JP2010138021A - Porous silica particle and producing method of the same - Google Patents

Porous silica particle and producing method of the same Download PDF

Info

Publication number
JP2010138021A
JP2010138021A JP2008315071A JP2008315071A JP2010138021A JP 2010138021 A JP2010138021 A JP 2010138021A JP 2008315071 A JP2008315071 A JP 2008315071A JP 2008315071 A JP2008315071 A JP 2008315071A JP 2010138021 A JP2010138021 A JP 2010138021A
Authority
JP
Japan
Prior art keywords
particles
porous silica
silica fine
spherical
spherical silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008315071A
Other languages
Japanese (ja)
Other versions
JP5253124B2 (en
Inventor
Yoshinori Egami
美紀 江上
Yoshinori Wakamiya
義憲 若宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2008315071A priority Critical patent/JP5253124B2/en
Publication of JP2010138021A publication Critical patent/JP2010138021A/en
Application granted granted Critical
Publication of JP5253124B2 publication Critical patent/JP5253124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide porous silica particles being useful as a carrier, having an interparticle gap structure inside and having highly uniform pore diameters. <P>SOLUTION: The porous silica particles having the interparticle gap structure inside, an average particle diameter (PD) of 0.5-50 μm and a specific surface area of 30-250 m<SP>2</SP>/g are satisfied with such three requirements (1)-(3) that (1) the range of a pore volume is 0.10-0.25 cc/g, (2) the range of a pore diameter (D1) corresponding to a peak value in a pore diameter distribution (wherein, X axis is pore diameter; and Y axis is the differentiated value of pore volume by pore diameter) is 2-50 nm and (3) the total volume of pores having a pore diameter range of (D1)×0.75-(D1)×1.25 nm is 80% or more of the total volume of the pores. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は触媒または吸着剤等の担体として有用な多孔質シリカ粒子に関するものである。具体的には、多数の微粒子の集合体からなり、粒子間に空隙を有する多孔質シリカ粒子及びその製造方法に関する。 The present invention relates to porous silica particles useful as a support for catalysts or adsorbents. Specifically, the present invention relates to a porous silica particle comprising an aggregate of a large number of fine particles and having voids between the particles, and a method for producing the same.

シリカ微粒子を噴霧乾燥することにより微粒子の集合体を調製する技術は公知であり、例えば、特許文献1(特開昭61−270201号)には、平均粒子径250nm以下の一次粒子を含むコロイド液を噴霧乾燥することにより平均粒子径1〜20μmの無機シリカ粒子を調製する技術が開示されている。   A technique for preparing an aggregate of fine particles by spray-drying silica fine particles is known. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 61-270201) discloses a colloid liquid containing primary particles having an average particle diameter of 250 nm or less. A technique for preparing inorganic silica particles having an average particle diameter of 1 to 20 μm by spray drying is disclosed.

また、特許文献2(特開2002−160907号)には、コロイド液を噴霧乾燥して得られた微粒子集合体に更に酸化物層を被覆することにより、平均粒子径が2〜250nmである無機シリカ微粒子が集まった平均粒子径が1〜100μmである無機シリカ微粒子集合体と、これを被覆する酸化物系層とからなる球状多孔質粒子が開示されている。
特開昭61−270201号 特開2002−160907号
Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-160907) discloses an inorganic material having an average particle diameter of 2 to 250 nm by further coating an oxide layer on a fine particle aggregate obtained by spray drying a colloidal solution. Spherical porous particles are disclosed which are composed of an aggregate of inorganic silica particles having an average particle diameter of 1 to 100 μm where silica particles are collected and an oxide-based layer covering the aggregate.
JP 61-270201 A JP 2002-160907 A

本発明は、担体用粒子として有用な、内部に粒子間空隙構造を有し、細孔径の均一性が高い多孔質シリカ粒子を提供することを目的とする。 An object of the present invention is to provide porous silica particles that are useful as support particles and that have an interparticle void structure inside and have high uniformity in pore diameter.

本出願の第1の発明は、内部に粒子間空隙構造を有する多孔質シリカ粒子であって、該多孔質シリカ粒子の平均粒子径(PD)が0.5〜50μm、比表面積が30〜250m2/gであり、更に該多孔質シリカ粒子が下記1)〜3)の要件を満たすものであることを特徴とする多孔質シリカ粒子。
1)細孔容積が0.10〜0.25cc/gの範囲
2)細孔径分布(X軸:細孔径、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(D1)が2〜50nmの範囲
3)(D1)×0.75〜(D1)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の80%以上
The first invention of the present application is a porous silica particle having an interparticle void structure inside, the average particle diameter (PD) of the porous silica particle is 0.5 to 50 μm, and the specific surface area is 30 to 250 m. 2 / g, and the porous silica particles satisfy the following requirements 1) to 3).
1) Range in which pore volume is 0.10 to 0.25 cc / g 2) Peak pore diameter in pore diameter distribution (X axis: pore diameter, Y axis: value obtained by differentiating pore volume by pore diameter) D1) is in the range of 2 to 50 nm 3) The total pore volume of pores having pore diameters in the range of (D1) × 0.75 to (D1) × 1.25 nm is 80% or more of the total pore volume

本出願の第2の発明は、前記多孔質シリカ粒子が、平均粒子径(D)10〜50nm、真球度0.9〜1の範囲、粒子径変動係数(CV値)が2〜10%の範囲にある球状シリカ微粒子であって、粒子径分布が単分散相を示す球状シリカ微粒子が集合した球状集合体からなることを特徴とする前記多孔質シリカ粒子である。 In the second invention of the present application, the porous silica particles have an average particle diameter (D) of 10 to 50 nm, a sphericity of 0.9 to 1, and a particle diameter variation coefficient (CV value) of 2 to 10%. The porous silica particles are characterized by being composed of spherical aggregates of spherical silica particles having a particle size distribution of a monodisperse phase in the range of the above.

本出願の第3の発明は、前記多孔質シリカ粒子の空隙率が5〜50%の範囲にあることを特徴とする前記多孔質シリカ粒子である。 A third invention of the present application is the porous silica particle, wherein a porosity of the porous silica particle is in a range of 5 to 50%.

本出願の第4の発明は、前記球状シリカ微粒子の粒子径分布が、単分散相を示すものであることを特徴とする前記多孔質シリカ粒子である。 A fourth invention of the present application is the porous silica particle, wherein a particle size distribution of the spherical silica fine particle indicates a monodispersed phase.

本出願の第5の発明は、下記の(A)、(B)及び(C)の各工程を含む多孔質シリカ粒子の製造方法である。
(A): 平均粒子径10〜50nmの球状シリカ微粒子の分散液を遠心分離処理し、粗大粒子を分離し、粒子径変動係数(CV値)を2〜10%の範囲に調整することにより粒子径分布が単分散な球状シリカ微粒子分散液とする工程
(B): 前工程の処理を行った球状シリカ微粒子分散液を含む噴霧液を気流中に噴霧して球状シリカ微粒子集合体を調製する工程
(C): 前工程で得られた球状シリカ微粒子集合体を温度150〜600℃の範囲で加熱処理する工程
5th invention of this application is a manufacturing method of the porous silica particle containing each process of following (A), (B), and (C).
(A): A dispersion of spherical silica fine particles having an average particle size of 10 to 50 nm is subjected to centrifugal separation to separate coarse particles, and the particle size variation coefficient (CV value) is adjusted to a range of 2 to 10%. Step (B) for preparing a spherical silica fine particle dispersion having a monodispersed diameter distribution: A step of preparing a spherical silica fine particle aggregate by spraying a spray liquid containing the spherical silica fine particle dispersion treated in the previous step in an air stream. (C): A step of heat-treating the spherical silica fine particle aggregate obtained in the previous step within a temperature range of 150 to 600 ° C.

本出願の第6の発明は、前記(A)、(B)及び(C)工程に続いて、次の(D)、(E)及び(F)工程を行うことを特徴とする前記の多孔質シリカ粒子の製造方法である。
(D): 前工程に続いて、該球状シリカ微粒子集合体を水および/または有機溶媒に分散させ、球状シリカ微粒子集合体の分散液を調製する工程
(E): 前工程で調製した球状シリカ微粒子集合体の分散液に、次のi)またはii)を添加することにより該球状シリカ微粒子集合体を表面処理する工程
i) 酸またはアルカリ
ii) 酸またはアルカリと、下記一般式で表される有機ケイ素化合物および/またはその部分加水分解物
一般式: RnSi(OR′)4-n
〔但し、RおよびR′は、炭素数1〜18のアルキル基、炭素数1〜18のアリール基、ビニル基またはアクリル基から選ばれる炭化水素基であり、nは0、1、2または3の整数である。〕
(F): 前工程に続いて、球状シリカ微粒子集合体の分散液から、球状シリカ微粒子集合体を分離し、乾燥した後、大気圧下または減圧下、100〜300℃で加熱処理する工程
The sixth invention of the present application is characterized by performing the following steps (D), (E), and (F) following the steps (A), (B), and (C): Is a method for producing porous silica particles.
(D): Following the previous step, the spherical silica fine particle aggregate is dispersed in water and / or an organic solvent to prepare a dispersion of the spherical silica fine particle aggregate (E): the spherical silica prepared in the previous step The step of surface-treating the spherical silica fine particle aggregate by adding the following i) or ii) to the dispersion of the fine particle aggregate i) Acid or alkali ii) Acid or alkali and represented by the following general formula Organosilicon compound and / or partial hydrolyzate thereof General formula: R n Si (OR ′) 4-n
[However, R and R ′ are hydrocarbon groups selected from an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms, a vinyl group or an acrylic group, and n is 0, 1, 2 or 3 Is an integer. ]
(F): Following the previous step, the spherical silica fine particle aggregate is separated from the dispersion of the spherical silica fine particle aggregate, dried, and then heated at 100 to 300 ° C. under atmospheric pressure or reduced pressure.

本出願の第7の発明は、前記(B)工程で使用する噴霧液が、球状シリカ微粒子の他に珪酸液を含むものであることを特徴とする前記多孔質シリカ粒子の製造方法である。   7th invention of this application is a manufacturing method of the said porous silica particle characterized by the spray liquid used at the said (B) process containing a silicic acid liquid other than spherical silica fine particles.

本出願の第8の発明は、前記多孔質シリカ粒子からなる担体用粒子である。   The eighth invention of the present application is a carrier particle comprising the porous silica particles.

