JPH0127003B2 - - Google Patents

Info

Publication number
JPH0127003B2
JPH0127003B2 JP59159133A JP15913384A JPH0127003B2 JP H0127003 B2 JPH0127003 B2 JP H0127003B2 JP 59159133 A JP59159133 A JP 59159133A JP 15913384 A JP15913384 A JP 15913384A JP H0127003 B2 JPH0127003 B2 JP H0127003B2
Authority
JP
Japan
Prior art keywords
silica
melting
less
silica gel
hydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59159133A
Other languages
Japanese (ja)
Other versions
JPS6140811A (en
Inventor
Toshihiko Morishita
Hitoshi Koshimizu
Kazuyoshi Torii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP15913384A priority Critical patent/JPS6140811A/en
Publication of JPS6140811A publication Critical patent/JPS6140811A/en
Publication of JPH0127003B2 publication Critical patent/JPH0127003B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高純度の球状溶融シリカ用原料および
これを用いた溶融球状シリカガラスの製造法に関
する。 更に詳しくは半導体の樹脂封止用の充填材、研
摩材、基板、パツケージ材料等の高純度、高機能
性を要する中間原料として適用できる高純度の水
和シリカおよび無水シリカの製法に関するもので
ある。 従来の技術 半導体の樹脂封止において多量の無機質充填材
が用いられるが、これには主として天然石英の粉
砕品である結晶質シリカおよびこれを酸水素炎な
どの高温で溶融した溶融シリカが用いられてい
る。 最近では、特に半導体の高集積化によつて封止
剤に対する品質特性の要求が一段と厳しくたとえ
ば、シリカフイラーに関して(1)充填材の高充填
化、(2)α放射体(たとえばウラン、トリウム)の
低減化、(3)イオン性不純物の低減化などがあげら
れる。これらに対応するためには従来の天然石英
の粉砕又は/及び溶融によつて得たシリカを充填
材に供すことは純度、資源の量的確保、経済性に
問題があり、また必ずしも安定した状態で要求に
追従することはできないため新たに合成シリカを
用いることが必要となつて来た。 これに応えるものとしてハロゲン化珪素、有機
珪素の加水分解など提案されており、また最近で
はアルカリシリケート等の珪酸塩と鉱酸との反応
を水素イオン濃度1.5以下で含水珪酸を沈澱させ、
次いで洗浄、乾燥および焼成して石英ガラス粉末
を製造する方法が提案された(特開昭59−54632
号)。 発明が解決しようとする問題点 本発明者らは先に珪酸アルカリ水溶液をシリカ
源としてイオン交換に基づくシリカゾルよりシリ
カゲルを沈殿させ、あるいは鉱酸との反応で生成
したシリカゲルをいずれも酸処理することによつ
てα―放射体含有量の極めて少ないシリカの製造
方法あるいは更にこれより溶融して球状シリカの
製造方法を開発した。 上記のシリカゲルを原料としてこれを溶融して
球状のシリカガラス粉末を製造する際、特に生産
規模を拡大する場合に原料シリカの帯電性および
発泡性の問題があることが分つた。 即ち、溶融原料のシリカの帯電性をみると、溶
融装置の原料供給管内の流動性にトラブルが起つ
て円滑な供給ができなくなり、又シリカの含有水
分量の如何では溶融の際発泡現象が起つて具備す
べき性能をもつた球状体シリカガラスが得られな
いなどの問題がある。 前記特開昭59−54632号にみる石英ガラス粉末
の製造方法にはトリウムの除去については明らか
でなく、また焼成法に基づく石英ガラスであるた
めに上記の問題の認識はない。 本発明者らは叙上の問題点に鑑み、鋭意研究を
重ねたところ、驚くべきことに原料中の含水率が
極めて重要な要因であるとの知見に基づいて本発
明を完成した。 問題点を解決するための手段および作用 すなわち、本発明は珪酸アルカリ水溶液から得
られるシリカのうちα―放射体がU+Thとして
10ppb以下、Na、Clがそれぞれ10ppm以下の純
度を有しかつ含水率が1〜10重量%の範囲にある
含水シリカゲル粉末を溶融原料として提供するこ
とを一つの目的とする。 本発明の他の目的は上記原料を用いて溶融シリ
カガラスを製造することにある。 本発明にかかる前記含水シリカゲル粉末は主と
して溶融用原料として用いられるが、高純度およ
び所定の粒度および含水率のゆえに流動性もあつ
て他の目的例えばセラミツク素材又はその原料と
して利用することができる。 含水シリカゲルの純度としてα―放射体がU+
Thとして10ppb以下、Na,Clがそれぞれ10ppm
以下であることが半導体の樹脂封止用充填材とし
て不可欠である。特に好ましくはUおよびThが
それぞれ1ppb以下の高純度であることが高集積
度のLSI,VLSIの封止用充填材として使用時の
ソフトエラーによる誤動作をなくすことからみて
必要とされる。 かかる含水シリカゲルの他の特徴として含水率
が1〜10重量%の範囲になければならずこれは本
発明において、純度と共に重要な特徴となる。 この理由は粒子の帯電性および発泡性は含水率
に極めて大きい関連があつて上記含水率の範囲に
おいては粉体輸送が容易になると共に良好な溶融
シリカが得られることからそれらの問題は両者と
も実質的に解決できるということにある。 即ち、含水率が1重量%未満の場合は発泡性の
問題はないけれども帯電性が著しく、溶融の際に
バーナ中へ安定して供給することが難かしく、又
10重量%を越えると流動性が同様に悪いのみなら
ず溶融に際し発泡し、良質な球状シリカガラスは
効果的に得られない。 このようなことから、含水シリカゲルの含水率
は上記の範囲であることが不可欠であるが、特に
好ましくは溶融シリカ製品の粒度とも関連するが
概ね1〜7重量%の範囲である。 上記含水率において粒子の帯電性によるトラブ
ルは実質的に回避されるが、必要に応じて例えば
第4級アンモニウム塩等の公知の帯電防止剤を少
量配合することによつて一層効果的に粒子の帯電
を防ぐこともできる。 この場合添加する帯電防止剤は溶融において完
全に揮散する性質の化合物であることが望ましい
ことはいうまでもない。 なお、本発明において含水率というのは、試料
を600℃において1時間加熱焼成後の加熱減量よ
り計算された値で表わされたものとする。 さらに、本発明にかかる含水シリカゲルは溶融
の際の流動特性の効果上および溶融シリカガラス
粒子の粒度を所定範囲にするために、要すれば5
〜200μmの範囲、好ましくは10〜100μm間に50%
以上分布していることが望ましい。 なお、含水シリカゲルの粒子をみる場合一次粒
子は全て100mμ以下の微粒子であるが、本発明に
おける粒度は一次粒子が凝集した見掛けの二次粒
子を意味し、この粒度分布はコールターカウンタ
ーにて測定される値として表わしたものである。 次に本発明にかかる含水シリカゲルは上記特性
を有するものであれば珪酸アルカリ水溶液から生
成させる処理手段は特に限定する必要はない。 調製法としては例えば鉱酸中に珪酸アルカリ水
溶液を添加反応させてシリカゲルを生成させ、次
いで回収したゲルを再び酸処理して実質的に有害
不純物をこの段階で除去した後、洗浄後所定の含
水率と粒径になるように乾燥する。 他の方法として希薄な珪酸アルカリ水溶液をイ
オン交換樹脂に流してシリカゾルを得た後、凝析
剤によりシリカゲルとし、必要に応じ酸処理を施
しこれを前記と同様に処理して乾燥する。 なお、乾燥して、含水率を調整する場合には、
例えば (1) シリカ粒度と許容含水分率の関係を把握して
原料シリカゲルの乾燥条件を決定する (2) 予め200℃以上で乾燥したものを空気中に曝
露するかその他の方法で調湿する (3) シリカゲルスラリーを噴霧乾燥する 等が適当な方法としてあげられるが、これらのう
ちでは(1)の場合が作業性その他の面から好まし
い。また粒度分布を狭くするためには(3)の方法が
好ましい。 なお、必要に応じて所望の段階で帯電防止剤を
添加することができるが、例えば第4級アンモニ
ウム塩を(3)の場合のスラリーに添加するのは効果
的である。 次に本発明にかかる含水シリカゲル粉末を用い
て溶融して球状のシリカガラス粉末の製造方法に
ついて説明する。 シリカ粉末の溶融操作は、例えば酸素―水素
炎、酸素―アセチレン炎、酸素―プロパン炎ある
いはプラズマ炎などの所定の火炎部分に上記含水
シリカゲル粒子を連続的に供給することによつ
て、含水シリカゲル粒子の溶融球状化を行なうも
のであり、この火炎溶融操作自体は無機粉体の溶
融に古くより知られている技術である。しかし
て、含水シリカゲル粒子を原料として用いて火炎
溶融成形して、平均粒子径が1〜100μmの球状又
はだ円状溶融シリカとするためには適度な火炎条
牛を必要とする。即ち燃料ガスを用いた場合火炎
温度を少なくとも3000℃以上でかつ2000℃以上の
火炎長を30cm以上必要とする。この目的に利用出
来るバーナーの構成は酸素―燃料ガス系の場合、
酸素をバーナー内側から、燃料ガスを外側の多数
の孔から噴射させ、含水シリカゲル粒子は酸素ガ
スに同伴射出させることが好ましい。プラズマア
ークの場合はアーク部の温度が酸素―燃料ガス系
に比べ著しく高いため粉体の注入量を過度にしな
い限り問題なく処理出来る。この様にして得られ
るシリカは高温部分での接触時間はわずかである
けれども実質的に溶融されたガラス状の透明な球
形乃至だ円形粒子となつて極めて流動性の良好な
粒子となる。 かくして、得られた溶融シリカ粒子は必要に応
じてガス流の冷却を施してからサイクロン、バグ
フイルターなどで回収するか又は水による湿式回
収等を行つて本発明にかかる高純度シリカガラス
製品を得ることができる。 このように、本発明にかかる方法により、珪酸
アルカリ水溶液を出発原料とする湿式シリカよ
り、高性能が要求される封止剤用充填材としての
高純度溶融シリカ粒子を工業的に有利に大量供給
することが可能である。 実施例 本発明を以下に実施例及び比較例を掲げて説明
する。 実施施例1〜4および比較例1〜3 市販の3号珪酸ソーダ水溶液(SiO228.6重量
%、Na2O9.4重量%、SiO2当りU100ppb、SiO2
りTh240ppb含有)を水で希釈してSiO24重量%
の希釈珪酸ソーダ水溶液とした。これを硫酸で再
生してある陽イオン交換樹脂(アンバーライト
IR―120B、オルガノ社製)で常法に従つて処理
してPH2.2のシリカゾル水溶液を得た。 常温で硝酸アンモニウム10.5重量%水溶液30
を撹拌しながら、上記シリカゾル水溶液にアンモ
ニアを加えPH10.5にしたアルカシリカゾル溶液50
を3時間かけて添加し、凝析沈殿させて沈殿状
シリカゲルを得た。次いでこれを過および置換
洗浄したのち、イオン交換水にSiO2濃度10重量
%となる様に再分散させ、この中に硝酸を2M/
lとなる様に加え95℃で3時間撹拌して処理し
た。これを過、水洗して精製を行つて含水率78
重量%の精製シリカゲルのケーキを得た。 この精製シリカゲルのケーキを水に分散させて
15重量%のシリカゲル懸濁液となしたのち、アシ
ザワニロ社製プロダクシヨンマイナー型スプレー
ドライヤーで各種条件を変えて噴霧乾燥して各種
の含水シリカゲル粉末を得た。 この粉末の純度を測定したところSiO2当り
Na:0.8ppm、Cl:不検出、U:0.4ppb以下およ
びTh:1ppb以下であつた。 次いで各種の含水シリカゲル粉末を原料として
火炎溶融実験を行い、この際の作業性および溶融
ガラスの発泡性を観察した。 即ち、火炎溶融装置は中央部に酸素噴出孔を設
け、ここから酸素及び脱水シリカを噴出させ、こ
の外側に酸素噴出孔を取りまいて燃料ガス噴出孔
をリング状に設け、ここから燃料ガスを噴出さ
せ、さらにこの外側に酸素噴出孔、燃料ガス孔を
設けたガスバーナーを用いた。燃料ガスは、プロ
パンガスを用い、その流量1.2Nm3/時間、酸素
流量5.6Nm3/時間および含水シリカゲル粒子の
供給速度1Kg/時間で含水シリカゲルの溶融処理
を行つた。この際の条件と観察結果とを次の第1
表に掲げる。
INDUSTRIAL APPLICATION FIELD The present invention relates to a raw material for high-purity spherical fused silica and a method for producing fused spherical silica glass using the same. More specifically, it relates to a method for producing high-purity hydrated silica and anhydrous silica that can be used as intermediate raw materials that require high purity and high functionality, such as fillers for resin encapsulation of semiconductors, abrasive materials, substrates, and package materials. . Conventional technology A large amount of inorganic filler is used in resin encapsulation of semiconductors, and this mainly uses crystalline silica, which is a crushed product of natural quartz, and fused silica, which is melted at high temperatures such as in an oxyhydrogen flame. ing. Recently, especially with the increasing integration of semiconductors, the requirements for quality characteristics of encapsulants have become even stricter. and (3) reduction of ionic impurities. In order to cope with these problems, using conventional silica obtained by crushing and/or melting natural quartz as a filler has problems with purity, securing the quantity of resources, and economic efficiency, and is not necessarily in a stable state. However, it has become necessary to use a new synthetic silica. In response to this, hydrolysis of silicon halides and organic silicones has been proposed, and recently, silicates such as alkali silicates are reacted with mineral acids to precipitate hydrated silicic acid at a hydrogen ion concentration of 1.5 or less.
Next, a method of manufacturing quartz glass powder by washing, drying and firing was proposed (Japanese Patent Application Laid-Open No. 59-54632).
issue). Problems to be Solved by the Invention The present inventors first precipitated silica gel from a silica sol based on ion exchange using an aqueous alkali silicate solution as a silica source, or acid-treated the silica gel produced by reaction with a mineral acid. We developed a method for producing silica with an extremely low content of α-emitters, and a method for producing spherical silica by melting it. It has been found that when producing spherical silica glass powder by melting the above-mentioned silica gel as a raw material, there are problems with the chargeability and foamability of the raw silica, especially when expanding the production scale. In other words, when looking at the chargeability of silica as a molten raw material, troubles occur in the fluidity within the raw material supply pipe of the melting device, making it impossible to supply it smoothly, and depending on the water content of silica, foaming occurs during melting. However, there are problems such as the inability to obtain spherical silica glass having the performance that should be achieved. The method for producing quartz glass powder disclosed in JP-A-59-54632 does not clearly address the removal of thorium, and since the quartz glass is based on a firing method, the above-mentioned problem is not recognized. In view of the above-mentioned problems, the present inventors conducted extensive research and surprisingly completed the present invention based on the knowledge that the water content in the raw material is an extremely important factor. Means and Effects for Solving the Problems That is, the present invention provides a solution in which the α-emitter of silica obtained from an aqueous alkali silicate solution is U+Th.
One object of the present invention is to provide, as a molten raw material, a hydrous silica gel powder having a purity of 10 ppb or less, 10 ppm or less of Na and Cl, and a water content in the range of 1 to 10% by weight. Another object of the present invention is to produce fused silica glass using the above raw materials. The hydrated silica gel powder according to the present invention is mainly used as a raw material for melting, but due to its high purity, predetermined particle size and water content, it also has fluidity and can be used for other purposes, such as as a ceramic material or its raw material. As for the purity of hydrated silica gel, α-radiator is U+
