JPH0656418A - Production of inorganic oxide particle - Google Patents

Production of inorganic oxide particle

Info

Publication number
JPH0656418A
JPH0656418A JP4224622A JP22462292A JPH0656418A JP H0656418 A JPH0656418 A JP H0656418A JP 4224622 A JP4224622 A JP 4224622A JP 22462292 A JP22462292 A JP 22462292A JP H0656418 A JPH0656418 A JP H0656418A
Authority
JP
Japan
Prior art keywords
solution
inorganic oxide
reaction
oxide particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4224622A
Other languages
Japanese (ja)
Other versions
JP3313771B2 (en
Inventor
Masashi Maekawa
正史 前川
Yasuo Ochi
康雄 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP22462292A priority Critical patent/JP3313771B2/en
Publication of JPH0656418A publication Critical patent/JPH0656418A/en
Application granted granted Critical
Publication of JP3313771B2 publication Critical patent/JP3313771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To readily and continuously produce singly dispersible inorganic oxide particles extremely narrow in its particle diameter distribution. CONSTITUTION:This method for producing inorganic oxide particles by mixing the organic solution of an organic metal compound with the organic solution of pH-adjusted water to hydrolyze and condense the organic metal compound is characterized by continuously injecting the solutions into a reaction tube always in a prescribed ratio to mix the solutions and react the organic metal compound, while the solution mixture is divided into small portions by the intermittent blowing of a gas and transported into the reaction tube.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒子径分布の極めて狭
い、すなわち単分散性の無機酸化物粒子の連続的な製造
方法に関する。本発明による製造方法により得られる単
分散無機酸化物粒子は、変動係数(平均粒子径を基準と
して、粒子径の標準偏差を百分率で表した値)が15%
以下であって粒子径分布が小さく、実質的に細孔がない
粒子であるという粒子構造の特徴を有する。このため高
い付加価値が要求される材料、例えばフィラー材料、医
科・歯科材料、化粧品材料、光拡散材料、精密研磨材料
等として利用し得る。
FIELD OF THE INVENTION The present invention relates to a continuous process for producing monodisperse inorganic oxide particles having a very narrow particle size distribution. The monodisperse inorganic oxide particles obtained by the production method according to the present invention have a coefficient of variation (a standard deviation of the particle diameter expressed as a percentage based on the average particle diameter) of 15%.
The particle structure is characterized by having the following values, a particle size distribution being small, and particles having substantially no pores. Therefore, it can be used as a material requiring high added value, such as a filler material, a medical / dental material, a cosmetic material, a light diffusion material, a precision polishing material, or the like.

【0002】[0002]

【従来の技術】従来から、有機金属化合物を加水分解、
縮合反応させることにより、無機酸化物粒子を製造する
方法が種々知られている。例えば、球状シリカの製法が
その例である。この例をとって説明すると、シリコンと
エタノールが結合したエトキシシランをエタノールで希
釈した溶液にアンモニア水をpH調整しつつ加えると、
水によってエトキシシランが加水分解反応を受け、反応
液中にシリコンの水酸化物とエタノールができてこれら
が増し、水が減る。一方、このシリコンの水酸化物は、
平行してつぎつぎに脱水縮合反応を起こし、酸化物、す
なわち微細なシリカ粒子が発生し、球状に成長してい
く。これら全体の反応過程の様子を有機金属化合物の代
表例であるアルコキシドを用いて一般化して示すとつぎ
のとおりである。 加水分解反応;M(OR)X+XH2O→M(OH)X+XROH 縮合反応 ;M(OH)X→MOX/2+(X/2)H2O (ただし、Mは金属元素、Rはアルキル基を示す。)
2. Description of the Related Art Conventionally, hydrolysis of an organometallic compound,
Various methods for producing inorganic oxide particles by performing a condensation reaction are known. For example, a method for producing spherical silica is an example. To explain using this example, adding ammonia water to a solution prepared by diluting ethoxysilane in which silicon and ethanol are bound with ethanol while adjusting the pH,
The ethoxysilane undergoes a hydrolysis reaction by water, and a hydroxide of silicon and ethanol are formed in the reaction solution, and these increase, and the water decreases. On the other hand, this silicon hydroxide is
In parallel, dehydration condensation reaction occurs one after another, and oxides, that is, fine silica particles are generated and grow spherically. The general reaction process using these alkoxides, which are typical examples of organometallic compounds, is shown below. Hydrolysis reaction; M (OR) x + XH 2 O → M (OH) x + XROH condensation reaction; M (OH) x → MO x / 2 + (X / 2) H 2 O (where M is a metal element, R Represents an alkyl group.)

【0003】上記シリカ粒子を製造するに当たっては、
回分方式によりアンモニアを触媒としてアルコール水溶
液中で有機珪素化合物であるアルコキシシランを加水分
解縮合して単分散球状粒子を合成する方法がW.Sto
ber等によって開示されている(J.Colloid
& Interface Sci.,26,62−6
9(1968)参照)。この方法は、1つの容器内で反
応を行わせるものであるが、小規模で実施する場合は単
分散性に優れた粒子が合成できるものの、工業的なレベ
ルにスケールアップした場合、原料有機溶液の混合操作
に際し、大量の溶液、その粘性および装置の攪拌効率の
限界等のため、混合均質化に時間を要し、得られる粒子
の単分散性は悪化しやすいものとなる。特に、平均粒径
がサブミクロン以上の大きなシリカ粒子を得る場合は、
単分散性に優れたものを得ることはできなかった。
In producing the above silica particles,
A method of synthesizing monodisperse spherical particles by hydrolyzing and condensing an alkoxysilane which is an organosilicon compound in an aqueous alcohol solution using ammonia as a catalyst by a batch method is described in W. Sto
B. et al. (J. Colloid
& Interface Sci. , 26, 62-6
9 (1968)). This method allows the reaction to be carried out in a single container, but when it is carried out on a small scale, it is possible to synthesize particles with excellent monodispersity, but when it is scaled up to an industrial level, the raw material organic solution is used. During the mixing operation, a large amount of the solution, the viscosity thereof, the limit of the stirring efficiency of the apparatus, and the like require time for homogenization of the mixture, and the monodispersity of the obtained particles tends to deteriorate. Especially when obtaining large silica particles having an average particle size of submicron or more,
It was not possible to obtain an excellent monodispersity.

【0004】また、無機酸化物粒子として、チタニア粒
子を回分方式によりアルコキシチタンを加水分解、縮合
反応させて製造する技術が、特開昭62−91418号
公報において知られている。しかし、反応液の混合均質
化には同様に時間を要するうえ、アルコキシチタンは、
極めて反応性に富み、大気中の水分と急速に加水分解反
応を生ずるため、気液界面においても所定外反応が介入
し易い。このため、溶液の各部にわたり反応過程が一段
と不均一になって、複雑な微小粒子を発生し、単分散性
に優れたチタニア粒子を得ることはできなかった。ま
た、上記の気液界面の反応を防止するためには、無水の
ガス雰囲気を設ける必要があり、操作が複雑化する。こ
のように従来の方法では、製造規模を大型化するときは
全て上記のような回分方式がとられてきた。
Further, a technique for producing titania particles as a batch of inorganic oxide particles by hydrolyzing and condensing alkoxytitanium by a batch method is known in JP-A-62-91418. However, it takes time to homogenize the reaction mixture as well, and alkoxytitanium is
Since it is extremely reactive and rapidly undergoes a hydrolysis reaction with water in the atmosphere, an unspecified reaction easily intervenes at the gas-liquid interface. For this reason, the reaction process became more non-uniform over each part of the solution, complicated fine particles were generated, and titania particles excellent in monodispersity could not be obtained. Further, in order to prevent the above reaction at the gas-liquid interface, it is necessary to provide an anhydrous gas atmosphere, which complicates the operation. As described above, in the conventional method, the batch method as described above has been adopted when increasing the manufacturing scale.

【0005】一方、TiO2の単分散球状粒子の連続合
成方法が、T.Ogihara等によって開示されてい
る(J.Am.Cer.Soc.,72(9)1598
−1601(1989)参照)。この方法では、加水分
解可能な有機金属の有機溶液とpH調整水の有機溶液の
各原料溶液をスタティックミキサーで混合した後、長い
配管内を輸送して粒子を合成している。この方法は、混
合反応溶液の輸送中に、管の中央部と壁部で流速分布を
生じ、溶液の管内滞在時間に分布ができる。このため、
管内の輸送場所により化学反応の状態が変化して成長粒
子の大きさに差を生じ、合成される粒子の粒度分布が悪
くなる欠点がある。
On the other hand, a continuous synthesis method of monodisperse spherical particles of TiO 2 is described in T. Ogihara et al. (J. Am. Cer. Soc., 72 (9) 1598.
-1601 (1989)). In this method, raw material solutions of a hydrolyzable organic metal organic solution and an organic solution of pH-adjusted water are mixed by a static mixer, and then transported in a long pipe to synthesize particles. In this method, a flow velocity distribution is generated in the central portion and the wall portion of the tube during the transportation of the mixed reaction solution, and the distribution of the solution residence time in the tube can be achieved. For this reason,
There is a drawback in that the state of chemical reaction changes depending on the transportation location in the tube, which causes a difference in the size of the grown particles, which deteriorates the particle size distribution of the synthesized particles.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記従来の
無機酸化物粒子の製造技術にみられる欠点を改善し、粒
度分布の一層良い単分散粒子を安定して連続的に製造す
る方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a method for improving the above-mentioned drawbacks of the conventional production technology of inorganic oxide particles and stably and continuously producing monodisperse particles having a better particle size distribution. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記の目
的を達成するため鋭意試験検討した結果、反応管を使用
する無機酸化物の連続製造方法において、原料溶液混合
後の管内反応液の輸送速度を均等化する新規な手段を見
いだすことができ、また、これによって粒子径分布が一
段とシャープな粒子を容易に合成し得ることを見いだす
ことができた。本発明は、上記知見に基づいてなされた
ものである。
Means for Solving the Problems The inventors of the present invention have conducted diligent tests to achieve the above object, and as a result, in a continuous method for producing an inorganic oxide using a reaction tube, a reaction solution in a tube after mixing raw material solutions It was possible to find out a new means for equalizing the transport rate of P. cerevisiae, and to find out that it is possible to easily synthesize particles having a sharper particle size distribution. The present invention has been made based on the above findings.

