WO2015115668A1 - Porous plate-shaped filler and thermal insulation film - Google Patents

Porous plate-shaped filler and thermal insulation film Download PDF

Info

Publication number
WO2015115668A1
WO2015115668A1 PCT/JP2015/053022 JP2015053022W WO2015115668A1 WO 2015115668 A1 WO2015115668 A1 WO 2015115668A1 JP 2015053022 W JP2015053022 W JP 2015053022W WO 2015115668 A1 WO2015115668 A1 WO 2015115668A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
porous plate
outer peripheral
heat insulating
peripheral portion
Prior art date
Application number
PCT/JP2015/053022
Other languages
French (fr)
Japanese (ja)
Inventor
博治 小林
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2015115668A1 publication Critical patent/WO2015115668A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • F01N2310/06Porous ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads

Definitions

  • the present invention relates to a porous plate-like filler and a heat insulating film containing the porous plate-like filler.
  • Patent Document 1 discloses an internal combustion engine including a structural member with improved heat insulation performance.
  • a heat insulating material is disposed adjacent to the inner wall of the exhaust passage, and high-temperature working gas (exhaust gas) flows along a flow path formed by the heat insulating material.
  • the heat insulating material is laminated in a state where each particle of spherical mesoporous silica (MSS) particles having an average particle diameter of 0.1 to 3 ⁇ m is closely packed via a bonding material. Innumerable mesopores having an average pore diameter of 1 to 10 nm are formed in the MSS particles. Thereby, heat insulation performance is demonstrated.
  • MSS spherical mesoporous silica
  • Patent Document 2 discloses that a porous plate-like filler having a plate shape with an aspect ratio of 3 or more, a minimum length of 0.1 to 50 ⁇ m, and a porosity of 20 to 99% is used for the heat insulating film. ing.
  • a porous coating filler is dispersed in an organic resin binder, an inorganic polymer binder, an organic-inorganic composite binder, or the like, so that the formed coating film (heat insulating film) exhibits heat insulating properties. Yes.
  • An object of the present invention is to provide a porous plate-like filler that can be used as a material for a heat insulating film excellent in heat insulating performance, and a heat insulating film.
  • the present inventors have found that the above-mentioned problem can be solved by providing a layer different from the central portion on the outer peripheral portion of the porous plate-like filler. According to the present invention, the following porous plate filler and heat insulating film are provided.
  • the filler is excellent in heat insulation performance.
  • membrane of this invention contains said porous plate-shaped filler. Therefore, the heat insulating film of the present invention is less heat intruded into the filler by a matrix component such as a binder as compared with the case where a porous plate-like filler having the same porosity in the central portion and the outer peripheral portion is used. The conductivity can be lowered. For this reason, even if it is a thin heat insulation film
  • FIG. 1A shows an embodiment of the porous plate filler 1.
  • the porous plate-like filler 1 of the present invention has a plate shape with an aspect ratio of 3 or more, a minimum length of 0.5 to 50 ⁇ m, an overall porosity of 20 to 90%, and an outer periphery from the central portion 4.
  • Part 5 has a lower porosity.
  • the porous plate-like filler 1 includes a base material and pores. A layer having a different base material from the central portion 4 of the porous plate-like filler 1 (when the materials are different) is the outer peripheral portion 5, and the outer peripheral portion 5 has a lower porosity than the central portion 4.
  • the changed portion to the outermost periphery is defined as the outer peripheral portion 5.
  • the porous plate-like filler 1 is formed of a single type of base material (when the material of the central portion 4 and the outer layer is the same type), it is similar to the outer shape of the porous plate-like filler 1
  • the area reduced 80% on the inner side is defined as the central part 4, and the other 20% on the other side is defined as the outer peripheral part 5 (FIG. 1B).
  • the outer peripheral portion 5 has a lower porosity than the central portion 4, but depending on the manufacturing method, the material of the central portion 4 and the outer layer may be the same type or different types, with respect to the minimum length direction.
  • the outer peripheral portion 5 in the vertical direction (left-right direction in the figure) may be thinner than 20% (FIG. 1C). Therefore, it is better to measure the porosity of the outer peripheral portion 5 in the minimum length direction.
  • the aspect ratio is defined by the maximum length / minimum length of the porous plate-like filler 1.
  • the maximum length is the maximum length when the particles (porous plate filler 1) are sandwiched between a pair of parallel surfaces.
  • the minimum length is the minimum length when the particles are sandwiched between a pair of parallel surfaces, and corresponds to a so-called thickness in the case of a flat plate shape.
  • the plate shape of the porous plate filler 1 is not only flat plate (flat and uncurved plate) but also curved as long as the aspect ratio is 3 or more and the minimum length is 0.5 to 50 ⁇ m. And a plate-like material whose thickness (minimum length) is not constant are also included.
  • the porous plate-like filler 1 may have a fiber shape, a needle shape, a lump shape, or the like. Among these, it is preferable that the porous plate-like filler 1 has a flat plate shape. Further, the surface shape of the plate may be any shape such as a square, a square, a triangle, a hexagon, and a circle. That is, the porous plate-like filler 1 may have any shape as long as it is flat.
  • the aspect ratio of the porous plate filler 1 is preferably 3 or more.
  • the larger the aspect ratio the longer the heat transfer path is refracted and the heat conductivity of the heat insulating film 3 becomes lower when the heat insulating film 3 is formed.
  • the aspect ratio is more preferably 3 to 50, further preferably 3.5 to 40, and most preferably 4 to 30.
  • the minimum length of the porous plate-like filler 1 is 0.5 to 50 ⁇ m, more preferably 0.5 to 20, further preferably 2 to 15 ⁇ m, and most preferably 5 to 15 ⁇ m.
  • 0.5 to 50 ⁇ m since the aspect ratio becomes large, it is easy to stack when the heat insulating film 3 is formed, and the thermal conductivity can be lowered.
  • 5 to 50 ⁇ m since the minimum length is large, the strength of the porous plate-like filler 1 can be made sufficient, which is suitable for handling and the yield is increased. By setting the minimum length to 0.5 ⁇ m or more, the strength of the porous plate-like filler 1 can be made sufficient, which is suitable for handling.
  • the porous plate-like filler 1 is too thin, it may be difficult to maintain the shape of the porous plate-like filler 1 during the manufacturing process of the porous plate-like filler 1.
  • the minimum length to 0.5 ⁇ m or more
  • the strength to prevent the porous plate-like filler 1 from cracking in the process of making the porous plate-like filler 1 into a coating composition for forming a heat insulating film, etc. be able to.
  • the heat insulating film 3 including the porous plate-like filler 1 is formed while ensuring a sufficient thickness for exhibiting heat insulating properties by setting the minimum length to 50 ⁇ m or less, the laminate can be formed well. can do.
  • the porous plate-like filler 1 is too thick, the number of layers of the porous plate-like filler 1 contained in the heat insulating film 3 is reduced when the heat insulating film 3 is formed, so that the heat transfer path becomes straight and shortens. It is easy and the heat conductivity of the heat insulation film 3 may become high.
  • the porous plate-like filler 1 preferably has an overall porosity of 20 to 90%. By setting the overall porosity to 90% or less, the strength can be ensured.
  • the apparent particle density is measured by an immersion method using mercury.
  • the true density is measured by a pycnometer method after sufficiently pulverizing the porous plate filler 1.
  • the overall porosity of the porous plate-like filler 1 is preferably 20 to 90%, more preferably 40 to 85%, and still more preferably 50 to 80%. If the porosity is too low, the thermal conductivity of the filler may be high, and if the porosity is too high, the strength of the filler may be weak.
  • the porosity of the outer peripheral portion 5 is preferably lower than the porosity of the central portion 4, more preferably 10% or more, and particularly preferably 20% or more.
  • the porosity of the central portion 4 and the outer peripheral portion 5 is measured using a microstructure image obtained by sampling a cross section parallel to the minimum length of the filler with an FIB and observing with a FE-SEM. This is done randomly with 10 fillers, and an average value is obtained, which is the respective porosity.
  • the outer peripheral portion 5 is preferably smaller in average pore diameter than the central portion 4, and the outer peripheral portion 5 preferably has an average pore diameter of 0.1 ⁇ m or less.
  • the pore diameters of the central portion 4 and the outer peripheral portion 5 are measured using a microstructure image obtained by sampling a cross section parallel to the minimum length of the filler with an FIB and observing with a FE-SEM. This is performed randomly with 10 fillers, and an average value is obtained to obtain the average pore diameter.
  • the thickness of the outer peripheral part 5 is preferably 1 ⁇ m or more.
  • the thickness of the outer peripheral part 5 is the thickness t 1 on the upper side of the center part 4 or the thickness t 2 on the lower side in the minimum length direction (see FIGS. 1B and 1C).
  • the thickness of the outer peripheral portion 5 is more preferably 1 to 10 ⁇ m, still more preferably 1 to 7 ⁇ m.
  • the outer peripheral portion 5 by setting the outer peripheral portion 5 to 10 ⁇ m or less, it is possible to prevent an increase in the low porosity portion, that is, the high thermal conductivity portion. That is, the heat insulation effect can be exhibited more by making the thickness of the outer peripheral part 5 into this range.
  • the heat insulating effect can be improved by including such a porous plate-like filler 1 in the heat insulating film 3 as described later.
  • the first embodiment and the second embodiment will be described as embodiments of the porous plate filler 1 in which the outer peripheral portion 5 has a lower porosity than the central portion 4.
  • First embodiment As the first embodiment, it is preferable that the material types of the base material of the central portion 4 and the outer peripheral portion 5 of the porous plate filler 1 are the same. Even if the porous plate-like filler 1 contains an additive, it is included in the first embodiment as long as the material types of the base material of the central portion 4 and the outer peripheral portion 5 are the same. A material having a low thermal conductivity is used for the central portion 4 of the filler used as a heat insulating material. By using the same material for the outer peripheral portion 5, a filler having a low thermal conductivity can be obtained.
  • element analysis is performed in the FE-SEM observation of each of the central part 4 and the outer peripheral part 5, and the same kind of element is detected.
  • the composition other than the pores is examined. For example, if Zr and O are mainly detected, it is determined that the material is Zr and O (zirconia). In this case, even if a small amount of Si is detected as an additive or impurity, if it is mostly Zr and O, it is determined that the material is Zr and O (zirconia).
  • the central part 4 and the outer peripheral part 5 are formed of the same kind of material, it is preferable to use a material having a low thermal conductivity for both the central part 4 and the outer peripheral part 5, thereby reducing the thermal conductivity of the entire porous plate-like filler 1. Can be lowered.
  • an inorganic material, an organic material, or a composite material of an inorganic material and an organic material may be used.
  • zirconia partially stabilized zirconia (for example, yttria partially stabilized zirconia), fully stabilized zirconia (for example, yttria fully stabilized zirconia), yttrium oxide, alumina, silica, titania, niobium oxide, strontium oxide, lanthanum oxide, Zirconium, yttria, aluminum, silicon, titanium, niobium, strontium, lanthanum, rare earth zirconate (eg lanthanum zirconate), rare earth silicate (eg yttrium silicate), niobate (eg strontium niobate), Smectite clay minerals such as mullite, mica, swellable mica, spinel, zircon, magnesia, ceria, silicon carbide, silicon nitride, aluminum nitride, strontium carbonate, montmorillonite, hydrotal It is preferably an inorgan
  • Second embodiment As the second embodiment, it is preferable that the material types of the base materials of the central portion 4 and the outer peripheral portion 5 of the porous plate-like filler 1 are different.
  • the outer peripheral portion 5 is preferably made of a material that can be easily sintered at a low temperature. Sintering (densification) proceeds by using different materials that are easily sintered at a low temperature for the outer peripheral portion 5, and the porosity difference from the central portion 4 becomes large.
  • the central portion 4 and the outer peripheral portion 5 are formed of different materials, the same material as that of the first embodiment can be adopted as the central portion 4.
  • the same material as that of the first embodiment can be used for the outer peripheral portion 5, and in addition, a metal such as iron, silver, nickel, copper, titanium, chromium, manganese, cobalt, zinc, and molybdenum can be used. It can also be adopted.
  • the material of the center part 4 and the outer peripheral part 5 is not limited to these.
  • One embodiment of the method for producing the porous plate-like filler 1 of the present invention includes a slurry preparing step for preparing a green sheet forming slurry and a peripheral portion forming slurry, a green sheet forming step for forming a green sheet, and a green A crushing step for crushing the sheet, an outer peripheral portion forming step for forming the outer peripheral portion 5 of the filler, and a firing step for firing the sheet to obtain the porous plate-like filler 1.
  • the slurry preparation step is a step of preparing a ceramic powder, a green sheet forming slurry containing a pore former, and a peripheral portion forming slurry.
  • the green sheet forming step is a step of forming a green sheet by forming a slurry for forming a green sheet into a film shape.
  • the said crushing process is a process of crushing a green sheet and obtaining a filler-like green sheet.
  • the said outer peripheral part formation process is a process of forming the outer peripheral part 5 in the outer periphery of the formed filler-like green sheet, and obtaining a 2 layer structure green sheet.
  • the firing step is a step of obtaining a porous plate-like filler 1 by firing a two-layer structure green sheet.
  • the said crushing process may be after the said outer peripheral part formation process.
  • the manufacturing method of such a porous plate-like filler 1 includes the above steps, the porous plate-like filler 1 that can be used as a material of the heat insulating film 3 having excellent heat insulating performance can be manufactured. Hereinafter, each step will be described in detail.
  • a green sheet forming slurry and an outer peripheral portion forming slurry are prepared by adding a pore former, a binder, a plasticizer, a solvent and the like to the ceramic powder and mixing them by a ball mill or the like.
  • Ceramic powders include zirconia powder, partially stabilized zirconia powder (eg, yttria partially stabilized zirconia powder), fully stabilized zirconia powder (eg, yttria fully stabilized zirconia powder), alumina powder, silica powder, titania powder, oxidation Lanthanum powder, yttria powder, rare earth zirconate powder (eg lanthanum zirconate powder), rare earth silicate powder (eg yttrium silicate powder), niobate powder (eg strontium niobate powder), mullite powder, spinel Powder, zircon particles, magnesia powder, yttria powder, ceria powder, silicon carbide powder, silicon nitride powder, aluminum nitride powder, and the like can be used.
  • partially stabilized zirconia powder eg, yttria partially stabilized zirconia powder
  • fully stabilized zirconia powder eg, yt
  • the powder is not limited to a dry powder, and a powder in a colloidal state (sol state) dispersed in water or an organic solvent may be used.
  • a powder in a colloidal state (sol state) dispersed in water or an organic solvent may be used.
  • the pore former latex particles, melamine resin particles, PMMA particles, polyethylene particles, polystyrene particles, carbon black particles, graphite, foamed resin, water absorbent resin, etc. can be used, and the shape is spherical, plate-like, fiber-like Etc.
  • the binder polyvinyl butyral resin (PVB), polyvinyl alcohol resin, polyvinyl acetate resin, polyacrylic resin, or the like can be used.
  • the plasticizer DBP (dibutyl phthalate), DOP (dioctyl phthalate), or the like can be used.
  • the solvent xylene, 1-butanol and the like can be used.
  • the outer peripheral portion forming slurry has a smaller amount of pore former than the green sheet forming slurry.
  • a material that can be easily sintered at a low temperature is preferable to select a material that can be easily sintered at a low temperature as the ceramic powder used for the outer peripheral portion forming slurry.
  • silica, zinc oxide, and the like are preferably used, but are not limited thereto.
  • Green sheet forming step The viscosity is adjusted to 100 to 10000 cps by subjecting the green sheet forming slurry to a vacuum defoaming treatment. Thereafter, a green sheet is formed by a doctor blade device so that the thickness after firing becomes 0.5 to 100 ⁇ m, and the outer shape is cut to a size of (0.5 to 200) mm ⁇ (0.5 to 200) mm. I do.
  • Crushing step As a method for crushing the green sheet, for example, the green sheet can be crushed at room temperature using a dry bead mill, a roller mill or the like. In particular, in order to obtain a porous particle having a plate shape with an aspect ratio of 3 or more and a minimum length of 0.5 to 50 ⁇ m, it is preferable to use an airflow classifier to perform sizing (classification). The green sheet is crushed to obtain a filler-like green sheet.
  • Outer peripheral part forming step Examples of the method for forming the outer peripheral portion 5 include dip molding, sputtering, plating, fluidized bed coating, rolling coating, and the like. Any method may be used, but dip molding will be described as an example.
  • the outer periphery 5 is formed by dipping the filler-like green sheet prepared in the crushing step on the outer periphery forming slurry prepared in the slurry preparation step. If the outer peripheral portion 5 is formed before firing, the pore-forming material is present and pores are not yet formed. Therefore, the outer peripheral portion forming slurry can be prevented from being immersed in the central portion 4 of the filler 1.
  • Firing step The firing conditions of the two-layer structure green sheet to which the outer peripheral portion forming slurry is adhered can be appropriately set. For example, it is preferably 0.5 to 20 hours at 800 to 2300 ° C. in the air, more preferably 5 to 20 hours at 800 to 1800 ° C., and 5 to 20 hours at 800 to 1300 ° C. It is particularly preferred.
  • the heat insulating film 3 of the present invention includes the porous plate-like filler 1 of the present invention as a material. Such a heat insulating film 3 is excellent in heat insulating performance.
  • the heat insulating film 3 will be described with reference to FIG. FIG. 2 is a cross-sectional view parallel to the film thickness direction schematically showing one embodiment of the heat insulating film 3 of the present invention.
  • the heat insulating film 3 is formed on the base material 8 and includes the porous plate-like filler 1 according to an embodiment of the present invention and a matrix 3m in which the porous plate-like filler 1 is dispersed. That is, the porous plate-like filler 1 is disposed in a dispersed manner in the matrix 3m for bonding the porous plate-like filler 1.
  • the matrix 3m is a component that exists around the porous plate-like filler 1 and between these particles, and is a component that binds between these particles.
  • the porous plate-like filler 1 is preferably arranged (laminated) in layers.
  • the term “layered arrangement” as used herein refers to a matrix in which a number of porous plate-like fillers 1 are oriented in a direction in which the minimum length of the porous plate-like filler 1 is parallel to the thickness direction of the heat insulating film 3. It says that it exists in 3m.
  • the position (position of the center of gravity) of the porous plate filler 1 is regularly and periodically arranged in the X, Y, and Z directions of the heat insulating film 3 (where the Z direction is the thickness (film thickness) direction).
  • the matrix 3m portion having a high thermal conductivity is the main heat transfer path, but the heat insulating film 3 of the present invention includes the porous plate-like filler 1, and the heat transfer path transfers heat.
  • the direction (thickness direction) that you do not want. That is, since the length of the heat transfer path is increased, the thermal conductivity can be lowered. Further, since the bonding area between the porous plate-like fillers 1 through the matrix 3m is wider than that of the spherical filler, the strength of the entire heat insulating film is increased, and erosion and peeling are less likely to occur.
  • the matrix 3m does not enter the pores of the porous plate-like filler 1. Since the matrix 3m having a high thermal conductivity enters the pores of the porous plate-like filler 1, the thermal conductivity of the porous plate-like filler 1 becomes high, and the heat conductivity of the heat insulating film 3 becomes high. It is. Since the porous plate-like filler 1 has a lower porosity in the outer peripheral portion 5 than in the central portion 4, the matrix 3 m is less likely to enter the pores, and the heat insulating performance of the heat insulating film 3 is improved.
  • the matrix 3m is preferably an aggregate of fine particles having a particle size of 500 nm or less. By making an aggregate of fine particles having a particle diameter of 500 nm or less into the matrix 3 m, the thermal conductivity can be further lowered.
  • the material used as the matrix 3m is a resin
  • examples of the matrix 3m include a silicone resin, a polyimide resin, a polyamide resin, an acrylic resin, and an epoxy resin.
  • the heat insulating film 3 preferably has a total porosity of 10 to 90%, and the matrix 3m has a porosity of 0 to 70%.
  • the heat insulating film 3 preferably has a thickness of 0.1 to 5 mm. By setting it as such thickness, the heat insulation effect can be acquired, without having a bad influence on the characteristic of the base material 8 coat
  • membrane 3 can be suitably selected within the said range according to the use.
  • the heat insulating film 3 preferably has a thermal conductivity of 1.5 W / (m ⁇ K) or less, more preferably 1 W / (m ⁇ K) or less, and particularly preferably 0.5 W / (m ⁇ K) or less. .
  • heat transfer can be suppressed by having low thermal conductivity.
  • the heat insulating film 3 of the present invention can be used, for example, as the heat insulating film 3 formed on the “surface constituting the engine combustion chamber”.
  • the heat insulating film 3 of the present invention can be used as the heat insulating film 3 formed on the “inner wall of the exhaust pipe of an automobile” or the heat insulating film 3 when it is desired to block heat from the heat generating portion.
  • the heat insulating film 3 of the present invention is applied to a substrate 8 (for example, a surface constituting an engine combustion chamber, an inner wall of an automobile exhaust pipe, etc.) containing a porous plate filler 1 and dried. Can be formed. It can also be formed by heat treatment after drying. At this time, the heat insulating film 3 can be laminated by repeatedly performing application and drying or heat treatment to form a thick heat insulating film 3 (a laminated body of heat insulating films). Or after forming the heat insulation film
  • the target substrate 8 (a substrate different from the “temporary substrate”) may be bonded or bonded.
  • the coating composition may include the porous plate-like filler 1 and one or more selected from the group consisting of an inorganic binder, an inorganic polymer, an oxide sol, and water glass. Furthermore, the coating composition may contain a dense filler, a viscosity modifier, a solvent, a dispersant and the like.
  • Specific materials included in the coating composition include cement, bentonite, aluminum phosphate, silica sol, alumina sol, boehmite sol, zirconia sol, titania sol, tetramethyl orthosilicate, tetraethyl orthosilicate, polysilazane, polycarbosilane, polyvinyl silane, Polymethylsilane, polysiloxane, polysilsesquioxane, geopolymer, sodium silicate and the like.
  • the base material 8 for forming the heat insulating film 3 metal, ceramics, glass, plastic, wood, cloth, paper or the like can be used.
  • the substrate 8 is a metal include iron, iron alloy, stainless steel, aluminum, aluminum alloy, nickel alloy, cobalt alloy, tungsten alloy, and copper alloy.
  • Example 1 Carbon black as a pore former, polyvinyl butyral resin (PVB) as a binder, dioctyl phthalate (DOP) as a plasticizer, and xylene and 1-butanol as solvents were added to zirconia powder as ceramic powder. This was made into the raw material composition. Specifically, two raw material compositions were prepared: a green sheet forming slurry and an outer peripheral portion forming slurry. The slurry for forming the green sheet was 6% by volume of zirconia powder, 6% by volume of carbon black, 7% by volume of binder, 4% by volume of plasticizer, and 77% by volume of solvent. The outer peripheral portion forming slurry was 9% by volume of zirconia powder, 3% by volume of carbon black, 7% by volume of binder, 4% by volume of plasticizer, and 77% by volume of solvent.
  • PVB polyvinyl butyral resin
  • DOP dioctyl phthalate
  • the obtained porous platy filler 1 had a ZrO 2 particle diameter of 50 nm, an average pore diameter of 0.13 ⁇ m, and an overall porosity of 62%. Moreover, when arbitrary 20 pieces were measured about the obtained porous plate-shaped filler 1, and the average was calculated
  • the matrix material material that becomes the matrix 3 m
  • the porous plate-like filler 1 were mixed at a volume ratio of 20:80 to prepare a coating composition. And this coating composition was apply
  • FIG. 1 the matrix material (material that becomes the matrix 3 m) and the porous plate-like filler 1 were mixed at a volume ratio of 20:80 to prepare a coating composition. And this coating composition was apply
  • the thermal conductivity in the thickness direction of the heat insulating film 3 was measured with a laser flash two-layer model. Regarding thermal conductivity, 1.00 W / (m ⁇ K) or less is A and B is 1.01 to 1.59 W / (m ⁇ K) and B is 1.60 W / (m ⁇ K) or more. It is shown in Table 1 as C.
  • membrane 3 was produced in the engine combustion chamber, and it was set as the criteria of judgment whether the heat insulation effect for improving a fuel consumption is exhibited.
  • FIG. 3A shows an SEM photograph of Example 1.
  • the central part of the porous plate filler 1 was observed.
  • Black matrix 3m was not observed in the pores of the filler. That is, the matrix 3 m did not enter the central portion of the porous plate filler 1.
  • Comparative Example 1 The green sheet-forming slurry was applied in a film form with a doctor blade device so that the thickness after firing was 10 ⁇ m, to form a green sheet. After performing the crushing step, the porous plate filler 1 was obtained by firing without performing the outer peripheral portion forming step. In Comparative Example 1, the outer peripheral portion 5 was not formed.
  • FIG. 3B shows an SEM photograph of Comparative Example 1.
  • the central part of the porous plate filler 1 was observed.
  • black matrix 3m was observed in the pores of the filler.
  • the matrix 3 m had entered the central portion of the porous plate filler 1.
  • Example 2 A slurry for forming the outer periphery was prepared with 12% by volume of zirconia powder, no carbon black added, 7% by volume of binder, 4% by volume of plasticizer, and 77% by volume of solvent. The same green sheet forming slurry as in Example 1 was used. Other than that, the porous plate-like filler 1 was produced in the same manner as in Example 1. The porosity of the entire porous plate-like filler 1 was 58%.
  • Example 3 The ceramic powder of the outer periphery forming slurry was changed to SiO 2 to prepare an outer periphery forming slurry.
  • the outer peripheral portion forming step was performed before firing.
  • the outer peripheral part forming slurry of Example 3 was added with 6% by volume of carbon black, and the outer peripheral part forming slurry of Example 4 was not added with carbon black. Otherwise, a porous plate-like filler 1 was prepared in the same manner as in Example 1.
  • the overall porosity of the porous plate-like filler 1 was 58% in Example 3 and 52% in Example 4.
  • Example 5 The outer peripheral part 5 was formed by electroless Ni plating. Otherwise, a porous plate-like filler 1 was prepared in the same manner as in Example 1. The porosity of the whole porous plate-like filler 1 was 52%.
  • Example 6 The green sheet-forming slurry of Example 1 was applied in a film shape with a doctor blade device so that the thickness after firing was 35 ⁇ m, to form a green sheet.
  • the outer peripheral portion 5 was formed using the outer peripheral portion forming slurry of Example 2.
  • the overall porosity of the porous plate filler 1 was 63%.
  • Example 7 The molded body produced in Example 4 was fired at 1200 ° C. for 2 hours. The porosity of the entire porous plate-like filler 1 was 32%.
  • Example 8 to 17 In the same manner as in Examples 3 and 4, porous plate filler 1 was produced. However, the thickness of the green sheet was changed. Further, the thickness of the outer peripheral portion 5 was changed by controlling the time for dipping the molded body obtained by cutting the green sheet into the slurry for forming the outer peripheral portion and the pulling speed of the molded body. Table 1 shows the aspect ratio, porosity, and the like of the porous plate-like filler 1.
  • the porous plate-like fillers 1 of Examples 1 to 17 in which the porosity of the outer peripheral portion 5 is smaller than that of the central portion 4 are less intruded into the pores of the matrix 3m when compared with the comparative example 1 when the heat insulating film 3 is formed.
  • the thermal conductivity decreased.
  • Comparing Example 4 with Examples 10 to 12 it can be seen that the thermal conductivity of the heat insulating film 3 decreases as the minimum length decreases.
  • the porous plate filler of the present invention can be used as a material for a heat insulating film having excellent heat insulating performance.
  • the heat insulating film of the present invention can be used, for example, as a heat insulating film formed on the “surface constituting the engine combustion chamber”.

