JPS60180911A - High-purity silica and its manufacture - Google Patents

High-purity silica and its manufacture

Info

Publication number
JPS60180911A
JPS60180911A JP3424984A JP3424984A JPS60180911A JP S60180911 A JPS60180911 A JP S60180911A JP 3424984 A JP3424984 A JP 3424984A JP 3424984 A JP3424984 A JP 3424984A JP S60180911 A JPS60180911 A JP S60180911A
Authority
JP
Japan
Prior art keywords
silica
gel
acid
alkali silicate
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3424984A
Other languages
Japanese (ja)
Other versions
JPH0121091B2 (en
Inventor
Toshihiko Morishita
森下 敏彦
Hitoshi Koshimizu
仁 輿水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP3424984A priority Critical patent/JPS60180911A/en
Publication of JPS60180911A publication Critical patent/JPS60180911A/en
Publication of JPH0121091B2 publication Critical patent/JPH0121091B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture industrially high purity silica in the form of fine powder by converting an aqueous alkali silicate soln. into gel, purifying the resulting silica gel with a volatile acid, dehydrating it under heating, and spouting the dehydrated silica powder into a flame to carry out melting treatment. CONSTITUTION:An aqueous alkali silicate soln. of high purity such as an aqueous sodium silicate soln. prepd. by dissolving crystalline sodium silicate is brought into contact with an ion exchange resin to form acidic silica sol, and this sol is converted into gel by adding an aqueous ammonia soln. Said alkali silicate soln. may be directly converted into gel by neutralization with an acid such as sulfuric acid. Impurities such as radioactive substances are removed from the precipitated silica gel with an acid which is volatilized by the following heat treatment such as nitric acid or hydrochloric acid to purify the silica gel. The resulting silica hydrate is dehydrated under heating by spraying or other method, and the dehydrated silica powder is spouted into a flame at >=about 3,000 deg.C such as an oxyhydrogen flame. The powder is made spherical by melting to obtain high purity silica contg. <=10ppb radioactive substances and having 1- 100mum average particle size and >=80% degree of melting. The electric conductivity of boiling water passed through the silica to carry out leaching or extraction is <=100muS/ cm.

Description

【発明の詳細な説明】 本発明は高純度シリカおよびその製造方法に関する。更
に詳しくは、電子材料等、高純度を要する特殊な分野に
用いられる樹脂等の充填剤、接着剤、研磨剤、基板、パ
ッケージ材料等の用途に適用できる高純度シリカおよび
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to high purity silica and a method for producing the same. More specifically, the present invention relates to high-purity silica that can be applied to fillers such as resins, adhesives, abrasives, substrates, package materials, etc. used in special fields requiring high purity such as electronic materials, and a method for producing the same.

従来、シリカはゴム、樹脂等の補強充填剤などとして広
く利用されており、最近では電子技術の発展により、利
用する上でより高純度のシリカの要望が多くなってきて
いる。たとえばLSI、或いは超LSIのパッケージ材
料として現いる場合、パッケージ材料、樹脂中のα−放
射体、特にウラン、トリウム等が微量でも存在すると放
射性崩壊を伴ってα−粒子が放′出され、これがICチ
ップ中に貫入してダイナミックRAM、CODの記憶ノ
ード付近に大量の電子−正孔対を生成し、このためソフ
トエラーを生じ易く、従って充填剤、基板等の材料選択
は重要である。その他たとえばナトリウム、カリウム、
カルシウムなどの金属、硫酸根、塩化物などの電解質、
その他の可溶性物質などのような不純物のない高純度シ
リカが望ましい。
Conventionally, silica has been widely used as a reinforcing filler for rubbers, resins, etc., and recently, with the development of electronic technology, there has been an increasing demand for higher purity silica for use. For example, when used as a packaging material for LSI or VLSI, the presence of even a trace amount of α-radiators, especially uranium, thorium, etc. in the packaging material or resin causes α-particles to be released with radioactive decay. It penetrates into the IC chip and generates a large amount of electron-hole pairs near the storage nodes of dynamic RAM and COD, which is likely to cause soft errors, so the selection of materials for fillers, substrates, etc. is important. Others such as sodium, potassium,
metals such as calcium, electrolytes such as sulfates, chlorides,
High purity silica free of impurities such as other soluble substances is desirable.

従来、汎用樹脂、ゴム等の充填剤として利用されている
シリカは主に珪酸アルカリと酸による中和反応から得た
り、気相反応により得たり、珪酸エステル、四塩化珪素
などの加水分解から得たりして実用に供しているが、安
価な珪酸アルカリを原料とするシリカは純度の点で問題
があり、気相反応によるシリカや珪酸エステルなどの加
水分解によるものは高価であったりして、純度および経
済性の点で上記用途に両立するシリカの出現が待ち望ま
れていた。従来知られている湿式法シリカとして、たと
えば珪酸アルカリと醸の中和反応によって得られる湿式
法によるシリカ粉末は、生成するシリカ沈殿中に母液中
の塩類や不純成分のコロイドなどが包含されており、こ
れらを除去する辷めに多量の洗浄水、酸液を必要とし極
めて非能躬的であるのみならず、完全に除去できないの
で、特に電子材料用の高純度シリカの供給は不可能とさ
れていた。
Traditionally, silica, which has been used as a filler in general-purpose resins and rubber, is mainly obtained through neutralization reaction with alkali silicate and acid, gas phase reaction, and hydrolysis of silicate ester, silicon tetrachloride, etc. However, silica made from inexpensive alkali silicate has problems in terms of purity, and silica produced by hydrolysis of silica or silicate ester through gas phase reactions is expensive. The emergence of silica that is compatible with the above uses in terms of purity and economic efficiency has been awaited. Conventionally known wet-process silica, for example, wet-process silica powder obtained by neutralizing reaction with alkali silicate and fermentation, contains salts in the mother liquor and colloids of impurity components in the silica precipitate produced. In order to remove these substances, large amounts of washing water and acid solutions are required, which is not only extremely inefficient, but also cannot be completely removed, making it impossible to supply high-purity silica especially for electronic materials. was.

他方、珪酸アルカリ水溶液より高純度シリカを製造する
方法としてはイオン交換樹脂を用いてシリカゾルを生成
せしめ、次いで沈殿状シリカとして回収することが知ら
れている(特公昭3B−9415号、特公昭3B−18
315号、特公昭37−4304号)、コの方法ではい
ずれもシリカの沈殿の沈降性及び濾過性が不良であるた
め、濾過洗浄に多大の時間を要すばかりでなく、濾過ケ
ーキの含水率が著しく大であり、得られるシリカ中の夾
雑不純分も充分分離除去できないのみならず1粒状溶融
物を得るのには適さない。
On the other hand, as a method for producing high-purity silica from an aqueous alkali silicate solution, it is known to generate a silica sol using an ion exchange resin and then recover it as precipitated silica (Japanese Patent Publication No. 3B-9415, Japanese Patent Publication No. 3B-1999). -18
315, Japanese Patent Publication No. 37-4304), both methods have poor sedimentation and filterability of the silica precipitate, so not only does it take a lot of time to wash the filtration, but the water content of the filter cake also decreases. is extremely large, and it is not only impossible to sufficiently separate and remove contaminant impurities from the obtained silica, but also unsuitable for obtaining a single granular melt.

他方、最近天然の高純度シリカ微粉砕品を火炎中に流下
処理して高純度シリカ溶融粒状品の製造法が提案されて
いる。(特開昭58−145813号)しかし、これは
、原料が天然品であるため、純度の点において産地に依
存し、常に普偏的に供給する場合には必ずしも工業的に
合致しているとはいい難い。
On the other hand, a method has recently been proposed for producing high-purity fused granular silica by subjecting finely pulverized natural high-purity silica to flame treatment. (Japanese Unexamined Patent Publication No. 58-145813) However, since the raw material is a natural product, it depends on the production area in terms of purity, and if it is always supplied uniformly, it is not necessarily consistent with industrial standards. Yes, it's difficult.

このような現状に鑑み、本発明者らは珪酸アルカリ水溶
液からより工業的に有利に高純度シリカを得るべく研究
を鋭意行った結果、本発明を完成した。
In view of the current situation, the present inventors conducted extensive research in order to industrially advantageously obtain high-purity silica from an aqueous alkali silicate solution, and as a result, completed the present invention.

すなわち、本発明は珪酸アルカリ水溶液から得られるシ
リカであって、放射性物質が10ppb以下、シリカを
煮沸浸出した抽出水の25℃における電気伝導度が10
01LS/cm以下であって、平均粒子径が1〜100
 JLIIの範囲にあり、溶融化′度が80%以上であ
る高純度シリカおよびその製造法である。
That is, the present invention provides silica obtained from an aqueous alkali silicate solution, in which the radioactive substance is 10 ppb or less, and the electric conductivity at 25°C of the extracted water obtained by boiling and leaching the silica is 10.
01LS/cm or less, and the average particle size is 1 to 100
The present invention is a high-purity silica that falls within the range of JLII and has a degree of melting of 80% or more, and a method for producing the same.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明にかかる高純度シリカの第1の特徴は、出発原料
として調製された珪酸アルカリ水溶液を用いることであ
る。
The first feature of the high-purity silica according to the present invention is that an aqueous alkali silicate solution prepared as a starting material is used.

従って、従来品のように天然物の加工又は精製品でない
ことは勿論、四塩化珪素等の加水分解、いわゆる乾式法
により調製されるシリカとは異なるものである。
Therefore, unlike conventional products, it is not a processed or purified product of natural products, and it is different from silica prepared by hydrolyzing silicon tetrachloride or the like, a so-called dry method.

つまり、湿式法シリカから得られるものであり、その第
2の特徴として放射性物質が10ppb以下でシリカを
煮沸浸出した抽出水の電気伝導度が100 JLS/c
■以下という高純度のシリカである。
In other words, it is obtained from wet process silica, and its second characteristic is that the electrical conductivity of the extracted water obtained by boiling and leaching the silica with radioactive substances of 10 ppb or less is 100 JLS/c.
■It is a high purity silica with the following.

放射性物質としては、主としてウランであるが、他にト
リウム等の高密度電離放射線であるα線を放出する化学
物質も含まれ、その量が放射化分析に基づいて、メタル
合計量として10ppb以下、好ましくは5 ppb以
下であることが望ましく、10ppbをこえると高集積
度IC,LSI 、 VLSI(7)樹脂封止剤フィラ
ーとして用いた場合、前述の放射線によるソフトエラー
を発生する原因となるので好ましくない。
Radioactive substances are mainly uranium, but also include chemical substances such as thorium that emit alpha rays, which are high-density ionizing radiation, and the total amount of metal is 10 ppb or less based on activation analysis. The content is preferably 5 ppb or less, and if it exceeds 10 ppb, when used as a resin encapsulant filler for highly integrated ICs, LSIs, and VLSIs (7), it is preferable because it may cause soft errors due to the radiation described above. do not have.

又、シリカを煮沸浸出した抽出水の電気伝導度は 10
0 p、 S/c+s以下、好ましくは10ILS/c
6以下であり、その値はシリカ中に含有するイオン性不
純物に帰因し、たとえばアルカリ分および塩素イオンの
如きイオン性不純物はNa20およびiとして約10p
pm以下、好ましくは5 ppm以下に相当し、電気伝
導度が100延S/C■をこえるとシリカを充填した樹
脂封止剤として用いた場合、イオン性物質の遊離によっ
て、IC,LSI 、 VLSIのリード線、リードフ
レーム等への腐食が起り易くなるので好ましくない。
Also, the electrical conductivity of the extracted water from which silica is boiled and leached is 10.
0 p, S/c+s or less, preferably 10 ILS/c
6 or less, and this value is attributable to the ionic impurities contained in the silica. For example, ionic impurities such as alkaline content and chloride ions are approximately 10 p as Na20 and i.
pm or less, preferably 5 ppm or less, and when the electrical conductivity exceeds 100 S/C, when used as a resin sealant filled with silica, the release of ionic substances may cause problems in ICs, LSIs, and VLSIs. This is undesirable because it tends to cause corrosion to lead wires, lead frames, etc.

なお抽出水の電気伝導度は当該シリカを純水にて10重
量%スラリーとし、攪拌しながら、8時間煮沸処理した
のち、冷却後25℃における抽出液を検体として測定さ
れた値である。
The electrical conductivity of the extracted water is a value measured by making the silica into a 10% by weight slurry with pure water, boiling it for 8 hours while stirring, and then cooling the extracted solution at 25° C. as a sample.

次に、第3の特徴として平均粒子径が1−100ル腸の
範囲にあることが望ましい。本発明で粒径を意味する場
合は、コールタ−カウンター法5基づく粒度分布測定法
によるものとし、平均粒子径とは、体積メディアン径(
R50)を意味し、その値が1〜100経■の範囲にあ
ることをいう。
Next, as a third characteristic, it is desirable that the average particle diameter is in the range of 1 to 100 μm. In the present invention, when particle size is meant, it is based on a particle size distribution measurement method based on the Coulter counter method5, and the average particle size refers to the volume median diameter (
R50), and its value is in the range of 1 to 100 degrees.

この粒径は、製品の用途や製造法によって大幅に変化す
るが、大体上記の範囲にあり、特にR50が10〜50
JL纏の範囲にあることが好ましい、尚、平均粒径がI
QQ JL I+をこえると樹脂中での均一性が保たれ
ず、また樹脂封止時の作業性が悪かったりするので好ま
しくない。
This particle size varies greatly depending on the product's use and manufacturing method, but it is generally within the above range, especially when R50 is 10 to 50.
It is preferable that the average particle size is within the range of JL.
If it exceeds QQ JL I+, it is not preferable because uniformity in the resin cannot be maintained and workability during resin sealing may be poor.

更に本発明にがかるシリカ製品の他の特徴は溶融化度が
80%以上の溶融粒状品からなるものである。溶融化度
が80%未満ではシリカ表面の活性に起因する水酸基又
は水分の吸着などがあって、封止剤特性の低下があるの
で好ましくない。
Further, another feature of the silica product according to the present invention is that it is composed of fused granules having a degree of melting of 80% or more. If the degree of melting is less than 80%, hydroxyl groups or moisture may be adsorbed due to the activity of the silica surface, resulting in deterioration of the sealant properties, which is not preferable.

シリカ粒子が溶融しているか否かは、例えば実体顕微鏡
観察により容易に判別することができ、溶融している粒
子は透明ガラス体粒子として認められ、非溶融粒子は白
い不透明粒子として認められる。
Whether or not silica particles are melted can be easily determined by, for example, observation using a stereomicroscope; melted particles are recognized as transparent glass particles, and unfused particles are recognized as white opaque particles.

従って本発明において溶融化度(M−R)というのは次
式 %式% 顕微鏡視野は少なくとも2視野以上とし、かつl視野中
には少なくとも50個以上の粒子が把握できることが望
ましい。なお、観察される粒子において外側は溶融化し
、芯部分に若干非溶融部分が認められるような粒子は溶
融粒子の範囲に含まれるものとする。
Therefore, in the present invention, the degree of melting (MR) is expressed by the following formula: % It is desirable that the field of view of the microscope is at least two fields, and that at least 50 or more particles can be detected in one field of view. Incidentally, particles that are observed to be molten on the outside and have a slight unmelted portion in the core are included in the range of molten particles.

上記の如き特徴を有する高純度溶融シリカ粒子は、新規
物質であり、特にICパッケージ用樹脂コンパウンドの
充填剤として好適である。
High-purity fused silica particles having the above characteristics are a new substance, and are particularly suitable as fillers for resin compounds for IC packages.

次に、かかる高純度溶融シリカ粒子を工業的には以下の
方法にて製造することができる。
Next, such high-purity fused silica particles can be produced industrially by the following method.

すなわち、珪酸アルカリ水溶液をゲル化してシリカゲル
を沈殿生成させる第1工程、該シリカゲルを揮発性の酸
で精製して含水シリカを得る第2工程、該含水シリカを
加熱脱水処理して脱水シリカを得る第3工程及び該脱水
シリカを火炎中に噴射して溶融処理する第4工程からな
ることを特徴とする高純度シリカの製造法である。以下
、各工程について説明する。
That is, a first step of gelling an aqueous alkali silicate solution to precipitate silica gel, a second step of purifying the silica gel with a volatile acid to obtain hydrated silica, and heating and dehydrating the hydrated silica to obtain dehydrated silica. This method of producing high-purity silica is characterized by comprising a third step and a fourth step of injecting the dehydrated silica into a flame and melting it. Each step will be explained below.

乳上工1 この工程は、いわゆる湿式法シリカの製法として数多く
の提案がなされており、多くの場合公知の方法というこ
とができる。
Milk finishing process 1 Many proposals have been made for this process as a so-called wet method for producing silica, and in most cases it can be said to be a known method.

本発明において、この工程は大別して2つの態様が採ら
れうる。その1つは、珪酸アルカリ水溶液と陽イオン交
換樹脂と接触させて酸性シリカゾルを生成させ、次いで
、このシリカゾルをシリカの沈殿物としてゲル化する方
法であり、他の方法は珪酸アルカリ水溶液と硫酸又は塩
酸などの酸との中和反応により直接シリカゲルを得る場
合である。
In the present invention, this step can be roughly divided into two modes. One method is to bring an aqueous alkali silicate solution into contact with a cation exchange resin to produce an acidic silica sol, and then gel the silica sol as a silica precipitate. This is the case where silica gel is obtained directly by a neutralization reaction with an acid such as hydrochloric acid.

まずシリカゾルを経由してシリカゲルを得る場合につい
て述べる。珪酸アルカリ水溶液よりシリカゾルを生成さ
せる方法は公知であり、常法に従ってゾルを生成させる
が1通常、5i02として2〜7重量%、好ましくは4
重量%前後の濃度に希釈した液を用いる。イオン交換操
作において、イオン交換樹脂を充填したカラムに被処理
溶液を通過させる方法が一般的であるが、他の方法、例
えばイオン交換樹脂と珪酸アルカリ水溶液とを直接混合
するバッチ方式も可能である。
First, the case of obtaining silica gel via silica sol will be described. The method of producing silica sol from an aqueous alkali silicate solution is known, and the sol is produced according to a conventional method.
A solution diluted to a concentration of around 100% by weight is used. In ion exchange operations, it is common to pass the solution to be treated through a column packed with ion exchange resin, but other methods, such as a batch method in which the ion exchange resin and aqueous alkali silicate solution are directly mixed, are also possible. .

該珪酸アルカリ水溶液をイオン交換樹脂と接触させてア
ルカリ金属又はアルカリ土類金属の殆んど全てを分離除
去して酸性ゾルを得る。
The aqueous alkali silicate solution is brought into contact with an ion exchange resin to separate and remove almost all of the alkali metals or alkaline earth metals to obtain an acidic sol.

この場合、本発明においては、珪酸アルカリ水溶液の液
性又はシリカの用途に応じて、前記接触処理は1回又は
複数回同種又は異種のイオン交換樹脂および/又はキレ
ート樹脂を所望に応じて用い操作することができる。
In this case, in the present invention, the contact treatment is performed once or multiple times using the same or different ion exchange resin and/or chelate resin as desired, depending on the liquid nature of the aqueous alkali silicate solution or the use of the silica. can do.

通常、高純度のシリカを希望する場合には、酸型にした
陽イオン交換樹脂1次いで水酸型にした陰イオン交換樹
脂および陽イオン交換樹脂による処理を順次行ってゾル
を生成させることが好ましい。
Normally, when high-purity silica is desired, it is preferable to generate a sol by sequentially treating with a cation exchange resin in an acid form, an anion exchange resin in a hydroxyl form, and a cation exchange resin. .

この酸性ゾルはP)11.8ないし3.0で回収したも
のでゾルを構成するシリカ粒子の粒度は511JL以下
の極めて活性なゾルであり、やや不安定で長時間放置す
ると粘性が上がり最終的にはゲル状に固結するため長時
間の放置は避けるべきである。
This acidic sol was recovered from P) 11.8 to 3.0, and the particle size of the silica particles constituting the sol is less than 511 JL, making it an extremely active sol. It should be avoided to leave it for a long time because it will solidify into a gel-like state.

かかるイオン交換樹脂によるシリカゾルの生成により原
料溶液中にイオン状態で存在する不純物は実質的に除去
されるけれども、より完全に不純イオンを除くために、
必要に応じてイオン交換樹脂と共にキレート樹脂を併用
して接触処理することも差支えない。
Although the impurities present in the ionic state in the raw material solution are substantially removed by the production of silica sol using such an ion exchange resin, in order to remove impurity ions more completely,
If necessary, a chelate resin may be used in combination with an ion exchange resin for contact treatment.

かくして、精製されたシリカコロイドの酸性ゾルは、含
水シリカとして沈殿し回収するが、この場合、沈殿の析
出条件を誤まるとシリカの純度を低下させるのみならず
操作上のトラブルも生じるので、このシリカの析出条件
が極めて重要となる。
In this way, the purified acidic sol of silica colloid is precipitated and recovered as hydrous silica, but in this case, incorrect precipitation conditions will not only reduce the purity of the silica but also cause operational troubles. The conditions for silica precipitation are extremely important.

従って、本発明においては、上記の酸性ゾルにアンモニ
ア水を5i021モル当り 0.5モル以下、好ましく
は0.2〜0.5モル添加して弱アルカリ性に調製した
ゾルとアンモニウム塩水溶液とを攪拌状態において常に
pnを10.5以下の弱アルカリ性条件下で反応させる
ことによりシリカの沈殿を析出させる。
Therefore, in the present invention, the sol prepared by adding 0.5 mol or less, preferably 0.2 to 0.5 mol of aqueous ammonia per mol of 5i021 to the above acidic sol to make it weakly alkaline, and an aqueous ammonium salt solution are stirred. Silica precipitates are precipitated by reacting under weakly alkaline conditions where pn is always 10.5 or less.

この場合、反応時のp)lが高すぎても、また中性から
酸性であっても、本発明において都合の良い、良好な沈
殿を得ることはできない0例えば、反応の大部分が酸性
乃至中性で行なわれると半透明の寒天状の(シリカの)
部分が多くなり、含水率が高く濾過性の悪い沈殿となる
。このような沈殿は洗節が極めて困難であるばかりでな
く、乾燥や焼成により収縮し、亀裂が生じたり、容易に
粉砕できない堅い塊となってしまい以後の操作を著しく
妨害することになる。また、反応が強アルカリ性で行な
われると気化するアンモニアの量も多くなり、作業環境
が悪化するとともに生成したシリカは非常に微粒となり
、濾過が困難になったり、沈降性が悪くなってしまう。
In this case, even if p)l during the reaction is too high, or even if it is neutral to acidic, it is not possible to obtain a good precipitation, which is convenient for the present invention. For example, if most of the reaction is acidic or Translucent agar-like (silica) when carried out in neutral
This results in a precipitate with a high moisture content and poor filterability. Such a precipitate is not only extremely difficult to wash, but also shrinks during drying and baking, causing cracks and becoming a hard lump that cannot be easily crushed, significantly interfering with subsequent operations. Furthermore, if the reaction is carried out in a strongly alkaline environment, the amount of ammonia that evaporates will increase, resulting in a poor working environment and the resulting silica will become very fine particles, making it difficult to filter and having poor sedimentation properties.

該ゾルとアンモニウム塩水溶液との混合は、個別的同時
混合又は、アンモニウム塩水溶液の中へ該ゾルを添加す
る方法がとられるが、一般的には後者の方がよい、しか
しその逆の添加、即ち、該ゾルの中へアンモニウム塩水
溶液の添加は避けるべきである。
The sol and the ammonium salt aqueous solution can be mixed together individually or by adding the sol into the ammonium salt aqueous solution, but the latter is generally better, but the reverse addition, That is, addition of aqueous ammonium salt solutions into the sol should be avoided.

アンモニウム塩水溶液の濃度は、塩の種類によって異な
るが、通常5〜20重量%好ましくは、7〜13重量%
がよい。
The concentration of the ammonium salt aqueous solution varies depending on the type of salt, but is usually 5 to 20% by weight, preferably 7 to 13% by weight.
Good.

アンモニウム塩濃度が、上記の範囲外であると析出する
シリカの一部又は大部分が透明性を帯びた寒天状シリカ
となったり嵩高の沈殿となり濾過性が著しく悪化し、ま
た含水率が非常に高く、つづく回収操作が困難となった
り、製品粒度のコントロールが出来なくなったりする。
If the ammonium salt concentration is outside the above range, part or most of the precipitated silica will become transparent agar-like silica or become a bulky precipitate, resulting in a marked deterioration in filtration performance, and the water content will be extremely low. This may make subsequent collection operations difficult or make it impossible to control product particle size.

反応器中に予め仕込むアンモニウム塩水溶液の量は添加
するシリカゾルの添加速度、シリカ濃度、アンモニウム
塩水溶液の濃度、製品の所望粒度などの付帯条件によっ
て異なるが少なくとも添加するシリカゾルの量の115
量以上は必要である。
The amount of the ammonium salt aqueous solution charged in advance into the reactor varies depending on incidental conditions such as the addition rate of the silica sol to be added, the silica concentration, the concentration of the ammonium salt aqueous solution, and the desired particle size of the product, but it is at least 115 times the amount of the silica sol to be added.
More than a certain amount is necessary.

シリカの凝析剤として使用するアンモニウム塩としては
、例えば塩化アンモニウム、炭酸アンモニウム又は硝酸
アンモニウム等加熱により分解揮散する塩類が適当であ
る。
Suitable ammonium salts used as coagulants for silica include salts that decompose and volatilize upon heating, such as ammonium chloride, ammonium carbonate, and ammonium nitrate.

なお、シリカを析出させる際の温度は、特に限定する理
由はなく、常温又は加温のいずれであってもよいが反応
系のpiは充分制御することが必要で、常に弱アルカリ
性の状態で穏やかに析出することが好ましい。
There is no particular reason to limit the temperature at which silica is precipitated, and it may be at room temperature or at elevated temperature, but it is necessary to sufficiently control the pi of the reaction system, and it should always be kept in a mildly alkaline state. It is preferable to precipitate.

かくして、得られた含水−シリカの沈殿は、濾過性の極
めて良好なものであり、これをか過により母液と分離す
ることができる。
The hydrous silica precipitate thus obtained has extremely good filterability and can be separated from the mother liquor by filtration.

次に、珪酸アルカリ水溶液と硫酸等の酸により直接シリ
カを得る方法は、イオン交換樹脂によるシリカゾルの製
法と同じく公知であり、例えば特公昭38−17851
号、特公昭51−25235号、特公昭56−2172
8号など酸の分割添加方式がすぐれた工業的製法として
あげられるが、これに限るものではない。
Next, a method for directly obtaining silica using an aqueous alkali silicate solution and an acid such as sulfuric acid is known, as is the method for producing silica sol using an ion exchange resin.
No., Special Publication No. 51-25235, Special Publication No. 56-2172
An example of an excellent industrial production method is a method of adding acid in portions such as No. 8, but it is not limited to this method.

唯、この直接法は中和に基づくシリカ沈殿の析出条件に
より、シリカ中の不純物である放射M物質やアルカリ分
の含有量に大きな幅が生じ、その量が多くなると後の精
製工程で必ずしち効果的に分離除去できなくなる傾向に
なるので、このような場合、イオン交換樹脂との接触に
よるシリカゾルを経てシリカの沈殿を生成させる方が好
まししζ。
However, with this direct method, the content of radioactive M substances and alkalis, which are impurities in the silica, varies widely depending on the precipitation conditions of silica precipitate based on neutralization. In such cases, it is preferable to form a silica precipitate through contact with an ion exchange resin to form a silica sol.

なお、使用する珪酸アルカリ水溶液は、その目的からみ
て充分に精製されていることが好ましく、例えば一般か
過は勿論プレコートフィルター、ミクロフィルターある
いは限外か過などで微細粒子を予め除去しておくとよい
Note that it is preferable that the alkaline silicate aqueous solution used be sufficiently purified in view of its purpose.For example, it is preferable to remove fine particles in advance using a pre-coat filter, microfilter, ultrafiltration, etc. as well as a general filter. good.

特に結晶性珪酸アルカリ、例えばメタ珪酸アルカリ、セ
スキ珪酸アルカリなどの結晶物を溶解して調製した珪酸
アルカリ水溶液は放射性不純物を著しく低減できるので
、必要に応じて再結晶して用いれば極めて放射性物質の
少ないシリカを得ることができる。この様な珪酸アルカ
リ水溶液としては結晶性珪酸ソーダを溶解して調製した
珪酸ソーダ水溶液が好ましい。
In particular, an aqueous aqueous solution of an alkali silicate prepared by dissolving crystalline substances such as alkali metasilicate and alkali sesquisilicate can significantly reduce radioactive impurities. Less silica can be obtained. As such an aqueous alkali silicate solution, a sodium silicate aqueous solution prepared by dissolving crystalline sodium silicate is preferable.

庇l工1 この工程は、前工程で得られた沈殿状シリカゲルの精製
すなわち、シリカゲル中に残留する放射性物質、アルカ
リ土類金属塩、アルカリ金属塩等のイオン性不純物を除
去することにある。従って、この工程は湿式法により高
純度シリカを得るために不可欠な工程ということができ
る。
Eaves 1 This step purifies the precipitated silica gel obtained in the previous step, that is, removes ionic impurities such as radioactive substances, alkaline earth metal salts, and alkali metal salts remaining in the silica gel. Therefore, this step can be said to be an essential step for obtaining high purity silica by the wet method.

前工程において、出発原料として、よく精製された珪酸
アルカリ水溶液を用いてイオン交換樹脂によるシリカゾ
ルを経て沈殿状シリカゲルを回収した場合、該シリカは
放射性物質等の不純物はかなりの高いレベルまで除去で
きるけれども、高性能を要求する樹脂封止剤用充填剤と
しては必ずしも満足するものではない。しかして、この
沈殿状シリカゲルを揮発性の酸とよく混合して洗浄する
と、放射性物質は勿論、アルカリ土類金属塩、アルカリ
金属塩、その他、鉄、アルミニウム化合物等の微量不純
物を除去することが可能となる。
In the previous step, when a well-purified alkali silicate aqueous solution is used as a starting material and precipitated silica gel is recovered through silica sol using an ion exchange resin, impurities such as radioactive substances can be removed from the silica to a fairly high level. However, it is not necessarily satisfactory as a filler for a resin sealant that requires high performance. However, when this precipitated silica gel is thoroughly mixed with a volatile acid and washed, not only radioactive substances but also alkaline earth metal salts, alkali metal salts, and trace impurities such as iron and aluminum compounds can be removed. It becomes possible.

つまり、この工程は沈殿状シリカゲルの揮発性酸による
精製工程であり、この工程を採用することによって湿式
法シリカから、乾式法と全く遜色ない高純度シリカを調
製しうる道が開けたと云える。
In other words, this process is a purification process of precipitated silica gel using a volatile acid, and by employing this process, it can be said that a path has been opened for preparing high-purity silica from wet process silica, which is completely comparable to dry process silica.

ここで揮発性の酸というのは次の第3又は第4工程の加
熱によって完全に揮散してしまうような酸をいい、好ま
しくは硝酸、塩酸などをいう。
The term "volatile acid" as used herein refers to an acid that is completely volatilized by heating in the next third or fourth step, preferably nitric acid, hydrochloric acid, or the like.

又、沈殿状シリカゲルとは第1工程の方法で得られるシ
リカの沈殿でか過により母液と分離しやすいか過性の良
好なシリカゲルを意味する。
Further, precipitated silica gel means a silica gel that is easily separated from the mother liquor by filtration or has good filtration property due to the precipitation of silica obtained by the method of the first step.

操作としては5i02として1〜40重量%のスラリー
濃度において、0.1規定以上、好ましくは0.5規定
以上の酸濃度になるように酸を添加し、常温又は加温に
より充分に混合処理する。この操作は1回に限らず所望
により2回以上の複数回あるいは連続方式など、適宜設
定して行えばよい。
The operation is to add acid to a slurry concentration of 1 to 40% by weight as 5i02 so that the acid concentration is 0.1N or more, preferably 0.5N or more, and thoroughly mix it at room temperature or heating. . This operation is not limited to one time, but may be performed multiple times, two or more times, or continuously, as appropriate.

かくして、精製された含水シリカは、実質的に不純物は
除去されて多くの場合5i02当りu : t PPb
以下、Th : 10ppb以下、Na : 10pp
m以下、Fe:5ppm以下、Cfl : 10ppm
以下の高純度のものである。
Thus, purified hydrated silica is substantially free of impurities and often has a concentration of u:t PPb per 5i02.
Below, Th: 10ppb or less, Na: 10pp
m or less, Fe: 5 ppm or less, Cfl: 10 ppm
It has the following high purity.

亀l工I この工程は次の第4工程において取扱い易い粒成品を得
るために含水シリカの脱水処理による粒状化工程という
ことができる。
Kamelko I This step can be said to be a granulation step in which hydrous silica is dehydrated in order to obtain a granulated product that is easy to handle in the next fourth step.

この工程では脱水処理によりある程度の流動性のある粒
状物が得られる操作であれば特に限定される理由はない
けれども工業的には例えば含水シリカスラリーの噴霧乾
燥による場合、あるいは該スラリー又は濾過ケーキを所
望の乾燥装置を用いて乾燥させ、次いで粉砕する場合の
2態様があげられる。
There is no particular reason to limit this step as long as the dehydration process yields granules with a certain degree of fluidity, but industrially, for example, spray drying of a hydrous silica slurry, or the slurry or filter cake is used. There are two modes in which the material is dried using a desired drying device and then pulverized.

本発明では、エネルギーコストの点を除けば噴霧乾燥に
代表される流動乾燥によって粒状化する方が好適である
。この理由は流動性がよいシリカ粒子であるために、次
の工程における加熱部分に容易に供給できることのみな
らず、乾燥以外の粉砕処理などが不要なために不純物の
混入が極力避けられるからである拳 なお、この加熱脱水処理して得られる脱水シリカは通常
含水率が15重量%以下にあること−が必要である。こ
の理由は15重量%をこえると流動性のある粉体粒子が
得られないのみならず、次の溶融処理において火炎温度
の低下に伴い、粒子への熱負荷が増大して溶融化が達成
し難くなζ とによる。
In the present invention, it is preferable to granulate the material by fluidized drying, such as spray drying, except for the energy cost. The reason for this is that since the silica particles have good fluidity, they can be easily supplied to the heating part in the next process, and since there is no need for any pulverization process other than drying, contamination with impurities can be avoided as much as possible. Note that the dehydrated silica obtained by this heat dehydration treatment usually needs to have a water content of 15% by weight or less. The reason for this is that if it exceeds 15% by weight, not only will it be impossible to obtain fluid powder particles, but also the thermal load on the particles will increase as the flame temperature decreases in the subsequent melting process, making it difficult to achieve melting. It depends on the difficult ζ.

叢」二り我 この工程は従来のシリカ粉末と異なり、封止剤の充填剤
として第2工程と共に不可欠な工程であり、前工程で得
られる脱水シリカ粉末を実質的に溶融処理することにあ
る。この溶融操作は、例えば酸素−水素炎、酸素−アセ
チレン炎、酸素−プロパン炎あるいはプラズマ炎などの
所定の火炎部分に脱水シリカ粒子を連続的に供給するこ
とによって、脱水シリカ粒子の溶融球状化を行なうもの
であり、この火炎溶融操作自体は無機粉体の溶融に古く
より知られている技術である。しかして、−次粒子径が
200腸ル以下、特に20■終程度のシリカ粒子を火炎
溶融成形して、平均粒子径が1〜100 JL腸の球状
又はだ円状溶融シリカとするためには適度な火炎条件を
必要とする。即ち燃料ガスを用いた場合火炎温度を少な
くとも3000℃以上でかつ2000℃以上の火炎長を
30c−以上必要とする。この目的に利用出来るバーナ
ーの構成は酸素−燃料ガス系の場合、酸素をバーナー内
側から、燃料ガスを外側の多数の孔から噴射させ、脱水
シリカは酸素ガスに同伴射出させることが好ましい、プ
ラズマアークの場合はアーク部の温度が酸素−燃料ガス
系に比べ著しく高いため粉体の注入量を過度にしない限
り問題なく処理出来る。この様にして得られるシリカは
高温部分での接触時間ノよりずかであるけれども溶融化
度が80%以上となって、実質的に溶融されたガラス状
の透明な球形乃至だ円形粒子となって極めて流動性の良
好な粒子となる。
Unlike conventional silica powder, this process is an essential process along with the second process as a filler for the sealant, and it essentially involves melting the dehydrated silica powder obtained in the previous process. . This melting operation involves melting and spheroidizing dehydrated silica particles by continuously supplying dehydrated silica particles to a predetermined flame section, such as an oxygen-hydrogen flame, an oxygen-acetylene flame, an oxygen-propane flame, or a plasma flame. This flame melting operation itself is a long-known technique for melting inorganic powders. Therefore, in order to flame-melt and mold silica particles with a primary particle size of 200 μm or less, particularly around 20 μm, to obtain spherical or elliptical fused silica with an average particle size of 1 to 100 μL. Requires moderate flame conditions. That is, when fuel gas is used, the flame temperature must be at least 3000°C or higher, the flame length must be at least 2000°C, and the flame length must be 30 cm or more. In the case of an oxygen-fuel gas type burner that can be used for this purpose, oxygen is injected from the inside of the burner, fuel gas is injected from a number of holes on the outside, and dehydrated silica is preferably injected along with the oxygen gas. In this case, the temperature of the arc part is significantly higher than that in the oxygen-fuel gas system, so it can be processed without problems unless the amount of powder injected is excessive. The silica obtained in this way has a melting degree of 80% or more even though the contact time in the high-temperature part is shorter than that of the silica, and becomes substantially molten glass-like transparent spherical to elliptical particles. This results in particles with extremely good fluidity.

かくして、得られた溶融シリカ粒子は必要に応じてガス
流の冷却を施してからサイクロンで回収するか又は水に
よる湿式回収等を行って本発明にかかる高純度シリカ製
品を得ることができる。
The fused silica particles thus obtained can be collected with a cyclone after being cooled with a gas stream, if necessary, or wet-collected with water, etc., to obtain the high-purity silica product according to the present invention.

このように、本発明にかかる方法により、珪酸アルカリ
水溶液を出発原料とする湿式シリカよ一す、高性能が要
求される封止剤用充填剤としての高純度溶融シリカ粒子
を工業的に有利に大量供給することが可能である。
As described above, the method of the present invention makes it possible to industrially advantageously produce high-purity fused silica particles as a filler for sealants that require high performance, rather than wet silica using an aqueous alkali silicate solution as a starting material. It is possible to supply in large quantities.

以下、実施例を示し本発明をさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 市販の3号珪酸ソーダ水溶液(5i0228.8重量%
、 Na20θ、4重量%、5i02当りu 100P
Pb、5i02当りTh 240ppb含有)を水で希
釈して5i024重量%の希釈珪酸ソーダ水溶液とした
Example 1 Commercially available No. 3 sodium silicate aqueous solution (5i0228.8% by weight)
, Na20θ, 4% by weight, u 100P per 5i02
Pb (containing 240 ppb of Th per 5i02) was diluted with water to obtain a diluted sodium silicate aqueous solution containing 24% by weight of 5i02.

これを硫酸で再生しである陽イオン交換樹脂(アンバー
ライトIR−120B 、オルガノ社製)で常法に従っ
て処理してPH2,2のシリカゾル水溶液を得た。
This was treated with a cation exchange resin (Amberlite IR-120B, manufactured by Organo Co., Ltd.) that had been regenerated with sulfuric acid according to a conventional method to obtain an aqueous silica sol solution with a pH of 2.2.

常温で硝酸アンモニウム10.5重量%水溶液30交を
攪拌しながら、上記シリカゾル水溶液にアンモニアを加
えpH10,5にしたアルカリシリカゾル溶液50文を
3時間かけて添加し、凝析沈殿させて沈殿状シリカゲル
を得た0次いでこれを濾過および置換洗浄したのち、イ
オン交換水に5i02濃度8重量%となる様に再分散さ
せ、この中に硝酸をIN/31となる様に加え95℃で
3時間攪拌して処理した。これをか過、水洗して精製を
行って含水率78重量%の精製シリカゲルのケーキを得
た・この精製シリカゲルのケーキを水に分散させて15
重量%のシリカゲル懸濁液となしたのち、アシザワニロ
社製プロダクションマイナー型スプレードライヤーで噴
霧乾燥した。この処理条件は入口温度340℃、出口温
度120℃で熱源を電熱で行ない、雰囲気空気流量は5
.7m3/winで行なった。サイクロンに回収された
シリカ粒子の粒子形状は第1図に示す様な一次粒子が1
00■終以下のシリカ微粒子の集合体であり、この含水
率は800℃、80分加熱による減量から推定して4.
3重量%であった。
While stirring 30 g of a 10.5% by weight aqueous solution of ammonium nitrate at room temperature, 50 g of an alkali silica sol solution made by adding ammonia to the pH 10.5 was added to the silica sol aqueous solution over 3 hours to coagulate and precipitate to form precipitated silica gel. The obtained 0 was then filtered and washed by displacement, and then redispersed in ion-exchanged water to a 5i02 concentration of 8% by weight. Nitric acid was added to the solution to give an IN/31 concentration, and the mixture was stirred at 95°C for 3 hours. Processed. This was purified by filtering and washing with water to obtain a cake of purified silica gel with a water content of 78% by weight.This cake of purified silica gel was dispersed in water for 15 minutes.
After forming a silica gel suspension of % by weight, it was spray-dried using a production minor type spray dryer manufactured by Ashizawa Waniro. The processing conditions were an inlet temperature of 340°C, an outlet temperature of 120°C, an electric heat source, and an atmospheric air flow rate of 5.
.. It was done at 7m3/win. The particle shape of the silica particles collected in the cyclone is as shown in Figure 1.
It is an aggregate of fine silica particles with a water content of 4.0% or less, estimated from the weight loss after heating at 800°C for 80 minutes.
It was 3% by weight.

こうして得た流動性の良好な脱水シリカ粉末を火炎溶融
処理して第2図に示す溶融シリカ粉末を得た。
The thus obtained dehydrated silica powder with good fluidity was subjected to flame melting treatment to obtain the fused silica powder shown in FIG.

火炎溶融装置は中央部に酸素噴出孔を設け、ここから酸
素及び脱水シリカを噴出させ、この外側に酸素噴出口を
取りまいて燃料ガス噴出孔をリング状に設け、ここから
燃料ガスを噴出させ、さらにこの外側に酸素噴出孔、燃
料ガス孔を設けたガスバーナーを用いた。燃料ガスは、
アセチレンを用い、その流量5Nm’/H1酸素流量5
Nm3/Hおよび脱水シリカ粒子の供給速度5 Kg/
Hで脱水シリカの溶融処理を行った。なお、肉視出来る
火炎の長さは約40c腸であった。この燃焼ガスを水冷
しである燃焼室□を通したのち、サイクロンで回収した
溶融シリカの粒子形状を第2図に示す、このものは溶融
化度が約80%、その物性を測定したところ平均粒子径
204mであり、その不純物量はNa201.5ppm
、ci不検出、υ0.4ppb以下、Th4±2PPb
および抽出水の電気伝導度6#LS/Cmであった。
The flame melting device has an oxygen nozzle in the center, from which oxygen and dehydrated silica are spouted, and a ring-shaped fuel gas nozzle surrounding the oxygen nozzle on the outside, from which fuel gas is spouted. Furthermore, a gas burner was used which was provided with an oxygen jet hole and a fuel gas hole on the outside. Fuel gas is
Using acetylene, its flow rate is 5 Nm'/H1 oxygen flow rate 5
Nm3/H and feed rate of dehydrated silica particles 5 Kg/
The dehydrated silica was melted with H. The length of the flame that could be seen with the naked eye was about 40 centimeters. Figure 2 shows the shape of the particles of fused silica collected by a cyclone after passing through the water-cooled combustion chamber □.The degree of fusion is approximately 80%, and the physical properties of the fused silica are average when measured. The particle size is 204m, and the amount of impurities is Na201.5ppm.
, ci not detected, υ0.4ppb or less, Th4±2PPb
And the electric conductivity of the extracted water was 6#LS/Cm.

実施例2 3号珪酸ソーダ溶液の苛性ソーダ及び水を添加しテ5i
0214.13重量%、 Na2017.3重量%の水
溶液とした。これを50℃でゆっくり攪拌してメタ珪酸
ソーダ9水塩を得た。これを母液から分離して再び水に
溶解して、4重量%5i02濃度として実施例1と同様
の一連の処理を施した。
Example 2 Adding caustic soda and water to No. 3 sodium silicate solution
0214.13% by weight and Na2017.3% by weight aqueous solution. This was slowly stirred at 50°C to obtain sodium metasilicate nonahydrate. This was separated from the mother liquor, dissolved again in water, and subjected to the same series of treatments as in Example 1 to obtain a 5i02 concentration of 4% by weight.

回収された溶融シリカの粒子形状は実施例1と同様の球
状の溶融化度が約88%の溶融シリカであり、その物性
は平均粒子径181Lm、不純物含有量はNa202.
、Oppm、C1不検出、υO,’4PPb以下、Th
 O,7ppb以下および抽出水の電気伝導度5終S/
cm以下であった。
The recovered fused silica has a particle shape similar to that of Example 1, with a spherical fused silica having a degree of fusion of approximately 88%, and its physical properties include an average particle diameter of 181 Lm, and an impurity content of Na202.
, Oppm, C1 not detected, υO, '4PPb or less, Th
O, 7 ppb or less and electrical conductivity of extracted water 5 final S/
cm or less.

実施例3 実施例2と同じ操作で4重量%5i02含有のメタ珪酸
ソーダ水溶液と4重量%硫酸をpH9で同時添加してシ
リカゲルを作成した。これを濾過して水洗したのち、I
N塩酸水溶液に5i02濃度10重量%となる様に分散
させた。これを95℃で3時間攪拌させたのち濾過した
。この酸洗操作を3回行なったのち、水で洗浄し20重
量%5i02スラリーとした。
Example 3 In the same manner as in Example 2, a 4% by weight 5i02-containing sodium metasilicate aqueous solution and 4% by weight sulfuric acid were simultaneously added at pH 9 to produce silica gel. After filtering and washing with water, I
It was dispersed in an aqueous N-hydrochloric acid solution so that the 5i02 concentration was 10% by weight. This was stirred at 95°C for 3 hours and then filtered. After performing this pickling operation three times, it was washed with water to obtain a 20% by weight 5i02 slurry.

このスラリーを実施例1と同じく噴霧乾燥及びプロパン
炎による火炎処理を施した結果、溶融化度が83%の球
状の溶融シリカが得られ、その物性は平均粒子径117
isであり、不純物の含有量はNa204.5ppm、
 cu不検出、U2±i Ppb、Th7±2 PPb
および抽出水の電気伝導度8.5 #LS/C鵬であっ
た。
As a result of spray drying this slurry and flame treatment using propane flame in the same manner as in Example 1, spherical fused silica with a degree of melting of 83% was obtained, and its physical properties were as follows:
is, and the impurity content is Na204.5ppm,
cu not detected, U2±i Ppb, Th7±2 PPb
and the electrical conductivity of the extracted water was 8.5 #LS/C Peng.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1において脱水処理したシリカ粒子の粒
子構造を示す1000倍の顕微鏡写真であり、第2図は
第1図に示すシリカ粒子の溶融により得られる本発明に
がかるシリカ製品の粒子構造を示す250倍の顕微鏡写
真である。 出願人 日本化学工業株式会社 代理人 豊 1) 善 雄
FIG. 1 is a 1000x micrograph showing the particle structure of the silica particles subjected to dehydration treatment in Example 1, and FIG. 2 is a silica product particle according to the present invention obtained by melting the silica particles shown in FIG. 250x micrograph showing the structure. Applicant Nihon Kagaku Kogyo Co., Ltd. Agent Yutaka 1) Yoshio

Claims (1)

【特許請求の範囲】 l)珪酸アルカリ水溶液から得られるシリカであって、
放射性物質が10ppb以下、シリカを煮沸浸出した抽
出水の電気伝導度が100pS、/cm以下であって、
平均粒子径が1−100gmの範囲にあり、溶融化度が
80%以上であることを特徴とする高純度シリカ。 2)珪酸アルカリ水溶液をゲル化してシリカゲルを沈殿
生成させる第1工程、該シリカゲルを揮発性の酸で精製
して含水シリカを得る第2工程、該含水シリカを加熱脱
水処理して脱水シリカを得る第3工程及び該脱水シリカ
を火炎中に噴射して溶融処理する第4工程からなること
を特徴とする高純度シリカの製造法。 3)珪酸アルカリ水溶液が結晶性珪酸ソーダを溶解して
調製した珪酸ソーダ水溶液である特許請求の範囲第2項
記載の高純度シリカの製造法。 4)珪酸アルカリ水溶液をイオン交換樹脂と接触せしめ
、生成する酸性シリカゾルを特徴とする特許請求の範囲
第2項記載の高純度シリカの製造法。 5)珪酸アルカリ水溶液を酸で中和してゲル化する特許
請求の範囲第2項記載の高純度シリカの製造法。 6)含水シリカを噴霧乾燥して加熱処理する特許請求の
範囲第2項記載の高純度シリカの製造法。
[Claims] l) Silica obtained from an aqueous alkali silicate solution,
The radioactive substance is 10 ppb or less, and the electric conductivity of the extracted water obtained by boiling and leaching the silica is 100 pS,/cm or less,
High purity silica having an average particle diameter in the range of 1-100 gm and a degree of melting of 80% or more. 2) A first step of gelling an aqueous alkali silicate solution to precipitate silica gel, a second step of purifying the silica gel with a volatile acid to obtain hydrated silica, and heating and dehydrating the hydrated silica to obtain dehydrated silica. A method for producing high-purity silica, comprising a third step and a fourth step of injecting the dehydrated silica into a flame and melting it. 3) The method for producing high-purity silica according to claim 2, wherein the alkaline silicate aqueous solution is a sodium silicate aqueous solution prepared by dissolving crystalline sodium silicate. 4) The method for producing high-purity silica according to claim 2, characterized in that an aqueous alkali silicate solution is brought into contact with an ion exchange resin to produce an acidic silica sol. 5) The method for producing high-purity silica according to claim 2, wherein an aqueous alkali silicate solution is neutralized with an acid to form a gel. 6) The method for producing high-purity silica according to claim 2, which comprises spray-drying and heat-treating hydrated silica.
JP3424984A 1984-02-27 1984-02-27 High-purity silica and its manufacture Granted JPS60180911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3424984A JPS60180911A (en) 1984-02-27 1984-02-27 High-purity silica and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3424984A JPS60180911A (en) 1984-02-27 1984-02-27 High-purity silica and its manufacture

Publications (2)

Publication Number Publication Date
JPS60180911A true JPS60180911A (en) 1985-09-14
JPH0121091B2 JPH0121091B2 (en) 1989-04-19

Family

ID=12408891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3424984A Granted JPS60180911A (en) 1984-02-27 1984-02-27 High-purity silica and its manufacture

Country Status (1)

Country Link
JP (1) JPS60180911A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683128A (en) * 1985-06-27 1987-07-28 Nitto Chemical Industry Co., Ltd. Process for manufacturing high purity silica
KR100651243B1 (en) 2005-03-04 2006-11-30 (주) 에스오씨 Manufacturing method for spherical silica
RU2481096C2 (en) * 2008-11-25 2013-05-10 Дзе Проктер Энд Гэмбл Компани Compositions for oral cavity care with improved cleaning effect
JPWO2014188934A1 (en) * 2013-05-20 2017-02-23 日産化学工業株式会社 Silica sol and silica-containing epoxy resin composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141569A (en) * 1978-04-26 1979-11-02 Toshiba Corp Semiconductor device
JPS554952A (en) * 1978-06-28 1980-01-14 Toshiba Corp Semiconductor device
JPS5610947A (en) * 1979-07-10 1981-02-03 Toshiba Corp Semiconductor sealing resin composition
JPS5617919A (en) * 1979-07-09 1981-02-20 Ceskoslovenska Akademie Ved Method of making silicic acid xerogel of large pore volume
JPS56116647A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Manufacturing of silica-alumina type filler for semiconductor memory element covering resin
JPS57195151A (en) * 1981-05-27 1982-11-30 Denki Kagaku Kogyo Kk Low-radioactive resin composition
JPS57212224A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS58145613A (en) * 1982-02-15 1983-08-30 Denki Kagaku Kogyo Kk Molten silica sphere, its preparation and its device
JPS58151318A (en) * 1982-02-26 1983-09-08 Shin Etsu Chem Co Ltd Synthetic silica and resin composition containing it for sealing electronic parts
JPS5954632A (en) * 1982-09-21 1984-03-29 Mitsubishi Metal Corp Preparation of quartz glass powder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141569A (en) * 1978-04-26 1979-11-02 Toshiba Corp Semiconductor device
JPS554952A (en) * 1978-06-28 1980-01-14 Toshiba Corp Semiconductor device
JPS5617919A (en) * 1979-07-09 1981-02-20 Ceskoslovenska Akademie Ved Method of making silicic acid xerogel of large pore volume
JPS5610947A (en) * 1979-07-10 1981-02-03 Toshiba Corp Semiconductor sealing resin composition
JPS56116647A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Manufacturing of silica-alumina type filler for semiconductor memory element covering resin
JPS57195151A (en) * 1981-05-27 1982-11-30 Denki Kagaku Kogyo Kk Low-radioactive resin composition
JPS57212224A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS58145613A (en) * 1982-02-15 1983-08-30 Denki Kagaku Kogyo Kk Molten silica sphere, its preparation and its device
JPS58151318A (en) * 1982-02-26 1983-09-08 Shin Etsu Chem Co Ltd Synthetic silica and resin composition containing it for sealing electronic parts
JPS5954632A (en) * 1982-09-21 1984-03-29 Mitsubishi Metal Corp Preparation of quartz glass powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683128A (en) * 1985-06-27 1987-07-28 Nitto Chemical Industry Co., Ltd. Process for manufacturing high purity silica
KR100651243B1 (en) 2005-03-04 2006-11-30 (주) 에스오씨 Manufacturing method for spherical silica
RU2481096C2 (en) * 2008-11-25 2013-05-10 Дзе Проктер Энд Гэмбл Компани Compositions for oral cavity care with improved cleaning effect
RU2486890C2 (en) * 2008-11-25 2013-07-10 Дзе Проктер Энд Гэмбл Компани Compositions for oral cavity care containing amorphous quartz
JPWO2014188934A1 (en) * 2013-05-20 2017-02-23 日産化学工業株式会社 Silica sol and silica-containing epoxy resin composition

Also Published As

Publication number Publication date
JPH0121091B2 (en) 1989-04-19

Similar Documents

Publication Publication Date Title
CA1095877A (en) Process for producing silicon-dioxide-containing waste fines to crystalline zeolitic type-a molecular sieves
AU644860B2 (en) Producing high purity silica
JPH0643246B2 (en) Silica purification method
JPS60204613A (en) Production of high purity silica gel
JPS6212608A (en) Silica of high purity and production thereof
JPS61158810A (en) Production of high-purity silica sol
JPS60180911A (en) High-purity silica and its manufacture
US3914381A (en) Process for the preparation of substantially pure phosphorus oxyacid salts of metals of group IV b{41
JP2823070B2 (en) Method for producing high-purity zirconium oxychloride crystal
GB2222823A (en) A process for producing high purity silica
JPS60191016A (en) High-purity silica and its manufacture
JPH0118006B2 (en)
JP2694163B2 (en) Method for producing high-purity silica
JP2002241122A (en) Method for manufacturing high-purity silica
JP3442120B2 (en) Method for washing silica hydrogel
JPH0255380B2 (en)
JPH0516372B2 (en)
JPS6042217A (en) Manufacture of high purity silica
US2888319A (en) Process of producing alkali metal fluozirconates
JPH0121093B2 (en)
US2940939A (en) Process of preparing silica sols
JPS63315514A (en) Method for treating aqueous solution of alkali silicate
JPS6090812A (en) Manufacture of high purity silica
JPS6140811A (en) Hydrated silica for melting and manufacture of melted silica by using it
JPH1111929A (en) Production of high purity silica powder and high purity silica powder produced by this method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term