (Ma) of the acid was 0.12, the solid content (SiO 2 ) concentration was 10.2 wt%, the temperature was 30 ° C., and 1.5 hours. PH = 9.5, but in the acid washing step, the amount of acid was too small, so that the dissolution of particles was noticeable and the yield after the completion of the step was remarkably low. For this reason, the subsequent step (c) was not carried out.

[比較例4]
シリカ系粒子(R4)の調製
実施例3において、SiO濃度24重量%の水ガラス水溶液をSiO濃度42重量%に濃縮して用いた以外は同様にしてシリカ系粒子前駆体粒子(R4)を得た。この時、出口温度は170℃であった。しかし、噴霧乾燥品中に不均一な非球状粒子が多数見られた。このため、工程(b)(c)は実施しなかった。
なお、水ガラス水溶液の濃度高すぎて高粘性となり、噴霧した水ガラス水溶液の液滴が球状化する前に乾燥されてしまったと考えられる。
[Comparative Example 4]
Preparation of silica-based particles (R4) Silica-based particle precursor particles (R4) were prepared in the same manner as in Example 3 except that a water glass aqueous solution having a SiO 2 concentration of 24% by weight was concentrated to a SiO 2 concentration of 42% by weight. Got. At this time, the outlet temperature was 170 ° C. However, many non-uniform non-spherical particles were observed in the spray-dried product. For this reason, steps (b) and (c) were not performed.
In addition, it is thought that the density | concentration of water glass aqueous solution became too high and became highly viscous, and it was dried before the droplet of the sprayed water glass aqueous solution spheroidized.

[比較例5]
シリカ系粒子(R5)の調製
シリカゾル(日揮触媒化成(株)製:S−20L、平均粒子径19nm、SiO濃度20重量%)7,500gを、回転ディスク法噴霧乾燥装置を用い、16.8kg/hrの流量で、入口温度170℃の熱風気流中に噴霧して担体用粉体(R5)を得た。この時、出口温度は100℃であった。
得られたシリカ系粒子(R5)の平均粒子径、比表面積、粒子密度、空隙率、アルカリ残存量、吸油量および感触特性を測定し、結果を表に示した。
[Comparative Example 5]
Preparation of silica-based particles (R5) 7,500 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: S-20L, average particle size 19 nm, SiO 2 concentration 20% by weight) was used with a rotary disk method spray dryer. The carrier powder (R5) was obtained by spraying in a hot air stream having an inlet temperature of 170 ° C. at a flow rate of 8 kg / hr. At this time, the outlet temperature was 100 ° C.
The average particle diameter, specific surface area, particle density, porosity, residual alkali amount, oil absorption and feel characteristics of the obtained silica particles (R5) were measured, and the results are shown in the table.

Figure 2011256098
Figure 2011256098

Figure 2011256098
Figure 2011256098

Figure 2011256098
Figure 2011256098

[実施例12〜22]および[比較例6]
パウダーファンデーションの調製
下記表に示す配合比率(重量%)となるように、実施例1〜11および比較例5で得られたシリカ系粒子成分(1)および(2)〜(9)をそれぞれミキサーに入れて撹拌し、均一に混合した。次に、下記化粧料成分(10)〜(12)をこのミキサーに入れて撹拌し、さらに均一に混合した。次いで、得られたケーキ状物質を解砕処理した後、その中から約12gを取り出し、46mm×54mm×4mmの角金皿に入れてプレス成型した。
これにより、シリカ系粒子を配合した実施例化粧料P1〜P11、比較例化粧料PR5を得た。
[Examples 12 to 22] and [Comparative Example 6]
Preparation of the powder foundation The silica-based particle components (1) and (2) to (9) obtained in Examples 1 to 11 and Comparative Example 5 were respectively mixed so that the blending ratios (% by weight) shown in the following table were obtained. The mixture was stirred and mixed uniformly. Next, the following cosmetic ingredients (10) to (12) were put in this mixer and stirred, and further uniformly mixed. Next, after crushing the obtained cake-like substance, about 12 g was taken out from it, put into a square metal pan of 46 mm × 54 mm × 4 mm, and press molded.
Thus, Example cosmetics P1 to P11 and Comparative cosmetic PR5 containing silica-based particles were obtained.