【0008】すなわち、本発明の無機酸化物粒子の製造
方法の特徴は、特許請求の範囲に記載のとおり、加水分
解可能な有機金属化合物を有機溶媒に溶解した溶液とp
H調整水を有機溶媒に溶解した溶液を混和し、上記調整
水の水によって加水分解反応を生じさせ、またその後の
縮合反応を行わせることにより無機酸化物粒子を製造す
る方法において、上記2つの溶液を反応管中に常時所定
比率で連続して注入、混合し、この混合溶液を反応管内
に気泡を間欠的に送り込むことにより個々の小容量に分
割して輸送しつつ、上記各反応を行わせるところにあ
る。
That is, the features of the method for producing inorganic oxide particles of the present invention are, as described in the claims, a solution of a hydrolyzable organometallic compound dissolved in an organic solvent and p
In a method for producing inorganic oxide particles by mixing a solution of H-adjusted water dissolved in an organic solvent, causing a hydrolysis reaction with the water of the adjusted water, and carrying out a subsequent condensation reaction, The above reaction is carried out while continuously injecting and mixing the solution into the reaction tube at a predetermined ratio and mixing, and intermittently sending air bubbles into the reaction tube to divide the solution into individual small volumes for transportation. There is a place to make it.

【0009】上記本発明の無機酸化物粒子の製造方法に
おいて、使用される加水分解可能な有機金属化合物とし
ては、上記の反応液中で加水分解と縮合反応を生じ、所
望の金属酸化物を合成するものであれば、周期律表の第
I族、第II族、第III族、第IV族および第V族の
1種以上の公知の金属化合物が何等制限なく採用され得
る。金属アルコキシド化合物(M(OR)X)は好適例
であるが、この他アルコキシド基(OR)をカルボニル
基(CO)またはβジカルボニル基で置換したもの、あ
るいは金属セッケン(M(RCOO)n)およびキレー
ト化合物のように有機基が酸素を介して金属と結合して
いるものも使用し得る。シリカ粒子を合成する場合の代
表例を示すと、一般式Si(OR)4またはSiR′
n(OR)4nで示されるアルコキシシラン等の有機シ
リコン化合物またはこれら有機シリコン化合物を部分的
に加水分解して得られる低縮合物が工業的に入手し易
く、その1種または2種以上の混合物は、単分散性に優
れたシリカ粒子を得るため、好ましく使用される。なお
上記一般式においてRおよびR′はアルキル基であり、
例えばメチル基、エチル基、イソプロピル基、ブチル基
等の低級アルキル基が好適である。nは1〜3の整数で
ある。
In the above-mentioned method for producing inorganic oxide particles of the present invention, the hydrolyzable organometallic compound used is a hydrolysis and condensation reaction in the above reaction solution to synthesize a desired metal oxide. If it does, one or more known metal compounds of Group I, Group II, Group III, Group IV and Group V of the periodic table can be adopted without any limitation. A metal alkoxide compound (M (OR) x ) is a preferred example, but other than that, a alkoxide group (OR) substituted with a carbonyl group (CO) or a β-dicarbonyl group, or a metal soap (M (RCOO) n ). Also, a compound in which an organic group is bound to a metal through oxygen, such as a chelate compound, can be used. A typical example of synthesizing silica particles is represented by the general formula Si (OR) 4 or SiR ′.
An organic silicon compound such as an alkoxysilane represented by n (OR) 4 -n or a low condensate obtained by partially hydrolyzing these organic silicon compounds is industrially easily available, and one or more of them can be obtained. The mixture (1) is preferably used in order to obtain silica particles having excellent monodispersity. In the above general formula, R and R ′ are alkyl groups,
For example, lower alkyl groups such as methyl group, ethyl group, isopropyl group and butyl group are preferable. n is an integer of 1 to 3.

【0010】また、上記有機金属化合物とpH調整水を
溶解する有機溶媒は、メタノール、エタノール、プロパ
ノール等のアルコール類、アセトン等のケトン類等、上
記有機金属化合物と水を溶解する物質で上記有機金属化
合物を分解しない物質ならば如何なる物質でも良く、特
にメタノール、エタノール、プロパノールは、一般的な
入手し易い材料であり好適である。
The organic solvent that dissolves the organometallic compound and the pH-adjusted water is a substance that dissolves the organometallic compound and water, such as alcohols such as methanol, ethanol and propanol, and ketones such as acetone. Any substance that does not decompose the metal compound may be used, and methanol, ethanol, and propanol are preferable because they are commonly available materials.

【0011】上記の有機溶液に混合するpH調整水のp
H値は、有機金属化合物の種類により適宜選ばれるが、
アルカリ性とする場合のアルカリ原料としては、アンモ
ニア、アルカリ金属水酸化物およびこれらの混合物等を
適宜使用し得る。また、酸性水の場合は公知の無機酸や
有機酸を適宜使用し得る。本発明の方法においては、上
記2つの有機溶液を常時所定比率で連続して反応管中に
注入し、混合するが、注入後直ちに気泡を管内に間欠送
入し、注入液を区分化することが好ましい。反応管内に
間欠送入する気体は、乾燥空気、アルゴン、窒素、酸
素、ヘリウム等溶液の反応状態を不均一化させない物質
であれば如何なるものも使用可能であるが、一般的に乾
燥空気を使用することができる。この区分化された反応
溶液は、管内で拡散混合するので、通常、特別な攪拌操
作を要しないが、必要に応じ気体送入前にこの溶液を攪
拌しても良い。
The pH of the pH-adjusted water to be mixed with the above organic solution is p
The H value is appropriately selected according to the type of organometallic compound,
As the alkaline raw material when it is made alkaline, ammonia, alkali metal hydroxides, mixtures thereof, and the like can be appropriately used. In the case of acidic water, known inorganic acids and organic acids can be used as appropriate. In the method of the present invention, the above two organic solutions are always continuously injected into the reaction tube at a predetermined ratio and mixed, but immediately after the injection, air bubbles are intermittently fed into the tube to partition the injected solution. Is preferred. As the gas intermittently fed into the reaction tube, any substance can be used as long as it is a substance that does not make the reaction state of the solution such as dry air, argon, nitrogen, oxygen, and helium non-uniform, but generally dry air is used. can do. Since this segmented reaction solution is diffusively mixed in the tube, a special stirring operation is not usually required, but this solution may be stirred before feeding gas if necessary.

【0012】本発明の方法において使用する反応管は、
間欠的に送入する気体により区分化した個々の液を所定
の反応期間中、相互に混ざり合うことなく安定して輸送
し得るものであれば何れの構造のものでも良い。例え
ば、管内断面積が約0.05〜2cm2であり所要長さ
を有する管を螺旋形縦型構造とし、反応液を下部から上
部へ輸送するようにすると良い。この際、管内は気泡部
と溶液部が交互に並び規則正しい行列模様を呈するが、
これら各部の長さは何れも数mm〜数cmとするのが良
い。また、反応管は、反応溶液の濡れが悪く、反応溶液
により侵食しない材質のものを用いることが好ましく、
例えば熱可塑性樹脂(フッ素樹脂、ナイロン)性のもの
は好適に使用し得る。反応終了後、溶液はスラリー状
で、反応管出口から流出するのでこれを固液分離や遠心
分離の後、乾燥等の処理を行い製品粒子を得る。
The reaction tube used in the method of the present invention is
Any structure may be used as long as it can stably transport the individual liquids segmented by the gas intermittently fed in during a predetermined reaction period without being mixed with each other. For example, it is advisable to use a spiral vertical structure for a tube having an internal cross-sectional area of about 0.05 to 2 cm 2 and a required length so that the reaction solution is transported from the lower part to the upper part. At this time, air bubbles and solution parts are alternately arranged in the tube to form a regular matrix pattern.
The length of each of these parts is preferably several mm to several cm. Further, it is preferable that the reaction tube is made of a material that does not wet the reaction solution and is not corroded by the reaction solution.
For example, a thermoplastic resin (fluorine resin, nylon) is preferably used. After the completion of the reaction, the solution is in the form of slurry and flows out from the outlet of the reaction tube. Therefore, the solution is subjected to solid-liquid separation, centrifugal separation, drying and the like to obtain product particles.

【0013】上記本発明の酸化物粒子の製造方法は、従
来の方法に比較し、一段と単分散性に優れた無機酸化物
粒子を連続的に製造することができるが、有機金属化合
物として、有機珪素化合物を用い、アルカリ性水の存在
下でシリカ粒子を連続合成する場合、平均粒径約0.0
5〜2μmの単分散性に優れた球状粒子を特に安定して
得ることができるので、好適である。また、同様に酸性
水の存在下でシリカ粒子を連続合成する場合は、平均粒
径約0.001〜0.5μmの単分散性に優れた多面体
ないし球状の粒子を安定して得ることができるので好適
である。これらのシリカ粒子の平均粒径は、アルコキシ
シランやアンモニアの濃度、反応温度および時間等によ
って制御し得る。
The above-mentioned method for producing oxide particles of the present invention can continuously produce inorganic oxide particles which are more excellent in monodispersity than conventional methods. When silica particles are continuously synthesized in the presence of alkaline water using a silicon compound, the average particle size is about 0.0
It is preferable because spherical particles of 5 to 2 μm excellent in monodispersity can be obtained particularly stably. Similarly, when silica particles are continuously synthesized in the presence of acidic water, polyhedral or spherical particles having an average particle size of about 0.001 to 0.5 μm and excellent in monodispersity can be stably obtained. Therefore, it is preferable. The average particle size of these silica particles can be controlled by the concentration of alkoxysilane or ammonia, reaction temperature, time, and the like.

【0014】[0014]

【実施例】本発明の無機酸化物粒子の製造方法にかかる
実施例をシリカ粒子を製造する場合について、比較例と
ともに説明する。 実施例1;加水分解可能な有機金属化合物であるテトラ
エトキシシラン630gをエタノール溶媒9500ml
中に溶解、混合した有機溶液とpH12.5に調整した
アンモニア水4800mlをエタノール溶媒5000m
l中に溶解、混合した有機溶液を何れも23℃に保持す
る温度調節装置付きタンク内に用意し、これらのタンク
内溶液を液体定量輸送ポンプを用いて、それぞれ常時3
0ml/minの流量で螺旋形縦型(直径1m、高さ約
65cm)に巻き付けた内径4mmφ、長さ300mの
ポリエチレン製反応パイプの下部に連結したT字管を介
して注入する。T字管により上記両液は合流し混合する
が、合流点近傍のパイプ内に直ちにエアーコンプレッサ
ーから脱水塔を経て供給される乾燥空気を電磁開閉弁を
用いて0.5秒毎に約0.3ml吹き込んで、溶液を約
0.3mlの容量に分割する。パイプ内の気泡部と溶液
部の長さはそれぞれ約2.4cmであるが、これらは交
互に規則正しい配列模様を形成し、送入ガスの圧力によ
りパイプの上部へ順次輸送される。この間、溶液を同様
に23℃に保持する。
EXAMPLES Examples of the method for producing inorganic oxide particles of the present invention, in which silica particles are produced, will be described together with comparative examples. Example 1; 630 g of tetraethoxysilane, which is a hydrolyzable organometallic compound, and 9500 ml of an ethanol solvent.
4800 ml of ammonia solution adjusted to pH 12.5 with organic solution dissolved and mixed in ethanol solvent 5000 m
All of the organic solutions dissolved and mixed in 1 were prepared in tanks equipped with a temperature control device that maintained at 23 ° C., and the solutions in these tanks were constantly used for 3 times each using a liquid quantitative transport pump.
It is injected at a flow rate of 0 ml / min through a T-shaped tube connected to the lower part of a polyethylene reaction pipe having an inner diameter of 4 mmφ and a length of 300 m, which is wound in a spiral vertical form (diameter 1 m, height about 65 cm). The two liquids merge and mix by the T-shaped tube, but dry air immediately supplied from the air compressor through the dehydration tower into the pipe near the confluence is adjusted to about 0. Blow in 3 ml and divide the solution to a volume of approximately 0.3 ml. The bubble portion and the solution portion in the pipe each have a length of about 2.4 cm, and they alternately form a regular arrangement pattern and are sequentially transported to the upper portion of the pipe by the pressure of the feed gas. During this time, the solution is likewise kept at 23 ° C.

