JPH0255380B2 - - Google Patents

Info

Publication number
JPH0255380B2
JPH0255380B2 JP61201514A JP20151486A JPH0255380B2 JP H0255380 B2 JPH0255380 B2 JP H0255380B2 JP 61201514 A JP61201514 A JP 61201514A JP 20151486 A JP20151486 A JP 20151486A JP H0255380 B2 JPH0255380 B2 JP H0255380B2
Authority
JP
Japan
Prior art keywords
bismuth
compound
solution
nitric acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61201514A
Other languages
Japanese (ja)
Other versions
JPS6360112A (en
Inventor
Noryuki Yamamoto
Hideki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP61201514A priority Critical patent/JPS6360112A/en
Publication of JPS6360112A publication Critical patent/JPS6360112A/en
Publication of JPH0255380B2 publication Critical patent/JPH0255380B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(1) 発明の目的 〔産業上の利用分野〕 本発明は、新規なビスマス化合物およびその用
途即ちイオン交換、吸着の各種用途、例えば水溶
液や有機溶剤からの不純物イオンの除去、産業廃
液の処理、産業廃水や海水からの有価物の回収、
高純度薬品の製造、電気電子分野関連の固体材料
中の不純物イオンの吸着固定、気体中のイオン性
成分の吸着回収および吸着除去、更にはイオン交
換、吸着特性を利用したPH緩衝、PH調整等の用途
に用いる無機陰イオン交換体に関するものであ
る。 〔従来の技術〕 従来、無機陰イオン交換体として、含水酸化マ
グネシウム、含水酸化アルミニウム、含水酸化ジ
ルコニウム、含水酸化チタン、含水酸化スズ、含
水酸化トリウム、含水酸化鉄、含水酸化ビスマ
ス、ハイドロタルサイトおよびヒドロキシアパタ
イト等が知られている。 一般的に言つて、無機陰イオン交換体を始め無
機イオン交換体は両イオン交換性である。即ち、
アルカリ側で陽イオン交換性を、酸性側で陰イオ
ン交換性を示す。 無機イオン交換体をM(OH)oとし、捕捉すべ
くイオンをB+、A-で表すと、アルカリ側では(1)
式のように、酸性側では(2)式のようにイオン交換
を行う。 M(OH)o+B+M(OH)o-1OB+H+ …(1) M(OH)o+A-M(OH)o-1+OA+OH- …(2) 陰イオン交換反応と陽イオン交換反応が等しく
なるPHを等電点と言い、この点付近のPHでは見掛
け上陽イオン交換性も陰イオン交換性も示さなく
なる。 等電点はイオン交換体の種類により多少異なる
が、おおむねPH5前後である。 例えば含水酸化ジルコニウムはPH約6、含水酸
化チタンはPH約4、含水酸化スズはPH約5であ
る。 これより明らかなように中性付近においては、
無機イオン交換体はイオン交換をしないという欠
点を有している。 更に無機陰イオン交換体の場合には液の汚染の
問題もある。 即ち酸性側で陰イオンを吸着した後、吸着イオ
ンを脱離(イオン交換体の再生)する場合には、
通常NaOH水溶液等のアルカリ水溶液を用いる
が、続いて脱離処理を施した無機イオン交換体を
イオン吸着のため再び酸性の溶液に接触させた場
合、下記のようなイオン交換反応が起こり、再生
時に吸着したNa+等の陽イオンが脱離されるた
め、液が汚染され、更にこの反応により液のPHが
上昇してしまうため、等電点に近づき、イオン交
換容量が小さくなるという欠点も有している。 M(OH)o-1(OB)+H+Cl- M(OH)o+B+Cl- 以上に示した理由により、弱酸〜中性付近で等
電等を有する無機イオン交換体は陰イオン交換体
としての実用性が乏しい。 この他、含水酸化アルミニウムおよびヒドロキ
シアパタイトはイオン交換容量が小さく、また含
水酸化マグネシウムは溶解性が大きいという欠点
を有しており、工業上の利用が難しい。 ハイドロタルサイトや含水酸化ビスマスは、陰
イオン交換性のみを示し、耐薬品性や耐熱性も比
較的優れている。 しかしハイドロタルサイトは、100℃以上での
熱水では溶解性が大きく、耐熱性で劣る。 一方含水酸化ビスマスは酸性での交換容量は非
常に大きく、また水に対しても安定で、無機イオ
ン交換体として比較的優れているが、中性付近で
のイオン交換容量が小さく、交換速度も遅いとい
う欠点を有している。 無機陰イオン交換体として使用される含水酸化
ビスマスは、文献上では、次のような種々の化学
式で示されるものがある。 Bi(OH)3、Bi2O3・3H2O、HBiO2、H3BiO3
HBiO2、BiO・OH(以上INORGANIC ION
EXCHANGE MATERIA LS、CRC Press、
Inc.(Boca Raton、Florida)、1981発行P.180〜
182)。 これらの化合物はビスマスの可溶性塩の水溶液
を加水分解することにより得られるが、一般的製
法としては硝酸ビスマス水溶液をアンモニア水で
中和する方法やビスマスマンニトール錯体の水溶
液を大量の水で希釈加水分解する方法等が知られ
ている。 〔発明が解決しようとする問題点〕 無機陰イオン交換体として比較的優れている従
来の含水酸化ビスマスにも前述のように中性付近
でのイオン交換容量が小さく、交換速度も遅いと
いう欠点を有している。 そこで安定性が良く、高塩基性で且つイオン交
換速度の大きな無機陰イオン交換体、特にビスマ
ス系の化合物からなる無機陰イオン交換体が強く
求められてきた。 (2) 発明の構成 〔問題点を解決するためのための手段〕 本発明者等は、無機陰イオン交換体として使用
できる新規な含水酸化ビスマスの合成について鋭
意検討を行つた結果、新規な硝酸ビスマス加水分
解生成物の合成に成功し、この化合物は中性付近
でイオン交換容量、イオン交換速度共に大きく、
且つ安定性の優れた無機陰イオン交換体となるこ
とを確認し本発明の完成に至つた。 即ち本発明は、Bi6O6(OH)x(NO36-x・nH2O
(但し、3.5≦x≦5.5、nは0または正の数)の
式で示されるビスマス化合物およびこの化合物を
有効成分とする無機陰イオン交換体に関するもの
である。 無機化合物の結晶化学的研究の分野において
は、ビスマスの加水分解反応生成物について比較
的詳しく研究されており、硝酸ビスマスより出発
したもので、現在までに知られている化学種には
種のようなものがある。 ΓBiO・NO3(オキシ硝酸ビスマス) Γ〔Bi6O4(OH)4〕〔OH〕(NO35・0.5H2O(PH
1.04〜1.88での生成物〕 Γ〔Bi6O6(OH)〕(NO35・2.5H2O Γ〔Bi6O6(OH)2〕(NO34・2H2O Γ〔Bi6O6(OH)3〕(NO33・1.5H2O Γ〔Bi6O4(OH)4〕(NO36・4H2O (Monatshefte fur Chemie 104365〜375
(1973)、Cryst.Struct.Comm.(1979)、8,69.) 以上の化合物について共通していることは、ビ
スマスの加水分解生成物は、オキシ化合物で、ポ
リマーとなつていること、またビスマス原子は6
個が基本単位となつていることで、この点につい
て現在では、Bi原子が八面体構造の6個の頂点
を占めるという説が定設となつている。 しかし上述の化学種のイオン交換的研究はなさ
れていない。 更に上述の化学種はPHの低い領域での生成物で
あり、すべて塩基度が低い。 即ち各化学種のOH基/NO3基比は、1以下
で、これ以上の塩基度のものは現在のところ報告
されていない。 本発明のビスマス化合物は、硝酸ビスマスの硝
酸水溶液に、加水分解反応条件を制御しつつアル
カリ水溶液を添加する方法で製造することができ
る。 前述の通り、ビスマスの加水分解生成物は、
Biが6個入つたオキシ化合物を基本単位として
おり、Bi6O6(OH)x(NO36-x・nH2Oで示され
る。 従来、x/(6−x)比が1以下のものは見出
されているが、1を超えるものはなかつた。 従来のx/(6−x)比が1以下、即ちxが3
以下のものの加水分解反応は次のように推定され
ている。 ΓPH1以下の溶液での反応 6Bi3++12H2OBi6(OH)6+ 12+12H+ …(3) ΓPH1.2付近でのオキシ化析出反応 Bi6(OH)6+ 12+6NO3 - →Bi6O6(NO36+6H2O (4) ここで多量体Bi6O6(NO36は、一般にオキシ
硝酸ビスマスとしてBiONO3で示される。 更に高PHでの加水分解反応では、Bi6O6
(NO36のNO3基がOHと逐次置換する。 ΓBi6O6(NO36 →Bi6O6(OH)(NO35 …(5) ΓBi6O6(OH)(NO36 →Bi6O6(OH)2(NO34 …(6) ΓBi6O6(OH)2(NO34 →Bi6O6(OH)3(NO33 …(7) 上記の化学種はいずれも水和水を持つ。 硝酸基を含みこれ以上塩基性が強い化合物の生
成は、前述の通り報告されていない。 この理由としては、これ以上高塩基のものは、
最終逐次反応生成物であるBi6O6(OH)6がこの構
造変態種である既知の3(Bi2O3・H2O)へ転移
しやすいためと推定される。 しかし本発明者等は、次に述べるような加水分
解反応条件を制御しつつアルカリ水溶液を添加す
ることにより、従来未知であつた、Bi6O6(OH)x
(NO36-xでxが3.5〜5.5の範囲内にあり、且つ安
定で有用な含水酸化ビスマスについて検討を行
い、目的とする化合物を得ることに成功し、本発
明を完成させた。 〔新規なビスマス化合物の製造方法〕 出発物質は硝酸ビスマスの硝酸溶液である。 これは硝酸ビスマス、炭酸ビスマス、酸化ビス
マス等のビスマス化合物を硝酸に溶解することに
より調製する。 ここで硝酸ビスマスは酸溶液でないと溶解しな
いので、硝酸が過剰の状態にする必要がある。 できた硝酸ビスマス溶液の濃度は特に規定しな
いが、Bi(NO33換算で20〜50重量%が好ましい。 50重量%より高い濃度では、次のアルカリを添
加して沈澱を析出する反応において、スラリー濃
度が高くなり、均一性が阻害される。 一方20重量%未満では、バツチ当りの収量が少
なくなり、経済的でない。 過剰の状態で存在するフリーの硝酸の濃度は特
に規定がなく、硝酸ビスマスが析出せずに溶解状
態を保てればよい。しかしフリーの硝酸の量が大
過剰であれば、次の段階で添加するアルカリの量
も多くなるので、経済的、作業的に不利である。
好ましい硝酸の濃度は3〜10重量%である。 次の段階としてアルカリを用いて硝酸ビスマス
の加水分解を行う。 アルカリの種類は特に問わず例えば水酸化リチ
ウム、水酸化ナトリウム、水酸化カリウム、アン
モニア、炭酸ナトリウムおよび炭酸水素ナトリウ
ム等が挙げられる。 アルカリの添加速度は、加水分解平衡に合わせ
た添加速度をとることが好ましい。 即ち前述の式(3)(4)に示される加水分解反応は速
く進行し、式(5)〜(7)の反応は遅いので、それに合
わせて添加する。 溶液の均一性を保つ意味も含め、式(3)および(4)
で示される反応までは、所定の当量即ち加水分解
を完全に行うのに必要なアルカリ量を2時間程度
をかけて添加するのが好ましい。 式(5)〜(7)に要するアルカリ添加時間は60〜180
分の範囲が好ましい。 これ以後、Bi6O6(OH)x(NO36-xのxを1増
加させるためには、2時間から6時間で所定モル
量即ちxを1増加させるためには約1モルのアル
カリを添加することが好ましい。 この理由は式(7)以降では平衡反応が遅いため、
短い添加時間では、OHが消費されず、反応液の
PHが必要以上に高くなり、Bi2O3・H2O等好まし
くない生成物へと一気に転移が進む恐れがあるか
らである。 また逆に添加時間があまりにも長いと、転移が
起こる恐れがあり、いずれも好ましくない。 加水分解に用いるアルカリ物質の水溶性濃度は
特に問わないが、一般に添加時間にもよるが、加
水分解反応を前期(式(4)まで)、中期(式(7)ま
で)、後期(式(7)以後)と分けた場合、順に低濃
度にすることが望ましく、前期は20重量%程度、
中期は10重量%程度、後期は5重量%程度の濃度
が好ましい。 加水分解反応の温度は、高くても低くても最終
の生成物の組成にはあまり影響ないが、低温での
生成物は高温での生成物に比べて熱水中での溶解
量が大きい等、耐熱性・耐熱水安定性でやや劣る
欠点がある。 また反応速度は、温度が低くなる程、小さくな
るので、好ましい反応温度は10〜60℃で、より好
ましくは20〜50℃である。 反応でできた生成物を濾過し、水で洗浄し、必
要に応じて、乾燥、粉枠をする。 乾燥は、付着水を除去できればいずれの方法で
も良い。 本発明で生成されるBi6O6(OH)x(NO36-x
nH2O(但し、3.5≦x≦5.5、nは0または正の
数)で示される化合物のnH2Oは水和水であり、
ここでnの値は通常0〜0.8程度であるが、乾燥
工程において乾燥温度、乾燥時間および乾燥方法
により調整ができる。 特に有機系溶媒や固体系での使用において、水
の脱離が不都合を有する場合には、乾燥時に調整
すればよい。 粉砕は使用目的にあつた粒度に粉砕できればよ
く、方法は問わない。 〔作 用〕 本発明のBi6O6(OH)x(NO36-x・nH2O(但し、
3.5≦x≦5.5、nは0または正の数)で示される
化合物は、無機陰イオン交換体として用いた場
合、通常の含水酸化ビスマスに比べて、中性付近
でのイオン交換容量および交換速度が大きく、ま
た耐熱性にも優れている。 ここでxの値は、使用原料物質の重量や濃度を
高精度に測定した上、計算量のアルカリを前記条
件で添加することにより、自由に決定することが
できる。 この化合物のイオン交換基はNO3基およびOH
基の両者で起きる、NO3基はOH基に比較してイ
オン交換容量、交換速度共に大きい。 このためこの化合物は、中性付近でのイオン交
換容量および速度が大きいことになる。 この差は特にF-、Cl-、Br-等のハロゲンイオ
ンに対して顕著である。 ここでxの値が3.5より小さいと、中性付近で
のイオン交換容量や速度は大きいが、水や熱水に
対してNO3の溶出が多くなる等、耐水性や耐熱
性が著しく低下する。 また更にxが小さくなると、この化合物自体の
溶解量も大きくなる。 一方xが5.5より大きくなると、逆に化合物中
のNO3基が少ないため、中性付近でのイオン交
換容量や交換速度が小さくなり、また構造が通常
の含水酸化ビスマスに近くなるため、耐水性にお
いても劣つてくる。 〔無機陰イオン交換体〕 本発明のBi6O6(OH)x(NO36-x・nH2O(但し、
3.5≦x≦5.5、nは0または正の数)で示される
化合物よりなる無機陰イオン交換体は、前述の通
り、中性付近でのイオン交換容量、交換速度共大
きく、また耐水性や耐熱性・耐熱水安定性にも優
れており、広範な用途分野への使用が可能であ
る。 また本発明の化合物と無機陽イオン交換体例え
ば結晶性アンチモン等を併用してもよい。 本発明の無機陰イオン交換体の形状は特に問わ
なく、粉末状、顆粒状、粒状、ハニカム等の構造
体状および膜状等使用目的に合わせて選べばよ
い。 粒状等に成型する場合は、有機および/または
無機系の結合剤を使用することができる。 構造体状に成型する場合は、結合剤を用いて無
機陰イオン交換体そのものを成型することもでき
るし、別の構造体に無機陰イオン交換体を担持さ
せる方法もある。 膜状に成型する場合は、無機陰イオン交換体そ
のものを膜状に成型する方法や、抄紙工程に無機
陰イオン交換体を添加して紙状にする方法等があ
る。 〔実施例及び比較例〕 以下、実施例及び比較例を挙げて本発明をさら
に詳しく説明する。尚、実施例中「%」とあるは
「重量%」、「部」とあるは「重量部」である。 また硝酸過剰水溶液中の硝酸ビスマスおよびフ
リーな硝酸の濃度の分析方法は次の通り。 硝酸ビスマス水溶液を一定量計り取り、多量
の水に溶解し、それにNaCl水溶液を添加する。 以下の反応式により、ビスマスが沈澱し、
NO3 -が遊離する。 Bi(NO33+NaCl+H2O →BiOCl↓+NaNO3+2HNO3 2HNO3およびフリーな硝酸の量を中和滴定
により求める。 一方、硝酸ビスマス水溶液のビスマス濃度を
キレート滴定(滴定試薬EDTA;指示薬キシ
ノールオレンジ)で求める。 先に求めたNO3濃度の内、Bi(NO3)に相当
するものを差し引くと、フリーな硝酸の濃度が
求まる。 更に生成物であるビスマス化合物の組成は、一
定量の試料を0.1N−NaOH水溶液中に添加し、
24時間撹拌後に溶出NO3 -をイオンクロマトグラ
フイーで測定することで求めた。また水分量は、
200℃、2時間の乾燥の結果減少した試料の重量
より求めた。 実施例1、比較例1および比較例2 酸化ビスマス236gを、31.5%硝酸764gに溶解
した。 溶液中の硝酸ビスマスの濃度を分析したところ
Bi(NO33換算で40.2%で、フリーの硝酸は4.90%
であつた。 反応温度を25℃に保ちながら、この溶液に20%
水酸化ナトリウム水溶液563gを定量ポンプを用
いて1時間かけて添加した。 引続き、10%水酸化ナトリウム水溶液201gを
1時間かけ、5%水酸化ナトリウム水溶液134g
を同様に2時間かけ添加した。 更に1時間撹拌後、沈澱物をNo.2濾紙で濾過
し、蒸留水で洗浄した。 これを箱型乾燥機内に入れ、100℃で24時間乾
燥し、次いで卓上粉砕器で粉砕し、ビスマス化合
物を得た。 この化合物の組成分析を行つたところ、Bi6O6
(OH)4.0(NO32.0・0.8H2Oであり、使用原料か
ら算出される計算値と一致した。 またX線回折の結果、非常に対称性の低い、わ
ずかに結晶化した物質であることがわかつた。
(実施例1)。 硝酸ビスマス5水和物100gとマンニツト40g
を乳鉢で擦り合わせ粘稠液を作り、蒸留水500ml
に溶解した。 これを20%水酸化ナトリウム水溶液中に注ぎ込
み約5とした。 15℃に冷却しながら、4N硫酸を徐々に添加し、
PHを10とした。 沈澱をNo.2濾紙で濾過し、充分水洗後、箱型乾
燥機に入れ、100℃で24時間乾燥し、卓上粉砕機
で粉砕し、含水酸化ビスマスを得た。 X線回折によれば、この物質は実施例1と異な
る回折パターンを持つ結晶性の高い物質であつた
(比較例1)。 炭酸ナトリウム90gと酸化マグネシウム30gを
水500gに添加した。 次いで硫酸アルミニウム8水和物67gを蒸留水
500gに溶解した水溶液を1時間かかつて上記溶
液に添加した。 これを90〜100℃で4時間加熱後、沈澱をNo.2
濾紙で濾過し、蒸留水で充分洗浄した。 これを箱型乾燥機に入れ100℃で24時間乾燥し、
卓上粉砕機で乾燥し、ハイドロタルサイトMg4.5
Al2(OH)13CO3・3H2Oを得た(比較例2)。 実施例1、比較例1および比較例2で得た化合
物各10gを0.1N塩化ナトリウム水溶液500ml添加
し、25℃で24時間撹拌後、上澄液中の塩化物イオ
ン濃度を測定し、各物質の塩化物イオン交換容量
を調べた(テスト1)。 同様に各化合物10gを0.1N塩化ナトリウム水
溶液500mlに添加し、85℃で1時間撹拌後、上澄
液中の塩化物イオン濃度を測定し、各物質の塩化
物イオン交換容量を調べた(テスト2)。 同様に各化合物10gを蒸留水100mlに添加し、
24時間加熱還流した。 放冷後、上澄液中の電気伝導度を測定した(テ
スト3)。 テスト1、2および3の結果を表1に示す。
(1) Purpose of the invention [Field of industrial application] The present invention is directed to a novel bismuth compound and its uses, including various uses of ion exchange and adsorption, such as removal of impurity ions from aqueous solutions and organic solvents, treatment of industrial waste liquids, Recovery of valuables from industrial wastewater and seawater,
Manufacturing of high-purity chemicals, adsorption and fixation of impurity ions in solid materials related to electrical and electronic fields, adsorption recovery and adsorption removal of ionic components in gases, ion exchange, PH buffering and PH adjustment using adsorption properties, etc. The present invention relates to an inorganic anion exchanger used in the following applications. [Prior Art] Conventionally, as inorganic anion exchangers, hydrous magnesium oxide, hydrous aluminum oxide, hydrous zirconium oxide, hydrous titanium oxide, hydrous tin oxide, hydrous thorium oxide, hydrous iron oxide, hydrous bismuth oxide, hydrotalcite, and Hydroxyapatite and the like are known. Generally speaking, inorganic ion exchangers including inorganic anion exchangers are amphoteric ion exchangers. That is,
It exhibits cation exchange properties on the alkaline side and anion exchange properties on the acidic side. If the inorganic ion exchanger is M(OH) o , and the ions to be captured are represented by B + and A - , on the alkaline side, (1)
As shown in the equation, on the acidic side, ion exchange is performed as shown in equation (2). M(OH) o +B + M(OH) o-1 OB+H + …(1) M(OH) o +A - M(OH) o-1 +OA+OH -... (2) Anion exchange reaction and cation exchange reaction The pH that becomes equal is called the isoelectric point, and at a pH around this point, neither cation exchange nor anion exchange properties appear. The isoelectric point varies somewhat depending on the type of ion exchanger, but is generally around PH5. For example, hydrous zirconium oxide has a pH of about 6, hydrous titanium oxide has a pH of about 4, and hydrous tin oxide has a pH of about 5. As is clear from this, near neutrality,
Inorganic ion exchangers have the disadvantage that they do not exchange ions. Furthermore, in the case of inorganic anion exchangers, there is also the problem of liquid contamination. In other words, after adsorbing anions on the acidic side, when desorbing the adsorbed ions (regeneration of the ion exchanger),
Normally, an alkaline aqueous solution such as NaOH aqueous solution is used, but if the inorganic ion exchanger that has been subjected to desorption treatment is then brought into contact with an acidic solution again for ion adsorption, the following ion exchange reaction occurs, and during regeneration, Adsorbed cations, such as Na ing. M (OH) o-1 (OB) + H + Cl - M (OH) o + B + Cl - For the reasons shown above, inorganic ion exchangers with isoelectric properties in the weak acid to neutral range are anion exchangers. It is of little practical use. In addition, hydrated aluminum oxide and hydroxyapatite have a small ion exchange capacity, and hydrated magnesium oxide has a large solubility, making them difficult to use industrially. Hydrotalcite and hydrous bismuth oxide exhibit only anion exchange properties and have relatively excellent chemical resistance and heat resistance. However, hydrotalcite is highly soluble in hot water at temperatures above 100°C and has poor heat resistance. On the other hand, hydrous bismuth oxide has a very large exchange capacity in acidic conditions and is stable in water, making it relatively excellent as an inorganic ion exchanger, but its ion exchange capacity near neutrality is small and its exchange rate is low. It has the disadvantage of being slow. In the literature, hydrous bismuth oxide used as an inorganic anion exchanger has various chemical formulas as shown below. Bi (OH) 3 , Bi2O33H2O , HBiO2 , H3BiO3 ,
HBiO 2 , BiO・OH (INORGANIC ION
EXCHANGE MATERIA LS, CRC Press,
Inc. (Boca Raton, Florida), published 1981 P.180~
182). These compounds can be obtained by hydrolyzing an aqueous solution of a soluble salt of bismuth, but common manufacturing methods include neutralizing an aqueous solution of bismuth nitrate with aqueous ammonia, or diluting an aqueous solution of bismuth mannitol complex with a large amount of water and hydrolyzing it. There are known methods to do this. [Problems to be Solved by the Invention] Conventional hydrous bismuth oxide, which is relatively excellent as an inorganic anion exchanger, has the disadvantages of low ion exchange capacity near neutrality and slow exchange rate, as described above. have. Therefore, there has been a strong demand for inorganic anion exchangers that are stable, highly basic, and have a high ion exchange rate, especially inorganic anion exchangers made of bismuth-based compounds. (2) Structure of the Invention [Means for Solving Problems] The present inventors have conducted intensive studies on the synthesis of a new hydrous bismuth oxide that can be used as an inorganic anion exchanger, and as a result, have developed a novel nitric acid We succeeded in synthesizing a bismuth hydrolysis product, and this compound has high ion exchange capacity and ion exchange rate near neutrality.
Moreover, it was confirmed that the inorganic anion exchanger had excellent stability, and the present invention was completed. That is, the present invention provides Bi 6 O 6 (OH) x (NO 3 ) 6-x・nH 2 O
The present invention relates to a bismuth compound represented by the formula (3.5≦x≦5.5, n is 0 or a positive number) and an inorganic anion exchanger containing this compound as an active ingredient. In the field of crystal chemistry research on inorganic compounds, the hydrolysis reaction products of bismuth have been studied in relatively detail, starting from bismuth nitrate, and the chemical species known to date include seeds, etc. There is something. ΓBiO・NO 3 (Bismuth oxynitrate) Γ [Bi 6 O 4 (OH) 4 ] [OH] (NO 3 ) 5・0.5H 2 O (PH
Products at 1.04-1.88] Γ[Bi 6 O 6 (OH)] (NO 3 ) 5・2.5H 2 O Γ [Bi 6 O 6 (OH) 2 ] (NO 3 ) 4・2H 2 O Γ Bi 6 O 6 (OH) 3 ] (NO 3 ) 3・1.5H 2 O Γ [Bi 6 O 4 (OH) 4 ] (NO 3 ) 6・4H 2 O (Monatshefte fur Chemie 104365~375
(1973), Cryst.Struct.Comm.(1979), 8, 69.) What all of the above compounds have in common is that the hydrolysis product of bismuth is an oxy compound and is a polymer. Bismuth atom is 6
Since the individual is the basic unit, the current theory is that Bi atoms occupy six vertices of the octahedral structure. However, ion exchange studies of the above-mentioned chemical species have not been conducted. Furthermore, the above-mentioned species are products in the low pH range, and all have low basicity. That is, the OH group/NO 3 group ratio of each chemical species is 1 or less, and no basicity higher than this has been reported so far. The bismuth compound of the present invention can be produced by adding an alkaline aqueous solution to a nitric acid aqueous solution of bismuth nitrate while controlling the hydrolysis reaction conditions. As mentioned above, the hydrolysis products of bismuth are
The basic unit is an oxy compound containing six Bi atoms, and is represented by Bi 6 O 6 (OH) x (NO 3 ) 6-x ·nH 2 O. Conventionally, those having an x/(6-x) ratio of 1 or less have been found, but none exceeding 1 has been found. The conventional x/(6-x) ratio is less than 1, that is, x is 3
The hydrolysis reactions of the following are estimated as follows. Reaction in a solution with ΓPH of 1 or less 6Bi 3+ +12H 2 OBi 6 (OH) 6+ 12 +12H + …(3) Oxylation precipitation reaction in the vicinity of ΓPH1.2 Bi 6 (OH) 6+ 12 +6NO 3 - →Bi 6 O 6 (NO 3 ) 6 +6H 2 O (4) where the multimer Bi 6 O 6 (NO 3 ) 6 is generally designated as BiONO 3 as bismuth oxynitrate. Furthermore, in the hydrolysis reaction at high pH, Bi 6 O 6
(NO 3 ) The NO 3 group of 6 is successively substituted with OH. ΓBi 6 O 6 (NO 3 ) 6 →Bi 6 O 6 (OH) (NO 3 ) 5 …(5) ΓBi 6 O 6 (OH) (NO 3 ) 6 →Bi 6 O 6 (OH) 2 (NO 3 ) 4 …(6) ΓBi 6 O 6 (OH) 2 (NO 3 ) 4 →Bi 6 O 6 (OH) 3 (NO 3 ) 3 …(7) All of the above chemical species have water of hydration. As mentioned above, the production of a more basic compound containing a nitric acid group has not been reported. The reason for this is that the more highly basic
This is presumed to be because Bi 6 O 6 (OH) 6 , which is the final sequential reaction product, easily transfers to the known 3 (Bi 2 O 3 .H 2 O), which is this structurally modified species. However, the present inventors added an alkaline aqueous solution while controlling the hydrolysis reaction conditions as described below .
(NO 3 ) 6-x, in which x is within the range of 3.5 to 5.5, and stable and useful hydrated bismuth oxide was investigated, and the present invention was completed by successfully obtaining the target compound. [Method for producing a novel bismuth compound] The starting material is a nitric acid solution of bismuth nitrate. It is prepared by dissolving bismuth compounds such as bismuth nitrate, bismuth carbonate, and bismuth oxide in nitric acid. Since bismuth nitrate will not dissolve unless it is in an acid solution, it is necessary to have an excess of nitric acid. Although the concentration of the resulting bismuth nitrate solution is not particularly limited, it is preferably 20 to 50% by weight in terms of Bi(NO 3 ) 3 . If the concentration is higher than 50% by weight, the slurry concentration becomes high and uniformity is inhibited in the subsequent reaction of adding alkali to precipitate. On the other hand, if it is less than 20% by weight, the yield per batch will be low, making it uneconomical. There is no particular restriction on the concentration of free nitric acid present in excess, as long as bismuth nitrate does not precipitate and remains dissolved. However, if the amount of free nitric acid is in excess, the amount of alkali added in the next step will also increase, which is disadvantageous economically and operationally.
The preferred concentration of nitric acid is 3-10% by weight. The next step is to hydrolyze bismuth nitrate using an alkali. The type of alkali is not particularly limited, and examples thereof include lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonia, sodium carbonate, and sodium hydrogen carbonate. The addition rate of the alkali is preferably adjusted to the hydrolysis equilibrium. That is, since the hydrolysis reactions shown in formulas (3) and (4) above proceed quickly, and the reactions in formulas (5) to (7) are slow, they are added accordingly. Equations (3) and (4), including the meaning of maintaining the uniformity of the solution,
It is preferable to add a predetermined equivalent amount of alkali, that is, the amount of alkali necessary for complete hydrolysis, over a period of about 2 hours until the reaction shown in . The alkali addition time required for formulas (5) to (7) is 60 to 180
A range of minutes is preferred. After this, in order to increase x of Bi 6 O 6 ( OH ) Preferably, an alkali is added. The reason for this is that the equilibrium reaction is slow after equation (7),
With short addition times, OH is not consumed and the reaction mixture
This is because there is a risk that the pH will become higher than necessary, and the transition to undesirable products such as Bi 2 O 3 and H 2 O will progress all at once. On the other hand, if the addition time is too long, there is a risk of metastasis occurring, which is undesirable. Although the water-soluble concentration of the alkaline substance used for hydrolysis is not particularly limited, it generally depends on the addition time, but the hydrolysis reaction can be carried out in the early stage (up to equation (4)), middle stage (up to equation (7)), and latter stage (up to equation (7)). 7) After that), it is desirable to lower the concentration in order, with the first half being about 20% by weight,
The concentration is preferably about 10% by weight in the middle stage and about 5% by weight in the latter stage. Whether the temperature of the hydrolysis reaction is high or low, it does not have much effect on the composition of the final product, but the amount of products produced at low temperatures dissolved in hot water is greater than those produced at high temperatures. However, it has the disadvantage of being slightly inferior in heat resistance and hot water stability. Further, the reaction rate decreases as the temperature decreases, so the reaction temperature is preferably 10 to 60°C, more preferably 20 to 50°C. The product of the reaction is filtered, washed with water and, if necessary, dried and powdered. Any drying method may be used as long as attached water can be removed. Bi 6 O 6 (OH) x (NO 3 ) 6-x produced in the present invention
nH 2 O of the compound represented by nH 2 O (3.5≦x≦5.5, n is 0 or a positive number) is hydration water,
Here, the value of n is usually about 0 to 0.8, but it can be adjusted by changing the drying temperature, drying time and drying method in the drying process. Particularly when using organic solvents or solid systems, if desorption of water is inconvenient, it may be adjusted during drying. The method of pulverization is not limited as long as it can be pulverized to a particle size suitable for the purpose of use. [Function] Bi 6 O 6 (OH) x (NO 3 ) 6-x・nH 2 O of the present invention (however,
When used as an inorganic anion exchanger, the compound represented by 3.5≦x≦5.5, where n is 0 or a positive number, has a higher ion exchange capacity and exchange rate near neutrality than ordinary hydrous bismuth oxide. is large and has excellent heat resistance. Here, the value of x can be freely determined by measuring the weight and concentration of the raw material used with high precision and then adding a calculated amount of alkali under the above conditions. The ion exchange groups of this compound are NO 3 groups and OH
The NO 3 group, which occurs in both groups, has a larger ion exchange capacity and exchange rate than the OH group. Therefore, this compound has a large ion exchange capacity and rate near neutrality. This difference is particularly noticeable for halogen ions such as F - , Cl - and Br - . If the value of x is less than 3.5, the ion exchange capacity and speed near neutrality are high, but the elution of NO 3 to water and hot water increases, resulting in a significant decrease in water resistance and heat resistance. . Furthermore, as x becomes smaller, the amount of the compound itself dissolved also becomes larger. On the other hand, when x is larger than 5.5, there are fewer NO 3 groups in the compound, so the ion exchange capacity and exchange rate near neutrality become smaller, and the structure becomes closer to that of normal hydrous bismuth oxide, resulting in poor water resistance. It also becomes inferior. [Inorganic anion exchanger] Bi 6 O 6 (OH) x (NO 3 ) 6-x・nH 2 O of the present invention (however,
3.5≦x≦5.5, n is 0 or a positive number. It has excellent properties such as heat resistance and hot water stability, and can be used in a wide range of fields. Further, the compound of the present invention may be used in combination with an inorganic cation exchanger such as crystalline antimony. The shape of the inorganic anion exchanger of the present invention is not particularly limited, and may be selected depending on the purpose of use, such as powder, granules, granules, structures such as honeycomb, and membrane. When molding into particles or the like, an organic and/or inorganic binder can be used. When molding into a structure, the inorganic anion exchanger itself can be molded using a binder, or the inorganic anion exchanger can be supported on another structure. When forming into a membrane, there are methods such as forming the inorganic anion exchanger itself into a membrane, and adding the inorganic anion exchanger to the paper making process to form paper. [Examples and Comparative Examples] The present invention will be described in more detail below with reference to Examples and Comparative Examples. In the examples, "%" means "% by weight" and "parts" means "parts by weight." The method for analyzing the concentration of bismuth nitrate and free nitric acid in an aqueous solution containing excess nitric acid is as follows. Measure out a certain amount of bismuth nitrate aqueous solution, dissolve it in a large amount of water, and add NaCl aqueous solution to it. According to the following reaction formula, bismuth is precipitated,
NO 3 - is liberated. Bi(NO 3 ) 3 +NaCl+H 2 O →BiOCl↓+NaNO 3 +2HNO 3 The amount of 2HNO 3 and free nitric acid is determined by neutralization titration. On the other hand, the bismuth concentration of the bismuth nitrate aqueous solution is determined by chelate titration (titration reagent EDTA; indicator xynol orange). By subtracting that equivalent to Bi (NO 3 ) from the NO 3 concentration determined earlier, the concentration of free nitric acid can be determined. Furthermore, the composition of the product bismuth compound was determined by adding a certain amount of sample to a 0.1N-NaOH aqueous solution.
After stirring for 24 hours, eluted NO 3 - was measured by ion chromatography. In addition, the water content is
It was determined from the weight of the sample that decreased as a result of drying at 200°C for 2 hours. Example 1, Comparative Example 1 and Comparative Example 2 236 g of bismuth oxide was dissolved in 764 g of 31.5% nitric acid. Analysis of the concentration of bismuth nitrate in the solution
Bi (NO 3 ) 3 equivalent is 40.2%, free nitric acid is 4.90%
It was hot. Add 20% to this solution while keeping the reaction temperature at 25°C.
563 g of aqueous sodium hydroxide solution was added over 1 hour using a metering pump. Subsequently, 201 g of 10% sodium hydroxide aqueous solution was added for 1 hour, and 134 g of 5% sodium hydroxide aqueous solution was added.
was added in the same manner over 2 hours. After stirring for an additional hour, the precipitate was filtered through No. 2 filter paper and washed with distilled water. This was placed in a box-type dryer and dried at 100°C for 24 hours, and then ground in a tabletop grinder to obtain a bismuth compound. When we analyzed the composition of this compound, we found that Bi 6 O 6
(OH) 4.0 (NO 3 ) 2.0・0.8H 2 O, which matched the calculated value calculated from the raw materials used. X-ray diffraction results revealed that it was a slightly crystallized substance with very low symmetry.
(Example 1). 100g of bismuth nitrate pentahydrate and 40g of mannitrate
Make a viscous liquid by rubbing it in a mortar and add 500ml of distilled water.
dissolved in This was poured into a 20% aqueous sodium hydroxide solution to make a solution of approx. Gradually add 4N sulfuric acid while cooling to 15°C.
The pH was set to 10. The precipitate was filtered through No. 2 filter paper, thoroughly washed with water, placed in a box-type dryer, dried at 100°C for 24 hours, and ground in a tabletop grinder to obtain hydrous bismuth oxide. According to X-ray diffraction, this material was a highly crystalline material with a diffraction pattern different from that of Example 1 (Comparative Example 1). 90 g of sodium carbonate and 30 g of magnesium oxide were added to 500 g of water. Next, 67g of aluminum sulfate octahydrate was added to distilled water.
500 g of the aqueous solution was added to the above solution over an hour. After heating this at 90 to 100℃ for 4 hours, the precipitate No. 2
It was filtered through filter paper and thoroughly washed with distilled water. Put this in a box dryer and dry it at 100℃ for 24 hours.
Hydrotalcite Mg 4.5 , dried in tabletop grinder
Al 2 (OH) 13 CO 3 .3H 2 O was obtained (Comparative Example 2). 10 g of each of the compounds obtained in Example 1, Comparative Example 1, and Comparative Example 2 was added to 500 ml of 0.1N aqueous sodium chloride solution, and after stirring at 25°C for 24 hours, the chloride ion concentration in the supernatant was measured. The chloride ion exchange capacity of was investigated (Test 1). Similarly, 10 g of each compound was added to 500 ml of 0.1N sodium chloride aqueous solution, and after stirring at 85°C for 1 hour, the chloride ion concentration in the supernatant was measured, and the chloride ion exchange capacity of each substance was investigated (test 2). Similarly, 10g of each compound was added to 100ml of distilled water,
The mixture was heated under reflux for 24 hours. After cooling, the electrical conductivity in the supernatant was measured (Test 3). The results of tests 1, 2 and 3 are shown in Table 1.

【表】 実施例2および実施例3 酸化ビスマス236gを、31.5%硝酸764gに溶解
した。 溶液中の硝酸ビスマスの濃度を分析したところ
Bi(NO33換算で40.3%で、フリーの硝酸は4.90%
であつた。 反応温度を70℃に制御した以外は実施例1と同
じ反応を行いビスマス化合物を得た。 これの組成分析を行つたところ、Bi6O6(OH)4.
(NO31.9・0.7H2Oであつた。 なお計算値は、Bi6O6(OH)4.0(NO32.0であ
る。 またX線回折の結果、対称性は実施例1の化合
物より高く、一部比較例1で得た含水酸化ビスマ
スのピークも観察された(実施例2)。 硝酸ビスマス5水和物491gを、15.7%硝酸509
gに溶解した。 溶液中の硝酸ビスマスの濃度を分析したところ
Bi(NO33換算で40.0%で、フリーの硝酸は7.95%
であつた。 反応温度を5℃に制御した以外は実施例1と同
じ反応を行いビスマス化合物を得た。 これの組成分析を行つたところ、Bi6O6(OH)3.
(NO32.4・1.1H2Oであつた。 なお計算値は、Bi6O6(OH)4(NO32である。 またX線回析の結果、この化合物は完全な非晶
質であつた(実施例3)。 実施例2および3で得た化合物に対して実施例
1と同様にテスト1〜3を行つた。その結果を表
2に示した。
[Table] Example 2 and Example 3 236 g of bismuth oxide was dissolved in 764 g of 31.5% nitric acid. Analysis of the concentration of bismuth nitrate in the solution
Bi (NO 3 ) 3 equivalent is 40.3%, free nitric acid is 4.90%
It was hot. A bismuth compound was obtained by carrying out the same reaction as in Example 1 except that the reaction temperature was controlled at 70°C. When we analyzed the composition of this, we found that it was Bi 6 O 6 (OH) 4.
1 (NO 3 ) 1.9・0.7H 2 O. The calculated value is Bi 6 O 6 (OH) 4.0 (NO 3 ) 2.0 . Furthermore, as a result of X-ray diffraction, the symmetry was higher than that of the compound of Example 1, and some of the peaks of hydrous bismuth oxide obtained in Comparative Example 1 were also observed (Example 2). 491 g of bismuth nitrate pentahydrate, 15.7% nitric acid 509
Dissolved in g. Analysis of the concentration of bismuth nitrate in the solution
Bi( NO3 ) 3 equivalent is 40.0%, free nitric acid is 7.95%
It was hot. A bismuth compound was obtained by carrying out the same reaction as in Example 1 except that the reaction temperature was controlled at 5°C. When we analyzed the composition of this, we found that it was Bi 6 O 6 (OH) 3.
6 (NO 3 ) 2.4・1.1H 2 O. The calculated value is Bi 6 O 6 (OH) 4 (NO 3 ) 2 . Moreover, as a result of X-ray diffraction, this compound was completely amorphous (Example 3). Tests 1 to 3 were conducted on the compounds obtained in Examples 2 and 3 in the same manner as in Example 1. The results are shown in Table 2.

【表】 実施例 4 酸化ビスマス177gを、24.8%硝酸823gに溶解
した。 溶液中の硝酸ビスマスの濃度を分析したところ
Bi(NO33換算で30.2%で、フリーの硝酸は5.9%
であつた。 反応温度を50℃に保ちながら、この溶液に25%
水酸化ナトリウム水溶液392gを定量ポンプを用
いて20分かけて添加した。 引続き、20%水酸化ナトリウム水溶液76gを45
分かけ、15%水酸化ナトリウム水溶液51gを90分
かけ同様に添加した。 以下実施例1と同様に行い、ビスマス化合物を
得た。 この化合物の組成分析を行つたところ、Bi6O6
(OH)5.1(NO30.9・0.6H2Oであつた。 なお、計算値はBi6O6(OH)4.5(NO31.5であ
り、これよりxの値が大きくなつた。 この化合物に対して実施例1と同様にテスト1
〜3を行つた。その結果を表3に示した。
[Table] Example 4 177 g of bismuth oxide was dissolved in 823 g of 24.8% nitric acid. Analysis of the concentration of bismuth nitrate in the solution
Bi (NO 3 ) 3 equivalent is 30.2%, free nitric acid is 5.9%
It was hot. Add 25% to this solution while keeping the reaction temperature at 50°C.
392 g of aqueous sodium hydroxide solution was added over 20 minutes using a metering pump. Next, add 76 g of 20% sodium hydroxide aqueous solution to 45
Similarly, 51 g of a 15% aqueous sodium hydroxide solution was added over 90 minutes. The following procedure was carried out in the same manner as in Example 1 to obtain a bismuth compound. When we analyzed the composition of this compound, we found that Bi 6 O 6
(OH) 5.1 (NO 3 ) 0.9・0.6H 2 O. Note that the calculated value was Bi 6 O 6 (OH) 4.5 (NO 3 ) 1.5 , and the value of x was larger than this. Test 1 for this compound as in Example 1.
I did ~3. The results are shown in Table 3.

【表】 実施例5、比較例3および比較例5 酸化ビスマス708gを、31.5%硝酸2292gに溶
解した。 溶液中の硝酸ビスマスの濃度を分析したところ
Bi(NO33換算で40.1%で、フリーの硝酸は5.05%
であつた。 この液を三等分し、実施例5、比較例3および
比較例4に用いた。 その一つに、反応温度を40℃に保ちながらこの
溶液に15%水酸化カリウム水溶液1057gを定量ポ
ンプを用いて90分かけて添加した。 引続き、10%水酸化カリウム水溶液284gを120
分かけ、5%水酸化カリウム水溶液190gを4時
間かけ同様に添加した。 更に1時間撹拌後、沈澱物をNo.2濾紙で濾過
し、蒸留水で洗浄した。 これを箱型乾燥機内に入れ、120℃で15時間乾
燥し、次いで卓上粉砕機で粉砕し、ビスマス化合
物を得た。 この化合物の組成分析を行つたところ、Bi6O6
(OH)4.0(NO32.0・0.7H2Oであり、計算値と一
致した(実施例5)。 先に三等分した硝酸ビスマス溶液の一つに対し
て、反応温度を40℃に保ちながら、15%水酸化カ
リウム水溶液1057gを定量ポンプを用いて90分か
けて添加した。 引続き、10%水酸化カリウム水溶液284gを120
分かけ同様に添加した。 更に1時間撹拌後、沈澱物をNo.2濾紙で濾過
し、蒸留水で洗浄した。 これを箱型乾燥機内に入れ、120℃で15時間乾
燥し、次いで卓上粉砕機で粉砕し、ビスマス化合
物を得た。 この化合物の組成分析を行つたところ、Bi6O6
(OH)3.0(NO33.0・1.1H2Oであつた。(比較例
3)。 先に三等分した硝酸ビスマス溶液の一つに対し
て、反応温度を40℃に保ちながら、この溶液に5
%水酸化カリウム水溶液4260gを定量ポンプを用
いて8時間かけて添加した。 更に1時間撹拌後、沈澱物をNo.2濾紙で濾過
し、蒸留水を洗浄した。 これを箱型乾燥機内に入れ、120℃で15時間乾
燥し、次いて卓上粉砕機で粉砕し、ビスマス化合
物を得た。 この化合物の組成分析を行つたところ、Bi6O6
(OH)5.7(NO30.3・0.4H2Oであつた(比較例
4)。 実施例5、比較例3および4で得た化合物に対
して実施例1と同様にテスト1〜3を行つた。 その結果を表4に示した。
[Table] Example 5, Comparative Example 3 and Comparative Example 5 708 g of bismuth oxide was dissolved in 2292 g of 31.5% nitric acid. Analysis of the concentration of bismuth nitrate in the solution
Bi (NO 3 ) 3 equivalent is 40.1%, free nitric acid is 5.05%
It was hot. This liquid was divided into three equal parts and used in Example 5, Comparative Example 3, and Comparative Example 4. In one example, 1057 g of a 15% aqueous potassium hydroxide solution was added to this solution over 90 minutes using a metering pump while maintaining the reaction temperature at 40°C. Next, add 284 g of 10% potassium hydroxide aqueous solution to 120 g.
190 g of a 5% aqueous potassium hydroxide solution was added in the same manner over 4 hours. After stirring for an additional hour, the precipitate was filtered through No. 2 filter paper and washed with distilled water. This was placed in a box-type dryer and dried at 120°C for 15 hours, and then ground in a tabletop grinder to obtain a bismuth compound. When we analyzed the composition of this compound, we found that Bi 6 O 6
(OH) 4.0 (NO 3 ) 2.0 ·0.7H 2 O, which agreed with the calculated value (Example 5). To one of the bismuth nitrate solutions previously divided into three equal parts, 1057 g of a 15% potassium hydroxide aqueous solution was added over 90 minutes using a metering pump while maintaining the reaction temperature at 40°C. Next, add 284 g of 10% potassium hydroxide aqueous solution to 120 g.
It was added in portions in the same manner. After stirring for an additional hour, the precipitate was filtered through No. 2 filter paper and washed with distilled water. This was placed in a box-type dryer and dried at 120°C for 15 hours, and then ground in a tabletop grinder to obtain a bismuth compound. When we analyzed the composition of this compound, we found that Bi 6 O 6
(OH) 3.0 (NO 3 ) 3.0・1.1H 2 O. (Comparative Example 3). To one of the bismuth nitrate solutions previously divided into three equal parts, add 5% to this solution while maintaining the reaction temperature at 40°C.
% potassium hydroxide aqueous solution was added over 8 hours using a metering pump. After further stirring for 1 hour, the precipitate was filtered through No. 2 filter paper and washed with distilled water. This was placed in a box-type dryer and dried at 120°C for 15 hours, and then ground in a tabletop grinder to obtain a bismuth compound. When we analyzed the composition of this compound, we found that Bi 6 O 6
(OH) 5.7 (NO 3 ) 0.3 ·0.4H 2 O (Comparative Example 4). Tests 1 to 3 were conducted on the compounds obtained in Example 5 and Comparative Examples 3 and 4 in the same manner as in Example 1. The results are shown in Table 4.

【表】 実施例6、比較例5および比較例6 硝酸ビスマス5水和物491gを、15.7%硝酸509
gに溶解した。 溶液中の硝酸ビスマスの濃度を分析したところ
Bi(NO33換算で40.2%で、フリーの硝酸は7.96%
であつた。 反応温度を30℃に保ちながら、この溶液に20%
アンモニア水280gを定量ポンプを用いて2時間
かけて添加した。 引続き、10%アンモニア水87gを150分かけ、
5%アンモニア水115gを5時間かけ同様に添加
した。 更に1時間撹拌後、沈澱物をNo.2濾紙で濾過
し、蒸留水で洗浄した。 これを箱型乾燥機内に入れ、100℃で24時間乾
燥し、次いで卓上粉砕機で粉砕し、ビスマス化合
物を得た。 この化合物の組成分析を行つたところ、Bi6O6
(OH)5.0(NO31.0・0.7H2Oであつた(実施例
6)。 実施例6で得た化合物10.0gをNaClとして
165ppm(塩化物イオンとして12100ppm)含むN,
N−ジメチルホルムアミド1に添加し、30℃で
1時間撹拌した後、上澄み液中の塩化物イオン濃
度を分析し、塩化物イオン除去率を求めた。 比較例1および2で得た化合物についても同様
の試験を行つた(比較例5、6)。 これらの結果を表5に示した。
[Table] Example 6, Comparative Example 5 and Comparative Example 6 491 g of bismuth nitrate pentahydrate was added to 15.7% nitric acid 509
Dissolved in g. Analysis of the concentration of bismuth nitrate in the solution
Bi (NO 3 ) 3 equivalent is 40.2%, free nitric acid is 7.96%
It was hot. Add 20% to this solution while keeping the reaction temperature at 30°C.
280 g of ammonia water was added over 2 hours using a metering pump. Next, add 87g of 10% ammonia water for 150 minutes.
115 g of 5% aqueous ammonia was added in the same manner over 5 hours. After stirring for an additional hour, the precipitate was filtered through No. 2 filter paper and washed with distilled water. This was placed in a box-type dryer and dried at 100°C for 24 hours, and then ground in a tabletop grinder to obtain a bismuth compound. When we analyzed the composition of this compound, we found that Bi 6 O 6
(OH) 5.0 (NO 3 ) 1.0 ·0.7H 2 O (Example 6). 10.0g of the compound obtained in Example 6 as NaCl
N containing 165ppm (12100ppm as chloride ion),
After adding to N-dimethylformamide 1 and stirring at 30°C for 1 hour, the chloride ion concentration in the supernatant was analyzed to determine the chloride ion removal rate. Similar tests were conducted on the compounds obtained in Comparative Examples 1 and 2 (Comparative Examples 5 and 6). These results are shown in Table 5.

【表】 実施例7、比較例7〜9 実施例6で製造した化合物6部、クレゾールノ
ボラツクエポキシ樹脂75部、臭素化エポキシ樹脂
25部、フエノール樹脂50部およびフユーズドシリ
カ150部をメルトブレンドし、170℃で20分間かけ
て熱硬化させた。 硬化物を粉砕し、100メツシユ以下のもの10g
を蒸留水100mlに入れ、151℃で100時間加熱した。 終了後、上澄み液中の塩化物イオン濃度および
臭化物イオン濃度を測定した(実施例7)。 実施例6で得た化合物を添加せずに同様の試験
を行つた(比較例7)。 別に比較例1および比較例2で得た化合物につ
いて、同様の試験を行つた(比較例8、9)。 これらの試験結果を表6に示す。
[Table] Example 7, Comparative Examples 7 to 9 6 parts of the compound produced in Example 6, 75 parts of cresol novolac epoxy resin, brominated epoxy resin
25 parts of phenolic resin, 50 parts of phenolic resin, and 150 parts of fused silica were melt-blended and heat-cured at 170°C for 20 minutes. 10g of hardened material crushed and less than 100 mesh
was added to 100 ml of distilled water and heated at 151°C for 100 hours. After completion, the chloride ion concentration and bromide ion concentration in the supernatant liquid were measured (Example 7). A similar test was conducted without adding the compound obtained in Example 6 (Comparative Example 7). Separately, similar tests were conducted on the compounds obtained in Comparative Example 1 and Comparative Example 2 (Comparative Examples 8 and 9). The results of these tests are shown in Table 6.

【表】 (3) 発明の効果 本発明のBi6O6(OH)x(NO36-x・nH2O(但し、
3.5≦x≦5.5、nは0または正の数)の式で示さ
れるビスマス化合物は新規化合物であつて、中性
付近での陰イオン交換容量および交換速度が大き
く、また耐水性や耐熱性・耐熱水安定性に優れて
いるため、従来中性付近では難しかつた陰イオン
の捕捉が容易に行なえる無機陰イオン交換体とし
て用いられ、イオン交換や吸着を用いる分野に巾
広く利用することができる。
[Table] (3) Effects of the invention Bi 6 O 6 (OH) x (NO 3 ) 6-x・nH 2 O (however,
The bismuth compound represented by the formula (3.5≦x≦5.5, where n is 0 or a positive number) is a new compound that has a large anion exchange capacity and exchange rate near neutrality, and also has excellent water resistance, heat resistance, Because it has excellent hot water stability, it is used as an inorganic anion exchanger that can easily capture anions, which was previously difficult to do near neutrality, and can be widely used in fields that use ion exchange and adsorption. can.

Claims (1)

【特許請求の範囲】 1 Bi6O6(OH)x(NO36-x・nH2O(但し、3.5≦
x≦5.5、nは0または正の数)の式で示される
ビスマス化合物。 2 Bi6O6(OH)x(NO36-x・nH2O(但し、3.5≦
x≦5.5、nは0または正の数)の式で示される
ビスマス化合物を有効成分とする無機陰イオン交
換体。
[Claims] 1 Bi 6 O 6 (OH) x (NO 3 ) 6-x・nH 2 O (however, 3.5≦
A bismuth compound represented by the formula (x≦5.5, n is 0 or a positive number). 2 Bi 6 O 6 (OH) x (NO 3 ) 6-x・nH 2 O (However, 3.5≦
An inorganic anion exchanger containing a bismuth compound represented by the formula (x≦5.5, n is 0 or a positive number) as an active ingredient.
JP61201514A 1986-08-29 1986-08-29 Bismuth compound and inorganic ion exchanger containing same as effective component Granted JPS6360112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201514A JPS6360112A (en) 1986-08-29 1986-08-29 Bismuth compound and inorganic ion exchanger containing same as effective component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201514A JPS6360112A (en) 1986-08-29 1986-08-29 Bismuth compound and inorganic ion exchanger containing same as effective component

Publications (2)

Publication Number Publication Date
JPS6360112A JPS6360112A (en) 1988-03-16
JPH0255380B2 true JPH0255380B2 (en) 1990-11-27

Family

ID=16442306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201514A Granted JPS6360112A (en) 1986-08-29 1986-08-29 Bismuth compound and inorganic ion exchanger containing same as effective component

Country Status (1)

Country Link
JP (1) JPS6360112A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294354A (en) * 1989-05-08 1990-12-05 Toagosei Chem Ind Co Ltd Epoxy resin composition for sealing semiconductor
JP5077239B2 (en) * 2006-11-20 2012-11-21 東亞合成株式会社 Inorganic anion exchanger using bismuth compound and resin composition for encapsulating electronic parts using the same
MD4241C1 (en) * 2012-06-11 2014-02-28 Государственный Университет Молд0 Process for recovery of sulphide and hydrosulphide ions from solutions
US9849449B2 (en) * 2012-06-21 2017-12-26 Toagosei Co., Ltd. Amorphous inorganic anion exchanger, resin composition for electronic component sealing, and process for producing amorphous bismuth compound
JP7282661B2 (en) * 2019-12-02 2023-05-29 株式会社東芝 purifier
JP7234104B2 (en) * 2019-12-17 2023-03-07 株式会社東芝 High-temperature water purification device and high-temperature water purification method

Also Published As

Publication number Publication date
JPS6360112A (en) 1988-03-16

Similar Documents

Publication Publication Date Title
US3850835A (en) Method of making granular zirconium hydrous oxide ion exchangers, such as zirconium phosphate and hydrous zirconium oxide, particularly for column use
Siddiqui et al. Synthesis, characterization and ion exchange properties of zirconium (IV) tungstoiodophosphate, a new cation exchanger
JP3211215B2 (en) Method for producing crystalline zirconium phosphate compound
Chitrakar et al. Synthetic inorganic ion exchange materials XLVII. Preparation of a new crystalline antimonic acid HSbO3. O. 12H2O
Gupta et al. Studies on a new heteropolyacid-based inorganic ion exchanger; zirconium (IV) selenomolybdate
JP4428541B2 (en) Granular titanate ion exchanger and method for producing the same
JPS60239313A (en) Crystalline zirconium phosphate and its manufacture
JPH0255380B2 (en)
Inoue et al. Studies of the hydrous zirconium (IV) oxide ion exchanger. I Ion-exchange properties and effect of heat treatment.
ABE et al. SYNTHETIC INORGANIC ION-EXCHANGE MATERIALS XXX III. SELECTIVITIES OF ALKALI METAL IONS ON TIN (IV) ANTIMONATE CATION-EXCHANGER PREPARED AT DIFFERENT CONDITIONS
JP2949227B1 (en) Hydrous bismuth compounds with excellent inorganic anion exchange properties and their production
EP0426048B1 (en) Production and use of crystalline hydrogen-phosphate compounds having layer structure
JPH03249940A (en) Selective adsorbent for ammonium ion and its production
Jain et al. Ion-exchange behaviour of copper ferricyanide: Application of ion-exchange column to the separation of Cs
Jignasa et al. A study on equilibrium and kinetics of ion exchange of alkaline earth metals using an inorganic cation exchanger–zirconium titanium phosphate
Tsuji et al. Selective uptake of toxic elements by an amorphous titanium dioxide ion exchanger
CN1114635A (en) Process for producing potassium sulfate by plaster stone conversion method
Chand et al. Synthesis, characterization and ion exchange properties of a new ion exchange material: bismuth (iii) Iodophosphate
JPH04305018A (en) Compound of h2ti5o11-nh2o having monoclinic layer structure and its production
JPH07115851B2 (en) Crystalline zirconium phosphate
Srivastava et al. Synthesis and ion-exchange properties of cerium (IV) molybdate
Thind et al. Synthesis and ion exchange properties of tin (IV) antimonophosphate and its applications in binary separations of metal ions
JPH04927B2 (en)
JPH01278417A (en) Novel reactive derivative of zirconium and method for its manufacture
JPH03150214A (en) Production of crystalline layer phosphate compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term