Figure 2011256098
Figure 2011256098

次いで、このようにして得られた実施例化粧料P1〜P11、比較例化粧料PR5の使用感を塗布中の感触および仕上がり感(塗布後の感触)について、下記の試験法で評価した。その結果を表に示す。   Next, the feeling of use of the example cosmetics P1 to P11 and the comparative example cosmetic PR5 obtained in this way were evaluated with respect to the feeling during application and the finished feeling (feel after application) by the following test methods. The results are shown in the table.

試験法
シリカ系粒子の粉体を配合したパウダーファンデーションについて、20名の専門パネラーによる官能テストを行い、(1)肌への塗布中の均一な延び、(2)しっとり感、(3)滑らかさ、および(4)肌に塗布後の化粧膜の均一性、(5)しっとり感、(6)やわらかさの6つの評価項目に関して聞き取り調査を行う。その結果を以下の評価点基準(a)に基づき評価する。次いで、各人がつけた評価点を合計し、以下の評価基準(b)に基づきファンデーションの使用感に関する評価を行う。
Test method A powder foundation containing silica-based particle powder is subjected to a sensory test by 20 expert panelists. (1) Uniform stretch during application to the skin, (2) Moist feeling, (3) Smoothness , And (4) Interview survey on 6 evaluation items: uniformity of cosmetic film after application to skin, (5) moist feeling, and (6) softness. The result is evaluated based on the following evaluation point criteria (a). Subsequently, the evaluation points given by each person are summed up, and an evaluation relating to the feeling of use of the foundation is performed based on the following evaluation criteria (b).

評価点基準(a
5点:非常に優れている。
4点:優れている。
3点:普通。
2点:劣る。
1点:非常に劣る。
Evaluation point criteria (a )
5 points: Excellent.
4 points: Excellent.
3 points: Normal.
2 points: Inferior.
1 point: Very inferior.

評価基準(b
◎:合計点が80点以上
○:合計点が60点以上80点未満
△:合計点が40点以上60点未満
▲:合計点が20点以上40点未満
×:合計点が20点未満
その結果、前記実施例化粧料は、その使用感が塗布中および塗布後においても非常に優れていることが分かった。
Evaluation criteria (b )
◎: Total score is 80 or more ○: Total score is 60 or more and less than 80 △: Total score is 40 or more and less than 60 ▲: Total score is 20 or more and less than 40 ×: Total score is less than 20 As a result, it was found that the cosmetics of the examples were very excellent in use feeling during and after application.

Figure 2011256098
Figure 2011256098

[実施例23〜34]および[比較例7]
ローションの調製
下記表に示す配合比率(重量%)となるように、80℃に加温し均一に混合した成分(1)〜(3)に、80℃に加温し均一に混合した実施例1〜11および比較例5で得られたシリカ系粒子成分(4)および(5)〜(8)を加え撹拌し、均一に混合した。次に、50℃まで冷却し、成分(9)〜(11)を加えて撹拌し、さらに均一に混合した。次いで、室温まで冷却し、シリカ系粒子を配合した実施例化粧料L1〜L11、比較例化粧料LR5を得た。
[Examples 23 to 34] and [Comparative Example 7]
Preparation of lotion Example in which components (1) to (3) were heated to 80 ° C. and uniformly mixed so as to have the blending ratio (% by weight) shown in the following table, and heated to 80 ° C. and uniformly mixed The silica-based particle components (4) and (5) to (8) obtained in 1 to 11 and Comparative Example 5 were added and stirred to mix uniformly. Next, it cooled to 50 degreeC, and added and stirred component (9)-(11), and also mixed uniformly. Subsequently, it cooled to room temperature and obtained Example cosmetics L1-L11 and Comparative Example cosmetics LR5 which mix | blended the silica type particle | grains.