Less than 10ppb as Th, 10ppm each of Na and Cl
The following is essential for a filler for resin encapsulation of semiconductors. Particularly preferably, U and Th have a high purity of 1 ppb or less, respectively, from the viewpoint of eliminating malfunctions due to soft errors when used as a sealing filler for highly integrated LSIs and VLSIs. Another characteristic of such hydrous silica gel is that the water content must be in the range of 1 to 10% by weight, which is an important characteristic in the present invention as well as purity. The reason for this is that the chargeability and foamability of particles are extremely closely related to the water content, and within the above water content range, powder transportation becomes easy and good fused silica can be obtained, so both of these problems are solved. The problem is that it can actually be solved. That is, if the water content is less than 1% by weight, there is no problem with foaming properties, but the charging property is significant, making it difficult to stably feed the material into the burner during melting.
If it exceeds 10% by weight, not only the fluidity is similarly poor but also foaming occurs during melting, making it impossible to effectively obtain high quality spherical silica glass. For this reason, it is essential that the water content of the hydrated silica gel is within the above range, and is particularly preferably within the range of approximately 1 to 7% by weight, although this is related to the particle size of the fused silica product. At the above water content, troubles due to the electrostatic properties of the particles can be practically avoided, but if necessary, it is possible to more effectively suppress the particles by adding a small amount of a known antistatic agent such as a quaternary ammonium salt. It can also prevent static electricity. It goes without saying that the antistatic agent added in this case is preferably a compound that completely volatilizes during melting. In the present invention, the moisture content is expressed as a value calculated from the loss on heating after firing a sample at 600° C. for 1 hour. Furthermore, the hydrated silica gel according to the present invention may be used in order to improve the flow characteristics during melting and to keep the particle size of the fused silica glass particles within a predetermined range.
~200μm range, preferably 50% between 10-100μm
It is desirable that the distribution is as follows. In addition, when looking at particles of hydrated silica gel, all primary particles are fine particles of 100 mμ or less, but in the present invention, the particle size refers to the apparent secondary particles that are aggregated primary particles, and this particle size distribution is measured with a Coulter counter. It is expressed as a value. Next, as long as the hydrated silica gel according to the present invention has the above-mentioned characteristics, there is no need to particularly limit the treatment means for producing it from an aqueous alkali silicate solution. As a preparation method, for example, an aqueous alkali silicate solution is added to mineral acid and reacted to produce silica gel, then the recovered gel is treated with acid again to substantially remove harmful impurities at this stage, and after washing, it is heated to a predetermined water content. Dry to achieve the desired particle size and particle size. Another method is to obtain a silica sol by pouring a dilute aqueous alkali silicate solution through an ion exchange resin, then converting it into silica gel with a coagulant, subjecting it to acid treatment if necessary, and drying it in the same manner as described above. In addition, when drying and adjusting the moisture content,
For example, (1) determine the drying conditions for the raw silica gel by understanding the relationship between silica particle size and allowable moisture content (2) dry it in advance at 200°C or higher and expose it to the air or adjust the humidity by other methods (3) Spray drying the silica gel slurry is an appropriate method, but among these, method (1) is preferable from the viewpoint of workability and other aspects. Further, in order to narrow the particle size distribution, method (3) is preferable. Note that an antistatic agent can be added at a desired stage if necessary, but it is effective to add, for example, a quaternary ammonium salt to the slurry in case (3). Next, a method for manufacturing spherical silica glass powder by melting the hydrated silica gel powder according to the present invention will be described. The silica powder melting operation is carried out by continuously supplying the hydrated silica gel particles to a predetermined flame portion such as an oxygen-hydrogen flame, an oxygen-acetylene flame, an oxygen-propane flame, or a plasma flame. This flame melting operation itself is a long-known technique for melting inorganic powders. Therefore, in order to flame-melt and mold hydrated silica gel particles as a raw material to obtain spherical or elliptical fused silica having an average particle diameter of 1 to 100 μm, an appropriate amount of flame is required. That is, when fuel gas is used, the flame temperature must be at least 3000°C or higher, the flame length must be 30cm or more, and the flame length must be at least 2000°C. The configuration of the burner that can be used for this purpose is oxygen-fuel gas system.
Preferably, oxygen is injected from inside the burner and fuel gas is injected from a number of holes on the outside, and the hydrated silica gel particles are injected together with the oxygen gas. In the case of plasma arc, the temperature of the arc part is significantly higher than that in the oxygen-fuel gas system, so it can be processed without problems as long as the amount of powder injected is not excessive. Although the silica thus obtained is in contact for only a short time in the high-temperature part, it becomes substantially molten, glass-like, transparent, spherical or elliptical particles with extremely good fluidity. The fused silica particles thus obtained are collected by a cyclone, a bag filter, etc. after being cooled by a gas stream, if necessary, or by wet collection using water, etc., to obtain the high-purity silica glass product according to the present invention. be able to. As described above, the method of the present invention enables industrially advantageous mass supply of high-purity fused silica particles as a filler for sealants that require high performance, rather than wet silica using an aqueous alkali silicate solution as a starting material. It is possible to do so. Examples The present invention will be described below with reference to Examples and Comparative Examples. Examples 1 to 4 and Comparative Examples 1 to 3 A commercially available No. 3 sodium silicate aqueous solution (containing 28.6% by weight of SiO 2 , 9.4% by weight of Na 2 O, 100 ppb of U per SiO 2 and 240 ppb of Th per SiO 2 ) was diluted with water. SiO2 4% by weight
A diluted sodium silicate aqueous solution was prepared. A cation exchange resin (Amberlite) that is regenerated with sulfuric acid
IR-120B (manufactured by Organo) according to a conventional method to obtain an aqueous silica sol solution with a pH of 2.2. Ammonium nitrate 10.5% by weight aqueous solution 30 at room temperature
While stirring, add ammonia to the above silica sol aqueous solution to make the pH 10.5.
was added over 3 hours to cause coagulation and precipitation to obtain precipitated silica gel. Next, this was washed by filtration and displacement, and then redispersed in ion-exchanged water to a SiO 2 concentration of 10% by weight, and nitric acid was added to it at 2M/2%.
1 of the mixture and stirred at 95°C for 3 hours. This is filtered, washed with water, and purified to a moisture content of 78.
A cake of % by weight purified silica gel was obtained. Disperse this purified silica gel cake in water.
After forming a 15% by weight silica gel suspension, it was spray-dried using a Production Minor type spray dryer manufactured by Ashizawa Iro Co., Ltd. under various conditions to obtain various hydrated silica gel powders. The purity of this powder was measured and found that per SiO 2
Na: 0.8 ppm, Cl: not detected, U: 0.4 ppb or less, and Th: 1 ppb or less. Next, flame melting experiments were conducted using various hydrated silica gel powders as raw materials, and the workability and foamability of the molten glass were observed. That is, the flame melting device has an oxygen nozzle in the center from which oxygen and dehydrated silica are ejected, and a ring-shaped fuel gas nozzle surrounding the oxygen nozzle on the outside, from which fuel gas is ejected. A gas burner was used which was equipped with an oxygen jet hole and a fuel gas hole on the outside. Propane gas was used as the fuel gas, and the hydrous silica gel was melted at a flow rate of 1.2 Nm 3 /hr, an oxygen flow rate of 5.6 Nm 3 /hr, and a feed rate of hydrated silica gel particles of 1 kg/hr. The conditions and observation results at this time are as follows:
Listed in the table.

【表】 上表中、No.1、No.4及びNo.6はそれぞれ比較例
1、比較例2及び比較例3の含水シリカゲル溶融
処理品、No.2、No.3、No.5及びNo.7はそれぞれ実
施例1、実施例2、実施例3及び実施例4の含水
シリカ溶融処理品である。 注)帯電性の観察:火炎溶融時のシリカ供給器
(ピトー管)での流動性及びバーナへの
シリカ供給管(ゴム製、一部ガラス)へ
の付着などを観察し供給が安定で最もよ
いものを◎、次いで〇および×の3段階
で評価; 発泡性の観察:溶融シリカガラス粉末を走査型
電子顕微鏡で観察し発泡がなく最もよい
ものを◎、次いで〇および×の3段階で
評価。 なお、本実験およびその他の実験に基づく観察
からシリカゲル粉末の二次粒子径の小さなものは
発泡性は比較的少ないが、シリカ粒子が大きくな
るに従つて発泡の度合は多くなり、発泡に関し一
定の溶融条件では粒度と許容含水率の相関がある
ことが判明した。その数値は数多くの実験結果か
ら平均粒径10μmで含水率10重量%以下、20μmで
8重量%以下、30μmで7重量%以下である。一
方、予め仮焼するか又は噴霧乾燥時の温度を上げ
るなど原料含水シリカゲルを1%以下の含水率に
脱水して火炎溶融バーナーに供給すると粉体相互
の凝集、粉体の機器への付着などにより導管の目
づまり、ホツパー内でのブリツジ形成などが生じ
定量的に粉体供給が行われない。 以上のことから含水シリカゲルの含水率は粒子
径との相関関係および溶融ガラス粉末の使用目的
によつて一様ではないが少なくとも1〜10重量%
好ましくは1〜7重量%の範囲が必要であると結
論される。 実施例5〜8および比較例4〜6 第2表に示す方法により各種の含水シリカゲル
粉末を調製した:
[Table] In the above table, No. 1, No. 4, and No. 6 are the hydrous silica gel melt-treated products of Comparative Example 1, Comparative Example 2, and Comparative Example 3, respectively, and No. 2, No. 3, No. 5, and No. 7 is the hydrous silica melt-treated product of Example 1, Example 2, Example 3, and Example 4, respectively. Note) Observation of charging properties: Observe the fluidity in the silica supply device (pitot tube) during flame melting and the adhesion to the silica supply tube (made of rubber, some glass) to the burner, and the supply is stable and is the best. The product was evaluated on a three-grade scale of ◎, then 〇 and ×; Observation of foaming property: The fused silica glass powder was observed with a scanning electron microscope, and the best one with no foaming was evaluated on a three-grade scale of ◎, then 〇 and ×. Note that observations based on this experiment and other experiments show that silica gel powder with a small secondary particle size has relatively little foaming ability, but as the silica particles become larger, the degree of foaming increases, and there is a certain degree of foaming. It was found that there is a correlation between particle size and allowable moisture content under melting conditions. Based on numerous experimental results, the water content is 10% by weight or less for an average particle size of 10 μm, 8% by weight or less for 20 μm, and 7% by weight or less for 30 μm. On the other hand, if the raw material hydrated silica gel is dehydrated to a moisture content of 1% or less by pre-calcining or increasing the temperature during spray drying and then fed to a flame melting burner, the powders may coagulate with each other and the powders may adhere to equipment. This causes clogging of the conduit, bridge formation in the hopper, etc., and the powder cannot be supplied quantitatively. From the above, the water content of hydrated silica gel varies depending on the correlation with the particle size and the purpose of use of the molten glass powder, but it is at least 1 to 10% by weight.
It is concluded that preferably a range of 1 to 7% by weight is required. Examples 5 to 8 and Comparative Examples 4 to 6 Various hydrous silica gel powders were prepared by the methods shown in Table 2:

【表】【table】

【表】 なお含水シリカゲルはいずれもSiO2当りNa:
1ppm以下、Cl:不検出、U:0.4ppb以下、Th:
ppb以下であつた。 上記の各種含水シリカゲル粉末を実施例1と同
じ火炎溶融装置を用いシリカ供給用酸素の流量
1.8Nm3/時間、プロパンガス流量1.8Nm3/時間、
総酸素流量6.7Nm3/時間、シリカ添加量1.8Kg/
時間の条件で火炎溶融処理する以外は実施例1と
同様に溶融処理した。生成した溶融シリカガラス
の特性値及び原料含水シリカゲル粉末の流動性を
第3表に示す。カサ比重の測定は顔料試験法に基
づいて行なつた。:
[Table] All hydrous silica gels have Na per SiO2 :
1ppm or less, Cl: not detected, U: 0.4ppb or less, Th:
It was less than ppb. The above various hydrated silica gel powders were melted using the same flame melting device as in Example 1, and the flow rate of oxygen for supplying silica was melted.
1.8Nm 3 /hour, propane gas flow rate 1.8Nm 3 /hour,
Total oxygen flow rate 6.7Nm 3 /hour, silica addition amount 1.8Kg /
The melting process was carried out in the same manner as in Example 1, except that the flame melting process was performed under different conditions. Table 3 shows the characteristic values of the produced fused silica glass and the fluidity of the raw material hydrous silica gel powder. The bulk specific gravity was measured based on the pigment test method. :

【表】 なお、この球状溶融シリカの純度等物性値を測
定した結果次の如くとなつた。:
[Table] The physical properties such as purity of this spherical fused silica were measured and the results were as follows. :

【表】 電気伝導度を測定する。
実施例9〜12および比較例7〜9 シリカ供給用酸素の流量1.8Nm3/時間、水素
ガス流量20Nm3/時間、総酸素流量8.5Nm3/時
間、シリカ添加量1.2Kg/時間で前述の原料No.1
〜7を同様の操作にて火炎溶融した。生成した溶
融シリカ及びシリカ粉末流動性を第5表に示
す。:
[Table] Measuring electrical conductivity.
Examples 9 to 12 and Comparative Examples 7 to 9 The flow rate of oxygen for silica supply was 1.8Nm 3 /hour, the hydrogen gas flow rate was 20Nm 3 /hour, the total oxygen flow rate was 8.5Nm 3 /hour, and the amount of silica added was 1.2Kg/hour. Raw material No.1
-7 were flame-melted in the same manner. Table 5 shows the flowability of the produced fused silica and silica powder. :

【表】 発明の効果 本発明によれば高集積の半導体に用られるエポ
キシ樹脂等の封止剤用充填材として好適なものが
安定した操業性の下で信頼性の高い品質の高純度
シリカを提供することができ工業的意義は大き
い。 特に従来、溶融シリカガラス粉末を製造する場
合に火炎溶融炉への原料供給段階で非常なバラツ
キが生じトラブルのもとであつたが、本発明によ
れば再現性よく改善されると共に溶融ガラスの品
質も安定したものとなる。
[Table] Effects of the Invention According to the present invention, a material suitable as a filler for encapsulants such as epoxy resins used in highly integrated semiconductors can produce highly reliable quality high-purity silica under stable operability. It is of great industrial significance. In particular, in the past, when manufacturing fused silica glass powder, there were large variations in the raw material supply stage to the flame melting furnace, which caused trouble, but according to the present invention, this can be improved with good reproducibility, and the molten glass The quality will also be stable.

Claims (1)

【特許請求の範囲】 1 珪酸アルカリ水溶液から得られるシリカであ
つてα―放射体がU+Thとして10ppb以下、Na、
Clの含有率が各々10ppm以下および含水率が1〜
10重量%であることを特徴とする溶融用水和シリ
カ。 2 珪酸アルカリ水溶液から得られるシリカがイ
オン交換樹脂によつて生成するシリカゾルを経由
したものである特許請求の範囲第1項記載の溶融
用水和シリカ。 3 珪酸アルカリ水溶液から得られるシリカが鉱
酸中に該溶液を添加して生成するシリカである特
許請求の範囲第1項記載の溶融用水和シリカ。 4 平均粒子径が200μm以下である特許請求の範
囲第1項から第3項までのいずれか1項記載の溶
融用水和シリカ。 5 帯電防止剤を含有する特許請求の範囲第1項
から第4項までのいずれか1項記載の溶融用水和
シリカ。 6 シリカ粉末を火炎溶融して溶融球状シリカを
製造するに当り、珪酸アルカリ水溶液を処理して
α―放射体がU+Thとして10ppb以下、Na、Cl
の含有率が各々10ppm以下、および含水率が1〜
10重量%の範囲にある水和シリカゲル粉末を使用
することを特徴とする溶融シリカの製造方法。
[Scope of Claims] 1 Silica obtained from an aqueous alkali silicate solution containing α-emitters of 10 ppb or less as U+Th, Na,
Cl content is 10 ppm or less and water content is 1 to 1.
Hydrated silica for melting, characterized in that it is 10% by weight. 2. The hydrated silica for melting according to claim 1, wherein the silica obtained from the aqueous alkali silicate solution is obtained via a silica sol produced by an ion exchange resin. 3. The hydrated silica for melting according to claim 1, wherein the silica obtained from an aqueous alkali silicate solution is silica produced by adding the solution to a mineral acid. 4. The hydrated silica for melting according to any one of claims 1 to 3, which has an average particle diameter of 200 μm or less. 5. The fused hydrated silica according to any one of claims 1 to 4, which contains an antistatic agent. 6. When producing fused spherical silica by flame-melting silica powder, an aqueous alkali silicate solution is treated to contain α-emitters of 10 ppb or less as U+Th, Na, Cl
The content of each is 10 ppm or less, and the water content is 1 to 1.
A method for producing fused silica, characterized in that it uses hydrated silica gel powder in the range of 10% by weight.
JP15913384A 1984-07-31 1984-07-31 Hydrated silica for melting and manufacture of melted silica by using it Granted JPS6140811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15913384A JPS6140811A (en) 1984-07-31 1984-07-31 Hydrated silica for melting and manufacture of melted silica by using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15913384A JPS6140811A (en) 1984-07-31 1984-07-31 Hydrated silica for melting and manufacture of melted silica by using it

Publications (2)

Publication Number Publication Date
JPS6140811A JPS6140811A (en) 1986-02-27
JPH0127003B2 true JPH0127003B2 (en) 1989-05-26

Family

ID=15686966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15913384A Granted JPS6140811A (en) 1984-07-31 1984-07-31 Hydrated silica for melting and manufacture of melted silica by using it

Country Status (1)

Country Link
JP (1) JPS6140811A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230422A (en) * 1988-03-10 1989-09-13 Nippon Chem Ind Co Ltd High-purity silica and production thereof
DE60314218T2 (en) 2002-11-12 2007-09-27 Nitto Denko Corp., Ibaraki Filled epoxy resin composition for encapsulating semiconductors and a semiconductor device encapsulated therewith
JP2012142439A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Paste for mounting semiconductor device
JP6011361B2 (en) * 2013-01-25 2016-10-19 株式会社ニコン Method for producing silica particle dispersion and polishing method using silica particle dispersion

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125235A (en) * 1974-08-23 1976-03-01 Ichikoh Industries Ltd
JPS54141569A (en) * 1978-04-26 1979-11-02 Toshiba Corp Semiconductor device
JPS554952A (en) * 1978-06-28 1980-01-14 Toshiba Corp Semiconductor device
JPS5610947A (en) * 1979-07-10 1981-02-03 Toshiba Corp Semiconductor sealing resin composition
JPS5659837A (en) * 1979-09-28 1981-05-23 Hitachi Chem Co Ltd Epoxy resin composition
JPS5693749A (en) * 1979-12-27 1981-07-29 Hitachi Chem Co Ltd Epoxy resin composition
JPS56116647A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Manufacturing of silica-alumina type filler for semiconductor memory element covering resin
JPS57195151A (en) * 1981-05-27 1982-11-30 Denki Kagaku Kogyo Kk Low-radioactive resin composition
JPS57212224A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS58145613A (en) * 1982-02-15 1983-08-30 Denki Kagaku Kogyo Kk Molten silica sphere, its preparation and its device
JPS5954632A (en) * 1982-09-21 1984-03-29 Mitsubishi Metal Corp Preparation of quartz glass powder
JPS5955722A (en) * 1982-09-27 1984-03-30 Nichias Corp Molding method of diaphragm made of fluorocarbon resin
JPS59107937A (en) * 1982-12-10 1984-06-22 Seiko Epson Corp Manufacture of quartz glass

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125235A (en) * 1974-08-23 1976-03-01 Ichikoh Industries Ltd
JPS54141569A (en) * 1978-04-26 1979-11-02 Toshiba Corp Semiconductor device
JPS554952A (en) * 1978-06-28 1980-01-14 Toshiba Corp Semiconductor device
JPS5610947A (en) * 1979-07-10 1981-02-03 Toshiba Corp Semiconductor sealing resin composition
JPS5659837A (en) * 1979-09-28 1981-05-23 Hitachi Chem Co Ltd Epoxy resin composition
JPS5693749A (en) * 1979-12-27 1981-07-29 Hitachi Chem Co Ltd Epoxy resin composition
JPS56116647A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Manufacturing of silica-alumina type filler for semiconductor memory element covering resin
JPS57195151A (en) * 1981-05-27 1982-11-30 Denki Kagaku Kogyo Kk Low-radioactive resin composition
JPS57212224A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS58145613A (en) * 1982-02-15 1983-08-30 Denki Kagaku Kogyo Kk Molten silica sphere, its preparation and its device
JPS5954632A (en) * 1982-09-21 1984-03-29 Mitsubishi Metal Corp Preparation of quartz glass powder
JPS5955722A (en) * 1982-09-27 1984-03-30 Nichias Corp Molding method of diaphragm made of fluorocarbon resin
JPS59107937A (en) * 1982-12-10 1984-06-22 Seiko Epson Corp Manufacture of quartz glass

Also Published As

Publication number Publication date
JPS6140811A (en) 1986-02-27

Similar Documents

Publication Publication Date Title
US6761867B1 (en) Concentrated suspension of precipitation silica, processes for its preparation and uses of this suspension
JP5267758B2 (en) Method for producing hydrophobic silica powder
US4022704A (en) Production of spray dried, high bulk density hydrous sodium silicate mixtures
KR20130020695A (en) Process for preparing silicon dioxide dispersions
JPS6212608A (en) Silica of high purity and production thereof
JPH0127003B2 (en)
CN117120372A (en) Silica powder and method for producing same
WO2007020855A1 (en) Process for producing spherical inorganic particle
US3152001A (en) Process for the production of a filler
CN111747422A (en) Preparation method of ultrapure sodium silicate for silicon dioxide
JPH02184527A (en) Titanium, preparation thereof and use thereof
JPH022804B2 (en)
US2230909A (en) Process of making alkali subsilicates
CA1112823A (en) Process for the granulation of sodium metasilicate and products obtained
JPH0121091B2 (en)
JP2694163B2 (en) Method for producing high-purity silica
JPH10226511A (en) Production of super high purity spherical silica fine particle
JPH041018B2 (en)
JPS6140838A (en) Sio2-b2o3 series glass and its manufacture
US2794783A (en) Colloidal silica products
KR101522698B1 (en) Manufacture method of Silica nanoparticles and Silica Nonoparticles
JPS61178414A (en) High-purity silica and production thereof
CN112374504B (en) Process for manufacturing nano silicon dioxide by physical method
JPH04154613A (en) Synthetic silica powder having high purity
JP2544633B2 (en) Manufacturing method of organosilica

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term