本発明に係る多孔質シリカ粒子は、内部に粒子間空隙構造を有するものであって、特に細孔径の均一性が高いものである。例えば、金属微粒子からなる触媒物質を担体粒子に担持させた場合、金属微粒子同士が凝集して、凝集により触媒活性の低下が生じやすい。本発明の多孔質シリカ粒子は、前記の通り細孔径の均一性が高いため、そのような金属微粒子の凝集が生じ難いものといえる。また、本発明の多孔質シリカ粒子は、細孔径がシャープに制御されているため、担持する触媒物質などの大きさに応じて、選択的に担持させることが期待される。   The porous silica particles according to the present invention have an interparticle void structure inside, and have particularly high pore diameter uniformity. For example, when a catalyst material made of metal fine particles is supported on carrier particles, the metal fine particles are aggregated, and the catalyst activity tends to be reduced due to aggregation. Since the porous silica particles of the present invention have high uniformity of pore diameter as described above, it can be said that such agglomeration of metal fine particles hardly occurs. In addition, since the porous silica particles of the present invention are sharply controlled in pore diameter, it is expected to be selectively supported according to the size of the catalyst material to be supported.

1.多孔質シリカ粒子
本発明に係る多孔質シリカ粒子は、内部に粒子間空隙構造を有する多孔質シリカ粒子であって、該多孔質シリカ粒子の平均粒子径(PD)が0.5〜50μm、比表面積が30〜250m2/gであり、更に該多孔質シリカ粒子が下記1)〜3)の要件を満たすものであることを特徴とする多孔質シリカ粒子。
1)細孔容積が0.10〜0.25cc/gの範囲
2)細孔径分布(X軸:細孔径、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(D1)が2〜50nmの範囲
3)(D1)×0.75〜(D1)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の80%以上
1. Porous silica particles The porous silica particles according to the present invention are porous silica particles having an interparticle void structure therein, and the average particle diameter (PD) of the porous silica particles is 0.5. A porous silica particle characterized by having a surface area of ˜50 μm, a specific surface area of 30 to 250 m 2 / g, and the porous silica particles satisfy the requirements 1) to 3) below.
1) Range in which pore volume is 0.10 to 0.25 cc / g 2) Peak pore diameter in pore diameter distribution (X axis: pore diameter, Y axis: value obtained by differentiating pore volume by pore diameter) D1) is in the range of 2 to 50 nm 3) The total pore volume of pores having pore diameters in the range of (D1) × 0.75 to (D1) × 1.25 nm is 80% or more of the total pore volume

前記粒子間空隙構造は、通常、粒子の自己集積および/または自己組織化により構成されるものであり、本発明の多孔質シリカ粒子は、平均粒子径10〜50nm、真球度0.9〜1の範囲にあり、粒子径の均一性の高いる球状シリカ微粒子が集合してなる球状集合体からなるものである。
本発明に係る多孔質シリカ粒子の粒子間空隙構造は、特に細孔径分布(X軸:細孔径、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(D1)が2〜50nmの範囲であり、さらに(D1)×0.75〜(D1)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の80%以上をとるものである。これにより、触媒等が充分に分散して多孔質シリカ粒子に担持する傾向が促進される。また、触媒が担持した触媒担体に反応選択性を付与することができる。これについては、細孔を形成する粒子の形状が真球状で、かつ、粒子径が均一であり、形成される細孔も、細孔径が均一で、分散した状態で存在することが原因するものと推察される。
The interparticle void structure is usually constituted by self-assembly and / or self-assembly of particles, and the porous silica particles of the present invention have an average particle diameter of 10 to 50 nm and a sphericity of 0.9 to 0.9. The spherical aggregate is formed by agglomeration of spherical silica particles having a uniform particle diameter in the range of 1.
The inter-particle void structure of the porous silica particles according to the present invention has a pore diameter (D1) of a peak value particularly in a pore diameter distribution (X axis: pore diameter, Y axis: a value obtained by differentiating pore volume by pore diameter). The total pore volume of pores having a pore diameter within a range of 2 to 50 nm and further within a range of (D1) × 0.75 to (D1) × 1.25 nm is 80% or more of the total pore volume. It is something to take. This promotes the tendency of the catalyst or the like to be sufficiently dispersed and supported on the porous silica particles. Moreover, reaction selectivity can be imparted to the catalyst carrier on which the catalyst is supported. This is due to the fact that the shape of the particles forming the pores is spherical and the particle diameter is uniform, and the pores formed are also present in a dispersed state with a uniform pore diameter. It is guessed.

本発明に係る多孔質シリカ粒子の平均粒子径については、0.5〜50μmの範囲が好ましい。後で述べる本発明の製造方法によれば、この範囲であれば、球状で均一な多孔質シリカ粒子を得ることが可能である。平均粒子径が0.5μm未満の多孔質シリカ粒子については、本発明の製造方法によれば、調製することが容易ではない。平均粒子径が50μmを超える場合は、本発明の製造方法によれば、異形粒子が発生し易くなるため望ましくない。なお、多孔質シリカ粒子の平均粒子径については、好適には5〜30μmの範囲が推奨される。前記多孔質シリカ粒子の平均粒子径については、遠心沈降法により測定されるものであり、具体的な測定方法については、実施例の[1B]「遠心沈降法による平均粒子径の測定方法」に記した。   About the average particle diameter of the porous silica particle which concerns on this invention, the range of 0.5-50 micrometers is preferable. According to the production method of the present invention described later, spherical and uniform porous silica particles can be obtained within this range. According to the production method of the present invention, it is not easy to prepare porous silica particles having an average particle diameter of less than 0.5 μm. When the average particle diameter exceeds 50 μm, irregular shapes are easily generated according to the production method of the present invention, which is not desirable. In addition, about the average particle diameter of a porous silica particle, the range of 5-30 micrometers is recommended suitably. The average particle diameter of the porous silica particles is measured by a centrifugal sedimentation method, and the specific measurement method is described in [1B] “Measurement method of average particle diameter by centrifugal sedimentation method” in Examples. I wrote.

本発明に係る多孔質シリカ粒子の比表面積については、30〜250m2/gの範囲が好ましい。比表面積が30m2/g未満の場合は担体として使用する場合には、大量に担体を使用する必要があり、経済的に不利である。また、比表面積が250m2/gを越える場合は反応生成物の再吸着などが起こり反応効率が低下する恐れがあり、また、球状集合体の強度が不充分となるため好ましくない。 About the specific surface area of the porous silica particle which concerns on this invention, the range of 30-250 m < 2 > / g is preferable. When the specific surface area is less than 30 m 2 / g, when used as a carrier, it is necessary to use a large amount of the carrier, which is economically disadvantageous. On the other hand, if the specific surface area exceeds 250 m 2 / g, the reaction product may be re-adsorbed and the reaction efficiency may be lowered, and the strength of the spherical aggregate becomes insufficient, which is not preferable.

本発明に係る多孔質シリカ粒子は、0.10〜0.25cc/gの範囲の細孔容積を有している。細孔容積が0.10cc/g未満の場合には、担体として使用した場合、触媒としてはたらく金属微粒子などの担持量が少なくなるため、担体を大量に担体を使用する必要があり、経済的に不利である。細孔容積が0.25cc/gを越えると、球状集合体の強度が不充分となる。細孔容積の好ましい範囲は、0.12〜0.20cc/gである。
なお、当該細孔容積は、窒素を用いた定容量式ガス吸着法により、また、細孔分布、細孔径(ピーク値)は BJH法によって求めることができる。
The porous silica particles according to the present invention have a pore volume in the range of 0.10 to 0.25 cc / g. When the pore volume is less than 0.10 cc / g, when used as a carrier, the amount of metal fine particles that act as a catalyst is reduced, so that it is necessary to use a large amount of carrier, economically. It is disadvantageous. When the pore volume exceeds 0.25 cc / g, the strength of the spherical aggregate becomes insufficient. A preferable range of the pore volume is 0.12 to 0.20 cc / g.
The pore volume can be determined by a constant volume gas adsorption method using nitrogen, and the pore distribution and pore diameter (peak value) can be determined by the BJH method.

本発明に係る多孔質シリカ粒子においては、本発明に係る多孔質シリカ粒子の粒子間空隙構造は、特に細孔径分布(X軸:細孔径、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(D1)が2〜50nmの範囲であり、さらに(D1)×0.75〜(D1)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の80%以上であることが必要である。
前記細孔径(D1)が2nm未満の場合、必要な細孔容積を確保することが容易ではない。細孔径(D1)が25nmを超える場合は、粒子強度の低下が実用上問題となる場合がある。細孔径(D1)の範囲については、望ましくは3〜15nmの範囲が推奨される。
(D1)×0.75〜(D1)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の80%未満の場合は、細孔径分布が不均一であり、応力が比較的大きな細孔に集中し、実用上強度が弱くなるなどの問題が生じ易くなる。前記全細孔容積に対する合計細孔容積の更に好適な割合として85%以上が推奨される。
In the porous silica particles according to the present invention, the interparticle void structure of the porous silica particles according to the present invention has a pore size distribution (X axis: pore diameter, Y axis: a value obtained by differentiating the pore volume with the pore diameter). The total pore volume of pores having a pore diameter (D1) having a peak value in the range of 2 to 50 nm and a pore diameter in the range of (D1) × 0.75 to (D1) × 1.25 nm. However, it is necessary to be 80% or more of the total pore volume.
When the pore diameter (D1) is less than 2 nm, it is not easy to ensure the necessary pore volume. When the pore diameter (D1) exceeds 25 nm, a decrease in particle strength may cause a practical problem. About the range of a pore diameter (D1), the range of 3-15 nm is desirably recommended.
When the total pore volume of pores having pore diameters in the range of (D1) × 0.75 to (D1) × 1.25 nm is less than 80% of the total pore volume, the pore diameter distribution is non-uniform In other words, the stress tends to concentrate on relatively large pores, and problems such as practically low strength are likely to occur. As a more preferable ratio of the total pore volume to the total pore volume, 85% or more is recommended.

本発明に係る多孔質シリカ粒子は、その空隙率が5〜50%の範囲にあるものが好ましい。本発明の多孔質シリカ粒子は、この範囲の空隙率であっても、優れた粒子破壊強度を示すことができる。空隙率が5%未満では、担持できる物質の量が僅かとなり、実用的ではない。空隙率が50%を超える場合は、粒子の強度を保てなくなる場合があり、望ましくない。空隙率については、望ましくは10〜30%の範囲が推奨される。 The porous silica particles according to the present invention preferably have a porosity in the range of 5 to 50%. The porous silica particles of the present invention can exhibit excellent particle breaking strength even with a porosity in this range. If the porosity is less than 5%, the amount of the substance that can be supported becomes small, which is not practical. If the porosity exceeds 50%, the strength of the particles may not be maintained, which is not desirable. About the porosity, the range of 10 to 30% is desirably recommended.

球状集合体
本発明に係る多孔質シリカ粒子は、前記の通り球状シリカ微粒子の球状集合体から構成される。ここで球状シリカ微粒子の平均粒子径としては、10〜50nmの範囲が好適である。平均粒子径が10nm未満の場合は、粒子径が小さすぎて無機シリカ微粒子の間隙による細孔容積が低下し、担持用粒子としては、実用性が低下する。平均粒子径が50nmを越えると、細孔容積は大きくなるものの、微粒子同士の結合力が弱く、球状シリカ微粒子の集合体が得られ難い。球状シリカ微粒子の更に好ましい平均粒子径は10〜48nmの範囲である。
Spherical aggregate The porous silica particle according to the present invention is composed of a spherical aggregate of spherical silica fine particles as described above. Here, the average particle diameter of the spherical silica fine particles is preferably in the range of 10 to 50 nm. When the average particle size is less than 10 nm, the particle size is too small, the pore volume due to the gaps between the inorganic silica fine particles is reduced, and the practicality of the supporting particles is reduced. When the average particle diameter exceeds 50 nm, the pore volume increases, but the bonding force between the fine particles is weak and it is difficult to obtain an aggregate of spherical silica fine particles. A more preferable average particle diameter of the spherical silica fine particles is in the range of 10 to 48 nm.

なお、本願において、球状シリカ微粒子の平均粒子径については、動的光散乱法により測定された平均粒子径または画像解析法により測定された平均粒子径を意味する。
また、後記の「球状シリカ微粒子(a)」および「球状シリカ微粒子(b)」の場合も同様である。動的光散乱法による平均粒子径の測定方法については、実施例の[1A]「動的光散乱法による平均粒子径の測定方法」に記した。また、画像解析法による平均粒子径測定方法については、実施例の[5]「粒度分布の測定」にて記載した平均粒子径の測定方法により測定した。
In the present application, the average particle diameter of the spherical silica fine particles means an average particle diameter measured by a dynamic light scattering method or an average particle diameter measured by an image analysis method.
The same applies to “spherical silica fine particles (a)” and “spherical silica fine particles (b)” described later. About the measuring method of the average particle diameter by the dynamic light scattering method, it described in [1A] "The measuring method of the average particle diameter by the dynamic light scattering method" of an Example. Further, the average particle size measurement method by the image analysis method was measured by the average particle size measurement method described in [5] “Measurement of particle size distribution” in Examples.

前記球状シリカ微粒子は、棒状、勾玉状、細長い形状、数珠状、卵状などの異形粒子を含まず、真球度が高いものであることが必要である。本発明において球状とは、真球度が0.90〜1.00の範囲にあるものを言う。ここで真球度とは、透過型電子顕微鏡により写真撮影して得られる写真投影図における任意の50個の粒子について、それぞれその最大径(DL)と、これと直交する短径(DS)との比(DS/DL)の平均値を意味する。真球度が0.90未満の場合は、微粒子が球状であるとは云えず、前記の異形粒子に該当するものを含む場合が生じる。 The spherical silica fine particles need to have a high sphericity without containing irregular shaped particles such as rod-shaped, slanted-ball-shaped, elongated, beaded, or egg-shaped. In the present invention, the term “spherical” means that the sphericity is in the range of 0.90 to 1.00. Here, the sphericity is the maximum diameter (DL) and the short diameter (DS) orthogonal to each of any 50 particles in a photographic projection obtained by photographing with a transmission electron microscope. Mean ratio (DS / DL). When the sphericity is less than 0.90, it cannot be said that the fine particles are spherical, and may include those corresponding to the irregular shaped particles.

球状シリカ微粒子として真球度が0.90〜1.00の球状シリカ微粒子を使用してなる本発明の多孔質シリカ粒子は、優れた粒子破壊強度を示すことが可能となる。特に球状シリカ微粒子の真球度を0.90以上で揃えることは多孔質シリカ粒子の強度に大きな影響を与えるものとなる。   The porous silica particles of the present invention using spherical silica fine particles having a sphericity of 0.90 to 1.00 as the spherical silica fine particles can exhibit excellent particle breaking strength. In particular, aligning the sphericity of spherical silica fine particles at 0.90 or more greatly affects the strength of the porous silica particles.

球状シリカ微粒子としては、例えば、特開平5−132309号公報等に開示した酸化物ゾルなどのシリカ微粒子、特開平10−454043号公報に開示された有機基を含む複合シリカ微粒子、特開平7−133105号公報に開示された粒子内部に空隙を有した複合シリカ微粒子などを適用することが可能であるが、前記真球度に満たない場合は、いわゆる水熱処理を行って、真球度を0.90〜1.00の範囲に調整してから、球状シリカ微粒子として使用することができる。水熱処理の条件としては、温度100〜200℃にて、1〜24時間の処理を行う方法を挙げることができる。また、水熱処理には、オートクレーブを使用することも推奨される。   Examples of the spherical silica fine particles include silica fine particles such as oxide sol disclosed in JP-A-5-132309, composite silica fine particles containing an organic group disclosed in JP-A-10-454043, and JP-A-7- It is possible to apply composite silica fine particles having voids inside the particles disclosed in Japanese Patent No. 133105, but when the sphericity is not reached, so-called hydrothermal treatment is performed to reduce the sphericity to 0. After adjusting to the range of .90 to 1.00, it can be used as spherical silica fine particles. Examples of the hydrothermal treatment conditions include a method of performing treatment at a temperature of 100 to 200 ° C. for 1 to 24 hours. It is also recommended to use an autoclave for the hydrothermal treatment.

球状シリカ微粒子の粒子径分布が単分散である場合については、望ましくは球状シリカ微粒子の粒子径変動係数(CV値)が2〜10%の範囲にあることが推奨される。粒子径変動係数2%未満の場合は、本発明にとってより望ましいものの、そのレベルの粒子径分布の球状シリカ微粒子を得ることは容易ではない。粒子径変動係数が10%を超える場合は単分散の程度が低下するため、本発明の効果が低下する。粒子変動係数の範囲については、好適には2〜7%の範囲が推奨される。   When the particle size distribution of the spherical silica fine particles is monodispersed, it is recommended that the particle size variation coefficient (CV value) of the spherical silica fine particles is desirably in the range of 2 to 10%. When the particle size variation coefficient is less than 2%, it is more desirable for the present invention, but it is not easy to obtain spherical silica fine particles having a particle size distribution of that level. When the particle diameter variation coefficient exceeds 10%, the degree of monodispersion decreases, and the effect of the present invention decreases. A range of 2 to 7% is recommended for the range of the particle variation coefficient.

このような球状シリカ微粒子の球状集合体の製造方法としては、従来公知の方法を採用することができ、例えば、マイクロカプセル法、乳化法、オイル法、噴霧法などが挙げられる。中でも本願出願人の出願による特公平3−43201号公報、特公平2−61406号公報等に開示した真球状微粒子粉末の製造方法は、出発無機シリカ微粒子が球状で無い場合であっても真球状の無機シリカ微粒子集合体が得られ、製造工程が複雑でなく経済性にも優れている。この好ましい製造方法については後述する。   As a method for producing such a spherical aggregate of spherical silica fine particles, a conventionally known method can be employed, and examples thereof include a microcapsule method, an emulsification method, an oil method, and a spray method. Among them, the method for producing true spherical fine particles disclosed in Japanese Patent Publication No. 3-43201, Japanese Patent Publication No. 2-61406, etc. filed by the applicant of the present application is true spherical even if the starting inorganic silica fine particles are not spherical. Inorganic silica fine particle aggregates can be obtained, and the production process is not complicated and the economy is excellent. This preferable manufacturing method will be described later.

表面処理
本発明に係る多孔質シリカ粒子は、前記球状シリカ微粒子が集合してなる球状集合体が、所望により表面処理されていても構わない。表面処理については、前記細孔容積範囲、細孔径範囲を維持できる範囲で行われる必要がある。この様な表面処理により、粒子の強度を向上させることができる。
担体として使用する場合には、担持する物質との親和性を高め、担持力を高める効果がある。また、吸着材として使用する場合には、選択性を高め、目標とする吸着質の吸着効率を高める効果が期待される。
Surface treatment In the porous silica particles according to the present invention, a spherical aggregate formed by agglomerating the spherical silica fine particles may be subjected to a surface treatment if desired. The surface treatment needs to be performed within a range in which the pore volume range and the pore diameter range can be maintained. By such surface treatment, the strength of the particles can be improved.
When used as a carrier, it has the effect of increasing affinity with the substance to be carried and enhancing the carrying power. Moreover, when using as an adsorbent, the effect which raises selectivity and raises the adsorption efficiency of the target adsorbate is anticipated.

球状シリカ微粒子に酸またはアルカリと下記一般式で表される有機ケイ素化合物および/またはその部分加水分解物を添加して、表面処理した場合は、有機官能基を有するシリカ系被覆層が形成される。
一般式: RnSi(OR′)4-n
〔但し、RおよびR′は、炭素数1〜18のアルキル基、炭素数1〜18のアリール基、ビニル基またはアクリル基から選ばれる炭化水素基であり、nは0、1、2または3の整数である。〕
When surface treatment is performed by adding acid or alkali and an organic silicon compound represented by the following general formula and / or a partial hydrolyzate thereof to spherical silica fine particles, a silica-based coating layer having an organic functional group is formed. .
General formula: R n Si (OR ′) 4-n
[However, R and R ′ are hydrocarbon groups selected from an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms, a vinyl group or an acrylic group, and n is 0, 1, 2 or 3 Is an integer. ]

2.多孔質シリカ粒子の製造方法
本発明の球状多孔質粒子の製造方法は、以下に述べる(A)、(B)および(C)の各工程を含むことを特徴とする。
2. Method for Producing Porous Silica Particles The method for producing spherical porous particles of the present invention is characterized by including the following steps (A), (B) and (C).

(A)遠心分離処理
平均粒子径10〜50nmの球状シリカ微粒子の分散液を調製し、遠心分離処理を行って、粗大粒子を分離し、粒子径変動係数(CV値)を2〜10%の範囲に調整することにより、粒子径分布が単分散相を示す球状シリカ微粒子分散液を調製する。
(A) Centrifugation treatment A dispersion of spherical silica fine particles having an average particle size of 10 to 50 nm is prepared, and centrifugal treatment is performed to separate coarse particles, and the particle size variation coefficient (CV value) is 2 to 10%. By adjusting to the range, a spherical silica fine particle dispersion in which the particle size distribution exhibits a monodisperse phase is prepared.

遠心分離処理条件については、通常は、球状シリカ微粒子分散液の固形分濃度が1〜50質量%で、遠心力が500〜20000Gの範囲が推奨される。   Regarding the centrifugal separation conditions, it is usually recommended that the spherical silica fine particle dispersion has a solid content concentration of 1 to 50% by mass and a centrifugal force of 500 to 20000 G.

なお、予め粒子径変動係数(CV値)が2〜10%の範囲にあり、粒子径分布が単分散相である球状シリカ微粒子分散液を原料として入手して使用する場合においては、省略可能となる。   In addition, when the particle diameter variation coefficient (CV value) is in the range of 2 to 10% in advance and the spherical silica fine particle dispersion liquid whose particle diameter distribution is a monodisperse phase is obtained and used as a raw material, it can be omitted. Become.

(B)球状シリカ微粒子集合体の調製
球状シリカ微粒子分散液を含む噴霧液を気流中に噴霧して球状シリカ微粒子集合体を調製する。該球状シリカ微粒子分散液の溶媒については、水または有機溶媒が使用される。有機溶媒としては、エタノール、プロパノール、ブタノールなどの1価アルコール、エチレングリコール等の多価アルコール等を用いることができる。
(B) Preparation of spherical silica fine particle aggregate A spray liquid containing a spherical silica fine particle dispersion is sprayed into an air stream to prepare a spherical silica fine particle aggregate. As the solvent of the spherical silica fine particle dispersion, water or an organic solvent is used. As the organic solvent, monohydric alcohols such as ethanol, propanol and butanol, polyhydric alcohols such as ethylene glycol, and the like can be used.

前記噴霧液については、前記球状シリカ微粒子分散液の他に、所望により珪酸液を含んでいても良い。噴霧液として、前記球状シリカ微粒子分散液に珪酸液を添加することにより、粒子の強度が増加する効果がある。珪酸液の添加量については、[球状シリカ微粒子の質量]/珪酸液(シリカ換算)で、1.3以上が望ましい。1.3未満では、珪酸液に由来するシリカの割合が過剰になり空隙率が低下する傾向が強まる。   The spray liquid may contain a silicic acid liquid as desired in addition to the spherical silica fine particle dispersion. By adding a silicic acid solution to the spherical silica fine particle dispersion as a spray solution, there is an effect of increasing the strength of the particles. The addition amount of the silicic acid solution is preferably 1.3 or more in [mass of spherical silica fine particles] / silicic acid solution (in terms of silica). If it is less than 1.3, the ratio of the silica derived from the silicic acid solution becomes excessive, and the tendency for the porosity to decrease increases.

前記噴霧液の濃度については、固形分換算で2〜60重量%、特に、4〜50重量%の範囲にあることが好ましい。噴霧液の固形分濃度が2重量%未満の場合は、集合体が得られ難い。噴霧液の濃度が60重量%を越えると、噴霧液が不安定になり球状の集合体が得難くなる。また、後述する噴霧乾燥を連続的に行えず、集合体の収率が低下する。   The concentration of the spray liquid is preferably in the range of 2 to 60% by weight, particularly 4 to 50% by weight in terms of solid content. When the solid content concentration of the spray liquid is less than 2% by weight, it is difficult to obtain an aggregate. When the concentration of the spray solution exceeds 60% by weight, the spray solution becomes unstable and it becomes difficult to obtain a spherical aggregate. Moreover, the spray-drying mentioned later cannot be performed continuously, and the yield of an assembly falls.

前記噴霧液の噴霧乾燥方法としては、前記した集合体が得られれば特に制限はなく、回転ディスク法、加圧ノズル法、2流体ノズル法など従来公知の方法を採用することができる。特に、特公平2−61406号公報に開示された2流体ノズル方法は、粒子径分布の均一な球状シリカ微粒子集合体を得ることができ、また平均粒子径をコントロールすることが容易であるので好ましい。
このときの乾燥温度は、球状シリカ微粒子分散液の濃度、処理速度等によっても異なるが、スプレードライヤーを使用する場合、例えば、スプレードライヤーの入口温度としては100〜300℃、出口温度40〜100℃などの条件が好ましい。また、更に好適には、入口温度210〜250℃、出口温度50〜55℃の範囲が推奨される。 噴霧速度については、噴霧装置の形状またはスケールにも依存するが、例えば、0.1L/時間〜3L/時間の範囲で行われる。
The spray drying method of the spray liquid is not particularly limited as long as the above-described aggregate can be obtained, and conventionally known methods such as a rotating disk method, a pressure nozzle method, and a two-fluid nozzle method can be employed. In particular, the two-fluid nozzle method disclosed in Japanese Examined Patent Publication No. 2-61406 is preferable because it can obtain spherical silica fine particle aggregates having a uniform particle size distribution and can easily control the average particle size. .
The drying temperature at this time varies depending on the concentration of the spherical silica fine particle dispersion, the processing speed, and the like, but when a spray dryer is used, for example, the inlet temperature of the spray dryer is 100 to 300 ° C., and the outlet temperature is 40 to 100 ° C. Etc. are preferable. More preferably, an inlet temperature of 210 to 250 ° C. and an outlet temperature of 50 to 55 ° C. are recommended. Although it depends on the shape or scale of the spraying device, the spraying speed is, for example, in the range of 0.1 L / hour to 3 L / hour.

(C)球状シリカ微粒子集合体の加熱処理
(B)工程で得られた球状シリカ微粒子集合体を、球状シリカ微粒子同士またはゲル成分との結合力を高めるために、150〜600℃の温度範囲で加熱処理する。加熱処理温度が150℃未満では結合力の向上効果が認められず、600℃を越えると球状シリカ微粒子集合体が収縮するおそれがあり、最終的に得られる球状多孔質粒子の空隙が小さくなり、好ましくない。
(C) Heat treatment of spherical silica fine particle aggregates In order to increase the binding strength of the spherical silica fine particle aggregates obtained in the step (B) with the spherical silica fine particles or the gel component, in a temperature range of 150 to 600 ° C. Heat treatment. When the heat treatment temperature is less than 150 ° C., the effect of improving the binding force is not recognized, and when it exceeds 600 ° C., there is a possibility that the spherical silica fine particle aggregate may shrink, and the voids of the finally obtained spherical porous particles become small, It is not preferable.

前記(A)、(B)および(C)工程に続いて、所望により以下の(D)、(E)および(F)工程による処理を行っても構わない。 Following the steps (A), (B), and (C), the following steps (D), (E), and (F) may be performed as desired.

(D)球状シリカ微粒子集合体分散液の調製
(C)工程で得られた球状シリカ微粒子集合体を、室温〜40℃まで放冷または冷却し、水および/または有機溶媒に分散させてその分散液を調製する。有機溶媒としては、エタノール、プロパノール、ブタノールなどの1価アルコール、エチレングリコール等の多価アルコール等を用いることができる。分散液の濃度は、球状シリカ微粒子集合体を酸化物に換算した濃度で0.1〜40重量%、特に0.5〜20重量%の範囲にあることが好ましい。他方、濃度が40重量%を越えると(D)工程において集合体同士が凝集し易くなるので好ましくない。
(D) Preparation of spherical silica fine particle aggregate dispersion The spherical silica fine particle aggregate obtained in step (C) is allowed to cool or cool to room temperature to 40 ° C. and dispersed in water and / or an organic solvent to disperse the spherical silica fine particle aggregate. Prepare the solution. As the organic solvent, monohydric alcohols such as ethanol, propanol and butanol, polyhydric alcohols such as ethylene glycol, and the like can be used. The concentration of the dispersion is preferably in the range of 0.1 to 40% by weight, particularly 0.5 to 20% by weight in terms of the concentration of the spherical silica fine particle aggregate converted to an oxide. On the other hand, when the concentration exceeds 40% by weight, the aggregates easily aggregate in the step (D), which is not preferable.

(E)表面処理
(D)工程で得られた集合体分散液に、次のi)またはii)を添加して球状シリカ微粒子集合体の外表面の表面処理を行う。
i) 酸またはアルカリ
ii) 酸またはアルカリと次の一般式で表される有機ケイ素化合物および/またはその部分加水分解物
一般式: RnSi(OR′)4-n
〔但し、RおよびR′は、炭素数1〜18のアルキル基、炭素数1〜18のアリール基、ビニル基またはアクリル基から選ばれる炭化水素基であり、nは0、1、2または3の整数である。〕
(E) Surface treatment The following i) or ii) is added to the aggregate dispersion obtained in the step (D) to perform a surface treatment on the outer surface of the spherical silica fine particle aggregate.
i) Acid or alkali ii) Acid or alkali and an organosilicon compound represented by the following general formula and / or a partial hydrolyzate thereof General formula: R n Si (OR ′) 4-n
[However, R and R ′ are hydrocarbon groups selected from an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms, a vinyl group or an acrylic group, and n is 0, 1, 2 or 3 Is an integer. ]

前記i)の場合の酸またはアルカリについては、通常は酸またはアルカリの水溶液が使用される。酸またはアルカリの種類については格別制限されるものではないが、塩酸水溶液、ホウ酸水溶液、アンモニウム水溶液などを挙げることができる。   In the case of i), an acid or alkali aqueous solution is usually used. The type of acid or alkali is not particularly limited, and examples include an aqueous hydrochloric acid solution, an aqueous boric acid solution, and an aqueous ammonium solution.

前記ii)の場合の酸またはアルカリについては、i)の場合と同様に定義される。前記一般式で表される有機ケイ素化合物としては、具体的に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル−3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシトリプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロルシラン、トリメチルブロモシラン、ジエチルシラン等が挙げられる。   The acid or alkali in the case of ii) is defined as in the case of i). Specific examples of the organosilicon compound represented by the general formula include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and methyltrimethylsilane. Ethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyl Trimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxytripropyl Limethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldi Ethoxysilane, γ-methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ -Aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol Methyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, trimethylbromosilane, diethylsilane and the like.

なお、有機ケイ素化合物および/またはその部分加水分解物と共に添加される酸またはアルカリは、加水分解のための触媒としても機能するが、所望により加水分解用の触媒を添加しても良い。加水分解触媒として、アルカリ金属の水酸化物や、アンモニア水、アミン等の塩基性のものを用いた場合、加水分解後これらの塩基性触媒を除去して、酸性溶液にして用いることもできる。また、有機酸や無機酸などの酸性触媒を用いて加水分解物を調製した場合、加水分解後、イオン交換等によって酸性触媒を除去することが好ましい。なお、得られた有機ケイ素化合物の加水分解物は、水溶液の形態で使用することが望ましい。ここで水溶液とは加水分解物がゲルとして白濁した状態になく透明性を有している状態を意味する。   In addition, although the acid or alkali added with an organosilicon compound and / or its partial hydrolyzate also functions as a catalyst for hydrolysis, a catalyst for hydrolysis may be added if desired. When a basic catalyst such as an alkali metal hydroxide, aqueous ammonia, or an amine is used as the hydrolysis catalyst, these basic catalysts can be removed after hydrolysis and used as an acidic solution. Moreover, when preparing a hydrolyzate using acidic catalysts, such as an organic acid and an inorganic acid, it is preferable to remove an acidic catalyst by ion exchange etc. after a hydrolysis. In addition, it is desirable to use the obtained hydrolyzate of the organosilicon compound in the form of an aqueous solution. Here, the aqueous solution means a state in which the hydrolyzate has transparency without being clouded as a gel.

なお、有機ケイ素化合物でnが0の化合物はそのまま用いることができるが、nが1〜3の化合物は親水性に乏しいので、予め加水分解しておくことにより、反応系に均一に混合できるようにすることが好ましい。加水分解には、これら有機ケイ素化合物の加水分解法として周知の方法を採用することができる。   In addition, although the compound whose n is 0 with an organosilicon compound can be used as it is, since the compound whose n is 1-3 is poor in hydrophilicity, it can mix uniformly with a reaction system by hydrolyzing beforehand. It is preferable to make it. For the hydrolysis, a well-known method can be adopted as a hydrolysis method of these organosilicon compounds.

なお、上記機ケイ素化合物および/またはその部分加水分解物あるいは珪酸液と共に、前述した酸化物以外の無機酸化物の前駆体金属塩を添加して酸化物と酸化物以外の無機酸化物とからなる酸化物系層を形成することもできる。酸化物以外の無機酸化物の原料としては、アルカリ可溶の無機化合物を用いることが好ましく、前記した金属または非金属のオキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。   Along with the above silicon compound and / or its partial hydrolyzate or silicic acid solution, a precursor metal salt of an inorganic oxide other than the oxide described above is added to form an oxide and an inorganic oxide other than the oxide. An oxide-based layer can also be formed. As the raw material of the inorganic oxide other than the oxide, an alkali-soluble inorganic compound is preferably used. The above-described alkali metal salt or alkaline earth metal salt of an oxo acid of a metal or nonmetal, an ammonium salt, a quaternary salt. Mention may be made of ammonium salts.

(F)加熱処理
さらに(E)工程で得られた球状シリカ微粒子集合体の分散液から、球状シリカ微粒子集合体分離し、乾燥した後、大気圧下または減圧下、100〜300℃で加熱処理して、多孔質シリカ粒子を得る。
(F) Heat treatment Further, the spherical silica fine particle aggregate is separated from the dispersion of the spherical silica fine particle aggregate obtained in the step (E), dried, and then heated at 100 to 300 ° C. under atmospheric pressure or reduced pressure. Thus, porous silica particles are obtained.

[1A] 動的光散乱法による平均粒子径の測定方法
球状シリカ微粒子の平均粒子径については、試料酸化物ゾルを0.58%アンモニア水にて希釈して、酸化物濃度1質量%に調整し、下記粒径測定装置を用いて平均粒子径を測定した。
[1A] Method for Measuring Average Particle Diameter by Dynamic Light Scattering Method Regarding the average particle diameter of spherical silica fine particles, the sample oxide sol is diluted with 0.58% ammonia water to adjust the oxide concentration to 1% by mass. And the average particle diameter was measured using the following particle size measuring apparatus.

〔粒径測定装置〕
レーザーパーティクルアナライザー(大塚電子社製、レーザー粒径解析システム:LP−510モデルPAR−III、測定原理: 動的光散乱法、測定角度90°、受光素子 光電子倍増管2インチ、測定範囲3nm〜5μm、光源 He-Neレーザー 5mW 632.8nm、温度調整範囲5〜90℃、温度調整方式ペルチェ素子(冷却)、セラミックヒーター(加熱)、セル 10mm角 プラスチックセル、測定対象:コロイド粒子)
なお、合成例2−1、合成例2−2および合成例2−3で調製した球状シリカ微粒子の平均粒子径については、後記[5]に記載した平均粒子径の測定方法により測定した。
[Particle size measuring device]
Laser particle analyzer (manufactured by Otsuka Electronics Co., Ltd., laser particle size analysis system: LP-510 model PAR-III, measurement principle: dynamic light scattering method, measurement angle 90 °, photo detector 2 inch photomultiplier tube, measurement range 3 nm to 5 μm 、 Light source He-Ne laser 5mW 632.8nm 、 Temperature adjustment range 5 ~ 90 ℃ 、 Temperature adjustment system Peltier element (cooling) 、 Ceramic heater (heating) 、 Cell 10mm square plastic cell 、 Measurement object: colloidal particles)
In addition, about the average particle diameter of the spherical silica fine particle prepared by the synthesis example 2-1, the synthesis example 2-2, and the synthesis example 2-3, it measured with the measuring method of the average particle diameter described in the postscript [5].

[1B] 遠心沈降法による平均粒子径の測定方法
多孔質シリカ粒子の平均粒子径については、まず、多孔質シリカ粒子の分散液(水または40質量%グリセリン溶媒、固形分濃度0.1〜5質量%)を超音波発生機(iuch社製、US-2型)に5分間分散する。更に、水またはグリセリンを加えて適度に濃度を調節した分散液より、ガラスセル(長さ10mm、幅10mm、高さ45cmのサイズ)に当該分散液を取り、遠心沈降式粒度分布測定装置(堀場製作所製:CAPA−700)を用いて平均粒子径を測定した。
また、球状シリカ微粒子の球状集合体の平均粒子径についても同様に測定した。
[1B] Method for measuring average particle diameter by centrifugal sedimentation method Regarding the average particle diameter of the porous silica particles, first, a dispersion of porous silica particles (water or 40 mass% glycerin solvent, solid content concentration 0.1 to 5). % By weight) is dispersed in an ultrasonic generator (Iuch, US-2) for 5 minutes. Further, from a dispersion whose concentration has been adjusted moderately by adding water or glycerin, the dispersion is taken into a glass cell (size of 10 mm in length, 10 mm in width, and 45 cm in height), and a centrifugal sedimentation type particle size distribution analyzer (Horiba) The average particle diameter was measured using a mill manufactured by CAPA-700.
Further, the average particle diameter of the spherical aggregate of spherical silica fine particles was measured in the same manner.

[2] 比重の測定方法
多孔質シリカ粒子の比重については、まず、試料10gをルツボに採取し、110℃で2時間乾燥させる。次いで、デシケーターにて冷却後、25mlピクノメーターに3〜4g入れ、蒸留水を加えて懸濁し、60mmHgにて1時間真空脱気を行った後に、25℃恒温槽にて温度調整する。ピクノメーターの標線まで蒸留水を加えて容量を調整し、ピクノメーターの容量(25ml)と蒸留水の容量(ml)の差から試料の容量(ml)を算出する。加えた試料の重量(g)と算出された容量(ml)から比重を求めた。
[2] Method for Measuring Specific Gravity Regarding the specific gravity of the porous silica particles, first, 10 g of a sample is collected in a crucible and dried at 110 ° C. for 2 hours. Next, after cooling with a desiccator, 3 to 4 g is put into a 25 ml pycnometer, distilled water is added and suspended, vacuum deaeration is performed at 60 mmHg for 1 hour, and the temperature is adjusted in a 25 ° C. constant temperature bath. Distilled water is added to the mark of the pycnometer to adjust the volume, and the sample volume (ml) is calculated from the difference between the pycnometer volume (25 ml) and the distilled water volume (ml). The specific gravity was determined from the weight (g) of the added sample and the calculated volume (ml).

[3] 空隙率の測定方法
多孔質シリカ粒子の空隙率については、前記[2]で求めた比重を用いて、以下の式から算出した。
100−[前記[2]で求めた多孔質シリカ粒子の比重]/[シリカの比重]×100=空隙率(%)
[3] Method for Measuring Porosity The porosity of the porous silica particles was calculated from the following equation using the specific gravity determined in [2] above.
100- [specific gravity of porous silica particles determined in [2] above] / [specific gravity of silica] × 100 = porosity (%)

[4] 真球度の測定方法
透過型電子顕微鏡(株式会社日立製作所製、H−800)により、試料酸化物ゾルを倍率25万倍で写真撮影して得られる写真投影図における、任意の50個の粒子について、それぞれその最大径(DL)と、これと直交する短径(DS)との比(DS/DL)を測定し、それらの平均値を真球度とした。
[4] Measuring method of sphericity Arbitrary 50 in the photographic projection figure obtained by photographing a sample oxide sol at a magnification of 250,000 times with a transmission electron microscope (H-800, manufactured by Hitachi, Ltd.) About each particle | grain, ratio (DS / DL) of the largest diameter (DL) and the short diameter (DS) orthogonal to this was measured, and those average values were made into sphericity.

[5] 粒度分布の測定
走査型電子顕微鏡(日本電子株式会社製、JSM−5300型)を用いて粒子を撮影(倍率250,000倍)し、この画像の250個の粒子について、画像解析装置(旭化成株式会社製、IP−1000)を用いて、平均粒子径を測定し、粒子径分布に関する変動係数(CV値)を算定した。具体的には、粒子250個について、それぞれの粒子径を測定し、その値から平均粒子径および粒子径の標準偏差を求め、下記式から算定した。
変動係数(CV値)=(粒子径標準偏差(σ)/平均粒子径(Dn))×100(%)
[5] Measurement of particle size distribution Particles were photographed (magnification: 250,000 times) using a scanning electron microscope (manufactured by JEOL Ltd., JSM-5300 type), and an image analyzer was used for 250 particles of this image. (Asahi Kasei Co., Ltd., IP-1000) was used to measure the average particle size and calculate the coefficient of variation (CV value) regarding the particle size distribution. Specifically, the particle diameter of each of 250 particles was measured, and the average particle diameter and the standard deviation of the particle diameter were determined from the measured values, and calculated from the following formula.
Coefficient of variation (CV value) = (particle diameter standard deviation (σ) / average particle diameter (D n )) × 100 (%)

[6] 細孔容積・細孔径の測定方法
多孔質シリカ粒子の細孔容積については、試料10gをルツボに取り、300℃で1時間乾燥後、デシケーターに入れて室温まで冷却した。ガラスセルに0.15g採取し、Belsorp mini II(日本ベル株式会社製)を使用して真空脱気しながら試料に窒素ガスを吸着後、脱着させ、得られた吸着等温線から、相対圧0.990の点での細孔容積を求め、またBJH法により、細孔径(ピーク値)を算出した。
[6] Measuring method of pore volume and pore diameter With respect to the pore volume of the porous silica particles, 10 g of a sample was taken in a crucible, dried at 300 ° C. for 1 hour, then placed in a desiccator and cooled to room temperature. 0.15 g was sampled in a glass cell, and nitrogen gas was adsorbed to the sample while vacuum degassing using Belsorp mini II (made by Nippon Bell Co., Ltd.), and desorbed. From the adsorption isotherm obtained, the relative pressure was 0.990. The pore volume at this point was determined, and the pore diameter (peak value) was calculated by the BJH method.

[実施例1]
シリカゾル(日揮触媒化成(株)製:Cataloid SI30、平均粒子径12nm、濃度30重量%)1667gを遠心分離機(株式会社コクサン製、連続高速遠心機H−660)のローター(型式:QNS、容量:1L)に連続的に注入し、7000Gにて400g/分の速度で通液し、液を連続して回収することにより、粗大粒子の遠心分離処理を行った。粗大粒子はローター内に沈殿した。
回収して得られたシリカゾルの水希釈品(シリカ濃度15質量%)2000gを陽イオン交換し、pH=2.0に調整した後、珪酸液(シリカ濃度4.8質量%)を、[シリカゾル中のシリカ]/[珪酸液中のシリカ]=9/1の比率になるように加え、さらにスラリー濃度が5%となるよう純水を添加して希釈し、攪拌してスラリーを調製した。
[Example 1]
Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI30, average particle size 12 nm, concentration 30% by weight) 1667 g of centrifuge (manufactured by Kokusan Co., Ltd., continuous high-speed centrifuge H-660) rotor (model: QNS, capacity) 1 L), and the solution was continuously passed through 7000 G at a rate of 400 g / min, and the liquid was continuously collected, whereby coarse particles were centrifuged. Coarse particles precipitated in the rotor.
The water-diluted product of silica sol collected (silica concentration 15% by mass) 2000 g was subjected to cation exchange and adjusted to pH = 2.0, and then a silicic acid solution (silica concentration 4.8% by mass) was added to [silica sol [Silica in the inside] / [Silica in the silicic acid solution] = 9/1, pure water was added and diluted so that the slurry concentration became 5%, and the slurry was prepared by stirring.

得られたスラリーをスプレードライヤーに供し、入口温度240℃、出口温度が50〜55℃になるよう調整した乾燥気流中に、二流体ノズルの一方に2L/hrの流量で、他方のノズルに気体圧力を0.75MPaの流量で供給して噴霧乾燥し、球状シリカ微粒子集合体からなる粉体を得た。
この粉体を450℃で3時間焼成して多孔質シリカ粒子を得た。この多孔質シリカ粒子の平均粒子径、比表面積、細孔容積、細孔径分布におけるピーク値の細孔径、(D1)×0.75〜(D1)×1.25[nm]の範囲内の細孔径を有する細孔の合計細孔容積、原料として使用した球状シリカ微粒子の平均粒子径と粒子径変動係数(CV値)、および、多孔質シリカ粒子の製造条件を表1に示した。実施例2〜4、と比較例1〜3についても、同様に測定した。
The obtained slurry was applied to a spray dryer, and in a dry air flow adjusted so that the inlet temperature was 240 ° C. and the outlet temperature was 50 to 55 ° C., the flow rate was 2 L / hr to one of the two-fluid nozzles, and the gas to the other nozzle Pressure was supplied at a flow rate of 0.75 MPa and spray-dried to obtain a powder composed of spherical silica fine particle aggregates.
This powder was calcined at 450 ° C. for 3 hours to obtain porous silica particles. The average particle size, specific surface area, pore volume, and pore size of the peak value in the pore size distribution of the porous silica particles are fine within the range of (D1) × 0.75 to (D1) × 1.25 [nm]. Table 1 shows the total pore volume of pores having a pore size, the average particle size and the particle size variation coefficient (CV value) of the spherical silica fine particles used as the raw material, and the production conditions of the porous silica particles. It measured similarly about Examples 2-4 and Comparative Examples 1-3.

[実施例2]
シリカゾルとして、日揮触媒化成(株)製:Cataloid SI40(平均粒子径17nm、シリカ濃度40重量%)の水希釈品(シリカ濃度30質量%)を用いた以外は、実施例1と同様にして、多孔質シリカ粒子を得た。この多孔質シリカ粒子の平均粒子径、比表面積、細孔容積、細孔径分布におけるピーク値の細孔径、細孔容積が最大となる細孔径の±25%が占める細孔容積を測定し、結果を表1に示した。
[Example 2]
As silica sol, except for using a water-diluted product (silica concentration 30 mass%) of JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI40 (average particle diameter 17 nm, silica concentration 40% by weight), in the same manner as in Example 1, Porous silica particles were obtained. The average particle diameter, specific surface area, pore volume, pore diameter of the peak value in the pore diameter distribution, and pore volume occupied by ± 25% of the pore diameter that maximizes the pore volume were measured as a result. Is shown in Table 1.

[実施例3]
シリカゾルとして、日揮触媒化成(株)製:Cataloid SI50(平均粒子径25nm、濃度50重量%)の水希釈品(シリカ濃度30質量%)を用いたを用いた以外は、実施例1と同様にして、多孔質シリカ粒子を得た。この多孔質シリカ粒子のこの多孔質シリカ粒子の平均粒子径、比表面積、細孔容積、細孔径分布におけるピーク値の細孔径、細孔容積が最大となる細孔径の±25%が占める細孔容積を測定し、結果を表1に示した。
[Example 3]
As silica sol, the same method as in Example 1 was used except that a water-diluted product (silica concentration 30% by mass) of JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI50 (average particle size 25 nm, concentration 50% by weight) was used. Thus, porous silica particles were obtained. Of the porous silica particles, the average particle diameter, specific surface area, pore volume, pore diameter at the peak value in the pore diameter distribution, and pores occupied by ± 25% of the pore diameter at which the pore volume is maximized The volume was measured and the results are shown in Table 1.

[実施例4]
シリカゾルとして、日揮触媒化成(株)製:Cataloid SI-45P(平均粒子径45nm、濃度40重量%)の水希釈品(シリカ濃度30質量%)を用いた以外は、実施例1と同様にして、多孔質シリカ粒子を得た。この多孔質粒子50gをエタノール200gに分散し、3−メタクリロキシプロピルトリメトキシシラン(信越化学工業社製;KBM-503)7.5gと、1%アンモニア水15gを加え、攪拌しながら50℃で15Hr加熱した。その後、多孔質粒子を分取し、150℃で乾燥した。この表面処理された多孔質シリカ粒子の平均粒子径、比表面積、細孔容積、細孔径分布におけるピーク値の細孔径、細孔容積が最大となる細孔径の±25%が占める細孔容積を測定し、結果を表1に示した。
[Example 4]
The same procedure as in Example 1 was used except that a water-diluted product (silica concentration of 30% by mass) of Cataloid SI-45P (average particle size of 45 nm, concentration of 40% by weight) manufactured by JGC Catalysts & Chemicals, Ltd. was used as the silica sol. Porous silica particles were obtained. 50 g of these porous particles were dispersed in 200 g of ethanol, 7.5 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .; KBM-503) and 15 g of 1% aqueous ammonia were added, and the mixture was stirred at 50 ° C. for 15 hours. Heated. Thereafter, the porous particles were collected and dried at 150 ° C. The average particle diameter, specific surface area, pore volume, pore diameter of the peak value in the pore diameter distribution, and the pore volume occupied by ± 25% of the pore diameter that maximizes the pore volume are the surface treated porous silica particles. The results are shown in Table 1.

[比較例1]
特開昭61−270201号の実施例1の方法に基づき、珪酸ソーダ液と硫酸から調製したシリカ濃度30%、平均粒径7nmのシリカコロイド液を、市販の二流体ノズルの一方に5kg/hrの流量で供給し、他方に気体圧力を2Kg/Hrの流量で供給して、コロイド液を乾燥気流が流れる乾燥空間中に噴霧した。コロイド液が噴霧される乾燥空間の温度は40℃、湿度は5.8%であった。真球状で、平均粒子径8μm、粒度分布0.5〜16μmの粒子が得られた。この多孔質シリカ粒子の平均粒子径、比表面積、細孔容積、細孔径分布におけるピーク値の細孔径、細孔容積が最大となる細孔径の±25%が占める細孔容積を測定し、結果を表1に示した。
[Comparative Example 1]
Based on the method of Example 1 of JP-A-61-270201, a silica colloid solution prepared from sodium silicate solution and sulfuric acid and having a silica concentration of 30% and an average particle size of 7 nm was placed in one of two commercially available two-fluid nozzles at 5 kg / hr. The gas pressure was supplied to the other at a flow rate of 2 kg / hr, and the colloidal liquid was sprayed into the drying space in which the drying airflow flows. The temperature of the drying space where the colloidal liquid was sprayed was 40 ° C. and the humidity was 5.8%. True spherical particles having an average particle diameter of 8 μm and a particle size distribution of 0.5 to 16 μm were obtained. The average particle diameter, specific surface area, pore volume, pore diameter at the peak value in the pore diameter distribution, and pore volume occupied by ± 25% of the pore diameter at which the pore volume is maximized are measured. Is shown in Table 1.

[比較例2]
特開昭61−270201号の実施例2の方法に基づき、平均粒子径12nmのシリカコロイド液を調製した。この液を、シリカ濃度が5%になるように純水で調整し、スプレードライヤーに供し、入口温度240℃、出口温度が50〜55℃になるよう調整した乾燥気流中に、二流体ノズルの一方に2L/hrの流量で、他方のノズルに気体圧力を2kg/hrの流量で供給して噴霧乾燥し、球状シリカ微粒子集合体からなる粉体を得た。
[Comparative Example 2]
Based on the method of Example 2 of JP-A-61-270201, a silica colloid liquid having an average particle diameter of 12 nm was prepared. This liquid is adjusted with pure water so that the silica concentration is 5%, and is supplied to a spray dryer. In a dry air stream adjusted so that the inlet temperature is 240 ° C. and the outlet temperature is 50 to 55 ° C., the two-fluid nozzle One was supplied at a flow rate of 2 L / hr and a gas pressure was supplied to the other nozzle at a flow rate of 2 kg / hr and spray-dried to obtain a powder composed of spherical silica fine particle aggregates.

[比較例3]
シリカゾルとして、日揮触媒化成(株)製:Cataloid SI80P(平均粒子径80nm、濃度40重量%)の水希釈品(シリカ濃度30質量%)を用い、遠心処理条件を2120Gに変更した以外は、実施例1と同様にして、多孔質シリカ粒子を得た。この多孔質シリカ粒子のこの多孔質シリカ粒子の平均粒子径、比表面積、細孔容積、細孔径分布におけるピーク値の細孔径、細孔容積が最大となる細孔径の±25%が占める細孔容積を測定し、結果を表1に示した。
[Comparative Example 3]
As the silica sol, JGC Catalysts Chemical Co., Ltd. product: Cataloid SI80P (average particle size 80 nm, concentration 40 wt%) was used except that the water-diluted product (silica concentration 30 mass%) was used, and the centrifugation conditions were changed to 2120 G. In the same manner as in Example 1, porous silica particles were obtained. Of the porous silica particles, the average particle diameter, specific surface area, pore volume, pore diameter at the peak value in the pore diameter distribution, and pores occupied by ± 25% of the pore diameter at which the pore volume is maximized The volume was measured and the results are shown in Table 1.

本発明は触媒などの担体として有用である。また、その他には、吸着材、紫外線遮蔽材、抗微生物材、酵素などの担体としても有用である。 The present invention is useful as a support for a catalyst or the like. In addition, it is also useful as a carrier for adsorbents, ultraviolet shielding materials, antimicrobial materials, enzymes and the like.

実施例4で得られた多孔質シリカ粒子の走査型電子顕微鏡写真(倍率 5,000倍)である。4 is a scanning electron micrograph (5,000 magnifications) of the porous silica particles obtained in Example 4. FIG. 実施例1〜4で得られた多孔質シリカ粒子についての、細孔径分布図(X軸:細孔径、Y軸:細孔容積を細孔径で微分した値)である。It is a pore size distribution diagram (X axis: pore diameter, Y axis: value obtained by differentiating pore volume by pore diameter) for the porous silica particles obtained in Examples 1 to 4.

Claims (8)

内部に粒子間空隙構造を有する多孔質シリカ粒子であって、該多孔質シリカ粒子の平均粒子径(PD)が0.5〜50μm、比表面積が30〜250m2/gであり、更に該多孔質シリカ粒子が下記1)〜3)の要件を満たすものであることを特徴とする多孔質シリカ粒子。
1)細孔容積が0.10〜0.25cc/gの範囲
2)細孔径分布(X軸:細孔径、Y軸:細孔容積を細孔径で微分した値)におけるピーク値の細孔径(D1)が2〜50nmの範囲
3)(D1)×0.75〜(D1)×1.25nmの範囲内の細孔径を有する細孔の合計細孔容積が、全細孔容積の80%以上
Porous silica particles having an interparticle void structure therein, wherein the porous silica particles have an average particle diameter (PD) of 0.5 to 50 μm, a specific surface area of 30 to 250 m 2 / g, and the porous silica particles Porous silica particles, wherein the silica particles satisfy the following requirements 1) to 3):
1) Range in which pore volume is 0.10 to 0.25 cc / g 2) Peak pore diameter in pore diameter distribution (X axis: pore diameter, Y axis: value obtained by differentiating pore volume by pore diameter) D1) is in the range of 2 to 50 nm 3) The total pore volume of pores having pore diameters in the range of (D1) × 0.75 to (D1) × 1.25 nm is 80% or more of the total pore volume
前記多孔質シリカ粒子が、平均粒子径(D)10〜50nm、真球度0.9〜1の範囲、粒子径変動係数(CV値)が2〜10%の範囲にある球状シリカ微粒子であって、粒子径分布が単分散相を示す球状シリカ微粒子が集合した球状集合体からなることを特徴とする請求項1記載の多孔質シリカ粒子。 The porous silica particles are spherical silica fine particles having an average particle diameter (D) of 10 to 50 nm, a sphericity of 0.9 to 1, and a particle diameter variation coefficient (CV value) of 2 to 10%. 2. The porous silica particle according to claim 1, wherein the porous silica particle comprises a spherical aggregate in which spherical silica fine particles whose particle size distribution exhibits a monodisperse phase are aggregated. 前記多孔質シリカ粒子の空隙率が5〜50%の範囲にあることを特徴とする請求項1または請求項2記載の多孔質シリカ粒子。 The porous silica particles according to claim 1 or 2, wherein the porosity of the porous silica particles is in the range of 5 to 50%. 前記球状シリカ微粒子の粒子径分布が、単分散相を示すものであることを特徴とする請求項1〜請求項3の何れかに記載の多孔質シリカ粒子。 The porous silica particles according to any one of claims 1 to 3, wherein a particle size distribution of the spherical silica fine particles indicates a monodisperse phase. 下記の(A)、(B)及び(C)の各工程を含む多孔質シリカ粒子の製造方法。
(A): 平均粒子径10〜50nmの球状シリカ微粒子の分散液を遠心分離処理し、粗大粒子を分離し、粒子径変動係数(CV値)を2〜10%の範囲に調整することにより粒子径分布が単分散な球状シリカ微粒子分散液とする工程
(B): 前工程の処理を行った球状シリカ微粒子分散液を含む噴霧液を気流中に噴霧して球状シリカ微粒子集合体を調製する工程
(C): 前工程で得られた球状シリカ微粒子集合体を温度150〜600℃の範囲で加熱処理する工程
The manufacturing method of the porous silica particle containing each process of following (A), (B) and (C).
(A): A dispersion of spherical silica fine particles having an average particle size of 10 to 50 nm is subjected to centrifugal separation to separate coarse particles, and the particle size variation coefficient (CV value) is adjusted to a range of 2 to 10%. Step (B) for preparing a spherical silica fine particle dispersion having a monodispersed diameter distribution: A step of preparing a spherical silica fine particle aggregate by spraying a spray liquid containing the spherical silica fine particle dispersion treated in the previous step in an air stream. (C): A step of heat-treating the spherical silica fine particle aggregate obtained in the previous step within a temperature range of 150 to 600 ° C.
前記(A)、(B)及び(C)工程に続いて、次の(D)、(E)及び(F)工程を行うことを特徴とする請求項5記載の多孔質シリカ粒子の製造方法。
(D): 前工程に続いて、該球状シリカ微粒子集合体を水および/または有機溶媒に分散させ、球状シリカ微粒子集合体の分散液を調製する工程
(E): 前工程で調製した球状シリカ微粒子集合体の分散液に、次のi)またはii)を添加することにより該球状シリカ微粒子集合体を表面処理する工程
i) 酸またはアルカリ
ii) 酸またはアルカリと、下記一般式で表される有機ケイ素化合物および/またはその部分加水分解物
一般式: RnSi(OR′)4-n
〔但し、RおよびR′は、炭素数1〜18のアルキル基、炭素数1〜18のアリール基、ビニル基またはアクリル基から選ばれる炭化水素基であり、nは0、1、2または3の整数である。〕
(F): 前工程に続いて、球状シリカ微粒子集合体の分散液から、球状シリカ微粒子集合体を分離し、乾燥した後、大気圧下または減圧下、100〜300℃で加熱処理する工程
6. The method for producing porous silica particles according to claim 5, wherein the following steps (D), (E) and (F) are carried out following the steps (A), (B) and (C). .
(D): Following the previous step, the spherical silica fine particle aggregate is dispersed in water and / or an organic solvent to prepare a dispersion of the spherical silica fine particle aggregate (E): the spherical silica prepared in the previous step The step of surface-treating the spherical silica fine particle aggregate by adding the following i) or ii) to the dispersion of the fine particle aggregate i) Acid or alkali ii) Acid or alkali and represented by the following general formula Organosilicon compound and / or partial hydrolyzate thereof General formula: R n Si (OR ′) 4-n
[However, R and R ′ are hydrocarbon groups selected from an alkyl group having 1 to 18 carbon atoms, an aryl group having 1 to 18 carbon atoms, a vinyl group or an acrylic group, and n is 0, 1, 2 or 3 Is an integer. ]
(F): Following the previous step, the spherical silica fine particle aggregate is separated from the dispersion of the spherical silica fine particle aggregate, dried, and then heated at 100 to 300 ° C. under atmospheric pressure or reduced pressure.
前記(B)工程で使用する噴霧液が、球状シリカ微粒子の他に珪酸液を含むものであることを特徴とする請求項5または請求項6の何れかに記載の多孔質シリカ粒子の製造方法。   The method for producing porous silica particles according to claim 5 or 6, wherein the spray liquid used in the step (B) contains a silicate liquid in addition to the spherical silica fine particles. 請求項1〜5の何れかに記載の多孔質シリカ粒子からなる担体用粒子。   Carrier particles comprising the porous silica particles according to any one of claims 1 to 5.
JP2008315071A 2008-12-10 2008-12-10 Porous silica particles and method for producing the same Active JP5253124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008315071A JP5253124B2 (en) 2008-12-10 2008-12-10 Porous silica particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008315071A JP5253124B2 (en) 2008-12-10 2008-12-10 Porous silica particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010138021A true JP2010138021A (en) 2010-06-24
JP5253124B2 JP5253124B2 (en) 2013-07-31

Family

ID=42348491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008315071A Active JP5253124B2 (en) 2008-12-10 2008-12-10 Porous silica particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5253124B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150818A1 (en) * 2009-06-25 2010-12-29 パナソニック電工株式会社 Liquid epoxy resin composition and process for producing same
WO2011155536A1 (en) * 2010-06-09 2011-12-15 日揮触媒化成株式会社 Support for protein immobilization, immobilized protein and method for producing same
JP2013091589A (en) * 2011-10-27 2013-05-16 Nissan Chem Ind Ltd Porous secondary aggregated silica sol, and method for producing the same
JP5629042B2 (en) * 2012-08-27 2014-11-19 信和化工株式会社 Porous silica powder
WO2016002797A1 (en) * 2014-06-30 2016-01-07 日揮触媒化成株式会社 Porous silica particles, method for producing same, and cosmetic compounded with same
JP2016521550A (en) * 2013-06-05 2016-07-25 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Granulated seed
WO2017159816A1 (en) * 2016-03-18 2017-09-21 日東電工株式会社 Insulating resin material, metal-layer-attached insulating resin material using same, and wiring substrate
JP2017171898A (en) * 2016-03-18 2017-09-28 日東電工株式会社 Insulation resin material, and insulation resin material with metal layer and wiring board using the same
WO2019131873A1 (en) * 2017-12-27 2019-07-04 日揮触媒化成株式会社 Porous silica particles and method for producing same
KR20200053824A (en) * 2018-11-09 2020-05-19 성균관대학교산학협력단 Mesoporous silica supra―ball and method of forming thereof
WO2024047769A1 (en) * 2022-08-30 2024-03-07 株式会社アドマテックス Spherical silica particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009168A1 (en) * 2022-07-02 2024-01-11 Madhu Silica Pvt. Ltd. Preparation of silica particles exhibiting globulous morphology

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656418A (en) * 1992-07-31 1994-03-01 Ohara Inc Production of inorganic oxide particle
JPH07172814A (en) * 1993-12-22 1995-07-11 Showa Denko Kk Production of porous spherical particles consisting substantially and essentially of silica
JPH09208809A (en) * 1996-02-01 1997-08-12 Mizusawa Ind Chem Ltd Resin composition for semiconductor sealing and moisture-adsorbing filler used therefor
JP2002145609A (en) * 2000-11-02 2002-05-22 Oji Paper Co Ltd Production process of liquid dispersion of fine silica particles
JP2002160907A (en) * 2000-11-22 2002-06-04 Catalysts & Chem Ind Co Ltd Spherical porous particle and its manufacturing method
JP2005022895A (en) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp Silica and method of manufacturing the same
JP2008273790A (en) * 2007-04-27 2008-11-13 Furukawa Electric Co Ltd:The Method for producing silica nanoparticles using reverse micelle disperse system, silica nanoparticles obtained by the method and labelling reagent using the nanoparticles
JP2008273780A (en) * 2007-04-27 2008-11-13 Jgc Catalysts & Chemicals Ltd Modified silica-based sol and method for preparing the same
JP2008297183A (en) * 2007-06-02 2008-12-11 Jgc Catalysts & Chemicals Ltd Porous oxide particle and its production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656418A (en) * 1992-07-31 1994-03-01 Ohara Inc Production of inorganic oxide particle
JPH07172814A (en) * 1993-12-22 1995-07-11 Showa Denko Kk Production of porous spherical particles consisting substantially and essentially of silica
JPH09208809A (en) * 1996-02-01 1997-08-12 Mizusawa Ind Chem Ltd Resin composition for semiconductor sealing and moisture-adsorbing filler used therefor
JP2002145609A (en) * 2000-11-02 2002-05-22 Oji Paper Co Ltd Production process of liquid dispersion of fine silica particles
JP2002160907A (en) * 2000-11-22 2002-06-04 Catalysts & Chem Ind Co Ltd Spherical porous particle and its manufacturing method
JP2005022895A (en) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp Silica and method of manufacturing the same
JP2008273790A (en) * 2007-04-27 2008-11-13 Furukawa Electric Co Ltd:The Method for producing silica nanoparticles using reverse micelle disperse system, silica nanoparticles obtained by the method and labelling reagent using the nanoparticles
JP2008273780A (en) * 2007-04-27 2008-11-13 Jgc Catalysts & Chemicals Ltd Modified silica-based sol and method for preparing the same
JP2008297183A (en) * 2007-06-02 2008-12-11 Jgc Catalysts & Chemicals Ltd Porous oxide particle and its production method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150818A1 (en) * 2009-06-25 2010-12-29 パナソニック電工株式会社 Liquid epoxy resin composition and process for producing same
WO2011155536A1 (en) * 2010-06-09 2011-12-15 日揮触媒化成株式会社 Support for protein immobilization, immobilized protein and method for producing same
JP2012016351A (en) * 2010-06-09 2012-01-26 Jgc Catalysts & Chemicals Ltd Carrier for immobilizing protein, immobilized protein and method for producing them
JP2013091589A (en) * 2011-10-27 2013-05-16 Nissan Chem Ind Ltd Porous secondary aggregated silica sol, and method for producing the same
JPWO2014034588A1 (en) * 2012-08-27 2016-08-08 信和化工株式会社 Porous silica powder
JP5629042B2 (en) * 2012-08-27 2014-11-19 信和化工株式会社 Porous silica powder
JP2016521550A (en) * 2013-06-05 2016-07-25 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Granulated seed
US9808407B2 (en) 2014-06-30 2017-11-07 Jgc Catalysts And Chemicals Ltd. Porous silica particle, method for producing the same, and cosmetic containing the same
JP5940236B2 (en) * 2014-06-30 2016-06-29 日揮触媒化成株式会社 Porous silica-based particles, method for producing the same, and cosmetics containing the same
WO2016002797A1 (en) * 2014-06-30 2016-01-07 日揮触媒化成株式会社 Porous silica particles, method for producing same, and cosmetic compounded with same
KR20160148724A (en) 2014-06-30 2016-12-26 닛키 쇼쿠바이카세이 가부시키가이샤 Porous silica particles, method for producing same, and cosmetic compounded with same
KR102375660B1 (en) * 2016-03-18 2022-03-16 닛토덴코 가부시키가이샤 Insulating resin material, insulating resin material with metal layer using same, and wiring board
JP2017171898A (en) * 2016-03-18 2017-09-28 日東電工株式会社 Insulation resin material, and insulation resin material with metal layer and wiring board using the same
KR20180126473A (en) * 2016-03-18 2018-11-27 닛토덴코 가부시키가이샤 Insulation resin material, insulating resin material including metal layer using same and wiring board
WO2017159816A1 (en) * 2016-03-18 2017-09-21 日東電工株式会社 Insulating resin material, metal-layer-attached insulating resin material using same, and wiring substrate
US10388425B2 (en) 2016-03-18 2019-08-20 Nitto Denko Corporation Insulating resin material, metal layer-equipped insulating resin material using same, and wiring substrate
EP3432316A4 (en) * 2016-03-18 2019-10-23 Nitto Denko Corporation Insulating resin material, metal-layer-attached insulating resin material using same, and wiring substrate
JP7134594B2 (en) 2016-03-18 2022-09-12 日東電工株式会社 Insulating resin material, insulating resin material with metal layer and wiring substrate using the same
WO2019131873A1 (en) * 2017-12-27 2019-07-04 日揮触媒化成株式会社 Porous silica particles and method for producing same
CN111527047A (en) * 2017-12-27 2020-08-11 日挥触媒化成株式会社 Porous silica particles and method for producing same
KR20200102445A (en) * 2017-12-27 2020-08-31 닛키 쇼쿠바이카세이 가부시키가이샤 Porous silica particles and manufacturing method thereof
KR102366080B1 (en) 2017-12-27 2022-02-24 니끼 쇼꾸바이 카세이 가부시키가이샤 Porous silica particles and method for producing the same
JP2020073436A (en) * 2017-12-27 2020-05-14 日揮触媒化成株式会社 Porous silica particles and their manufacturing method
TWI761649B (en) * 2017-12-27 2022-04-21 日商日揮觸媒化成股份有限公司 Porous silica particles and method for producing the same
JPWO2019131873A1 (en) * 2017-12-27 2020-04-02 日揮触媒化成株式会社 Porous silica particles and method for producing the same
KR20200053824A (en) * 2018-11-09 2020-05-19 성균관대학교산학협력단 Mesoporous silica supra―ball and method of forming thereof
KR102171370B1 (en) * 2018-11-09 2020-10-28 성균관대학교산학협력단 Mesoporous silica supra―ball and method of forming thereof
WO2024047769A1 (en) * 2022-08-30 2024-03-07 株式会社アドマテックス Spherical silica particles

Also Published As

Publication number Publication date
JP5253124B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5253124B2 (en) Porous silica particles and method for producing the same
JP5132193B2 (en) Porous silica particles and method for producing the same
JP5148971B2 (en) Spherical silica particles and method for producing the same
JP5253125B2 (en) Porous silica particles, method for producing the same, and composite material comprising the porous silica particles
JP5477192B2 (en) Method for producing silica particles
US9216909B2 (en) Aerogel and method for manufacture thereof
JP5644789B2 (en) Powder composition
JP4756040B2 (en) Particulate silica
JP4936208B2 (en) Core-shell type spherical silica mesoporous material and method for producing core-shell type spherical silica mesoporous material
JP4911814B2 (en) Spherical porous particles and method for producing the same
JP5489505B2 (en) Method for producing hydrophobic silica particles
JP4888633B2 (en) Method for producing hydrophobic silica powder
JP6323861B2 (en) Method for producing surface-modified mesoporous silica nanoparticles
US20120148470A1 (en) Method for producing silica particles
JP4636869B2 (en) Method for producing porous silica-based particles and porous silica-based particles obtained from the method
JP5480497B2 (en) Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles
JP2007084396A (en) Method for manufacturing porous silicious particle, and porous silicious particle obtained by the method
JP5258318B2 (en) Method for surface treatment of mesoporous silica, slurry composition for resin addition, filler for resin, and method for producing resin composition
JP2021187692A (en) Porous metal oxide powder and method for producing the same
JP2005154222A (en) Particulate silica
JP5141948B2 (en) Spherical silica-based mesoporous material having a bimodal pore structure and method for producing the same
JP4488191B2 (en) Method for producing spherical silica-based mesoporous material
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP2003171116A (en) Silica
JP2003171112A (en) Silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Ref document number: 5253124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250