【0015】上記両液の合流、混合後、溶液はすぐに加
水分解反応および縮合反応を生じ、白濁してシリカ粒子
が生成し、次第に成長していく。パイプの上部出口から
流出したスラリーを固液分離した後、乾燥してシリカ粒
子を得た。この間、時間毎にスラリーをサンプリング
し、同様にして得たシリカ粒子について走査型電子顕微
鏡(日本電子株式会社製JXA−840A型)を用いて
観察し、得られた写真より粒子径分布を求めた。その結
果、シリカ粒子の平均径は、時間毎の平均値が0.43
μm、変動係数は9〜11%の範囲にあり、単分散性に
優れた球状のシリカ粒子を容易かつ安定して得られるこ
とが分かった。このシリカ粒子は、比重および比表面積
の測定結果と無細孔シリカのデータとの比較から、実質
的に気孔がないことが確かめられ、その形状寸法特性か
らフィラー材等の使用に適している。
After joining and mixing the two solutions, the solution immediately undergoes a hydrolysis reaction and a condensation reaction, becomes cloudy and silica particles are formed, and gradually grows. The slurry flowing out from the upper outlet of the pipe was subjected to solid-liquid separation, and then dried to obtain silica particles. During this period, the slurry was sampled every hour, and the silica particles obtained in the same manner were observed with a scanning electron microscope (JXA-840A manufactured by JEOL Ltd.), and the particle size distribution was determined from the obtained photograph. . As a result, the average particle size of the silica particles was 0.43 per hour.
It was found that spherical silica particles excellent in monodispersity can be obtained easily and stably, with the μm and the coefficient of variation being in the range of 9 to 11%. The silica particles were confirmed to be substantially free of pores by comparing the measurement results of specific gravity and specific surface area with the data of non-porous silica, and due to their shape and size characteristics, they are suitable for use as a filler material and the like.

【0016】実施例2;実施例1における製造条件を一
部変え、有機金属化合物としてテトラメトキシシランを
458g用い、アンモニア水のpH値を11.8に調整
し、また内径6mm、全長135mの反応パイプを用
い、さらにパイプ内分割液の量を約0.6ml(パイプ
内液の長さ約2.1cm)乾燥空気の間欠送入量約1m
l(パイプ内気泡長さ約3.5cm)とし、同様にして
シリカ粒子を製造し、観察した。その結果、この粒子の
平均径は時間毎の平均値が0.15μm、変動係数は1
2〜14%であり、単分散性に優れた球状シリカ粒子を
容易かつ安定して得られることが分かった。このシリカ
粒子は、実質的に気孔がなく、その形状寸法特性から精
密研磨材等の使用に適している。
Example 2; The production conditions in Example 1 were partially changed, 458 g of tetramethoxysilane was used as the organometallic compound, the pH value of the ammonia water was adjusted to 11.8, and the reaction had an inner diameter of 6 mm and a total length of 135 m. Using a pipe, the amount of divided liquid in the pipe is about 0.6 ml (the length of the liquid in the pipe is about 2.1 cm), and the intermittent feed amount of dry air is about 1 m.
1 (bubble length in the pipe was about 3.5 cm), silica particles were produced and observed in the same manner. As a result, the average diameter of the particles was 0.15 μm per hour, and the coefficient of variation was 1
It was 2 to 14%, and it was found that spherical silica particles excellent in monodispersibility can be easily and stably obtained. The silica particles have substantially no pores and are suitable for use as precision abrasives and the like because of their shape and size characteristics.

【0017】実施例3;実施例1における製造条件を一
部変え、有機金属化合物として、テトラプロポキシシラ
ンを1600g用い、アンモニア水のpH値を13.0
に調整し、また反応前後の各溶液の温度を全て50℃に
保持し、同様にしてシリカ粒子を製造し、観察した。そ
の結果、得られたシリカ粒子の平均径は、時間毎の平均
値が0.68μm、変動係数は10〜11%であり、単
分散性に優れた球状シリカ粒子を容易かつ安定して得ら
れることが分かった。このシリカ粒子は実質的に気孔が
なく、その形状寸法特性からフィラー材等の使用に適し
ている。
Example 3 The production conditions in Example 1 were partially changed, 1600 g of tetrapropoxysilane was used as an organometallic compound, and the pH value of ammonia water was set to 13.0.
The temperature of each solution before and after the reaction was maintained at 50 ° C., and silica particles were similarly prepared and observed. As a result, the average diameter of the obtained silica particles is 0.68 μm per hour, and the coefficient of variation is 10 to 11%, and spherical silica particles excellent in monodispersity can be easily and stably obtained. I found out. The silica particles have substantially no pores and are suitable for use as a filler material or the like because of their shape and size characteristics.

【0018】比較例;乾燥空気の送入を行わない以外
は、上記実施例1と同一の条件でシリカ粒子を製造し、
得られた粒子を同様に観察した。その結果、この粒子の
平均粒径は、時間毎の平均値が0.41μm、変動係数
は、25〜40%であって、単分散性は非常に悪く、前
記回分方式を大規模で行なう場合と同程度であった。
Comparative Example: Silica particles were produced under the same conditions as in Example 1 except that dry air was not introduced.
The obtained particles were similarly observed. As a result, the average particle size of the particles is 0.41 μm per hour, the coefficient of variation is 25 to 40%, the monodispersity is very poor, and the batch method is performed on a large scale. It was about the same.

【0019】なお、上記各実施例において得られる粒子
は、何れもパイプへの反応液の輸送速度やパイプの長さ
等を変えることによっても、その平均粒径を増大または
減少させることができる。また、上記各実施例において
得られた粒子は、種粒子法により、シリカ種粒子の粒径
を数μm〜数10μmに成長させて、液晶表示板のスペ
ーサー材料などに利用する場合の種粒子として用いるこ
とができる。
The average particle size of the particles obtained in each of the above examples can be increased or decreased by changing the transport speed of the reaction solution to the pipe, the length of the pipe, and the like. In addition, the particles obtained in each of the above-mentioned examples are used as seed particles when the silica seed particles are grown to a particle size of several μm to several tens of μm by the seed particle method and used as a spacer material for a liquid crystal display panel. Can be used.

【0020】本発明の無機酸化物粒子の製造方法は、上
記実施例のシリカ粒子に限定されず、周期律表第I族〜
第V族の金属酸化物粒子、例えば、Fe、Ga、Cr、
Al、Zr、Ti、NbおよびTa等の1種または2種
以上からなる酸化物粒子を同様に製造することができ
る。
The method for producing the inorganic oxide particles of the present invention is not limited to the silica particles of the above-mentioned examples, and the periodic table group I to
Group V metal oxide particles such as Fe, Ga, Cr,
Oxide particles composed of one kind or two or more kinds of Al, Zr, Ti, Nb, Ta and the like can be similarly produced.

【0021】[0021]

【発明の効果】以上に述べたとおり、本発明の無機酸化
物粒子の製造方法は、前述の2つの有機溶液を混合さ
せ、加水分解反応と縮合反応を生じさせることにより無
機酸化物粒子を製造するに際し、混合した溶液を反応管
内で送入ガスにより小容量の個々の溶液に分割して順次
輸送し、反応を行わせるものであるから、管内反応液の
流速分布の差異による粒子の生成、成長にバラツキを生
ずることがなく、従来の製造方法よりも一段と粒径分布
がシャープであり、単分散性に優れた初期の酸化物粒子
を連続的に安定して製造することができる。
As described above, the method for producing inorganic oxide particles of the present invention comprises producing the inorganic oxide particles by mixing the above-mentioned two organic solutions and causing a hydrolysis reaction and a condensation reaction. In doing so, the mixed solution is divided into small volumes of individual solutions by the feed gas in the reaction tube and sequentially transported, so that the reaction is carried out, and therefore the generation of particles due to the difference in the flow velocity distribution of the reaction solution in the tube, There is no variation in growth, the particle size distribution is sharper than in the conventional manufacturing method, and the initial oxide particles having excellent monodispersity can be continuously and stably manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加水分解可能な有機金属化合物を有機溶
媒に溶解した溶液とpH調整水を有機溶媒に溶解した溶
液を混合し、加水分解反応および縮合反応を行わせるこ
とにより無機酸化物粒子を製造する方法において、上記
の2つの溶液を反応管中に常時所定比率で連続して注
入、混合し、この混合溶液を反応管内に気体を間欠的に
送り込むことにより個々の小容量に分割して輸送しつ
つ、上記各反応を行わせることを特徴とする無機酸化物
粒子の連続製造方法。
1. Inorganic oxide particles are obtained by mixing a solution in which a hydrolyzable organometallic compound is dissolved in an organic solvent and a solution in which pH-adjusted water is dissolved in an organic solvent to carry out a hydrolysis reaction and a condensation reaction. In the manufacturing method, the above two solutions are continuously and continuously injected into a reaction tube at a predetermined ratio and mixed, and the mixed solution is divided into individual small volumes by intermittently feeding a gas into the reaction tube. A method for continuously producing inorganic oxide particles, which comprises carrying out each of the above reactions while transporting.
【請求項2】 有機金属化合物が有機珪素化合物であ
り、pH調整水がアルカリ性であって、平均粒径約0.
05〜2μmの単分散性球状シリカ粒子を製造すること
を特徴とする請求項1に記載の無機酸化物粒子の連続製
造方法。
2. The organometallic compound is an organosilicon compound, the pH-adjusting water is alkaline, and the average particle size is about 0.
The method for continuously producing inorganic oxide particles according to claim 1, wherein monodisperse spherical silica particles having a diameter of 05 to 2 μm are produced.
【請求項3】 有機金属化合物が有機珪素化合物であ
り、pH調整水が酸性であって、平均粒径約0.001
〜0.5μmの単分散性シリカ粒子を製造することを特
徴とする請求項1に記載の無機酸化物粒子の連続製造方
法。
3. The organometallic compound is an organosilicon compound, the pH adjusting water is acidic, and the average particle size is about 0.001.
The method for continuously producing inorganic oxide particles according to claim 1, wherein monodisperse silica particles having a particle size of 0.5 μm are produced.
JP22462292A 1992-07-31 1992-07-31 Method for producing inorganic oxide particles Expired - Fee Related JP3313771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22462292A JP3313771B2 (en) 1992-07-31 1992-07-31 Method for producing inorganic oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22462292A JP3313771B2 (en) 1992-07-31 1992-07-31 Method for producing inorganic oxide particles

Publications (2)

Publication Number Publication Date
JPH0656418A true JPH0656418A (en) 1994-03-01
JP3313771B2 JP3313771B2 (en) 2002-08-12

Family

ID=16816599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22462292A Expired - Fee Related JP3313771B2 (en) 1992-07-31 1992-07-31 Method for producing inorganic oxide particles

Country Status (1)

Country Link
JP (1) JP3313771B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285406A (en) * 2008-06-23 2008-11-27 Ube Nitto Kasei Co Ltd Silica spherical particle
US7723407B2 (en) 2004-08-06 2010-05-25 Nippon Shokubai Co., Ltd. Resin composition, method of its composition, and cured formulation
JP2010138022A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle, producing method of the same and composite material comprising the porous silica particle
JP2010138021A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle and producing method of the same
JP2017071740A (en) * 2015-10-09 2017-04-13 信越化学工業株式会社 Manufacturing method of spherical polyorganosilsesquioxane particle
WO2018181713A1 (en) * 2017-03-31 2018-10-04 日揮触媒化成株式会社 Production method for silica particle liquid dispersion

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723407B2 (en) 2004-08-06 2010-05-25 Nippon Shokubai Co., Ltd. Resin composition, method of its composition, and cured formulation
JP2008285406A (en) * 2008-06-23 2008-11-27 Ube Nitto Kasei Co Ltd Silica spherical particle
JP2010138022A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle, producing method of the same and composite material comprising the porous silica particle
JP2010138021A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle and producing method of the same
JP2017071740A (en) * 2015-10-09 2017-04-13 信越化学工業株式会社 Manufacturing method of spherical polyorganosilsesquioxane particle
WO2018181713A1 (en) * 2017-03-31 2018-10-04 日揮触媒化成株式会社 Production method for silica particle liquid dispersion
KR20190134609A (en) * 2017-03-31 2019-12-04 닛키 쇼쿠바이카세이 가부시키가이샤 Method for producing silica particle dispersion
JPWO2018181713A1 (en) * 2017-03-31 2020-05-14 日揮触媒化成株式会社 Method for producing silica particle dispersion
TWI748077B (en) * 2017-03-31 2021-12-01 日商日揮觸媒化成股份有限公司 Manufacturing method of silica particle dispersion
US11312634B2 (en) 2017-03-31 2022-04-26 Jgc Catalysts And Chemicals Ltd. Production method for dispersion liquid of silica particle

Also Published As

Publication number Publication date
JP3313771B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
CN102781839B (en) The method manufacturing high purity metal oxide particle and the material manufactured by it
US8382877B2 (en) Process for metal oxide and metal nanoparticles synthesis
US20200354225A1 (en) Silica particle dispersion and method for producing the same
JPS6374911A (en) Production of fine spherical silica
US20030219370A1 (en) Method of making silica
JP2014529561A (en) Method for producing high-purity metal oxide particles and material produced therefor
TWI230689B (en) Titanium oxide production process
JPH0816003B2 (en) Method for producing inorganic oxide
Ling et al. Synthesis and characteristics of silica nano-particles using modified sol–gel method in microreactor
Do Kim et al. Synthesis of titanium dioxide nanoparticles using a continuous reaction method
JPS6252119A (en) Production of silica particle
Dong et al. Preparation of α-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt
JPH0656418A (en) Production of inorganic oxide particle
Su Synthesis of highly monodisperse silica nanoparticles in the microreactor system
JP2019116396A (en) Silica-based particle dispersion and production method thereof
JP3364261B2 (en) Method for producing metal oxide fine particles
JPH0781931A (en) Spherical calcite type calcium carbonate flocculate and production thereof
Kim et al. New process for the preparation of monodispersed, spherical silica particles
JP3330984B2 (en) Method for producing monodisperse spherical silica
JPS63310714A (en) Silica particles
KR100977409B1 (en) Fabrication Method of Organic Solvent Based Colloidal TiTania Sol and Organic Solvent Based Colloidal TiTania Thereof
JP3746301B2 (en) Method for producing spherical silica particles
EP1743869B1 (en) Method for producing composite oxide power
JP3556277B2 (en) Method for producing metal oxide particles
JPH0262483B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees