JPS6360112A - Bismuth compound and inorganic ion exchanger containing same as effective component - Google Patents

Bismuth compound and inorganic ion exchanger containing same as effective component

Info

Publication number
JPS6360112A
JPS6360112A JP61201514A JP20151486A JPS6360112A JP S6360112 A JPS6360112 A JP S6360112A JP 61201514 A JP61201514 A JP 61201514A JP 20151486 A JP20151486 A JP 20151486A JP S6360112 A JPS6360112 A JP S6360112A
Authority
JP
Japan
Prior art keywords
bismuth
compound
nitric acid
reaction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61201514A
Other languages
Japanese (ja)
Other versions
JPH0255380B2 (en
Inventor
Noriyuki Yamamoto
則幸 山本
Hideki Kato
秀樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP61201514A priority Critical patent/JPS6360112A/en
Publication of JPS6360112A publication Critical patent/JPS6360112A/en
Publication of JPH0255380B2 publication Critical patent/JPH0255380B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain a bismuth compd. expressed by a specified chemical formula, having both a large ion-exchange capacity and a large ion-exchange velocity, and useful as an inorganic ion exchanger having excellent stability by hydrolyzing bismuth nitrate. CONSTITUTION:The bismuth compound usable as effective component of the inorganic ion exchanger is expressed by the following formula, namely, Bi6 O6(OH)x(NO3)6-x.nH2O (wherein 3.5<=x<=5.5; n is 0 or a positive number). The bismuth compd. is obtained by hydrolyzing an aq. nitric acid soln. of bismuth nitrate with alkali in the controlled condition, filtering and washing the reaction product, and then drying and crushing, as required.

Description

【発明の詳細な説明】 (1)発明の目的 〔産業上の利用分野〕 本発明は、新規なビスマス化合物およびその用途即ちイ
オン交換、吸着の各種用途、例えば水溶液や有機溶剤か
らの不純物イオンの除去、産業廃液の処理、産業廃水や
海水からの有価物の回収、高純度薬品の装造、電気電子
分野関連の固体材料中の不純物イオンの吸着固定、気体
中のイオン性成分の吸着回収および吸着除去、更にはイ
オン交換、吸着特性を利用したpil緩衝、p T−1
調整等の用途に用いる無機陰イオン交換体に関するもの
である。
Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention is directed to a novel bismuth compound and various uses thereof, such as ion exchange and adsorption, such as removal of impurity ions from aqueous solutions and organic solvents. removal, treatment of industrial waste liquid, recovery of valuables from industrial wastewater and seawater, preparation of high-purity chemicals, adsorption and fixation of impurity ions in solid materials related to electrical and electronic fields, adsorption and recovery of ionic components in gases, and Adsorption removal, ion exchange, pil buffer using adsorption properties, p T-1
It relates to inorganic anion exchangers used for purposes such as adjustment.

〔従来の技術〕[Conventional technology]

従来、無機陰イオン交換体として、含水酸化マグネシウ
ム、含水酸化アルミニウム、含水酸化ジルコニウム、含
水酸化チタン、含水酸化スズ、含水酸化トリウム、含水
酸化鉄、含水酸化ビスマス、ハイドロタルサイトおよび
ヒドロキシアパタイト等が知られている。
Conventionally, hydrous magnesium oxide, hydrous aluminum oxide, hydrous zirconium oxide, hydrous titanium oxide, hydrous tin oxide, hydrous thorium oxide, hydrous iron oxide, hydrous bismuth oxide, hydrotalcite, hydroxyapatite, etc. have been known as inorganic anion exchangers. It is being

一般的に言って、無機陰イオン交換体を始め無機イオン
交換体は両イオン交換性である。即ち、アルカリ側で陽
イオン交換性を、酸性側で陰・イオン交換性を示す。
Generally speaking, inorganic ion exchangers, including inorganic anion exchangers, are amphoteric exchangers. That is, it exhibits cation exchange properties on the alkaline side and anion/ion exchange properties on the acidic side.

無機イオン交換体をM (Oll) nとし、捕捉すべ
くイオンをI3”、A−で表すと、アルカリ側では(1
)式のように、酸性側では(2)式のようにイオン交換
を行う。
If the inorganic ion exchanger is M (Oll) n, and the ions to be captured are represented by I3'' and A-, then on the alkaline side (1
), ion exchange is performed on the acidic side as shown in equation (2).

M  (OH)n  +B十−”M  (011)n−
+OB +H” ・・・(1)M (OH) TI+A
−≠M (OII) TI−+HA+○H−・・・(2
)陰イオン交換反応と陽イオン交換反応が等しくなるp
 Hを等電点と言い、この点付近のp IIでは見掛は
上陽イオン交換性も陰イオン交換性も示さな(なる。
M (OH)n +B0-”M (011)n-
+OB +H”...(1)M (OH) TI+A
-≠M (OII) TI-+HA+○H-...(2
) p where the anion exchange reaction and the cation exchange reaction are equal
H is called the isoelectric point, and at p II near this point, it appears that neither positive cation exchangeability nor anion exchangeability is exhibited.

等電点はイオン交換体の種類により多少異なるが、おお
むねp H5前後である。
The isoelectric point varies somewhat depending on the type of ion exchanger, but is generally around pH5.

例えば含水酸化ジルコニウムはp H約6、含水酸化チ
タンはp II約4、含水酸化スズはp T(約5であ
る。
For example, hydrous zirconium oxide has a pH of about 6, hydrous titanium oxide has a p II of about 4, and hydrous tin oxide has a p T (about 5).

これより明らかなように中性付近においては、無機・イ
オン交換体はイオン交換をしないという欠点を有してい
る。
As is clear from this, inorganic ion exchangers have the disadvantage that they do not exchange ions near neutrality.

更に無機陰イオン交換体の場合には液の汚染の問題もあ
る。
Furthermore, in the case of inorganic anion exchangers, there is also the problem of liquid contamination.

即ち酸性側で陰イオンを吸着した後、吸着イオンを脱離
(イオン交換体の再生)する場合には、通常NaOH水
溶液等のアルカリ水溶液を用いるが、続いて脱離処理を
施した無機イオン交換体を陰イオン吸着のため再び酸性
の溶液に接触させた場合、下記のようなイオン交換反応
が起こり、再生時に吸着したNa十等の陽イオンがai
!されるため、液が汚染され、更にこの反応により液の
p IIが上昇してしまうため、等電点に近づき、イオ
ン交換容量が小さくなるという欠点も有している。
That is, after adsorbing anions on the acidic side, when desorbing the adsorbed ions (regenerating the ion exchanger), an alkaline aqueous solution such as NaOH aqueous solution is usually used, but inorganic ion exchanger that has been subsequently subjected to desorption treatment When the body is brought into contact with an acidic solution again to adsorb anions, the following ion exchange reaction occurs, and the adsorbed cations, such as Na, during regeneration become ai
! This reaction contaminates the liquid, and furthermore, this reaction increases the p II of the liquid, which approaches the isoelectric point and reduces the ion exchange capacity.

M (OH) n−+ (013) +II” CI−
r”M  (011) n  + B” CI −以上
に示した理由により、弱酸〜中性付近で等電点を有する
無機イオン交換体は陰イオン交換体としての実用性が乏
しい。
M (OH) n-+ (013) +II" CI-
r"M (011) n + B" CI - For the reasons stated above, inorganic ion exchangers having an isoelectric point in the vicinity of weak acids to neutrality have poor practicality as anion exchangers.

この他、含水酸化アルミニウムおよびヒドロキシアパタ
イトはイオン交換容量が小さく、また含水酸化マグネシ
ウムは溶解性が大きいという欠点を有しており、工業上
の利用が難しい。
In addition, hydrated aluminum oxide and hydroxyapatite have a small ion exchange capacity, and hydrated magnesium oxide has a large solubility, making them difficult to use industrially.

ハイドロタルサイトや含水酸化ビスマスは、陰イオン交
換性のみを示し、耐薬品性や耐熱性も比較的優れている
Hydrotalcite and hydrous bismuth oxide exhibit only anion exchange properties and have relatively excellent chemical resistance and heat resistance.

しかしハイドロタルサイトは、100℃以上での熱水で
は熔解性が大きく、耐熱性で劣る。
However, hydrotalcite is highly soluble in hot water at temperatures of 100°C or higher and has poor heat resistance.

−万全水酸化ビスマスは酸性での交換容量は非常に大き
く、また水に対しても安定で、無機イオン交換体として
比較的優れているが、中性付近でのイオン交換容量が小
さく、交換速度も遅いという欠点を有している。
- Perfect bismuth hydroxide has a very large exchange capacity in acidic conditions and is stable in water, making it relatively excellent as an inorganic ion exchanger, but its ion exchange capacity near neutrality is low and the exchange rate is It also has the disadvantage of being slow.

無機陰イオン交換体として使用される含水酸化ビスマス
は、文献上では、次のような種々の化学式で示されるも
のがある。
In the literature, hydrous bismuth oxide used as an inorganic anion exchanger has various chemical formulas as shown below.

Bi(C1)  コ 、 Bi  20 コ  ・ 3
H20、■lBiO2,11コ B4Oコ 、HBf0
2  、B10−0II(以上lN0RGANICIO
N t!XCIIANGn MATURIALS、 C
RCPress、Inc、 (Iloca Raton
、 Florida )、1981発行P、180〜1
82)。
Bi(C1) ko, Bi 20 ko・3
H20, ■lBiO2, 11 B4O, HBf0
2, B10-0II (more than 1N0RGANICIO
Nt! XCIIANG MATURIALS, C
RCPress, Inc. (Iloca Raton
, Florida), 1981 publication P, 180-1
82).

これらの化合物はビスマスの可溶性塩の水溶液を加水分
解することにより得られるが、一般的製法としては硝酸
ビスマス水溶液をアンモニア水で中和する方法やビスマ
スマンニトール錯体の水溶液を大量の水で希釈加水分解
する方法等が知られている。
These compounds can be obtained by hydrolyzing an aqueous solution of a soluble salt of bismuth, but common manufacturing methods include neutralizing an aqueous solution of bismuth nitrate with aqueous ammonia, or diluting an aqueous solution of bismuth mannitol complex with a large amount of water and hydrolyzing it. There are known methods to do this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

無機陰イオン交換体として比較的優れている従来の含水
酸化ビスマスにも前述のように中性付近でのイオン交換
容量が小さく、交換速度も遅いと言う欠点を有している
Conventional hydrous bismuth oxide, which is relatively excellent as an inorganic anion exchanger, has the drawbacks of low ion exchange capacity near neutrality and slow exchange rate, as described above.

そこで安定性が良く、高塩基性で且つイオン交換速度の
大きな無機陰イオン交換体、特にビスマス系の化合物か
らなる無機陰イオン交換体が強く求められてきた。
Therefore, there has been a strong demand for inorganic anion exchangers that are stable, highly basic, and have a high ion exchange rate, especially inorganic anion exchangers made of bismuth-based compounds.

(2)発明の構成 〔問題点を解決するためのための手段〕本発明者等は、
無機陰イオン交換体として使用できる新規な含水酸化ビ
スマスの合成について鋭意検討を行った結果、新規な硝
酸ビスマス加水分解生成物の合成に成功し、この化合物
は中性付近でイオン交換容量、イオン交換速度共に大き
く、且つ安定性の優れた無機陰イオン交換体となること
を確認し本発明の完成に至った。
(2) Structure of the invention [Means for solving the problem] The inventors,
As a result of intensive research into the synthesis of a new hydrous bismuth oxide that can be used as an inorganic anion exchanger, we succeeded in synthesizing a new bismuth nitrate hydrolysis product. It was confirmed that an inorganic anion exchanger with high speed and excellent stability could be obtained, leading to the completion of the present invention.

即ち本発明は、B is O6(OIHχ (N。That is, the present invention provides B is O6 (OIHχ (N.

:l ) ix”n1120 (但し、3.5≦χ≦5
.5、nは0または正の数)の式で示されるビスマス化
合物およびこの化合物を有効成分とする無機陰イオン交
換体に関するものである。
:l) ix”n1120 (However, 3.5≦χ≦5
.. 5, n is 0 or a positive number) and an inorganic anion exchanger containing this compound as an active ingredient.

〔ビスマス化合物B 1GOs  (Of()χ (M
oコ))X−nl20 (但し、3.5≦χ≦5.5、
nはOまたは正の数)〕 無機化合物の結晶化学的研究の分野においては、ビスマ
スの加水分解反応生成物について比較的詳しく研究され
ており、硝酸ビスマスより出発したもので、現在までに
知られている化学種には次のようなものがある。
[Bismuth compound B 1GOs (Of()χ (M
oko))X-nl20 (However, 3.5≦χ≦5.5,
n is O or a positive number)] In the field of crystal chemistry research of inorganic compounds, the hydrolysis reaction product of bismuth has been studied in relatively detail. The chemical species that are present include:

0BiO・No、(オキシ硝酸ビスマス)○ (B  
iG 04 (OII)4  )  (Oll)  (
Moコ )5・0.5H20(pI!1.04〜1.8
8での生成物) 0  (I3  is  Os  (OH))  (M
oコ )5・2.5H20 0(I3iGOs  (OH)2)(No:I)4・2
H20 0(B  iG  0G   (O)Hコ 〕  (N
Oコ ) 3・ 1.51120 0  (B  iG  04  (OIN)4  ) 
 (No))e・ 41120 (Monatshefte fur Chemie 1
04+365〜375  (1973)  、  Cr
yst、5truct、Comm、 (1979)  
、8.69.)以上の化合物について共通してることは
、ビスマスの加水分解生成物は、オキシ化合物で、ポリ
マーとなっていること、またビスマス原子は6個が基本
単位となっていることで、この点について現在では、B
i環原子八面体構造の6個の頂点を占めるという説が定
説となっている。
0BiO・No, (Bismuth oxynitrate)○ (B
iG 04 (OII) 4 ) (Oll) (
Moko) 5・0.5H20 (pI! 1.04-1.8
Product at 8) 0 (I3 is Os (OH)) (M
o co)5・2.5H20 0(I3iGOs (OH)2)(No:I)4・2
H20 0(B iG 0G (O)H co] (N
Oko) 3・1.51120 0 (B iG 04 (OIN) 4)
(No))e・41120 (Monatshefte fur Chemie 1
04+365-375 (1973), Cr
yst, 5truct, Comm, (1979)
, 8.69. ) What all the above compounds have in common is that the hydrolysis product of bismuth is an oxy compound and is a polymer, and the basic unit is six bismuth atoms. So, B
The established theory is that the i-ring atoms occupy six vertices of an octahedral structure.

しかし上述の化学種のイオン交換的研究はなされていな
い。
However, ion exchange studies of the above-mentioned chemical species have not been conducted.

更に上述の化学種はp IIの低い領域での生成物であ
り、すべて塩基度が低い。
Additionally, the species mentioned above are products of the low p II range and are all low basic.

即ち各化学種のOH基/N O3基比は、1以下で、こ
れ以上の塩基度のものは現在のところ報告されていない
That is, the OH group/N 2 O3 group ratio of each chemical species is 1 or less, and no basicity higher than this has been reported so far.

本発明のビスマス化合物は、硝酸ビスマスの硝酸水溶液
に、加水分解反応条件を制御しつつアルカリ水溶液を添
加する方法で製造することができる。
The bismuth compound of the present invention can be produced by adding an alkaline aqueous solution to a nitric acid aqueous solution of bismuth nitrate while controlling the hydrolysis reaction conditions.

前述の通り、ビスマスの加水分解生成物は、Biが6個
入ったオキシ化合物を基本単位としており、B is 
06  (OI−I) x  (Moコ)シX・nl(
20で示される。
As mentioned above, the basic unit of the hydrolysis product of bismuth is an oxy compound containing 6 Bi atoms, and B is
06 (OI-I) x (Moko)shiX・nl(
20.

従来、x/ 6−x比が1以下のものは見出されている
が、1を超えるものはなかった。
So far, materials with an x/6-x ratio of 1 or less have been found, but none have been found to have an x/6-x ratio of 1 or less.

従来のx / 6−x比が1以下、即ちXが3以下のも
のの加水分解反応は次のように推定されている。
The conventional hydrolysis reaction of a compound in which the x/6-x ratio is 1 or less, that is, X is 3 or less, is estimated as follows.

Qpl(1以下の溶液での反応 6B i”+121120≠B i 6(OII)+z
  +12 ■1”・・・(3) Qplll、2付近でのオキシ化析出反応B  iG 
 (011)、、   +6NOコ −→ B15O6
(No  コ  )s+611zO・・・ (4)ここ
でBi2O2(Moコ)6は、一般にオキシ硝酸ビスマ
スとしてB10N0:+で示されれる。
Qpl(Reaction in solution below 1 6B i”+121120≠B i 6(OII)+z
+12 ■1”...(3) Oxygenation precipitation reaction B iG near Qpll, 2
(011),, +6NOko -→ B15O6
(No)s+611zO... (4) Here, Bi2O2(Mo)6 is generally represented as B10N0:+ as bismuth oxynitrate.

更に高p IIでの加水分解反応では、B160s(N
Ch)sのNOコ基が011と逐次置換する OB  iG  0G  (No:l  )  r。
Furthermore, in the hydrolysis reaction at high p II, B160s(N
Ch) OB iG 0G (No: l ) r in which the NO cogroup of s is successively substituted with 011.

II3  ig  OG   (CN−1)   CN
O3)5  ”(5)OB  iG  06  (Of
()  (Moコ )6→I3  is  Os  (
OII)  2  (Moコ )4 ・・・(6)OB
  iG OG  (Ofり2  (NOI  )  
4→B  is  Or、   (OII)  コ  
(No、)  コ ・・・(7)上記の化学種はいずれ
も水和水を持つ。
II3 ig OG (CN-1) CN
O3)5”(5)OB iG 06 (Of
() (Moko)6→I3 is Os (
OII) 2 (Moko) 4 ... (6) OB
iG OG (Ofri 2 (NOI)
4→B is Or, (OII)
(No,) (7) All of the above chemical species have hydration water.

硝酸基を含みこれ以上塩基性が強い化合物の生成は、前
述の通り報告されていない。
As mentioned above, the production of a more basic compound containing a nitric acid group has not been reported.

この理由としては、これ以上高塩基のものは、最終逐次
反応生成物であるB 160g  (OII) sがこ
の構造変態種である既知の3(Bi201+・1120
)へ転移しやすいためと推定される。
The reason for this is that the final sequential reaction product, B 160g (OII) s, is a structural modification of the known 3(Bi201+・1120
This is presumed to be because it is easy to metastasize to ).

しかし本発明者等は、次に述べるような加水分解反応条
件を制御しつつアルカリ水溶液を添加することにより、
従来未知であった、B160G  (OII) x  
(NOz ) r、xでXが3.5〜5゜5の範囲内に
あり、且つ安定で有用な含水酸化ビスマスについて検討
を行い、目的とする化合物を得ることに成功し、本発明
を完成させた。
However, the present inventors have discovered that by adding an alkaline aqueous solution while controlling the hydrolysis reaction conditions as described below,
Previously unknown, B160G (OII) x
(NOz) We investigated stable and useful hydrated bismuth oxide with r and x in the range of 3.5 to 5°5, succeeded in obtaining the target compound, and completed the present invention. I let it happen.

〔新規なビスマス化合物の製造方法〕[Production method of new bismuth compound]

出発物質は硝酸ビスマスの硝酸溶液である。 The starting material is a solution of bismuth nitrate in nitric acid.

これは硝酸ビスマス、炭酸ビスマス、酸化ビスマス等の
ビスマス化合物を硝酸に溶解することにより調製する。
It is prepared by dissolving bismuth compounds such as bismuth nitrate, bismuth carbonate, and bismuth oxide in nitric acid.

ここで硝酸ビスマスは酸溶液でないと溶解しないので、
硝酸が過剰の状態にする必要がある。
Here, bismuth nitrate will not dissolve unless it is in an acid solution, so
It is necessary to have an excess of nitric acid.

できた硝酸ビスマス溶液の濃度は特に規定しないが、B
i(Noコ)コ換算で20〜50重量%が好ましい。
The concentration of the resulting bismuth nitrate solution is not particularly specified, but B
It is preferably 20 to 50% by weight in terms of i (No.).

50重量%より高い濃度では、次のアルカリを添加して
沈澱を析出する反応において、スラリー濃度が高くなり
、均一性が阻害される。
If the concentration is higher than 50% by weight, the slurry concentration becomes high and uniformity is inhibited in the subsequent reaction in which an alkali is added to precipitate.

一方20重量%未満では、バッチ当りの収量が少な(な
り、経済的でない。
On the other hand, if it is less than 20% by weight, the yield per batch will be small (and uneconomical).

過剰の状態で存在するフリーの硝酸の濃度は特に規定が
なく、硝酸ビスマスが析出せずに溶解(感を保てればよ
い。しかしフリーの硝酸の量が大過剰であれば、次の段
階で添加するアルカリの量も多くなるので、経済的、作
業的に不利である。好ましい硝酸の濃度は3〜10重澄
%である。
There is no particular regulation regarding the concentration of free nitric acid present in excess; it is sufficient that bismuth nitrate does not precipitate and remains dissolved. However, if the amount of free nitric acid is in excess, it may be added in the next step. Since the amount of alkali produced increases, it is disadvantageous economically and operationally.The preferred concentration of nitric acid is 3 to 10% by weight.

次の段階としてアルカリを用いて硝酸ビスマスの加水分
解を行う。
The next step is to hydrolyze bismuth nitrate using an alkali.

アルカリの種類は特に問わず例えば水酸化リチウム、水
酸化ナトリウム、水酸化カリウム、アンモニア、炭酸ナ
トリウムおよび炭酸水素ナトリウム等が挙げられる。
The type of alkali is not particularly limited, and examples thereof include lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonia, sodium carbonate, and sodium hydrogen carbonate.

アルカリの添加速度は、加水分解平衡に合わせた添加速
度をとることが好ましい。
The addition rate of the alkali is preferably adjusted to the hydrolysis equilibrium.

即ち前述の式(3) (41に示される加水分解反応は
速く進行し、式(5)〜(7)の反応は遅いので、それ
に合わせて添加する。
That is, since the hydrolysis reaction shown in the above-mentioned formula (3) (41) proceeds quickly, and the reactions in formulas (5) to (7) are slow, they are added accordingly.

溶液の均一性を保つ意味も含め、式(3)および(4)
で示される反応までは、所定の当量即ち加水分解を完全
、に行うのに必要なアルカリ量を2時間程度をかけて添
加するのが好ましい。
Equations (3) and (4), including the meaning of maintaining the uniformity of the solution,
Until the reaction shown by , it is preferable to add a predetermined equivalent amount of alkali, that is, the amount of alkali necessary to completely carry out the hydrolysis, over a period of about 2 hours.

式(5)〜(7)に要するアルカリ添加時間は60〜1
80分の範囲が好ましい。
The alkali addition time required for formulas (5) to (7) is 60 to 1
A range of 80 minutes is preferred.

これ以後、B ig 0G  (OII) x  (N
O3) e−xのXを1増加させるためには、2時間か
ら6時間で所定モルm即ちXを1増加させるためには約
1モルのアルカリを添加することが好ましい。
From now on, B ig 0G (OII) x (N
In order to increase X in O3) e-x by 1, it is preferable to add about 1 mol of alkali to increase the predetermined molar value m, that is, 1 in 2 to 6 hours.

この理由は式(7)以降では平衡反応が遅いため、短い
添加時間では、OHが消費されず、反応液のp Hが必
要以上に高くなり、Bi20)  ・lI20等好まし
くない生成物へと一気に転移が進む恐れがあるからであ
る。
The reason for this is that the equilibrium reaction is slow after Equation (7), so if the addition time is short, OH is not consumed, and the pH of the reaction solution becomes higher than necessary, resulting in undesirable products such as Bi20) and lI20. This is because metastasis may progress.

また逆に添加時間があまりにも長いと、転移が起こる恐
れがあり、いずれも好ましくない。
On the other hand, if the addition time is too long, there is a risk of metastasis occurring, which is undesirable.

加水分解に用いるアルカリ物質の水溶液濃度は特に問わ
ないが、一般に添加時間にもよるが、加水分解反応を前
期(式(4)まで)、中期(式(7)まで)、後期(式
(7)以後)と分けた場合、順に低濃度にすることが望
ましく、前期は20重量%程度、中期は10重量%程度
、後期は5重量%程度の濃度が好ましい。
The concentration of the aqueous solution of the alkaline substance used for hydrolysis is not particularly limited, but it generally depends on the addition time. ) and later), it is desirable to lower the concentration in order, with the concentration preferably being about 20% by weight in the first period, about 10% by weight in the middle, and about 5% by weight in the latter period.

加水分解反応の温度は、高くても低くても最終の生成物
の組成にはあまり影響ないが、低温での生成物は高温で
の生成物に比べて熱水中での溶解量が大きい等耐熱性性
でやや劣る欠点がある。
Whether the temperature of the hydrolysis reaction is high or low, it does not have much effect on the composition of the final product, but the amount of products produced at low temperatures dissolved in hot water is greater than those produced at high temperatures. It has the disadvantage of being slightly inferior in heat resistance.

また反応速度は、温度が低くなる程、小さくなるので、
好ましい反応温度は10〜60°Cで、より好ましくは
20〜50℃である。
Also, the reaction rate decreases as the temperature decreases, so
The preferred reaction temperature is 10-60°C, more preferably 20-50°C.

反応でできた生成物を濾過し、水で洗浄し、必要に応じ
て、乾燥、粉砕をする。
The reaction product is filtered, washed with water, and if necessary, dried and pulverized.

乾燥は、付着水を除去できればいずれの方法でも良い。Any drying method may be used as long as attached water can be removed.

本発明で生成されるB ig 0g  (OII)χ 
(N O3) 6< ・n l−120(但し、3.5
≦χ≦5.5、nはOまたは正の数)で示される化合物
のn1I20は水和水であり、ここでnの値は通常O〜
0.8程度であるが、乾燥工程において乾燥温度、乾燥
時間および乾燥方法により調整ができる。
B ig 0g (OII)χ produced in the present invention
(N O3) 6< ・n l-120 (However, 3.5
≦χ≦5.5, n is O or a positive number) n1I20 of the compound is hydration water, where the value of n is usually O ~
Although it is approximately 0.8, it can be adjusted by changing the drying temperature, drying time, and drying method in the drying process.

特に有機系溶媒や固体系での使用において、水の脱離が
不都合を有する場合には、乾燥時に門整すればよい。
Particularly when using organic solvents or solid systems, if desorption of water is inconvenient, it may be adjusted during drying.

粉砕は使用目的にあった粒度に粉砕できればよく、方法
は問わない。
The method of pulverization is not limited as long as it can be pulverized to a particle size suitable for the purpose of use.

〔作用〕[Effect]

本発明(7)B is C6(OIL) x  (NO
I ) s−x・nI(20(但し、3.5≦χ≦5.
5、nは0または正の数)で示される化合物は、無機陰
イオン交換体として用いた場合、通常の含水酸化ヒスマ
スに比べて、中性付近でのイオン交換容量および交換速
度が大きく、また耐熱性にも優れている。
Present invention (7) B is C6 (OIL) x (NO
I) s-x・nI(20 (however, 3.5≦χ≦5.
5, n is 0 or a positive number) When used as an inorganic anion exchanger, the compound has a higher ion exchange capacity and exchange rate near neutrality than ordinary hydrous hismuth oxide, and It also has excellent heat resistance.

ここでXの値は、使用原料物質の重量や濃度を高精度に
測定した上、計算量のアルカリを前記条件で添加するこ
とにより、自由に決定することができる。
Here, the value of X can be freely determined by measuring the weight and concentration of the raw material used with high precision and then adding a calculated amount of alkali under the above conditions.

この化合物の・イオン交換基はNo3基およびC11基
の両者であるが、NOコ基はOI−I基に比較してイオ
ン交換容量、交換速度共に大きい。
The ion exchange groups of this compound are both the No3 group and the C11 group, but the NO group has a larger ion exchange capacity and exchange rate than the OI-I group.

このためこの化合物は、中性付近でのイオン交換容量お
よび速度が大きいことになる。
Therefore, this compound has a large ion exchange capacity and rate near neutrality.

この差は特にF−1CI−1Br−等のハロゲンイオン
に対して顕著である。
This difference is particularly remarkable for halogen ions such as F-1CI-1Br-.

ここでXの値が3.5より小さいと、中性付近でのイオ
ン交換容量や速度は大きいが、水や熱水に対してNOI
の溶出が多くなる等、耐水性や耐熱性が著しく低下する
If the value of
Water resistance and heat resistance are significantly reduced, such as increased elution of.

また更にXが小さくなると、この化合物自体のン容解量
も大きくなる。
Furthermore, as X becomes smaller, the solubility of the compound itself also becomes larger.

一方Xが5.5より大きくなると、逆に化合物中のNO
3基が少ないため、中性付近でのイオン交換容量や交換
速度が小さくなり、また構造が通常の含水酸化ビスマス
に近くなるため、耐水性においても劣ってくる。
On the other hand, when X is larger than 5.5, NO in the compound
Since the number of three groups is small, the ion exchange capacity and exchange rate near neutrality are small, and the structure is similar to normal hydrous bismuth oxide, resulting in poor water resistance.

〔無機陰イオン交換体〕[Inorganic anion exchanger]

本発明のB is OG  (OIL) x  (No
コ)6−χ・nH2O(但し、3.5≦χ≦5.5、n
は0または正の数)で示される化合物よりなる無機陰イ
オン交換体は、前述の通り、中性付近でのイオン交換容
量、交換速度共大きく、また耐水性や耐熱性にも優れて
おり、広範な用途分野への使用が可能である。
B is OG (OIL) x (No
j) 6-χ・nH2O (However, 3.5≦χ≦5.5, n
As mentioned above, inorganic anion exchangers made of compounds represented by 0 or a positive number have high ion exchange capacity and exchange rate near neutrality, and also have excellent water resistance and heat resistance. It can be used in a wide range of fields of application.

また本発明の化合物と無機陽イオン交換体例えば結晶性
アンチモン等を併用してもよい。
Further, the compound of the present invention may be used in combination with an inorganic cation exchanger such as crystalline antimony.

本発明の無機陰イオン交換体の形状は特に問わなく、粉
末状、顆粒状、粒状、ハニカム等の構造体状および膜状
等使用目的に合わせて選べばよい。
The shape of the inorganic anion exchanger of the present invention is not particularly limited, and may be selected depending on the purpose of use, such as powder, granules, granules, structures such as honeycomb, and membrane.

粒状等に成型する場合は、有機および/または無機系の
結合剤を使用することができる。
When molding into particles or the like, an organic and/or inorganic binder can be used.

構造体状に成型する場合は、結合剤を用いて無機陰イオ
ン交換体そのものを成型することもできるし、別の構造
体に無機陰イオン交換体を担持させる方法もある。
When molding into a structure, the inorganic anion exchanger itself can be molded using a binder, or the inorganic anion exchanger can be supported on another structure.

膜状に成型する場合は、無機陰イオン交換体そのものを
膜状に成型する方法や、抄紙工程に無機陰イオン交換体
を添加して紙状にする方法等がある。
When forming into a membrane, there are methods such as forming the inorganic anion exchanger itself into a membrane, and adding the inorganic anion exchanger to the paper making process to form paper.

〔実施例及び比較例〕[Examples and comparative examples]

以下、実施例及び比較例を挙げて本発明をさらに詳しく
説明する。尚、実施例中「%」とあるは「重量%」、「
部」とあるは「重量部」である。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In addition, "%" in the examples means "weight %", "
"Parts" means "parts by weight."

また硝酸過剰水溶液中の硝酸ビスマスおよびフリーな硝
酸の濃度の分析方法は次の通り。
The method for analyzing the concentration of bismuth nitrate and free nitric acid in an aqueous solution containing excess nitric acid is as follows.

■硝酸ビスマス水溶液を一定量計り取り、多量の水に溶
解し、それにNaC1水溶液を添加する。
(2) Measure out a certain amount of bismuth nitrate aqueous solution, dissolve it in a large amount of water, and add NaCl aqueous solution to it.

■以下の反応式により、ビスマスが沈澱し、NOココ−
遊離する。
■According to the following reaction formula, bismuth precipitates and NO coco-
to be released.

I3  i   <NO3)  3  +  N a 
 Cl  +II2 0−BiOCI↓+NaN0:l
+l止\仄L■しIINO)およびフリーな硝酸の量を
中和滴定により求める。
I3 i <NO3) 3 + Na
Cl +II2 0-BiOCI↓+NaN0:l
The amount of free nitric acid and free nitric acid is determined by neutralization titration.

■一方、硝酸ビスマス水溶液のビスマス濃度をキレート
滴定(滴定試薬EDTA;指示薬キシノールオレンジ)
で求める。
■Meanwhile, the bismuth concentration of bismuth nitrate aqueous solution was determined by chelate titration (titration reagent EDTA; indicator xynol orange).
Find it with

■先に求めたNo34度の内、Bi(Noコ)コに相当
するものを差し引くと、フリーな硝酸の濃度が求まる。
(2) Subtracting what corresponds to Bi (No. 34 degrees) obtained above, the concentration of free nitric acid can be found.

更に生成物であるビスマス化合物の組成は、一定量の試
料を0.lN−Na1l(水溶液中に)諮加し、24時
間攪拌後に溶出No)−をイオンクロマトグラフィーで
測定することで求めた。また水分量は、200℃、2時
間の乾燥の結果減少した試料の重量より求めた。
Furthermore, the composition of the bismuth compound that is the product is determined by dividing a certain amount of sample into 0. It was determined by adding 1N-Na11 (into an aqueous solution) and measuring the elution number by ion chromatography after stirring for 24 hours. Further, the moisture content was determined from the weight of the sample that decreased as a result of drying at 200° C. for 2 hours.

実施例1、比較例1および比較例2 酸化ビスマス236gを、31.5%硝酸764gにン
容解した。
Example 1, Comparative Example 1 and Comparative Example 2 236 g of bismuth oxide was dissolved in 764 g of 31.5% nitric acid.

溶液中の硝酸ビスマスの濃度を分析したところ13i(
Noコ)コ換算で40.2%で、フリーの硝酸は4.9
0%であった。
Analysis of the concentration of bismuth nitrate in the solution revealed that 13i (
It is 40.2% in terms of No.), and free nitric acid is 4.9.
It was 0%.

反応温度を25℃に保ちながら、この溶液に20%水酸
化ナトリウム水溶液563gを定量ポンプを用いて1時
間かけて添加した。
While maintaining the reaction temperature at 25° C., 563 g of a 20% aqueous sodium hydroxide solution was added to this solution over 1 hour using a metering pump.

引続き、10%水酸化ナトリウム水溶液201gを1時
間かけ、5%水酸化ナトリウム水溶液134gを同様に
2時間かけ添加した。
Subsequently, 201 g of a 10% aqueous sodium hydroxide solution was added over 1 hour, and 134 g of a 5% aqueous sodium hydroxide solution was similarly added over 2 hours.

更に1時間攪拌後、沈澱物を患2濾紙で濾過し、蒸留水
で洗浄した。
After stirring for an additional hour, the precipitate was filtered through filter paper and washed with distilled water.

これを箱型乾燥機内に入れ、100℃で24時間乾燥し
、次いで卓上粉砕器で粉砕し、ビスマス化合物を得た。
This was placed in a box-type dryer and dried at 100° C. for 24 hours, and then ground in a tabletop grinder to obtain a bismuth compound.

この化合物の組成分析を行ったところ、B16Qs  
(O)−1)4.o  (NO3)2.0  ・0. 
8112 0であり、使用原料から算出される計算値と
一致した。
When we analyzed the composition of this compound, we found that B16Qs
(O)-1)4. o (NO3)2.0 ・0.
81120, which matched the calculated value calculated from the raw materials used.

またX線回折の結果、非常に対称性の低い、わずかに結
晶化した物質であることがわかった(実施例1)。
Further, as a result of X-ray diffraction, it was found to be a slightly crystallized substance with very low symmetry (Example 1).

硝酸ビスマス5水和物100gとマンニット40gを乳
鉢で擦り合わせ粘稠液を作り、蒸留水500m1に溶解
した。
100 g of bismuth nitrate pentahydrate and 40 g of mannitol were rubbed together in a mortar to make a viscous liquid, which was dissolved in 500 ml of distilled water.

これを20%水酸化ナトリウム水溶液中に注ぎ込み約5
1とした。
Pour this into a 20% aqueous sodium hydroxide solution and
It was set to 1.

15℃に冷却しながら、4N硫酸を徐々に添加し、p 
IIを10とした。
While cooling to 15°C, 4N sulfuric acid was gradually added and p
II was set as 10.

沈澱を隘2濾紙で濾過し、充分水洗後、箱型乾燥機に入
れ、100℃で24時間乾燥し、卓上粉砕機で粉砕し、
含水酸化ビスマスを得た。
The precipitate was filtered through a 2-millimeter filter paper, washed thoroughly with water, placed in a box dryer, dried at 100°C for 24 hours, and pulverized with a tabletop pulverizer.
Hydrous bismuth oxide was obtained.

X線回折によれば、この物質は実施例1と異なる回折パ
ターンを持つ結晶性の高い物質であった(比較例1)。
According to X-ray diffraction, this material was a highly crystalline material with a diffraction pattern different from that of Example 1 (Comparative Example 1).

炭酸ナトリウム90gと酸化マグネシウム30gを水5
00gに添加した。
90g of sodium carbonate and 30g of magnesium oxide in 5g of water
00g.

次いで硫酸アルミニウム8水和物67gを蒸留水500
gに溶解した水溶液を1時間がかって上記溶液に添加し
た。
Next, 67 g of aluminum sulfate octahydrate was added to 500 g of distilled water.
An aqueous solution of 50 g was added to the above solution over a period of 1 hour.

これを90〜100℃で4時間加熱後、沈澱をl!12
濾紙で濾過し、蒸留水で充分洗浄した。
After heating this at 90 to 100°C for 4 hours, the precipitate was removed! 12
It was filtered through filter paper and thoroughly washed with distilled water.

これを箱型乾燥機に入れ100℃で24時間乾燥し、卓
上粉砕機で乾燥し、ハイドロタルサイトM g4sA 
12  (Or()13  COコ・3 H20を得た
(比較例2)。
This was placed in a box-type dryer and dried at 100°C for 24 hours, and then dried in a tabletop grinder to produce hydrotalcite M g4sA.
12 (Or()13 CO-3H20 was obtained (Comparative Example 2).

実施例1、比較例1および比較例2で得た化合物各10
gをO,IN塩化ナトリウム水溶液5001に添加し、
25℃で24時間攪拌後、上澄液中の塩化物イオン濃度
を測定し、各物質の塩化物イオン交換容量を調べた(テ
スト1)。
10 each of the compounds obtained in Example 1, Comparative Example 1 and Comparative Example 2
g to O,IN sodium chloride aqueous solution 5001,
After stirring at 25° C. for 24 hours, the chloride ion concentration in the supernatant was measured, and the chloride ion exchange capacity of each substance was examined (Test 1).

同様に各化合物10gを0.IN塩化ナトリウム水溶液
500m1に添加し、85℃で1時間攪拌後、上澄液中
の塩化物イオン濃度を測定し、各物質の塩化物イオン交
換容量を調べた(テスト2)。
Similarly, 10g of each compound was added to 0. After adding to 500 ml of IN sodium chloride aqueous solution and stirring at 85° C. for 1 hour, the chloride ion concentration in the supernatant was measured to examine the chloride ion exchange capacity of each substance (Test 2).

同様に各化合物10gを蒸留水100m1に添加し、2
4時間加熱還流した。
Similarly, 10 g of each compound was added to 100 ml of distilled water, and 2
The mixture was heated under reflux for 4 hours.

放冷後、上澄液中の電気伝導度を測定した(テスト3)
After cooling, the electrical conductivity in the supernatant was measured (Test 3)
.

テスト1.2および3の結果を表1に示す。The results of tests 1.2 and 3 are shown in Table 1.

表1 実施例2および実施例3 酸化ビスマス236gを、31.5%硝酸764gにン
容解した。
Table 1 Example 2 and Example 3 236 g of bismuth oxide was dissolved in 764 g of 31.5% nitric acid.

溶液中の硝酸ビスマスの濃度を分析したところBi(N
oコ)コ換算で40.3%で、フリーの硝酸は4.90
%であった。
Analysis of the concentration of bismuth nitrate in the solution revealed that Bi(N
It is 40.3% in terms of o), and free nitric acid is 4.90.
%Met.

反応温度を70℃に制御した以外は実施例1と同じ反応
を行いビスマス化合物を得た。
A bismuth compound was obtained by carrying out the same reaction as in Example 1 except that the reaction temperature was controlled at 70°C.

これの組成分析を行ったところ、B1606(OH)4
.1  (Noコ)1,9・0.71120であった。
When we analyzed the composition of this, we found that B1606(OH)4
.. 1 (No.) 1.9・0.71120.

なお計算値は、B 1IiOs  (OH)+、o  
(N。
The calculated value is B 1IiOs (OH)+, o
(N.

コ)2.0である。j) It is 2.0.

またX線回折の結果、対称性は実施例1の化合物より高
く、一部比較例1で得た含水酸化ビスマスのピークも観
察された(実施例2)。
Furthermore, as a result of X-ray diffraction, the symmetry was higher than that of the compound of Example 1, and some of the peaks of hydrous bismuth oxide obtained in Comparative Example 1 were also observed (Example 2).

硝酸ビスマス5水和物491gを、15.7%硝酸50
9gに熔解した。
491 g of bismuth nitrate pentahydrate was added to 15.7% nitric acid 50%
It was melted to 9g.

溶液中の硝酸ビスマスの濃度を分析したところ“3i(
Noコ)3換算で40.0%で、フリーの硝酸は7.9
5%であった。
When the concentration of bismuth nitrate in the solution was analyzed, it was found to be “3i (
No. 3 conversion: 40.0%, free nitric acid is 7.9
It was 5%.

反応温度を5℃に制御した以外は実施例1と同じ反応を
行いビスマス化合物を得た。
A bismuth compound was obtained by carrying out the same reaction as in Example 1 except that the reaction temperature was controlled at 5°C.

これの組成分析を行ったところ、B1606(OH)3
.6 (Noコ)2,4・1゜11120であった。
When we analyzed the composition of this, we found that B1606(OH)3
.. 6 (No.) 2,4・1°11120.

なお計算値は、B 1GOs  (OH)4  (No
コ)2である。
The calculated value is B 1GOs (OH)4 (No
j) 2.

またX線回析の結果、この化合物は完全な非晶質であっ
た(実施例3)。
Further, as a result of X-ray diffraction, this compound was completely amorphous (Example 3).

実施例2および3で得た化合物に対して実施例1と同様
にテス)1〜3を行った。その結果を表2に示した。
Tests 1 to 3 were performed on the compounds obtained in Examples 2 and 3 in the same manner as in Example 1. The results are shown in Table 2.

表2 実施例4 酸化ビスマス177gを、24.8%硝酸823gに溶
解した。
Table 2 Example 4 177 g of bismuth oxide was dissolved in 823 g of 24.8% nitric acid.

溶液中の硝酸ビスマスの濃度を分析したところBi(N
oコ)コ換算で30.2%で、フリーの硝酸は5.9%
であった。
Analysis of the concentration of bismuth nitrate in the solution revealed that Bi(N
It is 30.2% in terms of o), and free nitric acid is 5.9%.
Met.

反応温度を50℃に保ちながら、この溶液に25%水酸
化ナトリウム水溶液392gを定量ポンプを用いて20
分かけて添加した。
While maintaining the reaction temperature at 50°C, 392 g of 25% sodium hydroxide aqueous solution was added to this solution for 20 minutes using a metering pump.
Added in portions.

引続き、20%水酸化ナトリウム水溶液76gを45分
かけ、15%水酸化ナトリウム水溶液51gを90分か
け同様に添加した。
Subsequently, 76 g of a 20% aqueous sodium hydroxide solution was added over 45 minutes, and 51 g of a 15% aqueous sodium hydroxide solution was added in the same manner over a period of 90 minutes.

以下実施例工と同様に行い、ビスマス化合物を得た。The following procedure was carried out in the same manner as in the example to obtain a bismuth compound.

この化合物の組成分析を行ったところ、Bie  O6
(OH)、5.+  (NOi  )、、q  ’  
o、  6112 0であった。
When we analyzed the composition of this compound, we found that Bie O6
(OH), 5. + (NOi),,q'
o, 61120.

なお、計算値は[3igOg(O旧+g(Noコ) L
Jであり、これよりXの値が大きくなった。
In addition, the calculated value is [3igOg (O old + g (No) L
J, and the value of X became larger than this.

この化合物に対して実施例1と同様にテスト1〜3を行
った。その結果を表3に示した。
Tests 1 to 3 were conducted on this compound in the same manner as in Example 1. The results are shown in Table 3.

表3 実施例5、比較例3および比較例4 酸化ビスマス708gを、31.5%硝酸2292gに
熔解した。
Table 3 Example 5, Comparative Example 3, and Comparative Example 4 708 g of bismuth oxide was dissolved in 2292 g of 31.5% nitric acid.

溶液中の硝酸ビスマスの濃度を分析したところBi(N
oコ)コ換算で40.1%で、フリーの硝酸は5.05
%であった。
Analysis of the concentration of bismuth nitrate in the solution revealed that Bi(N
40.1% in terms of o), free nitric acid is 5.05
%Met.

この液を三等分し、実施例5、比較例3および比較例4
に用いた・ その一つに、反応温度を40℃に保ちながらこの溶液に
10%水酸化カリウム水溶液1057gを定量ポンプを
用いて90分かけて添加した。
This liquid was divided into three equal parts, Example 5, Comparative Example 3 and Comparative Example 4.
In one case, 1057 g of a 10% aqueous potassium hydroxide solution was added to this solution over 90 minutes using a metering pump while maintaining the reaction temperature at 40°C.

引続き、10%水酸化カリウム水溶液284gを120
分かけ、5%水酸化カリウム水溶液190gを4時間か
け同様に添加した。
Subsequently, 120 g of 10% potassium hydroxide aqueous solution
190 g of a 5% aqueous potassium hydroxide solution was added in the same manner over 4 hours.

更に1時間攪拌後、沈澱物を患2濾紙で濾過し、蒸留水
で洗浄した。
After stirring for an additional hour, the precipitate was filtered through filter paper and washed with distilled water.

これを箱型乾燥機内に入れ、120℃で15時間乾燥し
、次いで卓上粉砕機で粉砕し、ビスマス化合物を得た。
This was placed in a box-type dryer and dried at 120° C. for 15 hours, and then ground in a tabletop grinder to obtain a bismuth compound.

この化合物の組成分析を行ったところ、l3i60s 
 (OH)4.0 (No:l )z、o ・0.71
120であり、計算値と一致した(実施例5)。
When we analyzed the composition of this compound, we found that l3i60s
(OH)4.0 (No:l)z,o ・0.71
120, which agreed with the calculated value (Example 5).

先に三等分した硝酸ビスマス溶液の一つに対して、反応
温度を40℃に保ちながら、15%水酸化カリウム水溶
液1057gを定量ポンプを用いて90分かけて添加し
た。
To one of the bismuth nitrate solutions previously divided into three equal parts, 1057 g of a 15% potassium hydroxide aqueous solution was added over 90 minutes using a metering pump while maintaining the reaction temperature at 40°C.

引続き、10%水酸化カリウム水溶液284gを120
分かけ同様に添加した。
Subsequently, 120 g of 10% potassium hydroxide aqueous solution
It was added in portions in the same manner.

更に1時間攪拌後、沈澱物を患2濾紙で濾過し、蒸留水
で洗浄した。
After stirring for an additional hour, the precipitate was filtered through filter paper and washed with distilled water.

これを箱型乾燥機内に入れ、120℃で15時間乾燥し
、次いで卓上粉砕機で粉砕し、ビスマス化合物を得た。
This was placed in a box-type dryer and dried at 120° C. for 15 hours, and then ground in a tabletop grinder to obtain a bismuth compound.

この化合物の組成分析を行ったところ、BiGOG  
(011)3.0  (No:3  )3.。 ・ 1
.  I H20であった(比較例3)。
When we analyzed the composition of this compound, we found that BiGOG
(011)3.0 (No:3)3. .・1
.. I H20 (Comparative Example 3).

先に三等分した硝酸ビスマス溶液の一つに対して、反応
温度を40℃に保ちながら、この溶液に5%水酸化カリ
ウム水溶液523gを定量ポンプを用いて8時間かけて
添加した。
To one of the bismuth nitrate solutions previously divided into three equal parts, 523 g of a 5% aqueous potassium hydroxide solution was added over 8 hours using a metering pump while maintaining the reaction temperature at 40°C.

更に1時間攪拌後、沈澱物を1lll12濾紙で濾過し
、蒸留水で洗浄した。
After stirring for an additional hour, the precipitate was filtered through 11112 filter paper and washed with distilled water.

これを箱型乾燥機内に入れ、120℃で15時間乾燥し
、次いで卓上粉砕機で粉砕し、ビスマス化合物を得た。
This was placed in a box-type dryer and dried at 120° C. for 15 hours, and then ground in a tabletop grinder to obtain a bismuth compound.

この化合物の組成分析を行ったところ、B16Os  
(0■1)、g、T (N Oコ )。、3 ・ 0.
4H20であった(比較例4)。
When we analyzed the composition of this compound, we found that B16Os
(0■1), g, T (N Oko). , 3・0.
4H20 (Comparative Example 4).

実施例5、比較例3および4で得た化合物に対して実施
例1と同様にテスト1〜3を行った。
Tests 1 to 3 were conducted on the compounds obtained in Example 5 and Comparative Examples 3 and 4 in the same manner as in Example 1.

その結果を表4に示した。The results are shown in Table 4.

表4 実施例6、比較例5および比較例6 硝酸ビスマス5水和物491gを、15.7%硝酸50
9gに熔解した。
Table 4 Example 6, Comparative Example 5 and Comparative Example 6 491 g of bismuth nitrate pentahydrate was added to 15.7% nitric acid 50
It was melted to 9g.

溶液中の硝酸ビスマスの濃度を分析したところBi(N
oコ)コ換算で40.2%で、フリーの硝酸は7.96
%であった。
Analysis of the concentration of bismuth nitrate in the solution revealed that Bi(N
40.2% in terms of o), free nitric acid is 7.96
%Met.

反応温度を30℃に保ちながら、この溶液に20%アン
モニア水280gを定量ポンプを用いて2時間かけて添
加した。
While maintaining the reaction temperature at 30° C., 280 g of 20% ammonia water was added to this solution over 2 hours using a metering pump.

引続き、10%アンモニア水87gを150分かけ、5
%アンモニア水115gを5時間かけ同様に添加した。
Subsequently, 87 g of 10% ammonia water was poured over 150 minutes, and 5
% ammonia water was added in the same manner over 5 hours.

更に1時間攪拌後、沈澱物を(2濾紙で濾過し、藤留水
で洗浄した。
After stirring for an additional 1 hour, the precipitate was filtered with (2) filter paper and washed with Fujidome water.

これを箱型乾燥機内に入れ、100℃で24時間乾燥し
、次いで卓上粉砕機で粉砕し、ビスマス化合物を得た。
This was placed in a box-type dryer and dried at 100° C. for 24 hours, and then ground in a tabletop grinder to obtain a bismuth compound.

この化合物の組成分析を行ったところ、13i60e 
 (01−I)、i、o  (No:+  )1.o 
 ・0. 7112 0であった(実施例6)。
When we analyzed the composition of this compound, we found that 13i60e
(01-I), i, o (No:+)1. o
・0. 71120 (Example 6).

実施例6で得た化合物10.0gをNaC1として16
5ppm(塩化物イオンとして12100ppm)含む
N、N−ジメチルホルムアミド11に添加し、30℃で
1時間攪拌した後、上澄み液中の塩化物イオン′b1度
を分析し、塩化物イオン除去率を求めた。
10.0g of the compound obtained in Example 6 as NaC1
After adding to N,N-dimethylformamide 11 containing 5 ppm (12100 ppm as chloride ions) and stirring at 30°C for 1 hour, the chloride ions in the supernatant were analyzed to determine the chloride ion removal rate. Ta.

比較例1および2で得た化合物についても同様の試験を
行った(比較例5.6)。
Similar tests were conducted on the compounds obtained in Comparative Examples 1 and 2 (Comparative Examples 5.6).

これらの結果を表5に示した。These results are shown in Table 5.

表5 実施例7、比較例7〜9 実施例6で製造した化合物6g、クレゾールノボラック
エポキシ樹脂75部、臭素化エポキシ樹脂25部、フェ
ノール樹脂50部およびフェーズドシリカ150部をメ
ルトブレンドし、170℃で20分間かけて熱硬化させ
た。
Table 5 Example 7, Comparative Examples 7 to 9 6 g of the compound produced in Example 6, 75 parts of cresol novolac epoxy resin, 25 parts of brominated epoxy resin, 50 parts of phenolic resin and 150 parts of phased silica were melt-blended and heated at 170°C. It was heat cured for 20 minutes.

硬化物を粉砕し、100メソシユ以下のもの10gを蒸
留水100m1に入れ、151℃で100時間加熱した
The cured product was pulverized, and 10 g of the product having a particle size of 100 MSO or less was placed in 100 ml of distilled water and heated at 151° C. for 100 hours.

終了後、上澄み液中の塩化物イオン濃度および臭化物イ
オン濃度を測定した(実施例7)。
After completion, the chloride ion concentration and bromide ion concentration in the supernatant liquid were measured (Example 7).

実施例6で得た化合物を添加せずに同様の試験を行った
(比較例7)。
A similar test was conducted without adding the compound obtained in Example 6 (Comparative Example 7).

別に比較例1および比較例2で得た化合物について、同
様の試験を行った(比較例8.9)。
Separately, similar tests were conducted on the compounds obtained in Comparative Example 1 and Comparative Example 2 (Comparative Example 8.9).

これらの試験結果を表6に示す。The results of these tests are shown in Table 6.

表6 (3)発明の効果 本発明(7)B is Os  (011) x  (
NOコ) @−x化合物であって、中性付近での陰イオ
ン交換容量および交換速度が大きく、また耐水性や耐熱
性に優れているため、従来中性付近では難しかった陰イ
オンの捕捉が容易に行なえる無機陰イオン交換体として
用いられ、イオン交換や吸着を用いる分野に巾広く利用
することができる。
Table 6 (3) Effects of the invention Invention (7) B is Os (011) x (
It is an @-x compound that has a large anion exchange capacity and exchange rate near neutrality, and has excellent water resistance and heat resistance, making it possible to capture anions that were previously difficult to capture near neutrality. It is used as an easy-to-perform inorganic anion exchanger and can be widely used in fields that use ion exchange and adsorption.

Claims (1)

【特許請求の範囲】 1、Bi_6O_6(OH)χ(NO_3)_6_−_
χ・nH_2O(但し、3.5≦χ≦5.5、nは0ま
たは正の数)の式で示されるビスマス化合物。 2、Bi_6O_6(OH)χ(NO_3)_6_−_
χ・nH_2O(但し、3.5≦χ≦5.5、nは0ま
たは正の数)の式で示されるビスマス化合物を有効成分
とする無機陰イオン交換体。
[Claims] 1. Bi_6O_6(OH)χ(NO_3)_6_-_
A bismuth compound represented by the formula χ·nH_2O (3.5≦χ≦5.5, n is 0 or a positive number). 2, Bi_6O_6(OH)χ(NO_3)_6_-_
An inorganic anion exchanger containing a bismuth compound represented by the formula χ·nH_2O (3.5≦χ≦5.5, n is 0 or a positive number) as an active ingredient.
JP61201514A 1986-08-29 1986-08-29 Bismuth compound and inorganic ion exchanger containing same as effective component Granted JPS6360112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201514A JPS6360112A (en) 1986-08-29 1986-08-29 Bismuth compound and inorganic ion exchanger containing same as effective component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201514A JPS6360112A (en) 1986-08-29 1986-08-29 Bismuth compound and inorganic ion exchanger containing same as effective component

Publications (2)

Publication Number Publication Date
JPS6360112A true JPS6360112A (en) 1988-03-16
JPH0255380B2 JPH0255380B2 (en) 1990-11-27

Family

ID=16442306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201514A Granted JPS6360112A (en) 1986-08-29 1986-08-29 Bismuth compound and inorganic ion exchanger containing same as effective component

Country Status (1)

Country Link
JP (1) JPS6360112A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073580A (en) * 1989-05-08 1991-12-17 Toagosei Chemical Industry Co., Ltd. Epoxy resin composition for use in sealing semiconductors
WO2008062723A1 (en) * 2006-11-20 2008-05-29 Toagosei Co., Ltd. Inorganic anion exchanger composed of bismuth compound and resin composition for electronic component encapsulation using the same
WO2013191075A1 (en) * 2012-06-21 2013-12-27 東亞合成株式会社 Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
MD4241C1 (en) * 2012-06-11 2014-02-28 Государственный Университет Молд0 Process for recovery of sulphide and hydrosulphide ions from solutions
JP2021087903A (en) * 2019-12-02 2021-06-10 株式会社東芝 Purification apparatus
JP2021094521A (en) * 2019-12-17 2021-06-24 株式会社東芝 High temperature water purification device and high temperature water purification method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073580A (en) * 1989-05-08 1991-12-17 Toagosei Chemical Industry Co., Ltd. Epoxy resin composition for use in sealing semiconductors
WO2008062723A1 (en) * 2006-11-20 2008-05-29 Toagosei Co., Ltd. Inorganic anion exchanger composed of bismuth compound and resin composition for electronic component encapsulation using the same
US8017661B2 (en) 2006-11-20 2011-09-13 Toagosei Co., Ltd. Inorganic anion exchanger composed of bismuth compound and resin composition for electronic component encapsulation using the same
JP5077239B2 (en) * 2006-11-20 2012-11-21 東亞合成株式会社 Inorganic anion exchanger using bismuth compound and resin composition for encapsulating electronic parts using the same
TWI481565B (en) * 2006-11-20 2015-04-21 Toagosei Co Ltd An inorganic anion exchanger for bismuth compound and a resin composition for packaging an electronic component using the compound
MD4241C1 (en) * 2012-06-11 2014-02-28 Государственный Университет Молд0 Process for recovery of sulphide and hydrosulphide ions from solutions
KR20150023041A (en) 2012-06-21 2015-03-04 도아고세이가부시키가이샤 Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
CN104487169A (en) * 2012-06-21 2015-04-01 东亚合成株式会社 Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
WO2013191075A1 (en) * 2012-06-21 2013-12-27 東亞合成株式会社 Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
US20150321189A1 (en) * 2012-06-21 2015-11-12 Toagosei Co., Ltd. Amorphous inorganic anion exchanger, resin composition for electronic component sealing, and process for producing amorphous bismuth compound
JPWO2013191075A1 (en) * 2012-06-21 2016-05-26 東亞合成株式会社 Amorphous inorganic anion exchanger, resin composition for encapsulating electronic components, and method for producing amorphous bismuth compound
US9849449B2 (en) 2012-06-21 2017-12-26 Toagosei Co., Ltd. Amorphous inorganic anion exchanger, resin composition for electronic component sealing, and process for producing amorphous bismuth compound
JP2021087903A (en) * 2019-12-02 2021-06-10 株式会社東芝 Purification apparatus
JP2021094521A (en) * 2019-12-17 2021-06-24 株式会社東芝 High temperature water purification device and high temperature water purification method

Also Published As

Publication number Publication date
JPH0255380B2 (en) 1990-11-27

Similar Documents

Publication Publication Date Title
US3850835A (en) Method of making granular zirconium hydrous oxide ion exchangers, such as zirconium phosphate and hydrous zirconium oxide, particularly for column use
JP3211215B2 (en) Method for producing crystalline zirconium phosphate compound
US2640756A (en) Manufacture of tetrasilicates
Siddiqui et al. Synthesis, characterization and ion exchange properties of zirconium (IV) tungstoiodophosphate, a new cation exchanger
KR20060036459A (en) Reducing agent for the soluble chromate content in cement and method for producing the same
JP4428541B2 (en) Granular titanate ion exchanger and method for producing the same
JPH0653566B2 (en) Method for producing crystalline zirconium phosphate
JPS6360112A (en) Bismuth compound and inorganic ion exchanger containing same as effective component
CN114620698B (en) Large-particle zirconium phosphate and preparation method thereof
EP0426048B1 (en) Production and use of crystalline hydrogen-phosphate compounds having layer structure
Jignasa et al. A study on equilibrium and kinetics of ion exchange of alkaline earth metals using an inorganic cation exchanger–zirconium titanium phosphate
US3730886A (en) Method of purifying water
JP2535753B2 (en) Method for removing bromide ion or chloride ion
JPH04305018A (en) Compound of h2ti5o11-nh2o having monoclinic layer structure and its production
CN1114635A (en) Process for producing potassium sulfate by plaster stone conversion method
JP2855371B2 (en) Metal substitute of crystalline layered silicic acid and method for producing the same
JP4015212B2 (en) Ion exchanger
JPS6052087B2 (en) Manufacturing method of zeolitic composition
JP2543795B2 (en) Recovery method of silver sulfate
JPH04927B2 (en)
JPH07101711A (en) Crystalline zirconium phosphate
JPH01278417A (en) Novel reactive derivative of zirconium and method for its manufacture
JP3211216B2 (en) Method for producing silver-containing crystalline zirconium phosphate
JPH07108178A (en) Production of granular inorganic ion exchanger
JPH0648317B2 (en) Method for immobilizing radioactive cesium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term