Figure 2011256098
Figure 2011256098

次いで、このようにして得られた実施例化粧料L1〜L11、比較例化粧料LR5の使用感(使用前のシリカ系粒子の再分散性と塗布中の感触)および仕上がり感(塗布後の感触)について、下記の試験法で評価した。その結果を表に示す。   Next, the feeling of use (redispersibility of silica-based particles before use and feel during application) and the finish (feel after application) of Example cosmetics L1 to L11 and Comparative Example cosmetic LR5 thus obtained. ) Was evaluated by the following test method. The results are shown in the table.

試験法
シリカ系粒子の粉体を配合したローションについて、20名の専門パネラーによる官能テストを行い、1)使用前のシリカ系粒子の再分散性、2)肌への塗布中の均一な延び、および3)肌に塗布後の化粧膜のソフトフォーカス性の3つの評価項目に関して聞き取り調査を行う。その結果を以下の評価点基準(a)に基づき評価する。次いで、各人がつけた評価点を合計し、以下の評価基準(b)に基づきファンデーションの使用感に関する評価を行う。
Test method A lotion containing silica-based particle powder was subjected to a sensory test by 20 expert panelists. 1) Redispersibility of silica-based particles before use, 2) Uniform elongation during application to the skin, And 3) Conduct interviews on three evaluation items for the soft focus property of the cosmetic film after application to the skin. The result is evaluated based on the following evaluation point criteria (a). Subsequently, the evaluation points given by each person are summed up, and an evaluation relating to the feeling of use of the foundation is performed based on the following evaluation criteria (b).

評価点基準(a
5点:非常に優れている。
4点:優れている。
3点:普通。
2点:劣る。
1点:非常に劣る。
Evaluation point criteria (a )
5 points: Excellent.
4 points: Excellent.
3 points: Normal.
2 points: Inferior.
1 point: Very inferior.

評価基準(b
◎:合計点が80点以上
○:合計点が60点以上80点未満
△:合計点が40点以上60点未満
▲:合計点が20点以上40点未満
×:合計点が20点未満
その結果、前記実施例化粧料は、その使用感が塗布中および塗布後においても非常に優れていることが分かった。
Evaluation criteria (b )
◎: Total score is 80 or more ○: Total score is 60 or more and less than 80 △: Total score is 40 or more and less than 60 ▲: Total score is 20 or more and less than 40 ×: Total score is less than 20 As a result, it was found that the cosmetics of the examples were very excellent in use feeling during and after application.

Figure 2011256098
Figure 2011256098

[実施例35〜39]および[比較例8〜10]
断熱材の調製
ジペンタエリスルトールヘキサアクリレート(共栄社化学社製、ライトアクリレートDPE-6A)4.4g、および1,6−ヘキサンジオールジアクリレート(共栄社化学社製、ライトアクリレート1,6HX−A)4.4gを混合し、これに光開始剤2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(チバ・ジャパン社製、DAROCUR TPO)0.7gを混合した。これをポリエチレングリコールモノメチルエーテル(日本乳化剤社製、MFG)2.3gに溶解させて、混合樹脂溶液を調製した。
[Examples 35 to 39] and [Comparative Examples 8 to 10]
Preparation of thermal insulation material Dipentaerythritol hexaacrylate (Kyoeisha Chemical Co., Ltd., light acrylate DPE-6A) 4.4 g, and 1,6-hexanediol diacrylate (Kyoeisha Chemical Co., Ltd., light acrylate 1,6HX-A) 4.4 g was mixed and 0.7 g of photoinitiator 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (Ciba Japan, DAROCUR TPO) was mixed therewith. This was dissolved in 2.3 g of polyethylene glycol monomethyl ether (manufactured by Nippon Emulsifier Co., Ltd., MFG) to prepare a mixed resin solution.

ついで、混合樹脂溶液11.8g(樹脂比重:1.1g/ccより、樹脂体積:8.0cc)に、実施例4、5、8、10、11で得られた各シリカ系粒子を粒子密度換算により33体積%(3.9cc)となるようにそれぞれ5.1g、5.1g、5.9g、4.5g、4.5gを加えた後、ホーン型超音波装置(海上電波社製)で1分間分散処理して断熱材形成用樹脂溶液5点を調製した。粒子密度換算をする理由は、粒子個数を等しくして比較できるようにするためである。   Next, each silica-based particle obtained in Examples 4, 5, 8, 10, and 11 was added to 11.8 g of the mixed resin solution (resin specific gravity: 1.1 g / cc, resin volume: 8.0 cc). After adding 5.1 g, 5.1 g, 5.9 g, 4.5 g, and 4.5 g to 33% by volume (3.9 cc) in terms of conversion, respectively, a horn type ultrasonic device (manufactured by Maritime Radio Co., Ltd.) And 5 points of resin solutions for forming a heat insulating material were prepared. The reason for converting the particle density is to make the number of particles equal and make comparisons.

各断熱材形成用樹脂溶液を各々バーコーター(バーNo.18)を用いてPET基材に塗布し、80℃で2分間乾燥し、更にUV照射(300mJ/cm)により硬化させて実施例断熱性薄膜付基材H1〜H5を得た。
また、シリカ系粒子を配合しない以外は同様にして調製した樹脂溶液、および実施例1および比較例5で得られた各シリカ系粒子については、粒子密度換算により33体積%となるように、それぞれ、8.6gを配合した以外は同様にして調製した樹脂溶液3点を、同様に塗布し、乾燥し、硬化させて比較例断熱性薄膜付基材RH1〜RH3を得た。
得られた各断熱性薄膜付基材について、以下のようにして断熱性を評価し、結果を表 に示す。
Each heat insulating material forming resin solution was applied to a PET substrate using a bar coater (bar No. 18), dried at 80 ° C. for 2 minutes, and further cured by UV irradiation (300 mJ / cm 2 ). Substrates H1 to H5 with heat insulating thin films were obtained.
In addition, the resin solution prepared in the same manner except that the silica-based particles were not blended, and the silica-based particles obtained in Example 1 and Comparative Example 5 were each 33% by volume in terms of particle density. In addition, 3 points of resin solutions prepared in the same manner except that 8.6 g was blended were similarly applied, dried and cured to obtain bases RH1 to RH3 with comparative heat insulating thin films.
About each obtained base material with a heat insulation thin film, heat insulation is evaluated as follows, and a result is shown in a table | surface.

断熱性評価
薄膜付基材を専用冶具に設置し、薄膜(付き基材)表面から30cm離れた真上から赤外線ランプ(185W)を用いて30分間照射し、薄膜の反対側で、基材から8cm離れた真下に温度センサーを設置して温度を測定した。その際、赤外線照射前の温度は、24.0〜24.5℃の範囲であった。結果を表8に示す。
Thermal insulation evaluation A base material with a thin film is placed on a dedicated jig, irradiated with an infrared lamp (185W) for 30 minutes from directly above the surface of the thin film (base material), and from the base material on the opposite side of the thin film. A temperature sensor was installed directly below 8 cm to measure the temperature. At that time, the temperature before infrared irradiation was in the range of 24.0 to 24.5 ° C. The results are shown in Table 8.

Figure 2011256098
Figure 2011256098

Claims (18)

下記の工程(a)〜(c)からなることを特徴とするシリカ系粒子の製造方法。
(a)珪酸アルカリ水溶液を熱風気流中に噴霧乾燥してシリカ系粒子前駆体粒子を調製する工程
(b)シリカ系粒子前駆体粒子を酸水溶液に浸漬し、アルカリを除去する工程
(c)乾燥・加熱処理する工程
A method for producing silica-based particles comprising the following steps (a) to (c).
(A) A step of preparing silica-based particle precursor particles by spray drying an alkali silicate aqueous solution in a hot air stream (b) A step of immersing the silica-based particle precursor particles in an acid aqueous solution to remove alkali (c) Drying・ Process to heat treatment
前記珪酸アルカリ水溶液の、SiO/MOモル比(但し、Mはアルカリ金属を示す。)は1〜5の範囲にあり、SiO濃度が1〜30重量%の範囲にあることを特徴とする請求項1に記載のシリカ系粒子の製造方法。 The SiO 2 / M 2 O molar ratio (where M represents an alkali metal) of the alkali silicate aqueous solution is in the range of 1 to 5, and the SiO 2 concentration is in the range of 1 to 30% by weight. The method for producing silica-based particles according to claim 1. 前記噴霧乾燥における熱風の入口温度が150〜600℃の範囲にあり、出口温度が40〜300℃の範囲にあることを特徴とする請求項1または2に記載のシリカ系粒子の製造方法。   The method for producing silica-based particles according to claim 1 or 2, wherein an inlet temperature of hot air in the spray drying is in a range of 150 to 600 ° C and an outlet temperature is in a range of 40 to 300 ° C. 前記工程(b)において、シリカ粒子前駆体粒子中のMOモル数(Msp)と酸のモル数(Ma)とのモル比(Ma)/(Msp)が0.6〜4.7の範囲にあり、シリカ系粒子前駆体粒子の濃度がSiOとして1〜30重量%の範囲にあることを特徴とする請求項1〜3のいずれかに記載のシリカ系粒子の製造方法。 In the step (b), the molar ratio (Ma) / (Msp) between the number of moles of M 2 O (Msp) and the number of moles of acid (Ma) in the silica particle precursor particles is 0.6 to 4.7. in the range, method for producing a silica-based particles according to claim 1 in which the concentration of the silica-based particle precursor particles, characterized in that in the range of 1 to 30 wt% as SiO 2. 前記工程(c)における乾燥・加熱処理温度が30〜1200℃の範囲にあることを特徴とする請求項1〜4のいずれかに記載のシリカ系粒子の製造方法。   The method for producing silica-based particles according to any one of claims 1 to 4, wherein the drying / heating treatment temperature in the step (c) is in the range of 30 to 1200 ° C. 平均粒子径が0.1〜200μmの範囲にあることを特徴とするとする請求項1〜5のいずれかに記載のシリカ系粒子の製造方法。   6. The method for producing silica-based particles according to claim 1, wherein the average particle diameter is in the range of 0.1 to 200 [mu] m. 前記噴霧乾燥における入口温度が150〜300℃の範囲にあり、出口温度が40〜120℃の範囲にあり、得られるシリカ系粒子の空隙率が20体積%未満であることを特徴とする請求項1〜6のいずれかに記載のシリカ系粒子の製造方法。   The inlet temperature in the spray drying is in the range of 150 to 300 ° C, the outlet temperature is in the range of 40 to 120 ° C, and the resulting silica-based particles have a porosity of less than 20% by volume. The manufacturing method of the silica-type particle in any one of 1-6. 前記工程(c)における乾燥・加熱処理温度が30〜120℃の範囲にあり、得られるシリカ系粒子が多孔質であることを特徴とする請求項7に記載のシリカ系粒子の製造方法。   The method for producing silica-based particles according to claim 7, wherein the drying / heating treatment temperature in the step (c) is in the range of 30 to 120 ° C, and the obtained silica-based particles are porous. 前記工程(c)における乾燥・加熱処理温度が90〜1200℃の範囲にあり、得られるシリカ系粒子が非孔質であることを特徴とする請求項7に記載のシリカ系粒子の製造方法。   The method for producing silica-based particles according to claim 7, wherein the drying / heating treatment temperature in the step (c) is in the range of 90 to 1200 ° C, and the obtained silica-based particles are non-porous. 前記噴霧乾燥における入口温度が300〜600℃の範囲にあり、出口温度が120〜300℃の範囲にあり、得られるシリカ系粒子が外殻シリカ層を有し、外殻内部の空隙率が20〜95体積%の範囲にあることを特徴とするとする請求項1〜6のいずれかに記載のシリカ系粒子の製造方法。   The inlet temperature in the spray drying is in the range of 300 to 600 ° C., the outlet temperature is in the range of 120 to 300 ° C., the resulting silica-based particles have an outer silica layer, and the porosity inside the outer shell is 20 It is in the range of -95 volume%, The manufacturing method of the silica type particle | grains in any one of Claims 1-6 characterized by the above-mentioned. 前記工程(c)における乾燥・加熱処理温度が30〜120℃の範囲にあり、得られるシリカ系粒子の外殻シリカ層が多孔質であることを特徴とする請求項10に記載のシリカ系粒子の製造方法。   11. The silica-based particles according to claim 10, wherein the drying / heating treatment temperature in the step (c) is in the range of 30 to 120 ° C., and the resulting outer silica layer of the silica-based particles is porous. Manufacturing method. 前記工程(c)における乾燥・加熱処理温度が90〜1200℃の範囲にあり、得られるシリカ系粒子の外殻シリカ層が非孔質であることを特徴とする請求項10に記載のシリカ系粒子の製造方法。   11. The silica-based silica according to claim 10, wherein the drying / heating treatment temperature in the step (c) is in the range of 90 to 1200 ° C., and the outer silica layer of the obtained silica-based particles is nonporous. Particle production method. 前記工程(c)における乾燥・加熱処理を減圧下で行い、得られるシリカ系粒子の外殻層内部が負圧であることを特徴とする請求項12に記載のシリカ系粒子の製造方法。
The method for producing silica-based particles according to claim 12, wherein the drying / heating treatment in the step (c) is performed under reduced pressure, and the inside of the outer shell layer of the silica-based particles obtained is at a negative pressure.
平均粒子径が0.1〜200μmの範囲にあり、外殻シリカ層の内部に空洞を有し、該空洞の空隙率が20〜95重量%の範囲にあり、外殻シリカ層が非孔質であり、空洞内部が負圧であることを特徴とするシリカ系粒子。   The average particle size is in the range of 0.1 to 200 μm, the outer silica layer has cavities, the porosity of the cavities is in the range of 20 to 95% by weight, and the outer silica layer is non-porous. Silica-based particles characterized in that the inside of the cavity has a negative pressure. 前記空洞内部の負圧が133hPa以下であることを特徴とする請求項14に記載のシリカ系粒子。
The silica-based particles according to claim 14, wherein the negative pressure inside the cavity is 133 hPa or less.
請求項1〜13のいずれかに記載した製造方法で得られたシリカ系粒子、または、請求項14または15に記載したシリカ系粒子を0.1〜30重量%の範囲で配合してなる化粧料。
Cosmetics comprising the silica-based particles obtained by the production method according to claim 1 or the silica-based particles according to claim 14 or 15 in a range of 0.1 to 30% by weight. Fee.
請求項1〜13のいずれかに記載した製造方法で得られたシリカ系粒子、または、請求項14または15に記載したシリカ系粒子を1〜90重量%の範囲で配合してなる樹脂組成物。   A resin composition comprising the silica-based particles obtained by the production method according to claim 1 or the silica-based particles according to claim 14 or 15 in an amount of 1 to 90% by weight. . 請求項10〜13のいずれかに記載した製造方法で得られたシリカ系粒子、または、請求項14または15に記載したシリカ系粒子を配合してなる断熱材。   The heat insulating material formed by mix | blending the silica type particle obtained by the manufacturing method in any one of Claims 10-13, or the silica type particle of Claim 14 or 15.
JP2011104936A 2010-05-11 2011-05-10 Method for producing silica-based particles Active JP5762120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104936A JP5762120B2 (en) 2010-05-11 2011-05-10 Method for producing silica-based particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010109217 2010-05-11
JP2010109217 2010-05-11
JP2011104936A JP5762120B2 (en) 2010-05-11 2011-05-10 Method for producing silica-based particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015058454A Division JP5940188B2 (en) 2010-05-11 2015-03-20 Silica-based particles and uses of the particles

Publications (2)

Publication Number Publication Date
JP2011256098A true JP2011256098A (en) 2011-12-22
JP5762120B2 JP5762120B2 (en) 2015-08-12

Family

ID=45472709

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011104936A Active JP5762120B2 (en) 2010-05-11 2011-05-10 Method for producing silica-based particles
JP2015058454A Active JP5940188B2 (en) 2010-05-11 2015-03-20 Silica-based particles and uses of the particles

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015058454A Active JP5940188B2 (en) 2010-05-11 2015-03-20 Silica-based particles and uses of the particles

Country Status (1)

Country Link
JP (2) JP5762120B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133410A (en) * 2011-12-27 2013-07-08 Jgc Catalysts & Chemicals Ltd Method for producing dyestuff and/or pigment-including metal oxide particle, the dyestuff and/or pigment-including metal oxide particle, and use of the particle
JP2013133231A (en) * 2011-12-23 2013-07-08 Jgc Catalysts & Chemicals Ltd Method for producing metal oxide particle, metal oxide particle and application of the particle
JP2015044804A (en) * 2013-07-31 2015-03-12 株式会社コーセー Oily cosmetic
JP2017071526A (en) * 2015-10-06 2017-04-13 株式会社トクヤマシルテック Silica balloon material having excellent suspension profile for solvent
JP2017109898A (en) * 2015-12-15 2017-06-22 花王株式会社 Hollow particle and manufacturing method therefor
JP2017518243A (en) * 2014-03-11 2017-07-06 レ イノベーションズ マタレアム インコーポレイテッド Process for the preparation and use of silica-carbon allotrope composites
WO2018221406A1 (en) 2017-05-31 2018-12-06 日揮触媒化成株式会社 Hollow particles and cosmetic
WO2022264945A1 (en) 2021-06-14 2022-12-22 株式会社 資生堂 Powder cosmetic and production method for same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533068A (en) 2016-03-09 2018-11-08 エルジー・ケム・リミテッド Antireflection film
JP6255053B2 (en) 2016-04-20 2017-12-27 花王株式会社 Hollow silica particles and method for producing the same
JP2018145037A (en) * 2017-03-02 2018-09-20 株式会社アドマテックス Spherical crystalline silica powder for addition resin composition
IL272996B2 (en) 2017-09-11 2024-02-01 Harvard College Microspheres comprising polydisperse polymer nanospheres and porous metal oxide microspheres
IL302478B1 (en) 2017-09-11 2024-08-01 Harvard College Porous metal oxide microspheres
WO2022171507A1 (en) 2021-02-11 2022-08-18 Evonik Operations Gmbh Amorphous non-porous silicas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128917A (en) * 1985-11-29 1987-06-11 Fuji Debuison Kagaku Kk Production of fine spherical porous silica
JP2002160907A (en) * 2000-11-22 2002-06-04 Catalysts & Chem Ind Co Ltd Spherical porous particle and its manufacturing method
JP2009013009A (en) * 2007-07-04 2009-01-22 Konica Minolta Opto Inc Method for producing inorganic fine particle powder, organic-inorganic composite material and optical element
JP2009114010A (en) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd Spherical silica particles and method for producing the same
JP2009137806A (en) * 2007-12-07 2009-06-25 Jgc Catalysts & Chemicals Ltd Porous silica particle having surface smoothness, manufacturing process of the porous silica particle, and cosmetic mixed with the porous silica particle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251463B2 (en) * 1997-07-02 2009-04-08 パナソニック株式会社 Thermal insulation sheet and thermal insulation
JP4046921B2 (en) * 2000-02-24 2008-02-13 触媒化成工業株式会社 Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
JP4822576B2 (en) * 2000-05-30 2011-11-24 京セラ株式会社 Inorganic hollow powder and method for producing the same
JP4677196B2 (en) * 2003-03-25 2011-04-27 積水化成品工業株式会社 Silica particles, method for producing the same, and use thereof
JP2006290693A (en) * 2005-04-13 2006-10-26 Nissan Motor Co Ltd Method for producing resin-modified metal oxide particles and resin-modified metal oxide particles
JP5241199B2 (en) * 2007-10-29 2013-07-17 日揮触媒化成株式会社 Method for producing fibrous hollow silica fine particles and substrate with antireflection coating
JP5311929B2 (en) * 2008-08-27 2013-10-09 日揮触媒化成株式会社 Spherical silica-based particles and cosmetics containing the silica-based particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128917A (en) * 1985-11-29 1987-06-11 Fuji Debuison Kagaku Kk Production of fine spherical porous silica
JP2002160907A (en) * 2000-11-22 2002-06-04 Catalysts & Chem Ind Co Ltd Spherical porous particle and its manufacturing method
JP2009013009A (en) * 2007-07-04 2009-01-22 Konica Minolta Opto Inc Method for producing inorganic fine particle powder, organic-inorganic composite material and optical element
JP2009114010A (en) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd Spherical silica particles and method for producing the same
JP2009137806A (en) * 2007-12-07 2009-06-25 Jgc Catalysts & Chemicals Ltd Porous silica particle having surface smoothness, manufacturing process of the porous silica particle, and cosmetic mixed with the porous silica particle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133231A (en) * 2011-12-23 2013-07-08 Jgc Catalysts & Chemicals Ltd Method for producing metal oxide particle, metal oxide particle and application of the particle
JP2013133410A (en) * 2011-12-27 2013-07-08 Jgc Catalysts & Chemicals Ltd Method for producing dyestuff and/or pigment-including metal oxide particle, the dyestuff and/or pigment-including metal oxide particle, and use of the particle
JP2015044804A (en) * 2013-07-31 2015-03-12 株式会社コーセー Oily cosmetic
JP2017518243A (en) * 2014-03-11 2017-07-06 レ イノベーションズ マタレアム インコーポレイテッド Process for the preparation and use of silica-carbon allotrope composites
JP2017071526A (en) * 2015-10-06 2017-04-13 株式会社トクヤマシルテック Silica balloon material having excellent suspension profile for solvent
JP2017109898A (en) * 2015-12-15 2017-06-22 花王株式会社 Hollow particle and manufacturing method therefor
WO2018221406A1 (en) 2017-05-31 2018-12-06 日揮触媒化成株式会社 Hollow particles and cosmetic
CN110603223A (en) * 2017-05-31 2019-12-20 日挥触媒化成株式会社 Hollow particle and cosmetic
KR20200014744A (en) * 2017-05-31 2020-02-11 닛키 쇼쿠바이카세이 가부시키가이샤 Hollow particles and cosmetics
EP3632849A4 (en) * 2017-05-31 2020-05-06 JGC Catalysts And Chemicals Ltd. Hollow particles and cosmetic
JPWO2018221406A1 (en) * 2017-05-31 2020-05-21 日揮触媒化成株式会社 Hollow particles and cosmetics
US11020326B2 (en) 2017-05-31 2021-06-01 Jgc Catalysts And Chemicals Ltd. Hollow particles and cosmetic
JP7170633B2 (en) 2017-05-31 2022-11-14 日揮触媒化成株式会社 Hollow particles and cosmetics
KR102575425B1 (en) * 2017-05-31 2023-09-07 니끼 쇼꾸바이 카세이 가부시키가이샤 hollow particles and cosmetics
WO2022264945A1 (en) 2021-06-14 2022-12-22 株式会社 資生堂 Powder cosmetic and production method for same

Also Published As

Publication number Publication date
JP5762120B2 (en) 2015-08-12
JP5940188B2 (en) 2016-06-29
JP2015155373A (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP5940188B2 (en) Silica-based particles and uses of the particles
JP5940236B2 (en) Porous silica-based particles, method for producing the same, and cosmetics containing the same
US9327258B2 (en) Porous silica-based particles having smooth surface, method for production thereof and cosmetic comprising such particles
CN110603223B (en) Hollow particles and cosmetics
JP7058944B2 (en) Organic-inorganic composite particles and cosmetics
JP5921188B2 (en) Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles
US11806421B2 (en) Porous-cellulose particles and production method thereof, and cosmetic
JP5839984B2 (en) Method for producing metal oxide particles
JP5896688B2 (en) Method for producing pigment-encapsulated silica-based particles
JP5850740B2 (en) Method for producing metal oxide particles
JP5850705B2 (en) Method for producing dye-encapsulated silica-based particles, dye-encapsulated silica-based particles, and cosmetics containing the same
JPWO2004006873A1 (en) Cosmetics
JP2019178257A (en) Organic-inorganic composite particle, and cosmetics
JP2015163600A (en) Surface-treated porous inorganic oxide particles, production method thereof, and cosmetic comprising particles thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R150 Certificate of patent or registration of utility model

Ref document number: 5762120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250