Abstract

Provided are a porous plate-shaped filler that can be used as a material for a thermal insulation film having exceptional thermal insulation performance, and a thermal insulation film. The porous plate-shaped filler (1) has a plate-like shape with an aspect ratio of 3 or higher and a minimum length is 0.5-50 μm, the overall porosity of the porous plate-shaped filler being 20-90%, and the porosity being lower on the periphery than in the center. Less of a matrix penetrates the filler, whereby the thermal conductivity can be lowered. Therefore, even a thin thermal insulation film has a greater thermal insulation effect than in the past.

Description

多孔質板状フィラー、及び断熱膜Porous plate filler and heat insulating film
 本発明は、多孔質板状フィラー、及び多孔質板状フィラーを含む断熱膜に関する。 The present invention relates to a porous plate-like filler and a heat insulating film containing the porous plate-like filler.
 表面に形成することにより、断熱効率や難燃性を向上させるための断熱膜が望まれている。特許文献1には、断熱性能を向上させた構造部材を備える内燃機関が開示されている。特許文献1の内燃機関では、排気通路の内壁に隣接して断熱材が配置され、高温の作動ガス(排気ガス)が、断熱材が形成する流路に沿って流れるように構成されている。断熱材は、平均粒径が0.1~3μmの球状メソポーラスシリカ(MSS)粒子の各粒子が接合材を介して密集した状態で積層されている。MSS粒子には、平均孔径1~10nmのメソ孔が無数に形成されている。これにより、断熱性能を発揮する。 A heat insulating film for improving heat insulation efficiency and flame retardancy by forming on the surface is desired. Patent Document 1 discloses an internal combustion engine including a structural member with improved heat insulation performance. In the internal combustion engine of Patent Document 1, a heat insulating material is disposed adjacent to the inner wall of the exhaust passage, and high-temperature working gas (exhaust gas) flows along a flow path formed by the heat insulating material. The heat insulating material is laminated in a state where each particle of spherical mesoporous silica (MSS) particles having an average particle diameter of 0.1 to 3 μm is closely packed via a bonding material. Innumerable mesopores having an average pore diameter of 1 to 10 nm are formed in the MSS particles. Thereby, heat insulation performance is demonstrated.
 特許文献2にはアスペクト比が3以上の板状で、その最小長が0.1~50μmであり、気孔率が20~99%である多孔質板状フィラーを断熱膜に用いることが開示されている。特許文献2では、多孔質板状フィラーを有機樹脂バインダー、無機高分子バインダー、または有機無機複合バインダー等の中に分散させることで、形成されるコーティング膜(断熱膜)が断熱性を発揮している。 Patent Document 2 discloses that a porous plate-like filler having a plate shape with an aspect ratio of 3 or more, a minimum length of 0.1 to 50 μm, and a porosity of 20 to 99% is used for the heat insulating film. ing. In Patent Document 2, a porous coating filler is dispersed in an organic resin binder, an inorganic polymer binder, an organic-inorganic composite binder, or the like, so that the formed coating film (heat insulating film) exhibits heat insulating properties. Yes.
特開2011−52630号公報JP 2011-52630 A 国際公開第2013/191263号International Publication No. 2013/191263
 しかしながら、特許文献1,2に記載された粒子やフィラーを用いると、バインダー等のマトリックス成分が上記の粒子、フィラーの気孔に浸透してしまい、気孔による断熱効果が弱められ、断熱膜の熱伝導率が高くなってしまっていた。このため、さらに断熱効果の高いフィラー、及び断熱膜が求められている。 However, when the particles and fillers described in Patent Documents 1 and 2 are used, matrix components such as binder penetrate into the pores of the above-mentioned particles and filler, and the heat insulating effect by the pores is weakened, and the heat conduction of the heat insulating film The rate was getting higher. For this reason, the filler and heat insulation film | membrane with a higher heat insulation effect are calculated | required.
 本発明の課題は、断熱性能に優れた断熱膜の材料として用いることができる多孔質板状フィラー、及び断熱膜を提供することにある。 An object of the present invention is to provide a porous plate-like filler that can be used as a material for a heat insulating film excellent in heat insulating performance, and a heat insulating film.
 本発明者らは、多孔質板状フィラーの外周部に、中心部と異なる層を設けることで上記課題を解決しうることを見出した。本発明によれば、以下に示す多孔質板状フィラー、及び断熱膜が提供される。 The present inventors have found that the above-mentioned problem can be solved by providing a layer different from the central portion on the outer peripheral portion of the porous plate-like filler. According to the present invention, the following porous plate filler and heat insulating film are provided.
[1] アスペクト比が3以上の板状で、その最小長が0.5~50μmであり、全体の気孔率が20~90%であり、中心部より外周部の方が気孔率が低い多孔質板状フィラー。 [1] A plate shape with an aspect ratio of 3 or more, a minimum length of 0.5 to 50 μm, an overall porosity of 20 to 90%, and a lower porosity in the outer peripheral portion than in the central portion Plate-like filler.
[2] 前記中心部と前記外周部の母材の材料種類が同じである前記[1]に記載の多孔質板状フィラー。 [2] The porous plate filler according to [1], wherein the material types of the base material of the center portion and the outer peripheral portion are the same.
[3] 前記中心部と前記外周部の母材の材料種類が異なる前記[1]に記載の多孔質板状フィラー。 [3] The porous plate-like filler according to [1], wherein the material types of the base material of the central portion and the outer peripheral portion are different.
[4] 前記外周部は、前記中心部よりも気孔率が10%以上低い前記[1]~[3]のいずれかに記載の多孔質板状フィラー。 [4] The porous plate filler according to any one of [1] to [3], wherein the outer peripheral portion has a porosity of 10% or more lower than that of the central portion.
[5] 前記外周部の方が前記中心部よりも平均気孔径が小さい前記[1]~[4]のいずれかに記載の多孔質板状フィラー。 [5] The porous plate filler according to any one of [1] to [4], wherein the outer peripheral portion has an average pore diameter smaller than that of the central portion.
[6] 前記外周部の平均気孔径が0.1μm以下である前記[1]~[5]のいずれかに記載の多孔質板状フィラー。 [6] The porous plate filler according to any one of [1] to [5], wherein an average pore diameter of the outer peripheral portion is 0.1 μm or less.
[7] 前記外周部の厚みが1μm以上である前記[1]~[6]のいずれかに記載の多孔質板状フィラー。 [7] The porous plate filler according to any one of [1] to [6], wherein the outer peripheral portion has a thickness of 1 μm or more.
[8] 前記[1]~[7]のいずれかに記載の多孔質板状フィラーを含む断熱膜。 [8] A heat insulating film containing the porous plate filler according to any one of [1] to [7].
[9] 熱伝導率が1.5W/(m・K)以下である前記[8]に記載の断熱膜。 [9] The heat insulation film according to [8], wherein the thermal conductivity is 1.5 W / (m · K) or less.
 アスペクト比が3以上の板状で、その最小長が0.5~50μmであり、全体の気孔率が20~90%であり、中心部より外周部の方が気孔率が低い多孔質板状フィラーは、断熱性能に優れている。本発明の断熱膜は、上記の多孔質板状フィラーを含む。したがって、本発明の断熱膜は、中心部と外周部の気孔率が同じ多孔質板状フィラーを用いた場合と比べて、バインダー等のマトリックス成分の、フィラーへの浸入が少なくなることにより、熱伝導率を低くすることができる。このため、薄い断熱膜であっても、断熱性能に優れ、従来よりも断熱効果が高い。 A porous plate with an aspect ratio of 3 or more, a minimum length of 0.5 to 50 μm, an overall porosity of 20 to 90%, and a lower porosity in the outer periphery than in the center. The filler is excellent in heat insulation performance. The heat insulation film | membrane of this invention contains said porous plate-shaped filler. Therefore, the heat insulating film of the present invention is less heat intruded into the filler by a matrix component such as a binder as compared with the case where a porous plate-like filler having the same porosity in the central portion and the outer peripheral portion is used. The conductivity can be lowered. For this reason, even if it is a thin heat insulation film | membrane, it is excellent in heat insulation performance and its heat insulation effect is higher than before.
本発明の多孔質板状フィラーの一実施形態を模式的に示す斜視図である。It is a perspective view which shows typically one Embodiment of the porous plate-shaped filler of this invention. 本発明の多孔質板状フィラーの外周部、中心部を説明する図である。It is a figure explaining the outer peripheral part and center part of the porous plate-shaped filler of this invention. 本発明の他の実施形態の多孔質板状フィラーの断面図である。It is sectional drawing of the porous plate-shaped filler of other embodiment of this invention. 本発明の断熱膜の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the heat insulation film | membrane of this invention. 実施例1の断熱膜中の多孔質板状フィラーの中心部付近のSEM写真である。4 is a SEM photograph of the vicinity of the center of the porous plate filler in the heat insulating film of Example 1. 比較例1の断熱膜中の多孔質板状フィラーの中心部付近のSEM写真である。4 is a SEM photograph near the center of a porous plate-like filler in the heat insulating film of Comparative Example 1.
 以下、図面を参照しつつ本発明の実施形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.
[1]多孔質板状フィラー:
 図1Aに多孔質板状フィラー1の一実施形態を示す。本発明の多孔質板状フィラー1は、アスペクト比が3以上の板状で、その最小長が0.5~50μmであり、全体の気孔率が20~90%であり、中心部4より外周部5の方が気孔率が低い。多孔質板状フィラー1は、母材と気孔とを含む。母材の種類が多孔質板状フィラー1の中心部4と違う層(材料が異種の場合)が外周部5であり、外周部5は、中心部4よりも気孔率が低い。言い換えると、材料が異種の場合、中心部4から外周に向けて材料種類を特定していった際に、変化したところから最外周までを外周部5とする。母材が一種類の材料で多孔質板状フィラー1が形成されている場合(中心部4と外側の層との材料が同種の場合)、多孔質板状フィラー1の外形に対して相似で内側に80%縮小した領域を中心部4とし、それ以外の外側20%を外周部5とする(図1B)。外周部5は、中心部4よりも気孔率が低いが、作製方法等によっては、中心部4と外側の層との材料が同種の場合においても、異種の場合においても、最小長方向に対し垂直な方向(図の左右方向)の外周部5が20%よりも薄い場合もある(図1C)。したがって、外周部5の気孔率は、最小長方向において、測定する方がよい。
[1] Porous plate filler:
FIG. 1A shows an embodiment of the porous plate filler 1. The porous plate-like filler 1 of the present invention has a plate shape with an aspect ratio of 3 or more, a minimum length of 0.5 to 50 μm, an overall porosity of 20 to 90%, and an outer periphery from the central portion 4. Part 5 has a lower porosity. The porous plate-like filler 1 includes a base material and pores. A layer having a different base material from the central portion 4 of the porous plate-like filler 1 (when the materials are different) is the outer peripheral portion 5, and the outer peripheral portion 5 has a lower porosity than the central portion 4. In other words, when the materials are different, when the material type is specified from the central portion 4 toward the outer periphery, the changed portion to the outermost periphery is defined as the outer peripheral portion 5. When the porous plate-like filler 1 is formed of a single type of base material (when the material of the central portion 4 and the outer layer is the same type), it is similar to the outer shape of the porous plate-like filler 1 The area reduced 80% on the inner side is defined as the central part 4, and the other 20% on the other side is defined as the outer peripheral part 5 (FIG. 1B). The outer peripheral portion 5 has a lower porosity than the central portion 4, but depending on the manufacturing method, the material of the central portion 4 and the outer layer may be the same type or different types, with respect to the minimum length direction. The outer peripheral portion 5 in the vertical direction (left-right direction in the figure) may be thinner than 20% (FIG. 1C). Therefore, it is better to measure the porosity of the outer peripheral portion 5 in the minimum length direction.
 本明細書において、アスペクト比とは、多孔質板状フィラー1の最大長/最小長で定義される。ここで最大長とは、粒子(多孔質板状フィラー1)を一組の平行な面ではさんだときに最大となる長さである。また、最小長とは同様に粒子を一組の平行な面ではさんだときに最小となる長さのことであり、平板状である場合はいわゆる厚さに相当する。多孔質板状フィラー1の板状とは、アスペクト比が3以上でその最小長が0.5~50μmであるものであれば、平板状(平らで湾曲していない板)のみならず、湾曲した板状のものや、厚み(最小長)が一定ではない板状のものも含まれる。また、多孔質板状フィラー1は、繊維状、針状、塊状等の形状でもよい。このうち、多孔質板状フィラー1は、平板状であることが好ましい。また、板の面形状は、正方形、四角形、三角形、六角形、円形等のいずれの形状であってもよい。つまり、多孔質板状フィラー1は、平板状であれば、どのような形状であってもよい。 In this specification, the aspect ratio is defined by the maximum length / minimum length of the porous plate-like filler 1. Here, the maximum length is the maximum length when the particles (porous plate filler 1) are sandwiched between a pair of parallel surfaces. Similarly, the minimum length is the minimum length when the particles are sandwiched between a pair of parallel surfaces, and corresponds to a so-called thickness in the case of a flat plate shape. The plate shape of the porous plate filler 1 is not only flat plate (flat and uncurved plate) but also curved as long as the aspect ratio is 3 or more and the minimum length is 0.5 to 50 μm. And a plate-like material whose thickness (minimum length) is not constant are also included. Further, the porous plate-like filler 1 may have a fiber shape, a needle shape, a lump shape, or the like. Among these, it is preferable that the porous plate-like filler 1 has a flat plate shape. Further, the surface shape of the plate may be any shape such as a square, a square, a triangle, a hexagon, and a circle. That is, the porous plate-like filler 1 may have any shape as long as it is flat.
 多孔質板状フィラー1のアスペクト比は、3以上であることが好ましい。アスペクト比は、大きければ大きいほど断熱膜3を形成した際に、伝熱経路が屈折して長くなり断熱膜3の熱伝導率が低くなる。しかしながら、アスペクト比が大きすぎると、製造上の取扱いが困難となり、歩留まりが悪くなることがある。例えば、アスペクト比を大きくするために最小長を短くすると、強度を十分なものとできなくなることがある。一方、最大長を長くすると、多孔質板状フィラー1が大きくなり、破損することがある。このためアスペクト比は、より好ましくは3以上50以下、さらに好ましくは3.5以上40以下、最も好ましくは4以上30以下である。 The aspect ratio of the porous plate filler 1 is preferably 3 or more. The larger the aspect ratio, the longer the heat transfer path is refracted and the heat conductivity of the heat insulating film 3 becomes lower when the heat insulating film 3 is formed. However, when the aspect ratio is too large, handling in manufacturing becomes difficult, and the yield may be deteriorated. For example, if the minimum length is shortened to increase the aspect ratio, the strength may not be sufficient. On the other hand, if the maximum length is increased, the porous plate-like filler 1 becomes large and may be damaged. Therefore, the aspect ratio is more preferably 3 to 50, further preferably 3.5 to 40, and most preferably 4 to 30.
 多孔質板状フィラー1の最小長は、0.5~50μm、より好ましくは、0.5~20、さらに好ましくは2~15μm、最も好ましくは、5~15μmである。0.5~50μmの場合、アスペクト比が大きくなるため、断熱膜3を形成した際に積層しやすく、熱伝導率を下げることができる。また、5~50μmの場合、最小長が大きいため、多孔質板状フィラー1の強度を十分なものとすることができ、ハンドリングに適し、歩留まりが高くなる。最小長を0.5μm以上とすることにより、多孔質板状フィラー1の強度を十分なものとすることができ、ハンドリングに適する。具体的には、多孔質板状フィラー1は、薄すぎると多孔質板状フィラー1の製造工程中に多孔質板状フィラー1の形状を保つことが困難となることがある。しかし、最小長を0.5μm以上とすることにより、多孔質板状フィラー1を断熱膜形成用のコーティング組成物にする工程等において、多孔質板状フィラー1が割れることを防止する強度とすることができる。また、最小長を50μm以下とすることにより、断熱性を発揮するための十分な厚さを確保しつつ、多孔質板状フィラー1を含む断熱膜3を形成する場合に、積層体を上手く形成することができる。多孔質板状フィラー1は、厚すぎると断熱膜3を形成した際に断熱膜3に含まれる多孔質板状フィラー1の積層数が減ることで、伝熱経路が直線になることで短くなりやすく、断熱膜3の熱伝導率が高くなることがある。 The minimum length of the porous plate-like filler 1 is 0.5 to 50 μm, more preferably 0.5 to 20, further preferably 2 to 15 μm, and most preferably 5 to 15 μm. In the case of 0.5 to 50 μm, since the aspect ratio becomes large, it is easy to stack when the heat insulating film 3 is formed, and the thermal conductivity can be lowered. In the case of 5 to 50 μm, since the minimum length is large, the strength of the porous plate-like filler 1 can be made sufficient, which is suitable for handling and the yield is increased. By setting the minimum length to 0.5 μm or more, the strength of the porous plate-like filler 1 can be made sufficient, which is suitable for handling. Specifically, if the porous plate-like filler 1 is too thin, it may be difficult to maintain the shape of the porous plate-like filler 1 during the manufacturing process of the porous plate-like filler 1. However, by setting the minimum length to 0.5 μm or more, the strength to prevent the porous plate-like filler 1 from cracking in the process of making the porous plate-like filler 1 into a coating composition for forming a heat insulating film, etc. be able to. Further, when the heat insulating film 3 including the porous plate-like filler 1 is formed while ensuring a sufficient thickness for exhibiting heat insulating properties by setting the minimum length to 50 μm or less, the laminate can be formed well. can do. If the porous plate-like filler 1 is too thick, the number of layers of the porous plate-like filler 1 contained in the heat insulating film 3 is reduced when the heat insulating film 3 is formed, so that the heat transfer path becomes straight and shortens. It is easy and the heat conductivity of the heat insulation film 3 may become high.
 多孔質板状フィラー1は、全体の気孔率が20~90%であることが好ましい。全体の気孔率を90%以下とすることにより、強度を確保することができる。本明細書において、フィラー全体の気孔率は、次の式により求めたものである。
 気孔率(%)=(1−(見かけ粒子密度/真密度))×100
 上記の式において、見かけ粒子密度は、水銀を用いた液浸法により測定する。また、真密度は、多孔質板状フィラー1を十分に粉砕した後、ピクノメータ法で測定する。
The porous plate-like filler 1 preferably has an overall porosity of 20 to 90%. By setting the overall porosity to 90% or less, the strength can be ensured. In this specification, the porosity of the whole filler is obtained by the following formula.
Porosity (%) = (1− (apparent particle density / true density)) × 100
In the above formula, the apparent particle density is measured by an immersion method using mercury. The true density is measured by a pycnometer method after sufficiently pulverizing the porous plate filler 1.
 多孔質板状フィラー1の全体の気孔率は、好ましくは20~90%、より好ましくは40~85%、さらに好ましくは50~80%である。気孔率が低すぎるとフィラーの熱伝導率が高くなることがあり、気孔率が高すぎるとフィラーの強度が弱くなることがある。 The overall porosity of the porous plate-like filler 1 is preferably 20 to 90%, more preferably 40 to 85%, and still more preferably 50 to 80%. If the porosity is too low, the thermal conductivity of the filler may be high, and if the porosity is too high, the strength of the filler may be weak.
 多孔質板状フィラー1において、外周部5の気孔率は中心部4の気孔率よりも低いほうが好ましく、10%以上低いことが更に好ましく、20%以上低いことが特に好ましい。本明細書において、中心部4及び外周部5の気孔率は、フィラーの最小長に平行な断面をFIBでサンプリングしてFE−SEMで観察して得られる微構造の画像を用いて計測する。これを無作為に10個のフィラーで行って平均値を出し、それぞれの気孔率とする。 In the porous plate-like filler 1, the porosity of the outer peripheral portion 5 is preferably lower than the porosity of the central portion 4, more preferably 10% or more, and particularly preferably 20% or more. In the present specification, the porosity of the central portion 4 and the outer peripheral portion 5 is measured using a microstructure image obtained by sampling a cross section parallel to the minimum length of the filler with an FIB and observing with a FE-SEM. This is done randomly with 10 fillers, and an average value is obtained, which is the respective porosity.
 多孔質板状フィラー1は、外周部5の方が中心部4より平均気孔径が小さいほうが好ましく、外周部5の平均気孔径が0.1μm以下であることが更に好ましい。本明細書において、中心部4及び外周部5の気孔径は、フィラーの最小長に平行な断面をFIBでサンプリングしてFE−SEMで観察して得られる微構造の画像を用いて計測する。これを無作為に10個のフィラーで行い平均値を出し、それぞれの平均気孔径とする。 In the porous plate-like filler 1, the outer peripheral portion 5 is preferably smaller in average pore diameter than the central portion 4, and the outer peripheral portion 5 preferably has an average pore diameter of 0.1 μm or less. In the present specification, the pore diameters of the central portion 4 and the outer peripheral portion 5 are measured using a microstructure image obtained by sampling a cross section parallel to the minimum length of the filler with an FIB and observing with a FE-SEM. This is performed randomly with 10 fillers, and an average value is obtained to obtain the average pore diameter.
 外周部5の厚みが1μm以上であることが好ましい。なお、外周部5の厚みとは、最小長方向における、中心部4の上側の厚みt、または下側の厚みtである(図1B、図1C参照)。外周部5の厚みは、より好ましくは、1~10μm、さらに好ましくは、1~7μmである。1μm以上にすることにより、中心部4へのマトリックス3mの浸入を防ぐことができる。仮に外周部5に大きな気孔があった場合でも、外周部5の厚みを1μm以上にすることにより中心部4までマトリックス3mが浸入しなくなる。一方、外周部5を10μm以下とすることにより、低気孔率な部分、つまり高熱伝導率な部分が増えてしまうことを防止することができる。つまり、外周部5の厚みをこの範囲とすることにより、断熱効果をより発揮させることができる。 The thickness of the outer peripheral part 5 is preferably 1 μm or more. In addition, the thickness of the outer peripheral part 5 is the thickness t 1 on the upper side of the center part 4 or the thickness t 2 on the lower side in the minimum length direction (see FIGS. 1B and 1C). The thickness of the outer peripheral portion 5 is more preferably 1 to 10 μm, still more preferably 1 to 7 μm. By setting it to 1 μm or more, it is possible to prevent the matrix 3 m from entering the central portion 4. Even if there are large pores in the outer peripheral portion 5, the matrix 3 m does not enter the central portion 4 by setting the thickness of the outer peripheral portion 5 to 1 μm or more. On the other hand, by setting the outer peripheral portion 5 to 10 μm or less, it is possible to prevent an increase in the low porosity portion, that is, the high thermal conductivity portion. That is, the heat insulation effect can be exhibited more by making the thickness of the outer peripheral part 5 into this range.
 このような多孔質板状フィラー1が、後述するように断熱膜3に含まれることにより、断熱効果を向上させることができる。 The heat insulating effect can be improved by including such a porous plate-like filler 1 in the heat insulating film 3 as described later.
 以下、中心部4より外周部5の方が気孔率が低い多孔質板状フィラー1の実施形態として、第一の実施形態、及び第二の実施形態を説明する。 Hereinafter, the first embodiment and the second embodiment will be described as embodiments of the porous plate filler 1 in which the outer peripheral portion 5 has a lower porosity than the central portion 4.
[1−1]第一の実施形態:
 第一の実施形態として、多孔質板状フィラー1の中心部4と外周部5の母材の材料種類が同じ方が好ましい。なお、多孔質板状フィラー1に添加材が含まれている場合でも、中心部4と外周部5の母材の材料種類が同じであれば、第一の実施形態に含まれる。断熱材料として使用されるフィラーの中心部4には熱伝導率の低い材料が用いられている。これと同じ材料を外周部5に使用することで、熱伝導率の低いフィラーを得ることができる。
[1-1] First embodiment:
As the first embodiment, it is preferable that the material types of the base material of the central portion 4 and the outer peripheral portion 5 of the porous plate filler 1 are the same. Even if the porous plate-like filler 1 contains an additive, it is included in the first embodiment as long as the material types of the base material of the central portion 4 and the outer peripheral portion 5 are the same. A material having a low thermal conductivity is used for the central portion 4 of the filler used as a heat insulating material. By using the same material for the outer peripheral portion 5, a filler having a low thermal conductivity can be obtained.
 なお、母材の材料種類が同じ材料種類かを確認するためには、中心部4及び外周部5それぞれのFE−SEM観察において元素分析(EDS)を行い、同じ種類の元素が検出されるか、気孔以外の部分がどのような組成であるかを調べる。例えば、ZrとOが主に検出されれば、ZrとOの材料(ジルコニア)と判断する。この場合、添加材または不純物として、少量Siが検出されても、大部分がZrとOであるならばZrとOの材料(ジルコニア)と判断する。 In addition, in order to confirm whether the material type of the base material is the same material type, element analysis (EDS) is performed in the FE-SEM observation of each of the central part 4 and the outer peripheral part 5, and the same kind of element is detected. The composition other than the pores is examined. For example, if Zr and O are mainly detected, it is determined that the material is Zr and O (zirconia). In this case, even if a small amount of Si is detected as an additive or impurity, if it is mostly Zr and O, it is determined that the material is Zr and O (zirconia).
 中心部4と外周部5とを同種材料で形成する場合、中心部4も外周部5も熱伝導率の低い材料を用いることが好ましく、これにより多孔質板状フィラー1全体の熱伝導率を低くすることができる。中心部4と外周部5とを同種材料で形成する場合、無機材料、有機材料、あるいは無機材料と有機材料の複合材料であってもよい。中でも、ジルコニア、部分安定化ジルコニア(例えば、イットリア部分安定化ジルコニア)、完全安定化ジルコニア(例えば、イットリア完全安定化ジルコニア)、酸化イットリウム、アルミナ、シリカ、チタニア、酸化ニオブ、酸化ストロンチウム、酸化ランタン、ジルコニウム、イットリア、アルミニウム、ケイ素、チタン、ニオブ、ストロンチウム、ランタン、希土類ジルコン酸塩(例えば、ランタンジルコネート)、希土類ケイ酸塩(例えば、イットリウムシリケート)、ニオブ酸塩(例えば、ニオブ酸ストロンチウム)、ムライト、雲母、膨潤性雲母、スピネル、ジルコン、マグネシア、セリア、炭化ケイ素、窒化ケイ素、窒化アルミニウム、炭酸ストロンチウム、モンモリロナイトなどのスメクタイト系粘土鉱物、ハイドロタルサイトのような層状複水酸化物等の無機材料であることが好ましく、ジルコニア、部分安定化ジルコニア(例えば、イットリア部分安定化ジルコニア)、完全安定化ジルコニア(例えば、イットリア完全安定化ジルコニア)、酸化イットリウム、アルミナ、シリカ、チタニア、酸化ニオブ、酸化ストロンチウム、酸化ランタン等の金属酸化物であることがより好ましい。これらは1種類だけでなく2種類以上を組み合わせて用いても良い。しかし、中心部4、外周部5の材料は、これらに限定されるものではない。 When the central part 4 and the outer peripheral part 5 are formed of the same kind of material, it is preferable to use a material having a low thermal conductivity for both the central part 4 and the outer peripheral part 5, thereby reducing the thermal conductivity of the entire porous plate-like filler 1. Can be lowered. In the case where the central portion 4 and the outer peripheral portion 5 are formed of the same material, an inorganic material, an organic material, or a composite material of an inorganic material and an organic material may be used. Among them, zirconia, partially stabilized zirconia (for example, yttria partially stabilized zirconia), fully stabilized zirconia (for example, yttria fully stabilized zirconia), yttrium oxide, alumina, silica, titania, niobium oxide, strontium oxide, lanthanum oxide, Zirconium, yttria, aluminum, silicon, titanium, niobium, strontium, lanthanum, rare earth zirconate (eg lanthanum zirconate), rare earth silicate (eg yttrium silicate), niobate (eg strontium niobate), Smectite clay minerals such as mullite, mica, swellable mica, spinel, zircon, magnesia, ceria, silicon carbide, silicon nitride, aluminum nitride, strontium carbonate, montmorillonite, hydrotal It is preferably an inorganic material such as layered double hydroxide such as yttrium, zirconia, partially stabilized zirconia (eg, yttria partially stabilized zirconia), fully stabilized zirconia (eg, yttria fully stabilized zirconia), oxidation More preferred is a metal oxide such as yttrium, alumina, silica, titania, niobium oxide, strontium oxide, lanthanum oxide. These may be used alone or in combination of two or more. However, the material of the center part 4 and the outer peripheral part 5 is not limited to these.
[1−2]第二の実施形態:
 第二の実施形態として、多孔質板状フィラー1の中心部4と外周部5の母材の材料種類が異なる方が好ましい。外周部5は、低温で焼結しやすい材料を採用することが好ましい。外周部5に低温で焼結しやすい異なる材料を用いることにより焼結(緻密化)が進み、中心部4との気孔率差が大きくなる。中心部4と外周部5とを異種材料で形成する場合、中心部4としては、第一の実施形態と同様の材料を採用することができる。また、外周部5としても、第一の実施形態と同様の材料を採用することができ、加えて、鉄、銀、ニッケル、銅、チタン、クロム、マンガン、コバルト、亜鉛、モリブデンなどの金属を採用することもできる。しかし、中心部4、外周部5の材料は、これらに限定されるものではない。
[1-2] Second embodiment:
As the second embodiment, it is preferable that the material types of the base materials of the central portion 4 and the outer peripheral portion 5 of the porous plate-like filler 1 are different. The outer peripheral portion 5 is preferably made of a material that can be easily sintered at a low temperature. Sintering (densification) proceeds by using different materials that are easily sintered at a low temperature for the outer peripheral portion 5, and the porosity difference from the central portion 4 becomes large. When the central portion 4 and the outer peripheral portion 5 are formed of different materials, the same material as that of the first embodiment can be adopted as the central portion 4. Further, the same material as that of the first embodiment can be used for the outer peripheral portion 5, and in addition, a metal such as iron, silver, nickel, copper, titanium, chromium, manganese, cobalt, zinc, and molybdenum can be used. It can also be adopted. However, the material of the center part 4 and the outer peripheral part 5 is not limited to these.
[2]多孔質板状フィラーの製造方法:
 本発明の多孔質板状フィラー1の製造方法の一の実施形態は、グリーンシート形成用スラリー及び外周部形成用スラリーを調製するスラリー調製工程と、グリーンシートを形成するグリーンシート形成工程と、グリーンシートを解砕する解砕工程と、フィラーの外周部5を形成する外周部形成工程と、それを焼成し多孔質板状フィラー1を得る焼成工程と、を有する。
[2] Method for producing porous plate filler:
One embodiment of the method for producing the porous plate-like filler 1 of the present invention includes a slurry preparing step for preparing a green sheet forming slurry and a peripheral portion forming slurry, a green sheet forming step for forming a green sheet, and a green A crushing step for crushing the sheet, an outer peripheral portion forming step for forming the outer peripheral portion 5 of the filler, and a firing step for firing the sheet to obtain the porous plate-like filler 1.
 上記スラリー調製工程は、セラミックス粉末、及び造孔材を含むグリーンシート形成用スラリー、及び外周部形成用スラリーを調製する工程である。上記グリーンシート形成工程は、グリーンシート形成用スラリーを膜状に形成してグリーンシートを形成する工程である。上記解砕工程は、グリーンシートを解砕してフィラー状グリーンシートを得る工程である。上記外周部形成工程は、形成したフィラー状グリーンシートの外周に外周部5を形成し2層構造グリーンシートを得る工程である。上記焼成工程は、2層構造グリーンシートを焼成して多孔質板状フィラー1を得る工程である。なお、上記解砕工程は、上記外周部形成工程の後でもよい。 The slurry preparation step is a step of preparing a ceramic powder, a green sheet forming slurry containing a pore former, and a peripheral portion forming slurry. The green sheet forming step is a step of forming a green sheet by forming a slurry for forming a green sheet into a film shape. The said crushing process is a process of crushing a green sheet and obtaining a filler-like green sheet. The said outer peripheral part formation process is a process of forming the outer peripheral part 5 in the outer periphery of the formed filler-like green sheet, and obtaining a 2 layer structure green sheet. The firing step is a step of obtaining a porous plate-like filler 1 by firing a two-layer structure green sheet. In addition, the said crushing process may be after the said outer peripheral part formation process.
 このような多孔質板状フィラー1の製造方法は、上記各工程を有するため、断熱性能に優れた断熱膜3の材料として用いることができる多孔質板状フィラー1を製造することができる。以下、各工程について詳しく説明する。 Since the manufacturing method of such a porous plate-like filler 1 includes the above steps, the porous plate-like filler 1 that can be used as a material of the heat insulating film 3 having excellent heat insulating performance can be manufactured. Hereinafter, each step will be described in detail.
[2−1]スラリー調製工程:
 セラミックス粉末に、造孔材、バインダー、可塑剤、溶媒等を加えてボールミル等によって混合することにより、グリーンシート形成用スラリー及び外周部形成用スラリーを調製する。
[2-1] Slurry preparation process:
A green sheet forming slurry and an outer peripheral portion forming slurry are prepared by adding a pore former, a binder, a plasticizer, a solvent and the like to the ceramic powder and mixing them by a ball mill or the like.
 セラミックス粉末としては、ジルコニア粉末、部分安定化ジルコニア粉末(例えば、イットリア部分安定化ジルコニア粉末)、完全安定化ジルコニア粉末(例えば、イットリア完全安定化ジルコニア粉末)、アルミナ粉末、シリカ粉末、チタニア粉末、酸化ランタン粉末、イットリア粉末、希土類ジルコン酸塩粉末(例えば、ランタンジルコネート粉末)、希土類ケイ酸塩粉末(例えば、イットリウムシリケート粉末)、ニオブ酸塩粉末(例えば、ニオブ酸ストロンチウム粉末)、ムライト粉末、スピネル粉末、ジルコン粒子、マグネシア粉末、イットリア粉末、セリア粉末、炭化ケイ素粉末、窒化ケイ素粉末、窒化アルミニウム粉末等を用いることができる。これらは1種類だけでなく2種類以上を組み合わせて用いても良い。また、粉末は乾燥粉末に限らず、水や有機溶媒中に分散したコロイド状態(ゾル状態)のものを用いても良い。造孔材としては、ラテックス粒子、メラミン樹脂粒子、PMMA粒子、ポリエチレン粒子、ポリスチレン粒子、カーボンブラック粒子、黒鉛、発泡樹脂、吸水性樹脂等を用いることができ、形は球状、板状、ファイバー状等である。バインダーとしては、ポリビニルブチラール樹脂(PVB)、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリアクリル樹脂等を用いることができる。可塑剤としては、DBP(フタル酸ジブチル)、DOP(フタル酸ジオクチル)等を用いることができる。溶媒としては、キシレン、1−ブタノール等を用いることができる。 Ceramic powders include zirconia powder, partially stabilized zirconia powder (eg, yttria partially stabilized zirconia powder), fully stabilized zirconia powder (eg, yttria fully stabilized zirconia powder), alumina powder, silica powder, titania powder, oxidation Lanthanum powder, yttria powder, rare earth zirconate powder (eg lanthanum zirconate powder), rare earth silicate powder (eg yttrium silicate powder), niobate powder (eg strontium niobate powder), mullite powder, spinel Powder, zircon particles, magnesia powder, yttria powder, ceria powder, silicon carbide powder, silicon nitride powder, aluminum nitride powder, and the like can be used. These may be used alone or in combination of two or more. Further, the powder is not limited to a dry powder, and a powder in a colloidal state (sol state) dispersed in water or an organic solvent may be used. As the pore former, latex particles, melamine resin particles, PMMA particles, polyethylene particles, polystyrene particles, carbon black particles, graphite, foamed resin, water absorbent resin, etc. can be used, and the shape is spherical, plate-like, fiber-like Etc. As the binder, polyvinyl butyral resin (PVB), polyvinyl alcohol resin, polyvinyl acetate resin, polyacrylic resin, or the like can be used. As the plasticizer, DBP (dibutyl phthalate), DOP (dioctyl phthalate), or the like can be used. As the solvent, xylene, 1-butanol and the like can be used.
 外周部5の気孔率を低くするために、外周部形成用スラリーは、グリーンシート形成用スラリーより造孔材の量を減らすことが好ましい。また、外周部形成用スラリーに用いるセラミックス粉末は低温で焼結し易い材料を選択することが好ましく、例えば、シリカ、酸化亜鉛などを用いることが好ましいが、これに限定されるものではない。 In order to reduce the porosity of the outer peripheral portion 5, it is preferable that the outer peripheral portion forming slurry has a smaller amount of pore former than the green sheet forming slurry. Moreover, it is preferable to select a material that can be easily sintered at a low temperature as the ceramic powder used for the outer peripheral portion forming slurry. For example, silica, zinc oxide, and the like are preferably used, but are not limited thereto.
[2−2]グリーンシート形成工程:
 上記グリーンシート形成用スラリーに真空脱泡処理を施すことにより、粘度を100~10000cpsに調整する。その後、ドクターブレード装置によって、焼成後の厚さが0.5~100μmとなるようにグリーンシートを形成し、(0.5~200)mm×(0.5~200)mmの寸法に外形切断を行う。
[2-2] Green sheet forming step:
The viscosity is adjusted to 100 to 10000 cps by subjecting the green sheet forming slurry to a vacuum defoaming treatment. Thereafter, a green sheet is formed by a doctor blade device so that the thickness after firing becomes 0.5 to 100 μm, and the outer shape is cut to a size of (0.5 to 200) mm × (0.5 to 200) mm. I do.
[2−3]解砕工程:
 グリーンシートを解砕する方法としては、例えば、乾式ビーズミル、ローラーミルなどを用いてグリーンシートを室温で解砕することができる。特に、「アスペクト比が3以上の板状で、最小長が0.5~50μmである」多孔質粒子を得るためには、気流式分級機を用い、整粒(分級)することが好ましい。グリーンシートを解砕してフィラー状グリーンシートを得る。
[2-3] Crushing step:
As a method for crushing the green sheet, for example, the green sheet can be crushed at room temperature using a dry bead mill, a roller mill or the like. In particular, in order to obtain a porous particle having a plate shape with an aspect ratio of 3 or more and a minimum length of 0.5 to 50 μm, it is preferable to use an airflow classifier to perform sizing (classification). The green sheet is crushed to obtain a filler-like green sheet.
[2−4]外周部形成工程:
 外周部5を形成する方法としては、例えば、ディップ成形、スパッタ、めっき、流動層コーティング、転動コーティングなどが挙げられ、いずれの方法であってもよいが、ディップ成形を例に説明する。
[2-4] Outer peripheral part forming step:
Examples of the method for forming the outer peripheral portion 5 include dip molding, sputtering, plating, fluidized bed coating, rolling coating, and the like. Any method may be used, but dip molding will be described as an example.
 上記スラリー調製工程で作製した外周部形成用スラリーに、上記解砕工程で作製したフィラー状グリーンシートをディップすることで外周部5を形成する。焼成前に外周部5を形成すると、造孔材が存在し気孔がまだ形成されていないため、外周部形成用スラリーのフィラー1の中心部4への浸漬を防ぐことができる。 The outer periphery 5 is formed by dipping the filler-like green sheet prepared in the crushing step on the outer periphery forming slurry prepared in the slurry preparation step. If the outer peripheral portion 5 is formed before firing, the pore-forming material is present and pores are not yet formed. Therefore, the outer peripheral portion forming slurry can be prevented from being immersed in the central portion 4 of the filler 1.
[2−5]焼成工程:
 外周部形成用スラリーを付着させた2層構造グリーンシートの焼成条件は、適宜設定することができる。例えば、大気中にて800~2300℃で0.5~20時間とすることが好ましく、800~1800℃で5~20時間であることが更に好ましく、800~1300℃で5~20時間であることが特に好ましい。
[2-5] Firing step:
The firing conditions of the two-layer structure green sheet to which the outer peripheral portion forming slurry is adhered can be appropriately set. For example, it is preferably 0.5 to 20 hours at 800 to 2300 ° C. in the air, more preferably 5 to 20 hours at 800 to 1800 ° C., and 5 to 20 hours at 800 to 1300 ° C. It is particularly preferred.
[3]断熱膜:
 本発明の断熱膜3は、本発明の多孔質板状フィラー1を材料として含むものである。このような断熱膜3は、断熱性能に優れている。
[3] Thermal insulation film:
The heat insulating film 3 of the present invention includes the porous plate-like filler 1 of the present invention as a material. Such a heat insulating film 3 is excellent in heat insulating performance.
 図2を用いて、断熱膜3を説明する。図2は、本発明の断熱膜3の一実施形態を模式的に示す膜厚方向に平行な断面図である。断熱膜3は、基材8上に形成され、本発明の一実施形態の多孔質板状フィラー1と、この多孔質板状フィラー1を分散させるマトリックス3mと、を有している。つまり、多孔質板状フィラー1が、この多孔質板状フィラー1を結合するためのマトリックス3mに分散して配置されている。マトリックス3mとは、多孔質板状フィラー1の周囲やこれらの粒子間に存在する成分であり、これらの粒子間を結合する成分である。 The heat insulating film 3 will be described with reference to FIG. FIG. 2 is a cross-sectional view parallel to the film thickness direction schematically showing one embodiment of the heat insulating film 3 of the present invention. The heat insulating film 3 is formed on the base material 8 and includes the porous plate-like filler 1 according to an embodiment of the present invention and a matrix 3m in which the porous plate-like filler 1 is dispersed. That is, the porous plate-like filler 1 is disposed in a dispersed manner in the matrix 3m for bonding the porous plate-like filler 1. The matrix 3m is a component that exists around the porous plate-like filler 1 and between these particles, and is a component that binds between these particles.
 本発明の断熱膜3は、多孔質板状フィラー1が層状に配置(積層)されていることが好ましい。ここで言う層状に配置とは、多孔質板状フィラー1の最小長の方向が、断熱膜3の厚さ方向と平行になる方向に、多数の多孔質板状フィラー1が配向した状態でマトリックス3m中に存在することを言う。なお、このとき、多孔質板状フィラー1の位置(重心の位置)は、断熱膜3のX、Y、Z方向(ただし、Z方向を厚さ(膜厚)方向とする)に整然と周期的に配置される必要はなく、ランダムに存在していても問題ない。積層数は1以上であれば問題ないが、積層数が多い方が好ましく、5以上であることが望ましい。多孔質板状フィラー1が断熱膜3の中で、層状に積層されていることにより、伝熱経路が屈折して長くなり、断熱効果を向上させることができる。特に、多孔質板状フィラー1の位置は、図2に示すように、Z方向に整然と並んでいない方が(互い違いにずれている方が)、伝熱経路がより屈折して長くなるため、好ましい。 In the heat insulating film 3 of the present invention, the porous plate-like filler 1 is preferably arranged (laminated) in layers. The term “layered arrangement” as used herein refers to a matrix in which a number of porous plate-like fillers 1 are oriented in a direction in which the minimum length of the porous plate-like filler 1 is parallel to the thickness direction of the heat insulating film 3. It says that it exists in 3m. At this time, the position (position of the center of gravity) of the porous plate filler 1 is regularly and periodically arranged in the X, Y, and Z directions of the heat insulating film 3 (where the Z direction is the thickness (film thickness) direction). It is not necessary to be arranged in the space, and there is no problem even if they are present at random. There is no problem as long as the number of stacked layers is 1 or more, but a larger number of stacked layers is preferable, and 5 or more is desirable. By laminating the porous plate-like filler 1 in the heat insulating film 3, the heat transfer path is refracted and lengthened, and the heat insulating effect can be improved. In particular, as shown in FIG. 2, the position of the porous plate-like filler 1 is not aligned in the Z direction (which is shifted alternately), because the heat transfer path is refracted and becomes longer, preferable.
 図2に示すように、熱伝導率が高いマトリックス3m部分が主な伝熱経路となるが、本発明の断熱膜3は、多孔質板状フィラー1を含み、伝熱経路は、熱を伝えたくない方向(膜厚方向)に対して迂回が多くなる。すなわち、伝熱経路の長さが長くなるため、熱伝導率を低くすることができる。また、マトリックス3mを介した多孔質板状フィラー1間の結合面積は、球状フィラーよりも広くなるため、断熱膜全体の強度が高められ、エロージョンや剥離などが起こりにくくなる。 As shown in FIG. 2, the matrix 3m portion having a high thermal conductivity is the main heat transfer path, but the heat insulating film 3 of the present invention includes the porous plate-like filler 1, and the heat transfer path transfers heat. There are many detours in the direction (thickness direction) that you do not want. That is, since the length of the heat transfer path is increased, the thermal conductivity can be lowered. Further, since the bonding area between the porous plate-like fillers 1 through the matrix 3m is wider than that of the spherical filler, the strength of the entire heat insulating film is increased, and erosion and peeling are less likely to occur.
 本発明の断熱膜3は、多孔質板状フィラー1の気孔にマトリックス3mが浸入していないほうが好ましい。熱伝導率が高いマトリックス3mが多孔質板状フィラー1の気孔に浸入することで多孔質板状フィラー1の熱伝導率が高くなってしまい、断熱膜3の熱伝導率が高くなってしまうからである。多孔質板状フィラー1は、中心部4より外周部5の方が気孔率が低いため、気孔にマトリックス3mが浸入しにくく、断熱膜3の断熱性能が向上する。 In the heat insulating film 3 of the present invention, it is preferable that the matrix 3m does not enter the pores of the porous plate-like filler 1. Since the matrix 3m having a high thermal conductivity enters the pores of the porous plate-like filler 1, the thermal conductivity of the porous plate-like filler 1 becomes high, and the heat conductivity of the heat insulating film 3 becomes high. It is. Since the porous plate-like filler 1 has a lower porosity in the outer peripheral portion 5 than in the central portion 4, the matrix 3 m is less likely to enter the pores, and the heat insulating performance of the heat insulating film 3 is improved.
 本発明の断熱膜3は、マトリックス3mとして、セラミックス、ガラス、及び樹脂の少なくとも一種を含むことが好ましい。耐熱性が良好となるという観点から、マトリックス3mとしてはセラミックスまたはガラスがより好ましい。より具体的には、マトリックス3mとなる材料としては、例えば、シリカ、アルミナ、ムライト、ジルコニア、チタニア、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、カルシウムシリケート、カルシウムアルミネート、カルシウムアルミノシリケート、リン酸アルミニウム、カリウムアルミノシリケート、ガラス等を挙げることができる。これらは熱伝導率が低くなるという観点から非晶質であることが好ましい。また、マトリックス3mの材料がセラミックスの場合は、マトリックス3mは、粒径が500nm以下の微粒子の集合体であることが望ましい。粒径が500nm以下の微粒子の集合体をマトリックス3mとすることにより、熱伝導率を更に低くすることができる。また、マトリックス3mとなる材料が樹脂の場合、マトリックス3mとしては、シリコーン樹脂、ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂、エポキシ樹脂等を挙げることができる。 The heat insulating film 3 of the present invention preferably contains at least one of ceramics, glass, and resin as the matrix 3m. From the viewpoint of good heat resistance, the matrix 3m is more preferably ceramics or glass. More specifically, examples of the material for forming the matrix 3m include silica, alumina, mullite, zirconia, titania, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, calcium silicate, calcium aluminate, and calcium aluminosilicate. , Aluminum phosphate, potassium aluminosilicate, glass and the like. These are preferably amorphous from the viewpoint of low thermal conductivity. When the material of the matrix 3m is ceramic, the matrix 3m is preferably an aggregate of fine particles having a particle size of 500 nm or less. By making an aggregate of fine particles having a particle diameter of 500 nm or less into the matrix 3 m, the thermal conductivity can be further lowered. Moreover, when the material used as the matrix 3m is a resin, examples of the matrix 3m include a silicone resin, a polyimide resin, a polyamide resin, an acrylic resin, and an epoxy resin.
 断熱膜3は、この断熱膜3の全体の気孔率が10~90%であり、マトリックス3mの気孔率が0~70%であることが好ましい。 The heat insulating film 3 preferably has a total porosity of 10 to 90%, and the matrix 3m has a porosity of 0 to 70%.
 断熱膜3は、厚さが0.1~5mmであることが好ましい。このような厚さとすることにより、断熱膜3によって被覆される基材8の特性に悪影響を与えることなく、断熱効果を得ることができる。なお、断熱膜3の厚さは、その用途に応じて上記範囲内で適宜選択することができる。 The heat insulating film 3 preferably has a thickness of 0.1 to 5 mm. By setting it as such thickness, the heat insulation effect can be acquired, without having a bad influence on the characteristic of the base material 8 coat | covered with the heat insulation film | membrane 3. FIG. In addition, the thickness of the heat insulation film | membrane 3 can be suitably selected within the said range according to the use.
 断熱膜3は、熱伝導率が1.5W/(m・K)以下であることが好ましく、1W/(m・K)以下が更に好ましく、0.5W/(m・K)以下が特に好ましい。このように低熱伝導率であることにより、伝熱を抑制することができる。 The heat insulating film 3 preferably has a thermal conductivity of 1.5 W / (m · K) or less, more preferably 1 W / (m · K) or less, and particularly preferably 0.5 W / (m · K) or less. . Thus, heat transfer can be suppressed by having low thermal conductivity.
 本発明の断熱膜3は、例えば、「エンジン燃焼室を構成する表面」上に形成される断熱膜3として用いることができる。また、本発明の断熱膜3は、「自動車の排気管の内壁」に形成される断熱膜3、発熱部からの熱を遮りたい場合の断熱膜3として用いることができる。 The heat insulating film 3 of the present invention can be used, for example, as the heat insulating film 3 formed on the “surface constituting the engine combustion chamber”. The heat insulating film 3 of the present invention can be used as the heat insulating film 3 formed on the “inner wall of the exhaust pipe of an automobile” or the heat insulating film 3 when it is desired to block heat from the heat generating portion.
 本発明の断熱膜3は、多孔質板状フィラー1を含むコーティング組成物を基材8(例えば、エンジン燃焼室を構成する表面、自動車の排気管の内壁等)上に塗布し、乾燥して形成させることができる。また、乾燥後に熱処理して形成させることもできる。このとき、塗布と乾燥または熱処理とを繰り返し行うことで断熱膜3を積層させて厚い断熱膜3(断熱膜の積層体)を形成することができる。または、断熱膜3を仮の基材8上に形成させた後、この仮の基材8を除去することで、単独で薄板状に形成させた断熱膜3を作製し、この断熱膜3を、目的とする基材8(「仮の基材」とは異なる基材)に接着または接合させてもよい。 The heat insulating film 3 of the present invention is applied to a substrate 8 (for example, a surface constituting an engine combustion chamber, an inner wall of an automobile exhaust pipe, etc.) containing a porous plate filler 1 and dried. Can be formed. It can also be formed by heat treatment after drying. At this time, the heat insulating film 3 can be laminated by repeatedly performing application and drying or heat treatment to form a thick heat insulating film 3 (a laminated body of heat insulating films). Or after forming the heat insulation film | membrane 3 on the temporary base material 8, by removing this temporary base material 8, the heat insulation film 3 formed in the shape of a thin plate independently is produced, and this heat insulation film | membrane 3 is produced. The target substrate 8 (a substrate different from the “temporary substrate”) may be bonded or bonded.
 コーティング組成物は、上記多孔質板状フィラー1と、無機バインダー、無機高分子、酸化物ゾル、及び水ガラスからなる群より選択される一種以上と、を含むものを用いることができる。更に、コーティング組成物は、緻密質なフィラー、粘性調整剤、溶媒、分散剤等を含んでいてもよい。 The coating composition may include the porous plate-like filler 1 and one or more selected from the group consisting of an inorganic binder, an inorganic polymer, an oxide sol, and water glass. Furthermore, the coating composition may contain a dense filler, a viscosity modifier, a solvent, a dispersant and the like.
 コーティング組成物に含まれる具体的な物質は、セメント、ベントナイト、リン酸アルミニウム、シリカゾル、アルミナゾル、ベーマイトゾル、ジルコニアゾル、チタニアゾル、オルトケイ酸テトラメチル、オルトケイ酸テトラエチル、ポリシラザン、ポリカルボシラン、ポリビニルシラン、ポリメチルシラン、ポリシロキサン、ポリシルセスキオキサン、ジオポリマー、ケイ酸ナトリウム等である。 Specific materials included in the coating composition include cement, bentonite, aluminum phosphate, silica sol, alumina sol, boehmite sol, zirconia sol, titania sol, tetramethyl orthosilicate, tetraethyl orthosilicate, polysilazane, polycarbosilane, polyvinyl silane, Polymethylsilane, polysiloxane, polysilsesquioxane, geopolymer, sodium silicate and the like.
 断熱膜3を形成するための基材8としては、金属、セラミックス、ガラス、プラスチック、木材、布、紙等を用いることができる。特に、基材8が金属の場合の例として、鉄、鉄合金、ステンレス、アルミニウム、アルミニウム合金、ニッケル合金、コバルト合金、タングステン合金、銅合金などが挙げられる。 As the base material 8 for forming the heat insulating film 3, metal, ceramics, glass, plastic, wood, cloth, paper or the like can be used. In particular, examples where the substrate 8 is a metal include iron, iron alloy, stainless steel, aluminum, aluminum alloy, nickel alloy, cobalt alloy, tungsten alloy, and copper alloy.
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
(実施例1)
 セラミックス粉末としてのジルコニア粉末に、造孔材としてカーボンブラック、バインダーとしてポリビニルブチラール樹脂(PVB)、可塑剤としてフタル酸ジオクチル(DOP)、及び、溶媒としてキシレンと1−ブタノールを加えた。これを原料組成物とした。具体的には、原料組成物として、グリーンシート形成用スラリーと外周部形成用スラリーの2つを用意した。グリーンシート形成用スラリーは、ジルコニア粉末6体積%、カーボンブラック6体積%、バインダー7体積%、可塑剤4体積%、溶媒77体積%とした。外周部形成用スラリーは、ジルコニア粉末9体積%、カーボンブラック3体積%、バインダー7体積%、可塑剤4体積%、溶媒77体積%とした。
Example 1
Carbon black as a pore former, polyvinyl butyral resin (PVB) as a binder, dioctyl phthalate (DOP) as a plasticizer, and xylene and 1-butanol as solvents were added to zirconia powder as ceramic powder. This was made into the raw material composition. Specifically, two raw material compositions were prepared: a green sheet forming slurry and an outer peripheral portion forming slurry. The slurry for forming the green sheet was 6% by volume of zirconia powder, 6% by volume of carbon black, 7% by volume of binder, 4% by volume of plasticizer, and 77% by volume of solvent. The outer peripheral portion forming slurry was 9% by volume of zirconia powder, 3% by volume of carbon black, 7% by volume of binder, 4% by volume of plasticizer, and 77% by volume of solvent.
 次に、この2つの原料組成物(スラリー)をボールミルにて30時間混合した。その後、それぞれ真空脱泡処理を行った後、粘度を4Pa・sに調整した。その後、上記グリーンシート形成用スラリーを、ドクターブレード装置によって焼成後の厚さが8μmとなるように膜状に塗工し、グリーンシートを形成した。このグリーンシートを縦50mm×横50mmの寸法となるように切断した。その後、この成形体を、乾式ビーズミルを用いて解砕した。この解砕した成形体を外周部形成用スラリーにディップすることで、2層構造グリーンシートを得た。これを600℃で5時間脱脂した後、1100℃で2時間焼成して、多孔質板状フィラー1を得た。 Next, these two raw material compositions (slurry) were mixed in a ball mill for 30 hours. Then, after performing each vacuum defoaming process, the viscosity was adjusted to 4 Pa.s. Thereafter, the slurry for forming a green sheet was applied in a film shape by a doctor blade device so that the thickness after firing was 8 μm, thereby forming a green sheet. The green sheet was cut to have a size of 50 mm long × 50 mm wide. Thereafter, this compact was pulverized using a dry bead mill. The crushed shaped body was dipped into the slurry for forming the outer peripheral portion to obtain a two-layer structure green sheet. This was degreased at 600 ° C. for 5 hours and then calcined at 1100 ° C. for 2 hours to obtain a porous plate filler 1.
 得られた多孔質板状フィラー1は、ZrO粒子の直径が50nm、平均気孔径が0.13μm、全体の気孔率が62%であった。また、得られた多孔質板状フィラー1について任意の20個を計測して平均を求めたところアスペクト比が4で、最小長が10μmであった。なお、実施例1は、焼成後の厚さが8μmとなるように形成し、外周部5形成後の最小長が10μmであるため、外周部5の厚みは、1μm(中心部4の上側の厚みtと下側の厚みtのそれぞれが1μm)である(図1B参照)。 The obtained porous platy filler 1 had a ZrO 2 particle diameter of 50 nm, an average pore diameter of 0.13 μm, and an overall porosity of 62%. Moreover, when arbitrary 20 pieces were measured about the obtained porous plate-shaped filler 1, and the average was calculated | required, the aspect-ratio was 4, and minimum length was 10 micrometers. In Example 1, since the thickness after firing is 8 μm and the minimum length after forming the outer peripheral portion 5 is 10 μm, the thickness of the outer peripheral portion 5 is 1 μm (on the upper side of the central portion 4). Each of the thickness t 1 and the lower thickness t 2 is 1 μm) (see FIG. 1B).
 次に、マトリックス材(マトリックス3mとなる材料)と多孔質板状フィラー1を体積比で20:80になるように混合してコーティング組成物を作製した。そして、このコーティング組成物を、基材8であるアルミニウム合金上に塗布し、乾燥後、200℃で2時間熱処理して、基材8上に断熱膜3(厚さ150μm)を形成した。 Next, the matrix material (material that becomes the matrix 3 m) and the porous plate-like filler 1 were mixed at a volume ratio of 20:80 to prepare a coating composition. And this coating composition was apply | coated on the aluminum alloy which is the base material 8, and after heat-drying, it heat-processed at 200 degreeC for 2 hours, and formed the heat insulation film | membrane 3 (150 micrometers in thickness) on the base material 8. FIG.
(熱伝導率)
 レーザーフラッシュ2層モデルにて断熱膜3の厚さ方向における熱伝導率を測定した。熱伝導率について、1.00W/(m・K)以下を優としてAで、1.01~1.59W/(m・K)を良としてB、1.60W/(m・K)以上を不可としてCで表1に示す。なお、エンジン燃焼室に断熱膜3を作製し、燃費が向上するための断熱効果が発揮されるかどうかを判定基準とした。
(Thermal conductivity)
The thermal conductivity in the thickness direction of the heat insulating film 3 was measured with a laser flash two-layer model. Regarding thermal conductivity, 1.00 W / (m · K) or less is A and B is 1.01 to 1.59 W / (m · K) and B is 1.60 W / (m · K) or more. It is shown in Table 1 as C. In addition, the heat insulation film | membrane 3 was produced in the engine combustion chamber, and it was set as the criteria of judgment whether the heat insulation effect for improving a fuel consumption is exhibited.
(マトリックスの浸入の有無)
 断熱膜3の膜厚方向における断面の微構造をFIBでサンプリングしてFE−SEMで観察した。図3Aに実施例1のSEM写真を示す。多孔質板状フィラー1の中心部分を観察した。フィラーの気孔に黒色のマトリックス3mが観察されなかった。つまり、多孔質板状フィラー1の中心部分にマトリックス3mが浸入していなかった。
(Presence or absence of matrix penetration)
The microstructure of the cross section in the film thickness direction of the heat insulating film 3 was sampled by FIB and observed by FE-SEM. FIG. 3A shows an SEM photograph of Example 1. The central part of the porous plate filler 1 was observed. Black matrix 3m was not observed in the pores of the filler. That is, the matrix 3 m did not enter the central portion of the porous plate filler 1.
(比較例1)
 グリーンシート形成用スラリーを、ドクターブレード装置によって焼成後の厚さが10μmとなるように膜状に塗工し、グリーンシートを形成した。解砕工程を行った後に、外周部形成工程を行わず焼成することにより、多孔質板状フィラー1を得た。比較例1は、外周部5を形成しなかった。
(Comparative Example 1)
The green sheet-forming slurry was applied in a film form with a doctor blade device so that the thickness after firing was 10 μm, to form a green sheet. After performing the crushing step, the porous plate filler 1 was obtained by firing without performing the outer peripheral portion forming step. In Comparative Example 1, the outer peripheral portion 5 was not formed.
 図3Bに比較例1のSEM写真を示す。多孔質板状フィラー1の中心部分を観察した。実施例1とは異なり、比較例1の図3Bにはフィラーの気孔に黒色のマトリックス3mが観察された。つまり、多孔質板状フィラー1の中心部分にマトリックス3mが浸入していた。 FIG. 3B shows an SEM photograph of Comparative Example 1. The central part of the porous plate filler 1 was observed. Unlike Example 1, in FIG. 3B of Comparative Example 1, black matrix 3m was observed in the pores of the filler. In other words, the matrix 3 m had entered the central portion of the porous plate filler 1.
(実施例2)
 ジルコニア粉末12体積%、カーボンブラック無添加、バインダー7体積%、可塑剤4体積%、溶媒77体積%とした外周部形成用スラリーを調合した。グリーンシート形成用スラリーは、実施例1と同じものを使用した。また、それ以外も実施例1と同様に多孔質板状フィラー1を作製した。多孔質板状フィラー1の全体の気孔率は、58%であった。
(Example 2)
A slurry for forming the outer periphery was prepared with 12% by volume of zirconia powder, no carbon black added, 7% by volume of binder, 4% by volume of plasticizer, and 77% by volume of solvent. The same green sheet forming slurry as in Example 1 was used. Other than that, the porous plate-like filler 1 was produced in the same manner as in Example 1. The porosity of the entire porous plate-like filler 1 was 58%.
(実施例3,4)
 外周部形成用スラリーのセラミックス粉末をSiOに変え、外周部形成用スラリーを調製した。外周部形成工程は焼成前に行った。なお、実施例3の外周部形成用スラリーはカーボンブラック6体積%添加、実施例4の外周部形成用スラリーはカーボンブラック無添加とした。それ以外は実施例1と同様に多孔質板状フィラー1を作製した。多孔質板状フィラー1の全体の気孔率は、実施例3は58%、実施例4は52%であった。
(Examples 3 and 4)
The ceramic powder of the outer periphery forming slurry was changed to SiO 2 to prepare an outer periphery forming slurry. The outer peripheral portion forming step was performed before firing. In addition, the outer peripheral part forming slurry of Example 3 was added with 6% by volume of carbon black, and the outer peripheral part forming slurry of Example 4 was not added with carbon black. Otherwise, a porous plate-like filler 1 was prepared in the same manner as in Example 1. The overall porosity of the porous plate-like filler 1 was 58% in Example 3 and 52% in Example 4.
(実施例5)
 外周部5を無電解のNiめっきで形成した。それ以外は実施例1と同様に多孔質板状フィラー1を作製した。多孔質板状フィラー1の全体の気孔率は52%であった。
(Example 5)
The outer peripheral part 5 was formed by electroless Ni plating. Otherwise, a porous plate-like filler 1 was prepared in the same manner as in Example 1. The porosity of the whole porous plate-like filler 1 was 52%.
(実施例6)
 実施例1のグリーンシート形成用スラリーを、ドクターブレード装置によって焼成後の厚さが35μmとなるように膜状に塗工し、グリーンシートを形成した。実施例2の外周部形成用スラリーを用いて、外周部5を形成した。多孔質板状フィラー1の全体の気孔率は63%であった。
(Example 6)
The green sheet-forming slurry of Example 1 was applied in a film shape with a doctor blade device so that the thickness after firing was 35 μm, to form a green sheet. The outer peripheral portion 5 was formed using the outer peripheral portion forming slurry of Example 2. The overall porosity of the porous plate filler 1 was 63%.
(実施例7)
 実施例4で作製した成形体を1200℃で2時間焼成した。多孔質板状フィラー1の全体の気孔率は32%であった。
(Example 7)
The molded body produced in Example 4 was fired at 1200 ° C. for 2 hours. The porosity of the entire porous plate-like filler 1 was 32%.
(実施例8~17)
 実施例3,4と同様にして、多孔質板状フィラー1を作製した。ただし、グリーンシートの厚みを変更した。またグリーンシートを切断して得られた成形体を外周部形成用スラリーにディップする時間、成形体の引き上げ速度を制御して、外周部5の厚みを変更した。多孔質板状フィラー1のアスペクト比、気孔率等は、表1に示す。
(Examples 8 to 17)
In the same manner as in Examples 3 and 4, porous plate filler 1 was produced. However, the thickness of the green sheet was changed. Further, the thickness of the outer peripheral portion 5 was changed by controlling the time for dipping the molded body obtained by cutting the green sheet into the slurry for forming the outer peripheral portion and the pulling speed of the molded body. Table 1 shows the aspect ratio, porosity, and the like of the porous plate-like filler 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 外周部5の気孔率が中心部4に比べて小さい実施例1~17の多孔質板状フィラー1は、比較例1に対し、断熱膜3にした際にマトリックス3mの気孔への浸入が減るため、熱伝導率が低下した。実施例4と実施例8,9とを比べると、アスペクト比が大きくなると、断熱膜3の熱伝導率が低下するのが分かる。実施例4と実施例10~12とを比べると、最小長が小さくなると、断熱膜3の熱伝導率が低下するのが分かる。実施例4と実施例13~15とを比べると、気孔率が大きくなると、断熱膜3の熱伝導率が低下するのが分かる。実施例4と実施例16,17とを比べると、多孔質板状フィラー1の外周部5の気孔径が大きくなると、断熱膜3の熱伝導率が大きくなるのが分かる。 The porous plate-like fillers 1 of Examples 1 to 17 in which the porosity of the outer peripheral portion 5 is smaller than that of the central portion 4 are less intruded into the pores of the matrix 3m when compared with the comparative example 1 when the heat insulating film 3 is formed. As a result, the thermal conductivity decreased. Comparing Example 4 with Examples 8 and 9, it can be seen that the thermal conductivity of the heat insulating film 3 decreases as the aspect ratio increases. Comparing Example 4 with Examples 10 to 12, it can be seen that the thermal conductivity of the heat insulating film 3 decreases as the minimum length decreases. Comparing Example 4 with Examples 13 to 15, it can be seen that the thermal conductivity of the heat insulating film 3 decreases as the porosity increases. Comparing Example 4 with Examples 16 and 17, it can be seen that the thermal conductivity of the heat insulating film 3 increases as the pore diameter of the outer peripheral portion 5 of the porous plate-like filler 1 increases.
 本発明の多孔質板状フィラーは、断熱性能に優れた断熱膜の材料として用いることができる。本発明の断熱膜は、例えば「エンジン燃焼室を構成する表面」上に形成される断熱膜として用いることができる。 The porous plate filler of the present invention can be used as a material for a heat insulating film having excellent heat insulating performance. The heat insulating film of the present invention can be used, for example, as a heat insulating film formed on the “surface constituting the engine combustion chamber”.
1:多孔質板状フィラー、3:断熱膜、3m:マトリックス、4:中心部、5:外周部、8:基材。 1: porous plate-like filler, 3: heat insulation film, 3m: matrix, 4: central part, 5: outer peripheral part, 8: base material.

Claims (9)

  1.  アスペクト比が3以上の板状で、その最小長が0.5~50μmであり、全体の気孔率が20~90%であり、中心部より外周部の方が気孔率が低い多孔質板状フィラー。 A porous plate with an aspect ratio of 3 or more, a minimum length of 0.5 to 50 μm, an overall porosity of 20 to 90%, and a lower porosity in the outer periphery than in the center. Filler.
  2.  前記中心部と前記外周部の母材の材料種類が同じである請求項1に記載の多孔質板状フィラー。 The porous plate-like filler according to claim 1, wherein the base material of the central part and the outer peripheral part are the same.
  3.  前記中心部と前記外周部の母材の材料種類が異なる請求項1に記載の多孔質板状フィラー。 The porous plate-like filler according to claim 1, wherein a material type of the base material of the central portion and the outer peripheral portion is different.
  4.  前記外周部は、前記中心部よりも気孔率が10%以上低い請求項1~3のいずれか1項に記載の多孔質板状フィラー。 The porous plate-like filler according to any one of claims 1 to 3, wherein the outer peripheral portion has a porosity of 10% or more lower than that of the central portion.
  5.  前記外周部の方が前記中心部よりも平均気孔径が小さい請求項1~4のいずれか1項に記載の多孔質板状フィラー。 The porous plate-like filler according to any one of claims 1 to 4, wherein the outer peripheral portion has an average pore diameter smaller than that of the central portion.
  6.  前記外周部の平均気孔径が0.1μm以下である請求項1~5のいずれか1項に記載の多孔質板状フィラー。 The porous plate filler according to any one of claims 1 to 5, wherein an average pore diameter of the outer peripheral portion is 0.1 µm or less.
  7.  前記外周部の厚みが1μm以上である請求項1~6のいずれか1項に記載の多孔質板状フィラー。 The porous plate-like filler according to any one of claims 1 to 6, wherein the outer peripheral portion has a thickness of 1 µm or more.
  8.  請求項1~7のいずれか1項に記載の多孔質板状フィラーを含む断熱膜。 A heat insulating film containing the porous plate-like filler according to any one of claims 1 to 7.
  9.  熱伝導率が1.5W/(m・K)以下である請求項8に記載の断熱膜。 The heat insulating film according to claim 8, wherein the thermal conductivity is 1.5 W / (m · K) or less.
PCT/JP2015/053022 2014-01-31 2015-01-28 Porous plate-shaped filler and thermal insulation film WO2015115668A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014017071 2014-01-31
JP2014-017071 2014-01-31
JP2014138921 2014-07-04
JP2014-138921 2014-07-04

Publications (1)

Publication Number Publication Date
WO2015115668A1 true WO2015115668A1 (en) 2015-08-06

Family

ID=53757233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053022 WO2015115668A1 (en) 2014-01-31 2015-01-28 Porous plate-shaped filler and thermal insulation film

Country Status (1)

Country Link
WO (1) WO2015115668A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445464A (en) * 2017-09-04 2017-12-08 咸宁南玻节能玻璃有限公司 A kind of Low emissivity tempering live-roller gear
CN109476560A (en) * 2016-07-29 2019-03-15 日本碍子株式会社 Porous ceramic particle and porous ceramic structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160907A (en) * 2000-11-22 2002-06-04 Catalysts & Chem Ind Co Ltd Spherical porous particle and its manufacturing method
JP2007182491A (en) * 2006-01-06 2007-07-19 Matsushita Electric Ind Co Ltd Resin composition
WO2010023957A1 (en) * 2008-08-29 2010-03-04 海水化学工業株式会社 Panel for external heat insulation
WO2013191263A1 (en) * 2012-06-20 2013-12-27 日本碍子株式会社 Porous plate-shaped filler, coating composition, heat-insulating film, and heat-insulating film structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160907A (en) * 2000-11-22 2002-06-04 Catalysts & Chem Ind Co Ltd Spherical porous particle and its manufacturing method
JP2007182491A (en) * 2006-01-06 2007-07-19 Matsushita Electric Ind Co Ltd Resin composition
WO2010023957A1 (en) * 2008-08-29 2010-03-04 海水化学工業株式会社 Panel for external heat insulation
WO2013191263A1 (en) * 2012-06-20 2013-12-27 日本碍子株式会社 Porous plate-shaped filler, coating composition, heat-insulating film, and heat-insulating film structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476560A (en) * 2016-07-29 2019-03-15 日本碍子株式会社 Porous ceramic particle and porous ceramic structure
CN107445464A (en) * 2017-09-04 2017-12-08 咸宁南玻节能玻璃有限公司 A kind of Low emissivity tempering live-roller gear

Similar Documents

Publication Publication Date Title
JP6562841B2 (en) Porous plate filler
JP6072787B2 (en) Porous plate filler for heat insulation, coating composition, heat insulation film, and heat insulation film structure
CN105764872B (en) Porous material and heat insulating film
JP6472384B2 (en) Thermal insulation film and thermal insulation film structure
WO2015159838A1 (en) Porous plate-like filler, heat insulation film and method for producing porous plate-like filler
JP6423360B2 (en) Thermal insulation film and thermal insulation film structure
WO2015115668A1 (en) Porous plate-shaped filler and thermal insulation film
JP6453235B2 (en) Porous plate filler and heat insulating film
JP6373866B2 (en) Thermal insulation film and thermal insulation film structure
JP6453234B2 (en) Insulation film
WO2020008561A1 (en) Porous material and heat insulation material
WO2015163249A1 (en) Porous plate-shaped filler, method for producing same, and heat insulation film
CN107848898B (en) Porous ceramic particles
WO2020008562A1 (en) Porous material and heat insulation material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP